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Key Points: 10 

 Graben are systematically arranged around sources of volcanically generated stress, 11 

lithospheric loading or regional stress;  12 

 A common sequence of region wide stress events that correlate with graben direction and 13 

orientation of channels of differing morphology; 14 

 A development sequence for the NW Elysium Province is proposed using graben orientation 15 

and channel direction analysis.  16 

 17 

Abstract  18 

We have investigated the links between regional stress fields, the volcanic centers, rifts, graben and channels in 19 

the NW region of the Elysium Province (Fig 1(a) and Fig 1(b)) to determine whether the sequence of stress 20 

events occurring during province development can be derived from the morphologies of these features; and thus 21 

provide a sequence of development events, which is independent of surface dating techniques. Rift and graben 22 

geomorphology was mapped and the neighboring relationships and orientation of individual graben were 23 

assessed to determine any spatial clustering or preferred orientation with regional or surface features capable of 24 

creating lithospheric flexure or tectonic stress within the study area. Crosscutting analysis determined a time 25 

ordered sequence of graben formation and these were related to volcanic centers or regional sources of stress. In 26 

addition, mapping showed that different channels share sections with similar shape and orientation, prompting 27 

our study of whether these channels, in tandem with the graben, were tectonically influenced during their 28 

development. The channel central axes were mapped and compared to identify common sequences of channel 29 

direction change. The time sequence of channel direction changes and the time ordered sequence of graben 30 

development were then compared. We have demonstrated a correlation between rift and graben direction with 31 

channel orientation suggesting a regional stress control from evolving volcanic centers. Overall we derive, for 32 
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the first time, the temporal pattern of tectonic, volcanic and channel evolution for the northwestern region of this 33 

major magmatic province on Mars.  34 

 35 

Plain Language Summary 36 

 37 

The northwest region of the Elysium Volcanic Province includes volcanoes, large outflow channels and narrow 38 

straight valleys called graben. We noticed that some outflow channel shapes matched, and nearly all graben 39 

were arranged in lines, curves or clusters. Analyzing these arrangements we identified a sequence of geological 40 

events that could have created the Province.  With mapping and analysis we have shown the outflow channel 41 

directions, and the location and direction of graben, have been controlled by the same tectonic forces. As events 42 

changed in time the force direction also changed, allowing us to identify probable events, for example volcano 43 

growth. We suggest the Province elevation increased as magma rose from the Martian interior; then the Hecates 44 

Tholus volcano increased in size; followed by the growth of Elysium Mons, the largest volcano in the Province. 45 

We suggest some lava erupted by Elysium Mons flowed away in subsurface channels called dikes to the 46 

surrounding Province, creating graben similar to some features seen in the northern Canadian Shield.  These 47 

results are important since this is the first time the Province growth events have been measured in this way, and 48 

the results are more accurate than some earlier attempts to predict this history.  49 

 50 

1 Introduction 51 

 52 

Significant portions of the Martian surface are dominated by the presence of large volcanic centers containing 53 

numerous volcanic edifices, associated rift zones, graben, and channels; yet the relative timing and details of 54 

their development remain elusive. Some progress has been made using stratigraphic superposition, cross cutting 55 

relationships, and surface dating techniques, which have proved to be inconsistent and uncertain in their 56 

outcomes. This study, using a different approach, seeks to provide greater certainty in the understanding of the 57 

sequence of volcanic center development by mapping the directions and intersections of associated rift zones, 58 

graben, and channels and analyzing these data.  59 

 60 

One link between the volcanic centers, rifts and channels may be the stress field associated with the volcanic 61 

edifices. Detailed pioneering work on the stress field was carried out by Hall et al., (1986) who modeled the 62 

lithospheric flexural response to volcanic loading (Fig. 1c) as thin elastic shell flexure overlying an inviscid 63 

fluid interior. Hall et al. (1986) adjusted the possible lithospheric loads to create a stress field that could account 64 

for the locations and relative orientations of surface tectonic features. This model did not account for 65 

volcanically created stress or provide a time ordered sequence of events. Other workers considered volcanically 66 

created stress distributions in particular Grosfils (2007) using the finite element method (FEM) of stress 67 

analysis. The Grosfils (2007) model, and later models by Hurwitz et al. (2009), Galgana et al. (2011), Bistacchi 68 

(2012) and Galgana et al. (2013) considered various scenarios including magma chamber shape, chamber 69 

overpressure, volcano development stage, structural features and variances in volcanic behavior to predict both 70 



 

 

the lithospheric flexure and fracture orientations. McGuire (1989) and Nakamura (1977) provide an 71 

understanding of the regional interplay of stress variations created by regional tectonic events and volcanic 72 

processes occurring during province development.  73 

 74 

Here we ask whether it is possible to gain insights into how stress has changed through time in the region by 75 

examining crosscutting relationships between graben and by studying the time evolution of the channels. In 76 

particular, we ask whether rifts and channels are aligned, and if they are preferentially aligned with the 77 

volcanoes or other identifiable stress sources. 78 

 79 

Our initial observations led us to note four main features. 80 

 81 

(1) From a visual comparison within the area, some channels appear to have sections that are similar in shape 82 

and orientation to one another, possibly suggesting synchronous formation, and we ask whether these features 83 

can be related to shared tectonic influences. For example, Figure 1a shows the similarity in the axial orientation 84 

of channels that we name 1 and 2.  Starting from their mouths; considering channel 2 direction indicators, which 85 

first indicate a channel direction of ESE, then turning to ENE continuing to SE, then SES, then SE, then SES 86 

and finally pointing towards ENE. Channel 1 makes the same directional changes, and often within similar 87 

shaped channel sections. This similarity in orientation is striking and somewhat unusual as it suggests that 88 

orientation changes are not simply meander development, but instead relate to an external cause that is shared 89 

between these channels. We further noted that many channel direction indicators do not link the shortest path 90 

between successive contours and therefore do not flow along the direction of maximum slope. 91 

 92 

(2) Visual inspection also reveals crosscutting relationships between rifts or graben of different orientation, and 93 

again we ask whether these features can be related to tectonic influences and whether there is a time order in 94 

these relationships. 95 

 96 

(3) The initial observations of graben crosscutting showed a sequence of directional change possibly similar to 97 

the common time sequence implied by the channels. For example, most graben axes orientated in a NW to SE 98 

direction are only crosscut by those orientated towards Hecates Tholus.  99 

 100 

(4) An initial analysis of rift and graben direction shows that graben with similar azimuth are clustered and often 101 

pointing towards a surface feature (Fig 2). 102 

 103 

Detailed investigations of these points could increase the understanding of past regional tectonic activity, and 104 

the order of volcanic center development, which is the overarching aim of this paper.  105 

 106 

1.1 Study Approach 107 

 108 

We selected the Elysium volcanic province for the study, as it includes channel features (Fig 1a), the volcanoes 109 

of Elysium Mons (EM), and the two flank volcanoes, Hecates Tholus to the north and Albor Tholus to the south 110 



 

 

. The channels and graben features investigated are located on the NW flank of the Elysium Rise between 111 

Utopia Planitia, which borders the northern and western flank of the Elysium Rise, and the Elysium Mons 112 

summit caldera.  113 

 114 

The study was organized as follows. First, a sample of rift and graben orientations were measured and the 115 

resulting probability density function was used to substantiate our observation that spatially clustered graben 116 

pointed in similar directions often at a surface features (Fig 2).  117 

All rift graben orientations within the study area were then measured producing a multimodal distribution 118 

containing a mixture of distributions and variables of  location and azimuth. From these data multivariate 119 

Gaussian distributions were extracted. For each distribution the mean was used to identify a possible source of 120 

dilatational stress (e.g. a volcanic center), and if the distribution mean azimuth pointed towards one, then the 121 

distribution members and the source of stress were color coded to indicated this relationship and to aid 122 

visualization. The graben crosscutting analysis used this information to determine a time order for changes in 123 

regional stress direction. Secondly, changes in orientation along the length of channels were quantified by 124 

mapping. Then the technique of ‘dynamic time warping’ (Giorgino, 2009) was used to search for correlations 125 

between channels to determine possible synchronous long axis changes in orientation during their development. 126 

Dynamic time warping compared channels by aligning matching sections on a common axis; thus making 127 

channel propagation rates a non-critical factor especially in the comparison of channels of dissimilar lengths. 128 

These shared channel long axis variation signatures were then compared with the time ordered regional stress 129 

direction change derived from the graben cross cutting analysis to see if regional stress could have influenced 130 

channel direction during development. Once established this time ordered sequence of stress direction change 131 

was used to identify the progression of tectonic processes identified by the models cited in this paper. 132 

 133 

2 Study Area Geology  134 

2.1 Geomorphology 135 

 136 

Eight channels are major features in the study area on the Elysium Rise (Fig 1a) and were included in this study. 137 

With the exception of the channels we name 3, 4 and 5, the channel major axes are aligned radially with the 138 

Elysium Mons summit caldera (Fig 1a). Channels 2 and 8 are on the lower, steeper slopes of the Elysium Rise 139 

and differ markedly in their morphology. Channel 2 could be identified as theatre headed in its lower regions, 140 

but the tapered head is non-characteristic, and Channel 8 is rille-like. Channel 2 has flow parallel ridges at a 141 

similar elevation (-1000m) to the head of Channel 8. Channels 1, 3, 4, 5 and 6 have developed in a region of 142 

lower gradient on the crest of the Elysium Rise. Channels 4 and 5 axes orientate to the NE flanks of Elysium 143 

Mons. Channels 3, 4 and 5 appear as raised tributaries and connect to Channel 1. The upper sections of Channel 144 

6, though smaller, has similarities with Channel 1. There are other similarities specific to Channels 1 and 2; for 145 

example, each has a flow parallel channel to the south of the main channel in the lower reaches and flow parallel 146 

channel to the north of the main channel towards both channel heads, refer to S2 for enlarged images. The 147 

outfall from these channels feed into the Utopia Planitia Basin in the NW (Thomson et al., 2001). 148 

 149 



 

 

The distribution of graben clusters vary across the area (Fig 1b), and referring to the center of the NW and SE 150 

quadrants, several bands of graben can be seen linearly aligned in a NW to SE direction. Cross cutting these in 151 

the NW quadrant are bands of graben tangential to Hecates Tholus . The graben clusters around Elysium Mons 152 

in the NW quadrant are concentrically arranged at varying distances from the edifice, which is similar to the 153 

cluster alignments in the NE, SE and SW quadrants. In addition there is a concentric cluster proximal to Albor 154 

Tholus, with further clusters to the N and the SE of this edifice. The complex graben distribution in the SW 155 

quadrant has the vestiges of a linear graben alignment similar to those seen in SE quadrant, and there are other 156 

clusters and linear graben alignments that require further investigation; these however the analysis of these are 157 

not within the scope of this study. 158 

 159 

Finally, many surface features have been created in a low gradient region, which has under gone uplift, and 160 

these are cross cut or partially covered by a range of sedimentary or volcanic surface deposits. The channels 161 

considered crosscut the major flank flows though there is evidence of more recent surface deposits and some 162 

later minor surface flows within them. 163 

 164 

2.2 Stratigraphy 165 

 166 

There are three major stratigraphic units within the study area (Tanaka et al., 2014) Fig 1(d). The main edifice, 167 

Elysium Mons and the flank cones of Albor Tholus and Hecates Tholus are Hesperian volcanic edifice units 168 

(Hve) comprising lobate flows up to tens of meters thick and tens to hundreds of kilometers across. These units 169 

are surrounded by younger Amazonian/Hesperian volcanic units (AHv), with flows tens of meters thick, and 170 

hundreds of kilometers long resulting in an accumulated thickness of several kilometers. Both AHv and Hve 171 

surround a late Hesperian volcanic field (lHvf) comprising smaller lobate flows tens kilometers long and several 172 

meters thick. This flow is bounded in the north by the southern wall of Channel 1. 173 

 174 

2.3  Volcanic History 175 

 176 

The history of Mars volcanism has been the subject of many studies, and in more recent papers the focus has 177 

tended towards caldera age dating to identify the most recent eruption events. Greeley and Spudis (1981) first 178 

described the volcanic history based on observations of stratigraphic superposition and cross cutting. There 179 

followed various crater-dating studies that produced significant discrepancies between crater model ages. These 180 

were due to differences in data set spatial resolution; differing data fitting methods and chronology functions; 181 

differing choice of counting area; misidentification of surface features; and neglect of the regional geology 182 

(Platz and Michael, 2011; Hartmann, 2005; Hartmann and Neukum, 2001). Werner (2009) examined several 183 

volcanic centers including the Elysium Province and Tharsis Montes. A coherent data set was produced based 184 

on a standardized crater dating method, the use of CTX high-resolution images for measurement and analyses 185 

by a single observer. The data produced included an age estimate for the main edifice erection by dating flank 186 

deposits, and estimates of the most recent volcanic activities from caldera floor analyses. Werner (2009) 187 

concluded the main edifice emplacement dates for the following volcanoes are; Elysium Mons 3.7 Ga, Albor 188 

Tholus before 3.4 Ga, Hecates Tholus 3.5 Ga and Tharsis Montes complex 3.55 Ga. Activity continued with all 189 



 

 

volcanoes declining at different rates from approximately 1 Ga. Robbins et al. (2011) analyzed 20 large volcano 190 

caldera including the Tharsis Montes complex, but using smaller caldera sample areas than Werner (2009). The 191 

sampling areas were determined using geomorphological features and surface cover to subdivide the caldera 192 

floors. Robbins et al. (2011) used a dating methodology different to Werner (2009) and discrepancies were 193 

found, some due to caldera area subdivision. Robbins et al. (2011) provided a range of dates that are dependent 194 

on caldera activity only and did not consider flank activity. Platz and Michael (2011) however provided an 195 

eruption history specifically of the Elysium Province using selected areas on the flanks, and in the caldera and 196 

concluded the earliest activity was 3.9 Ga with a major activity peak 2.2 Ga when the majority of material was 197 

erupted over a 200 Ma interval. The youngest flood lava found to-date, in Athabasca Valles, was dated as 5Ma 198 

+/- 2Ma (Jaeger at al., 2010). From the above, the variation in assumptions, measurement methods, data sets and 199 

loosely constrained timescales, often result in overlapping time ranges, making the sequence of volcanic activity 200 

on the Elysium Province difficult to establish. 201 

 202 

Fluvial erosion was most active from late Noachian through to early Amazonian (Carr and Head, 2010), (Hynek 203 

et al., 2005) and a variety of flow regimes have been considered for this this region. The major fluvial activity is 204 

considered to have taken place in the Noachian. 205 

 206 

3 Background 207 

 208 

This section provides more detail on the bodies of understanding used within this study, in particular works 209 

relating to lithospheric loading, changes in edifice stress due to volcanic process, graben and tension fractures, 210 

and finally, the effects of surface erosion within the context of this paper. 211 

 212 

3.1 Lithospheric Modelling  213 

 214 

Initially Janle and Ropers (1983) calculated lithospheric loading from regional topography and compared these 215 

to Mars Global Surveyor (MGS) line of sight (LOS) Doppler gravity variations to determine levels of isostatic 216 

compensation. Later Comer et al. (1985) modeled lithospheric flexure using a single conic load model centered 217 

on Elysium Mons and estimated the lithospheric effective elastic thickness (Te = 54km) inferred from the 218 

observed concentric graben positioning. Comer et al. (1985) argued concentric graben at a distance from an 219 

edifice were the result of lithospheric flexure.  Hall et al. (1986) agreed with the value of Te and the region of 220 

concentric flexure determined by Comer et al. (1985). The lithospheric model by Hall et al. (1986) identified 221 

more sources of stress than Comer et al. (1985) incorporating Tharsis isostatic stress and flexural loading 222 

(Banerdt et al., 1982), Elysium Planitia deposits, magma plume related uplift, and volcanic loading by Elysium 223 

Mons and Hecates Tholus; Albor Tholus mass was considered insignificant. Predictions of horizontal regional 224 

stress were calculated by modeling the lithosphere as a flexible shell on an inviscid fluid, and applying 225 

combinations of the above loads. Hall et al. (1986) concluded loading from Tharsis isostatic flexural stress, 226 

plume related Province uplift and the individual loads of Hecates Tholus and Elysium Mons provided the best 227 

fit with the regional tectonic features (Fig 1c). In more recent studies McKenzie et al. (2002) used Cartesian 228 



 

 

domain admittance techniques with Viking 2 topography data and MGS LOS Doppler gravity data (Te = 27 km). 229 

McGovern (2002) used spectral domain analysis with MGS LOS gravity and MOLA topography data (Te = 60 230 

to 90 km); while Belleguic et al. (2005) created a revised spectral model with similar data (Te = 54 km). None of 231 

the recent authors produced maps of the Elysium Rise detailing the distributions of compressional and 232 

dilatational stresses within the study area with the exception for Hall et al. (1986), which we used; consequently 233 

any coherence between these other data and ours could not be demonstrated.  234 

 235 

3.2 Volcanic Edifice Modelling  236 

 237 

The current models of volcanic edifice stress distribution are summarized below and these have been applied to 238 

a variety of scenarios including generalized, terrestrial, Martian and Venusian environments. With the support 239 

of field, petrological and remote sensing analysis finite element (FEM) half space models have provided insight 240 

into the stress variations associated with volcanic activity including magma flow, magma chamber shape, size 241 

and location, edifice growth and lithospheric flexure. Grosfils (2007 and the references therein) summarize the 242 

analytic approaches to the data within the paper and compare them with an FEM model, which primarily 243 

considered the variation in magma chamber rupture with depth of burial. Hurwitz et al. (2009) expanded the 244 

model to include the impact of edifice growth on chamber rupture behavior and predicted the blocking of 245 

magma ascent and magma flow re-routing to radial flow on edifice mass increase. Galgana et al. (2011) 246 

incorporated the effects of lithospheric flexure into the model and Bistacchi extended the rheological behavior 247 

and demonstrated correlation between the model (Bistacchi,  2012) and the distribution of cone sheets and dikes 248 

in the Cullen Igneous Province.  Most recently Galgana et al. (2013) modeled the effects of uplift on magma 249 

chamber rupture constraining the temporal and cyclic aspects of eruption and uplift and the conditions for 250 

inhibiting magma ascent and diversion to radial flow. These models account for the formation of radial and 251 

circumferential dikes, cone sheets, sills and lithospheric flexure depending on the scenario considered.   No 252 

model exists for the Elysium Province consequently these models have been used in the arguments presented 253 

here.    254 

 255 

3.3 Graben and Tension Fractures  256 

 257 

There is a general consensus within the references quoted  (including Golombeck, 1989; MacKinnon and 258 

Tanaka, 1989; Ernst et al., 1995; Ernst et al., 2001; Wyricket et al., 2004; Pederson et al., 2010) that features 259 

considered here are the product of dilatational rupture, which is considered as the dominant process in graben, 260 

channel and rift formation on Mars.  However it should be noted that graben can form with high levels of the 261 

principle maximum component of stress, σ1, acting vertically during up-thrust but this would not generally 262 

apply; with the possible exception of stress related features associated with regional uplift. The formation of 263 

graben by dilational stress, requiring intact rocks (MacKinnon and Tanaka, 1989), is well documented. Ferrill 264 

and Morris (2003) who summarize the environment by assigning the principle minimum component σ3 < 0, σ3 is 265 

greater than or equal to the tensile strength of the rock, and has a zero angle of shear between the fault surfaces. 266 

This stress vector acts parallel to the horizontal and in the case of a graben, is perpendicular to graben wall 267 

orientation. This vector, termed the graben azimuth, points in the general direction of the stress source.  268 



 

 

 269 

There are several processes that influence graben formation and these include collapse features related to sub-270 

surface dikes. Several researchers have considered the sensitivity of magmatically created near surface dikes 271 

and dike swarms to tectonic influence (Ernst et al., 1995). Generally, radial dikes can form proximal to a magma 272 

body indicating random dike propagation in response to individual pressurization events in a regionally 273 

homogeneous stress field (Pedersen et al., 2010). Further away from the magma source curved and linear, sub-274 

parallel, near-surface dikes tend to propagate in a direction perpendicular to the direction of regional minimum 275 

horizontal compressive stress (Ernst et al., 2001); or the maximum horizontal tensile stress, σ3. Also, tension 276 

fractures can include basement faulting below the unconsolidated Martian upper crust producing inline surface 277 

subsidence features, e.g. crater pit chains and surface wedges (Wyricket al., 2004). In comparison, Golombek 278 

(1989) cites the simple graben as the most common surface feature with two inward facing symmetric normal 279 

faults and scarps of equal height; with a flat floor; where the absence of the latter is used to differentiate joints 280 

and tension fractures. Tension fractures occur in a variety of forms and within this paper the term graben is used 281 

to describe any form of tension fracture unless stated otherwise. In summary, graben or rifts can be created by a 282 

wide variety of sources from those originating at a regional level through to the local effects of edifice structural 283 

loadings. 284 

 285 

 286 

3.4  Channel Erosion  287 

  288 

The study area contains channels whose development on Mars are primarily attributed to water, water mediated 289 

material flow or lava, and this section identifies these possibilities.  290 

 291 

Studies have considered fluvial erosional processes linked to channel development and these are now identified. 292 

Howard et al. (2005), considered the late Noachian / early Hesperian to be the apparent peak in fluvial activity 293 

caused by precipitation. Other types of erosional processes considered to be active in the study area occurring in 294 

the interval between the Late Noachian through into the Late Amazonian include syn-volcanic mega-lahars 295 

(Christiansen, 1989); Amazonian syn-volcanic fluvial and peri-glacial activity (Tanaka, 1992); lahar creation 296 

from effused groundwater (Russell & Head, 2003), and fluvial or ground water environments from Late 297 

Amazonian glaciers (Madeleine et al., 2009). The effused ground water from the Martian global aquifer within 298 

the study area is not available due to the elevation limit of less than -3000m, Clifford (1992).  In the study area 299 

Carr and Clow (1981) suggested flow in these channels could have been created by processes other than fluvial, 300 

a view supported by Leverington (2011) who proposes lava as the principle erosive agent. The study area 301 

channels can be divided into arcuate rille-like and theatre headed channel morphologies, which are now 302 

discussed   303 

 304 

Terrestrial theater-headed channels (Laity and Malin, 1985; Laity et al., 1990; Lamb et al., 2006; Schultz et al., 305 

2007) are fluvial in origin, and the direction and parallelism of their walls are considered to be controlled by 306 

faults or regional jointing..  These channels can develop from ephemeral surface water flow down the line of 307 

maximum slope creating narrow gullies which later widen by mass wasting, possibly ground water sapping 308 



 

 

(Lamb et al., 2006). Alternatively channels can develop headward due to ground water sapping only by aquifer 309 

water erosion in the canyon head walls without surface water flow (Laity and Malin, 1985). In both cases faults 310 

and jointing can control the channel flow direction. If the channels are controlled by fault, fracture or rift 311 

orientations, one direction of control is parallel to the channel axes perpendicular to the direction of principle 312 

direction of maximum tensile stress, σ3. Alternatively, the direction of σ3 can act parallel with the channel axis 313 

producing faults and jointing perpendicular to the channel axis at the head wall controlling the direction of head-314 

ward erosion (Lamb et al, 2014). 315 

 316 

Next we will consider arcuate and linear rille-like channels. We refer to channels similar to Channel 8  (Fig 1a) 317 

as arcuate rille-like because their characteristics include consistently straight or arcuate parallel striking walls 318 

bounded by steep inward dipping slopes; their directions typically ignore topographic obstructions; they cut 319 

across highland terrains, and they exhibit little change in propagation direction, McGill (1971). Both arcuate and 320 

linear rilles are considered to be linear arrays of graben created in tensional fields associated within various 321 

stress related contexts (Head and Wilson, 1993). Basin formation and subsequent lithospheric loading by basin 322 

fill create rilles e.g. McGill (1971); Solomon (1980) or localized dilatational stress fields can create arcuate rille-323 

like features by near surface dike emplacement (Head and Wilson, 1993). The propagation direction of arcuate 324 

and linear rille development is open for consideration as this is dependent on preexisting or contemporaneous 325 

tectonically generated pathways. The creation direction of these paths on volcanic slopes depends on local 326 

edifice stress distribution, regional and gravitational stress (McGuire, 1989). Volcanic processes determine flank 327 

eruptions, which can be sourced from the volcano central conduit via dikes either vertically or horizontally 328 

orientated for more distal eruptions. Alternatively flank eruptions can occur from dikes fed vertically from 329 

below the edifice from a less fractionated and deeper magma sources  (Geshi, 2008). This behavior has been 330 

observed on Etna (Acocella, 2003) in the 2001 eruption. In this instance main conduit magma was supplied to a 331 

series of downslope propagating fissures; whilst another form of dike referred to as an “eccentric dike”, formed 332 

contemporaneously in the same area erupting less differentiated magma (Bonoforte, 2009) however these 333 

fissures propagated up slope. Acocella, (2003) noted Etna flank extensional instability due to regional influences 334 

as a possible influence on the development of these features, and this is not dissimilar to the NW flanks of EM 335 

which lack buttressing due to the proximity of the Utopia Planitia basin (Thomson et al., 2001). 336 

 337 

Rille-like features and theatre headed channels can share common controls for direction development but 338 

conventionally they differ in their development direction.  The direction of channel development is important in 339 

our analysis but the type of flow is less so. The unavailability of sufficient volumes of subsurface or surface 340 

water at the channels elevations considered makes sustained fluvial events capable of producing the channels 341 

unlikely (Carr et al., 1981).  However, ephemeral supplies of water from glacial deposits, snow and eruptive 342 

events make it possible for water-mediated flows or aquifer born seepages to flow down the line of maximum 343 

slope if unimpeded. Likewise surface flowing lava could behave in a similar manner creating sinuous channels 344 

referred to as sinuous rilles in a Lunar context.  Arcuate rilles are a special case as they are not necessarily 345 

generated by flow as it is considered the direction of these channels is controlled by pre-existing or 346 

contemporaneous tectonic events. Due to this, the direction of their development is not necessarily down the line 347 

of maximum slope but is determined by the local stress direction, and the feature propagation can be upslope.  348 



 

 

 349 

 350 

4 Methods 351 

 352 

This section describes the key data required to support the study and how this was derived from the collected 353 

data and identifying the methods used in the analysis. The emphasis has been to maximize accuracy, 354 

repeatability and minimize observer bias. The application software and workflows producing these data are 355 

described below. 356 

 357 

4.1 Applications and Software 358 

4.1.1 ESRI ArcGIS Geographical Information System  359 

There was a general requirement to visualize the spatial disposition of the graben relative to each other and their 360 

azimuth with the topographic features on the Martian surface; and to take measurements of the channel 361 

dimensions to determine the azimuthal changes in the channel centerlines.  We needed to superimpose this 362 

information on surface images with sufficient flexibility to effectively present the data.  ArcGIS spatial analysis 363 

tools and data display functions were selected. A third party ArcGIS application package “Fluvial Corridor”, 364 

developed by the CNRS research unit Lyon, was used to measure channel direction changes, (Roux et al., 2015). 365 

Alber and Piegay (2011) defined the linear reference axis (LRA) as the centerline of a fluvial feature, e.g. a 366 

channel centerline, and provided “Centerline” software in the Fluvial Corridor ArcGIS toolbox to determine the 367 

LRA from an ARC polygon of the channel floor area. Centerline achieves this by dividing the opposing edges 368 

of the polygon, representing the channel sides, into points of equal intervals and constructing Thiessen polygons 369 

between them, the polygon centers are then used to create the channel centerline, or LRA.  There are usage 370 

constraints with “Centerline” where an accurate LRA is not derived and these occur at channel confluence, 371 

channel ends and abrupt changes in channel direction; these were taken into consideration and adjustments 372 

made to the LRA during the analysis. 373 

 374 

4.1.2 CRAN application “mclust” for Gaussian Mixture analysis 375 

 376 

The initial analysis was based on measurements of graben location and azimuth indicating the direction of 377 

dilatational stress. This produced a multimodal PDF (Fig 2) we considered to be a mixture of probability 378 

distributions; and after increasing the number of data set samples we needed a process to extract and isolate 379 

these distributions. We expected to demonstrate any organization or preference in graben spatial distribution and 380 

azimuthal direction to prove our hypothesis. As we were interested graben location (latitude and longitude) and 381 

azimuth we extracted trivariate distributions from these data.  The graben population was considered to be a 382 

Gaussian mixture, as Fraley et al. (2002) had observed non-Gaussian data would often be approximated by 383 

several Gaussian ones using the methods they proposed. The R package “mclust” (Fraley & Rafferty, 2006) was 384 



 

 

used to extract the component Gaussian distributions from the graben data set to identify graben azimuth 385 

variations with spatial alignments. 386 

 387 

The cluster selection process is started assuming the data set is a single distribution and a normal distribution 388 

model was assigned. Expectation maximization, an iterative procedure (Do & Batzoglou. 2008), was used to 389 

determine the likelihood estimator (i.e. the values of μ (mean) and σ2 (variance)) for the selected normal 390 

distribution model that best describes the distribution data. This is repeated for all normal distribution models, 391 

and one is selected by comparing the relative performance of each using the Bayesian Information Criterion 392 

(BIC). The BIC is an index reflecting a model fit against model complexity and the most efficient model, which 393 

has the lowest BIC value, was used. The number of distributions and number of clusters was incremented and 394 

the new cluster values were selected in accordance with distance connectivity criteria. The cluster distribution 395 

selection process was then repeated. This cluster selection process can run for a default number of times or be 396 

user selected. On completion of these selection cycles, the number of clusters and distribution model type was 397 

chosen using the BIC performance index as the selection criteria. For more technical examples of expectation 398 

maximization see Chen and Gupta (2010) and for the “mclust” package description Fraley and Rafferty. (2006). 399 

 400 

The “mclust” package, written in R, provides the mean and covariance of each identified Gaussian cluster and 401 

the optimum distribution model selected by BIC, “mclust” can support up to four Gaussian distribution 402 

variables. The graphical output functions, using R graphic primitives were used to illustrate data and the data 403 

was further processed in R before export to Excel and ArcGIS. 404 

 405 

4.1.3 CRAN application “dtw” for channel axial profile matching 406 

In matching channel direction changes with graben orientation it was necessary to accurately identify common 407 

sequences of the linear reference axis (LRA) azimuth changes between the channels considered. The channel 408 

LRA was subdivided into equal segments and the key data was channel measurement position and azimuth at 409 

that sample point.  The segmented LRA for each channel was used for the comparison.  To demonstrate a match 410 

or degree of match between channel profiles is relatively straight forward using channel direction changes 411 

(azimuth) and regression techniques if they are of the same length, and equivalent points occur on the same 412 

position along the interpolant. We wished to prove the shape of the channel direction profiles matched between 413 

channels of different lengths, with different feature interspacing, similar shaped features, whose data (azimuth) 414 

varied over near identical range of values. We needed a method of channel comparison that would compare the 415 

overall shape and not provide an equivalent point-by-point comparison. “dtw”, a CRAN application (Giorgino, 416 

2009)  is able to compare two time or spatial ordered series of different lengths  and determine the degree of 417 

match between them using the dynamic time warping  DTW method. The software package “dtw” was used to 418 

identify channel sections of similar shape and orientation. DTW is a mature analytic technique used extensively 419 

in analyzing time and spatially ordered series across a variety of applications including, for example, speech 420 

recognition (Rabiner & Juang, 2008), gene time series analysis (Criel & Tsiporkova, 2005), handwriting 421 

recognition (Rath & ManMatha, 2003) and chromatography (Wang & Isenhour, 1987).  422 

 423 



 

 

DTW projects one of the channel profiles as ordinate (y) the other as abscissa (x) onto an interpolant angled at 424 

45 deg to the origin. The interpolant is called the warping axis. DTW moves a projected x or y value along the 425 

warping axis to co-align equivalent points, extending the axis when required 426 

 427 

This movement is achieved by inserting a data point value before the point of interest, by shifting the point of 428 

data and all subsequent data along the axis away from the origin to make a space. Equivalent points are a point 429 

pairs of x and y values where the Euclidean distance between, the residual error, is very small ideally zero. The 430 

data inserted into the space is the value of the last xy pair, which achieved a match, and this value persists until 431 

another xy match is achieved. By repeating this process, and applying sets of rules, the variations in channel 432 

feature displacements and differences in profile lengths are accommodated and result in the alignment of 433 

equivalent points along the common warping axis; this result is called the warping function.  The warping 434 

function provides a mapping between equivalent points on the x and y axes, 435 

 436 

The DTW performance metric, Normalized Distance (ND), is an indicator of match; this is a normalized 437 

aggregation of the sum of the residual errors. Because of the small number of channels we have available the 438 

relative meaning ND between channels is not readily demonstrable. Instead, we use linear regression techniques 439 

and performance indices on the warping function as the equivalent points are now aligned.  The degree fit is 440 

measured using r2 and Pearson’s R as these are understood and proven.  441 

 442 

The effect on the regression of inserted data into the channel profiles by “dtw” has been evaluated using 443 

standard regression diagnostics including, residuals vs. fitted tests for residuals non linearity and outlier 444 

identification; normal Q-Q to test residual normality; scale vs. location to test evenness of spread between 445 

residuals and predictors; residuals vs leverage (Cook’s test) to check for influence of outliers on the results; and 446 

heterosckedasticity, the systematic variation in the size of the residuals. Our results passed these tests and the 447 

values of r2 and Pearson’s R are considered valid and they indicated a satisfactory match so we consider the 448 

outcomes of sufficient accuracy for the purpose of the study. The influence of the extra data on the final results 449 

has been shown to be insignificant within the context of our requirements. DTW does not have an equivalent set 450 

of data diagnostics. 451 

 452 

The DTW convention is to compare unknowns, or “queries” against a standard or “reference”. Channel 1 was 453 

assigned as the reference and all other channels assigned as the query, and in our case we selected the option to 454 

move both reference and query points on the warping axis to achieve a match (Tormene et al., 2009).  As the 455 

channel samples were limited we simulated test data sets to determine the most appropriate warping settings 456 

(Keog & Pazzani, 2001).  457 

 458 

The “dtw” application provides graphical outputs of the results, with full access to the warping outcome data 459 

and the internal data sets supporting the warping process. Data was exported using R code for input to Excel and 460 

ArcGIS. 461 



 

 

 462 

4.2 Graben Analysis workflow 463 

 464 

This section outlines the workflow and packages used to produce the graben azimuth data for analysis. At study 465 

initiation an initial data set containing the location and orientation of a sample of graben was measured and a 466 

preliminary analysis performed as a test of the hypothesis that graben were arranged in groups and their 467 

directions orientated to surface features or another direction in an organized manner. Given the successful test 468 

outcome the data set was then expanded to include the remaining graben in the study area 469 

 470 

The graben data set was generated in an ArcGIS table using ARC tools. First a straight line from graben tip to 471 

tip was drawn and a perpendicular at the line midpoint created, and from this the azimuth of the line determined. 472 

This azimuth, i.e. the graben azimuth, location and other table attributes were added to assist analysis and 473 

display.  474 

 475 

The initial dataset of 342 samples  (Fig 2(a)) was exported to an R application to create the graben azimuth 476 

Probability Density Function (PDF) as in Fig 2(b); which has three distinct maxima comprising 5 modes and the 477 

graben from each mode are shown in the locations in Fig 2(c). Using ArcGIS, the graben for each mode, and a 478 

symmetrical range about their mean, were manually selected to visualize the surface location of every graben 479 

within that mode. With the exclusion of some outliers, it was found that each mode contained clusters of points 480 

which were either spatially associated with large surface features, assuming a dilatational environment; or had 481 

common spatial alignments with a similar azimuth. The outliers were attributed to the coarse method of graben 482 

selection. Fig 2(c) visualizes the PDF segmented according to the selected mode. As a result of this manual test 483 

we increased the graben sample size to 845 by extending the mapping range and subdividing some previously 484 

mapped graben. This became the baseline data set and the PDF for this is given in Fig 3(a).  Fig 3(a) shows the 485 

relationship between the graben azimuth and the PDF; and to illustrate how the graben spatial aggregations 486 

contribute we show the graben spatial distributions in Fig 3(b), and how they summate into the PDF 487 

 488 

 489 

The CRAN package “mclust” minimized bias and increased accuracy during the cluster extraction. The 490 

Gaussian distribution was chosen for reasons already given and “mclust” resolved 24 clusters. Using ArcGIS 491 

many of these were spatially aligned with surface features.  Some clusters were multimodal, and where possible, 492 

these were subdivided into subclusters. The clusters and subclusters, were imported into ArcGIS and the spatial 493 

center, and mean azimuth of each cluster was calculated and visualized, Fig 4 (a), and the stress tensor map 494 

derived by Hall et al. (1986), Fig 4(b) is provided for comparison, 495 

 496 

The values of the cluster means were projected in ArcGIS to determine if it targeted volcanic structures or other 497 

tectonic feature. For effective visualization the boundaries of the volcanic structures were defined as the break 498 

in slope of the edifice onto their supporting surface and these are shown as different colored boundaries (Fig 4 499 

(a)). The color-coding aided recognition and each graben cluster member was visualized in ArcGIS as a 500 



 

 

rhombic shape and color matched to the identified target.  (Fig 4(a)). The arrows representing each cluster mean 501 

were also matched to the target color. 502 

 503 

To provide clarity and assist the reader, these data were temporarily labeled in the paper according to their 504 

apparent target: NWSE = linear array of graben pointing either NE or SW (brown); HTnorth graben cluster 505 

members focused on the north side of  Hecates Tholus (HT) (green) or proximal to it; HTsouth graben cluster 506 

members focused on the south side of HT or proximal to it; AT graben cluster members focused on Albor 507 

Tholus (red),  EM graben cluster members focused on Elysium Mons (blue) ; and SER graben cluster members 508 

focused in directions to the south east region (yellow) and not directly at EM.  509 

  510 

Crosscutting graben were identified by visual inspection, and their locations mapped and marked in ArcGIS 511 

with an identifier (Fig 5(a)). Each cross cutting pair was examined and their association with a particular source 512 

of stress verified by graben azimuth projection (refer to S1). These relationships were tabulated (Fig 5(b)) and 513 

summarized (Fig 5(c) and Fig 5(d)).  514 

 515 

 516 

This workflow produced an ArcGIS image with each graben location color-coded to a target area; with the 517 

cluster mean azimuth arrows indicating direction. The cross cutting locations and their crosscutting order was 518 

evaluated and recorded (Fig. 5).  Also produced were maps showing the location length and orientation of each 519 

graben and some intermediate analysis data plotted spatially for reference.  520 

 521 

4.3 Channel Analysis workflow 522 

 523 

This section provides a description of channel data workflow, which is followed by a description of the channel 524 

spatial analysis. Initially the channel profiles were compared using manually generated ArcGIS profiles and 525 

these data transferred to Excel for analysis. From these results, similarities in channel centerline azimuth were 526 

identified, in particular between Channels 1, 2, 6, 7 and Channel 8. Channel 1 was chosen as the reference for 527 

comparison as this was considered the best representation of channel morphology, and was judged to be the 528 

most clearly defined. Further analysis was then undertaken on all channels using DTW with LRA data generated 529 

using ArcTools..  530 

 531 

Derivation of the channel Linear Reference Axis (LRA) with the Fluvial Corridor centerline utility requires a 532 

definition of the channel floor expressed as an ARC polygon, shown as a colored area on the channel floors (Fig 533 

6 and Fig 7). There are morphological and channel floor deposit differences between the channels, so an 534 

unambiguous definition of the channel floor boundary was required, although this was not straightforward; the 535 

following thought-process led to the chosen scenario. Estimation of the channel wall base contact through the 536 

colluvial deposits was discounted on the grounds of accuracy, repeatability and the variability of depositional 537 

conditions between channels. Similarly, the upper colluvium contact was considered but discounted due to its 538 

obscurity in many channel sections. The channel boundary contact was defined as the channel floor contact with 539 

the base of the colluvial deposits, which is generally visible and so repeatable and objective. This excludes other 540 



 

 

channel floor deposits and debris. It is accepted that this contact has been subject to aeolian and possibly fluvial 541 

erosion, but in the majority of cases the channel lengths have opposing colluvial deposits of similar widths, 542 

which are small compared to channel width, thus minimizing the centerline error. 543 

 544 

The activity sequence to produce a channel LRA data set was started by creating an ArcGIS channel floor 545 

polygon, which was then processed by Fluvial Corridor Centerline creating an ArcGIS polyline of the channel 546 

centerline. Using ARC tools this polyline (LRA) was divided into 100 m long sections, and the azimuth of each 547 

100 m section determined for the complete channel length. A series of marker points spaced 0.5 km apart were 548 

created along the LRA from channel mouth to head. A moving average about each marker point was calculated 549 

using the 100 m linear data segments in a range +/- 0.25 km about each, so providing data smoothing. Channel 550 

LRA azimuths vs. distance datasets were created for each channel using this method. Adjustments were made to 551 

the LRA to compensate for algorithmic distortion at the LRA terminal points, instances of rapid directional 552 

change and at channel confluences by eliminating selected outliers (Roux et al., 2013)  553 

 554 

The DTW convention is to compare unknown profiles, or queries, against a standard profile, or reference. DTW 555 

rules require optimization to assure “DTW” discrimination sensitivity for the shape of the profiles being 556 

compared. As the study samples were limited in number, test profiles were generated by simulating randomly 557 

placed Gaussian distributions of changes within a copy of the reference profile, Channel 1, which was used as 558 

the query and compared with the unchanged Channel 1 data. For each set of “DTW” rules 1000 randomized test 559 

profiles were generated automatically and each of these query variants were matched with the reference and the 560 

results recorded. From each set of results the mean value of ND, r2 and Pearson’s R values were calculated and 561 

the rule set with the lowest of these metrics was selected. During this process the LRA data binning was 562 

adjusted to 200 bins minimizing the effects of data noise, and a degradation of feature discrimination noted 563 

between channels of significantly different lengths.  564 

 565 

Though “dtw” provides Normalized Distance (ND) as a measure of success we used linear regression using 566 

warped data to measure the degree of match for the reasons given above. The outcomes of DTW and the linear 567 

regression are shown in Figs 8 and Fig 9. 568 

 569 

Each channel was compared with the reference, but  Channels 3, 4 and 5 did not match even though they share 570 

the same morphology as Channel 1 as they lack any of the major azimuth deviation features. 571 

 572 

After channel matching equivalent sections of azimuthal profile or “stages” were identified between them. The 573 

azimuth mean value of each stage, for Channels 1, 2, 6 and 8 were calculated and the perpendicular to each of 574 

these directions was constructed at the stage midpoint on the LRA (Fig 10). For all channels in Fig 10 the 575 

perpendicular at the center of each stage azimuth mean line is indicated with yellow filled arrow to indicate the 576 

direction of dilatational stress and a line arrowhead was used to indicate the direction of average stage azimuth 577 

 578 



 

 

5 Data 579 

 580 

This section identifies the source of Mars surface images and DEMs and provides technical references of the 581 

instruments used.  582 

 583 

The images used in the analysis have primarily been obtained from the Context Camera (CTX), resolution ~6 584 

m/pixel, Malin et al., (2007), because High Resolution Imaging Science Experiment (HiRISE), resolution up to 585 

0.25 m/pixel, camera images (Delamere, 2010) are not available for most of the region studied. HiRISE and 586 

CTX are on the Mars Reconnaissance Orbiter (MRO) satellite. Where there are gaps in the CTX image 587 

coverage, images from the Mars Express (MEX), High Resolution Stereo Camera (HRSC), up to 12.5 m/pixel, 588 

were employed, (Neukum, 2004). Larger scale areal views were obtained from the Mars Odyssey satellite (MO) 589 

Thermal Emission Imaging System (THEMIS), 1km/pixel, daytime images as they provide a consistent 590 

presentation of sufficient detail across large areas (Christensen et al., 2004). With the exception of HRSC 591 

images all other images were obtained from the NASA Planetary Data System (PDS) Node; HRSC images were 592 

obtained from the ESA Planetary Science Archive (PSA). Surface elevation data can be obtained from several 593 

sources, however Mars Orbiter Laser Altimeter (MOLA) data were used throughout. Accurate measurements 594 

were obtained on a per point basis using individual shot data from MOLA PEDR files.  595 

 596 

 597 

6 Results 598 

 599 

This section first describes results from the graben analysis followed by the outcomes from the channel 600 

investigations. These results are then reviewed together to determine if there is a match.  601 

 602 

6.1  Graben 603 

6.1.1 Results Review 604 

The results of the graben analysis for the NW quadrant are summarized in (Fig 4a) and the following 605 

observations can be made.  606 

 607 

The graben categorized as NWSE (brown) are arranged in bands orientated in a NW to SE zone in the north of 608 

the study area; these are members of PDF mode 1 (Fig 3(b)). A comparison with a clusters of other regional 609 

graben to the SE of EM, includes the most western sections of Cerberus Fossae, show an equivalence in their 610 

azimuthal distributions (Fig 3(c ) and Fig 3(d)) showing binned (2.5 deg) frequency distributions, matching in 611 

shape, with maximum for the SE in the 27.5 -30 range (Fig 3c) and the maximum in NW in the 30-32.5 range 612 

(Fig 3d). From these data we concluded the frequency distributions matched and the graben were generated by 613 

the same influence even though there was a slight change in maximum value.  614 

 615 



 

 

The azimuth pointers for HT graben (green) vary in their orientation from west to east maintaining a focus on 616 

the center of HT. Within the HT population are two distinct, sub-clusters, which are grouped by area and 617 

linearly aligned. One cluster points to the south of HT (HTs) and the area beyond and the other set directly 618 

towards HT and north of HT (HTn).  These graben lie in bands from 345 to 410 km from the edifice center and 619 

interleave with NWSE clusters in the NW quadrant. 620 

 621 

The graben azimuth directed towards Elysium Mons EM (blue) define arcs of concentric rings whose radii 622 

converge in the direction of EM, these are in PDF mode 2 and 3 (Fig 3b). There is a higher density of arcs and 623 

graben between 196 km to 225 km.in radius. Traversing each graben arc, the individual azimuth adjusts to 624 

maintain convergence on a common focal point. However, the location of the common focal point is different 625 

for each arc and moves in a direction NW as the arc radius increases. These arc segments are components of 626 

series concentric rings which lie within a band 150km+/- 20km to 350km +/- 20km as observed by Comer 627 

(1985), and Hall et al. (1986).  628 

 629 

A few graben azimuth (Fig 4(a)) are directed towards Albor Tholus AT (red) rather than the EM edifice axis. 630 

These clusters are members of PDF mode 2, Fig 3(b). However the mass of AT is considered insignificant to 631 

that of EM, HT and the Elysium Rise (Hall et al., 1987), and it is implausible any radial magma flows or stress 632 

from the AT edifice area would have passed by the NW flanks of EM to those graben locations, consequently 633 

we suggest these graben are subsumed into SER in the following analyses. 634 

 635 

The majority of graben interpreted to point towards the Southern Elysium Region (SER) (yellow) are in PDF 636 

mode 3 (Fig 3(b)) with an outlier in mode 2. Within SER are grouped and arcuate bands of graben that do not 637 

conform to the  preceding classifications. The end on end alignment of graben form segments of arcs which are 638 

not concentric around EM, and the azimuth of clustered graben deviate substantially from focusing on the EM 639 

axis. These azimuths do not point to obvious features or regions of stress.  640 

 641 

In summary, and with the exception of SER, graben clusters associated with HT and EM adjust their mean 642 

azimuth to create a focal point around or near to a volcano central axis, however the HT graben are linearly 643 

aligned and in contrast the EM graben are concentric about the edifice axis. The HT and EM graben clusters are 644 

proximal to their respective load centers and crosscut each other in the NE of the region. EM has a variation in 645 

concentric graben density, the most closely packed graben are the more distal from the edifice axis.   NWSE 646 

clusters are quasi – linearly aligned and this alignment extends to other, larger clusters in the SE of the region.  647 

SER graben cluster azimuth point away from the EM axis and the linearly aligned graben loci appear to be more 648 

ellipsoidal than their concentric circular EM counterparts.  649 

 650 

6.1.2 Inferred stress field variation through time 651 

 652 



 

 

This section describes the crosscutting relationships between graben within the study area and the methods used 653 

to determine the existence of a sequence of stress related events. From the cross-cutting observations and 654 

measurements (Fig. 5(a)) a time ordered progression of cross cutting events is derived as follows: 655 

 656 

The NWSE graben are the start of the crosscutting sequence; 657 

 658 

NWSE graben are crosscut by HTs graben; 659 

HTs are crosscut by HTn graben (see note); 660 

HTs are crosscut by SER graben; and 661 

SER are crosscut by EM graben. 662 

Note: 663 

The HTs crosscut by HTn is only seen clearly at location 2 and it has not been possible to discriminate 664 

between HTs graben before or after this event. (Fig 5a). 665 

The crosscutting sequence is from oldest to youngest. 666 

 667 

This sequence (Fig 5(b)) shows a detailed crosscutting progression from the oldest, NWSE through to the 668 

youngest, EM, and the transitions associated with AT are subsumed into SER for the reasons given. A summary 669 

of this sequence is provided in Fig 5 (c) and (d). 670 

 671 

These cross cutting relationships can be re-expressed in terms of direction change starting from NWSE. The 672 

sequence is: turn clockwise southwards, turn anticlockwise northwards, turn clockwise southwards then turn 673 

anticlockwise. This sequence reflects the major changes in stress field direction through time from different 674 

sources. The graben cluster azimuth of HT and EM so aligned they converge on or near the center of these 675 

edifices inferring a possible dilatational, σ3 environment.  In contrast NWSE graben are linearly aligned NW-676 

SE, an alignment that also occurs in the SE of the region (Fig 1(b)) and could have been created by either σ3 or 677 

σ1 as previously discussed (Section 3.3) 678 

 679 

6.2 Channel analysis  680 

 681 

The results from the channel analyses are discussed below and these are generalized into a form for comparison 682 

with the regional stress variations implied by the graben orientations. The comparisons are between Channel 1 683 

(Fig 6(a) and (b)) and Channel 2 (Fig 6(c) and (d)), Channel 1 and Channel 6 (Fig 7(i) and (j)), and Channel 1 684 

and Channel 7 (Fig 7(g) and (h)), and finally Channel 1 and Channel 8 (Fig 7(g) and (h)). 685 

 686 

6.2.1 Channel 1 and 2 comparison 687 

 688 

The comparisons between Channel 1 and Channel 2 are described in greater detail below, with the remaining 689 

results provided in a more summarized form.  690 

 691 



 

 

Visually comparing Channels 1 and 2 (refer  Fig 6 (b) and (d) and Fig 8 (a) and (b)) and referring to the bin 692 

numbers: from bin 0 the azimuth profile decreases  to an inflexion ,  next rising and then decreasing further to a 693 

minimum near bin 60. From bin 60, which is larger for channel 2, the profile increases to a maximum near bin 694 

80. From bin 80 to 120 Channel 1 has a well developed maximum region whereas Channel 2 it is less so; from 695 

bin 120 both profiles then decline toward bin 140 rising again to bin 150; and from there both profiles remain 696 

relatively constant, except for small perturbations until bin 180 where there is a minimum. 697 

 698 

The post warping graphs show values interposed between measurements to spatially align equivalent profile 699 

segments on the warping axis Fig 8(c) and Fig 8(d). The three-way plot (Fig 8(f)) summarizes the matching 700 

process, where the vertical and horizontal steps in the diagonal profile, the warping plot, show the shifting of the 701 

query values (Channel 2) or reference (Channel 1) values by inserting the last value measured prior to mismatch 702 

to align equivalent points between channels along the shared axis. The distance between the equivalent points is 703 

summated and normalized to produce the Normalized Distance (ND), where the magnitude of ND indicates the 704 

degree of mismatch, for an ideal match ND = 0. The fine dotted lines (Fig 8(f)) identify some equivalent points 705 

of the reference and query and their spacing indicates the relative movement between profiles.  706 

 707 

Post-warping Channel 1 and 2 match well with a low ND = 4.42. The linear regression scatterplot shows a close 708 

distribution of points and the injected points can be seen as either linear vertical or horizontal arrays of data 709 

points (Fig 8(e)). Channel 1 and 2 show good correlation (r2 = 0.873), and they are normally distributed with no 710 

obvious outliers influencing the regression; Pearson’s R = 0.919 to 0.946 (95% confidence). The LRA 711 

azimuthal variations show a long period variation with superimposed shorter period deviations (Fig 8(c) and 712 

8(d)).  713 

 714 

In many cases the shorter period variations also match between channels providing a good channel match.  Note 715 

a match has not been fully achieved where a section of (injected) data on the warping axis in one channel profile 716 

opposes an unaltered section of profile in the other. The injection of the last matched point value when warping 717 

for alignment has the effect of creating a slowly changing profile when there is a series of very short inter-718 

dispersed matching sections with no match between them. Consequently a detailed match of a channel profile 719 

section may not be achieved however the linear regression residuals for that section will be minimized.  The 720 

value of ND reflects the degree of match and a value less than 10 is considered to be good. ND like r2 should be 721 

treated as an indicator of fit since the range that the value is in is of importance not necessarily the value itself. 722 

 723 

The detailed matches between Channel 1 and Channel 2 identified seven channel sub-divisions referred to as   724 

stages (Fig 6 (a) and (c)). Each stage was defined by the point of a major directional change of channel azimuth 725 

Fig 6 ((b) and (d) 726 

 727 

6.2.2 Channel 1 and 6 comparison 728 

 729 



 

 

Channels 1 and 6, Fig 6 (a) and (b) and  (Fig 7(i) and (j)) showed similarities pre-warping (Fig 8(g) and (h)), 730 

and the post-warping profiles (Fig 8(i) and (j)) show no matches up to bin 90 of Channel 6, this feature is also 731 

shown in the three-way plot (Fig 8(l)). Channel 1 and 6, match with r2 =0.692, Pearson’s R = 0.786 to 0.831 732 

(95% Confidence) and ND = 5.46. The Channel 1 and 6 regression is linear, normally distributed with no 733 

influence from outliers (Fig 8(k)). The comparison shows matching with stages S2, S3, S4 and S6 of Channel 1. 734 

Matching features in Stages 1 and 5 were not detected and this factor and the large non-matching channel 735 

section up to bin 90 will have suppressed the values of r2 and Pearson’s R.  As DTW had eliminated the effects 736 

of channel propagation rates it was considered reasonable to include Channel 6 even though it is much shorter 737 

than the others.  738 

 739 

6.2.3 Channel 1 and 7 comparison 740 

 741 

Comparing Channel 1 Fig 6 (a) and (b) and the shorter Channel 7 (Fig 7(g) and (h), Fig 9(a), Fig 9(b)) pre- 742 

warping show no obvious matches. Post-warping Channel 1 profile has been shifted significantly to align only 743 

stage 1 and stage 2 with the complete section of Channel 7 profile (Fig 9(c) and (d)). The three way plot (Fig 744 

9(f)) shows some matching in the first third of the reference; r2 =0.7373, ND = 3.64, and Pearson’s R = 0.825 to 745 

1.00  ( 95% confidence) Channel 1 and 7 regression is linear, with no obvious outliers, Fig 9(e). We observed 746 

that only part of stage 1 and some of stage 2 achieved a match using a small number of equivalent points within 747 

large regions of unmatched flat channel sections, which slowly track the variations tending to minimize the 748 

residuals.  The paucity of detailed matching features makes a conclusive match less certain, so Channel 7 was 749 

not considered further even though the matching indices are acceptable. 750 

 751 

6.2.4 Channel 1 and 8 comparison 752 

 753 

There are significant morphological differences between Channel 1 and 8 and initially “DTW” did not give a 754 

match. Referring to Fig 6(f), two sections were excluded, first from 0 – 10km, was excluded as a local 755 

topographic anomaly not seen in the other channels. Secondly, the section from 115km – 145km was considered 756 

as a separate channel as shown in Fig 4(f). This section is bifurcated, therefore unique, and the upper channel 757 

has separate surface flow channels to the south. We concluded the channel midsection had migrated up stream 758 

breaking into the upper section during its development.  759 

 760 

 761 

Channel 1 and 8 showed some equivalent features Fig 9(g) and (h), even though the degree and rate of 762 

azimuthal change in Channel 8 is much greater than Channel 1. The post warping profiles Fig 9(i) and 9(j) 763 

showed matching between the main features in Stages S1, S3, S4, and S5 (Fig 9 (l)) however there are fewer 764 

equivalent points in the stages 2 and 6.  Regression of Channel 1 and 8 Fig 9(k)  showed deviation from 765 

normality in the upper and lower variable range in particular above 120 deg. azimuth, however these are not 766 

seen to influence results; r2 = 0.78, and Pearson’s R = 0.86 to 0.9 – 95% confidence  767 



 

 

 768 

6.2.5 Channel Data Summary 769 

 770 

The channel results are summarized below showing the normalized distance (ND) metric calculated by “dtw”; 771 

the value of Pearson’s R quoted at 95% confidence levels; the linear regression metric r2 and the number of 772 

stages matching the reference (Channel 1). 773 

 774 

Channel 1 and 2:  ND= 4.40, PR = 0.919 to 0.946, r2= 0.87, stages S1, S2, S3, S4, S5, S6, S7;  775 

Channel 1 and 6: ND= 5.45, PR = 0.786 to 0.831, r2= 0.69, stages S2, S3, S4, S6;  776 

Channel 1 and 7: ND= 3.64, PR = 0.825 to 1.00,  r2= 0.74, stages S1, S2, and 777 

Channel 1 and 8: ND= 6.61, PR = 0.860 to 0.90,  r2= 0.78, stages S1, S2, S4, S5. 778 

 779 

Channels 1,2 and 6 have the same morphology and the matches occur between the majorities of equivalent 780 

points. Channel 1 and 7 correlate well but comparing Stage 1 and Stage 2 only, and matching is only between a 781 

few equivalent points interspersed by large gaps of inserted data making the match less conclusive and therefore 782 

excluded from further consideration.  Channel 8 morphology is rille -like and Channel 1 is theatre headed -like, 783 

however Channel 8 LRA correlates well with the LRA of Channel 1 over several channel stages. 784 

 785 

In the analysis of channels 3, 4 and 5 (Fig 7 (a), (b), (c), (d), (e), (f) respectively) “dtw” failed to find a match so 786 

these channels are not included in any further analysis. 787 

 788 

From the above we concluded all matched channels have the same LRA including the rille-like Channel 8. 789 

 790 

6.2.6 Channel Axial Variations 791 

 792 

The detailed matching between channel stages has been shown; however the average stage azimuth was used to 793 

demonstrate coherence between channel direction changes and changes in the regional stress distributions since 794 

the regional stress change sequence is less refined. The stage average azimuth was calculated from channel 795 

azimuth data, for Channels 1, 2, 6, & 8, excluding channels 3, 4, 5 and 7 for the reasons given. We then 796 

considered the average azimuth changes between the stages for each channel, and generalized the changes as 797 

clockwise for an increase in azimuth, southwards, from one stage to the next, referenced to north, and 798 

anticlockwise as a reduction in azimuth from one stage to the next, northwards. This approach allowed us to 799 

express changes in slope direction rather than comparing absolute values making comparison easier.  Consider 800 

the transitions in Channel 1 (Table 2), starting from Stage 1 and moving up-dip from channel mouth to channel 801 

head (Fig 10(a) and 10(b)).  802 

 803 

The progression in channel changes include:  804 

 805 



 

 

Stage 1 azimuth changes clockwise to Stage 2 azimuth;  806 

Stage 2 azimuth changes further clockwise to the Stage 3 azimuth;  807 

Stage 3 azimuth changes anticlockwise to the Stage 4 azimuth;  808 

Stage 4 azimuth changes anticlockwise to the Stage 5 azimuth;  809 

Stage 5 azimuth changes clockwise to the Stage 6 azimuth, and 810 

Stage 6 azimuth changes anticlockwise to the Stage 7 azimuth. 811 

 812 

This sequence was derived for other channels and then compared. Similarly, we then derived the sequence for 813 

channel growth down dip from head to mouth (Fig 10(c)).  814 

 815 

With the exception of channel 8, all channel direction changes matched for each direction of channel growth 816 

(Fig 10(b) and Fig 10(c)), the Channel 8 differences are shown in red. In some channels the general direction is 817 

maintained between successive stages, for example stages 2 and 3 in Fig 10(b). We suggest these small changes 818 

in azimuth infer flow events occurring under similar erosional conditions and controls including little change in 819 

regional stress fields. These successive changes were combined resulting in a sequence head to mouth as 820 

clockwise, anticlockwise, clockwise and anticlockwise for both directions of channel growth. Channel 8 has an 821 

additional change in azimuth at the mouth, Fig 10(d) and Fig 10(e) due to the magnitude of the stage 2 822 

transitions.  823 

 824 

6.2.7 Channel direction and graben cross cutting sequence matching. 825 

 826 

To demonstrate the similarity between stress field direction changes, inferred from the graben cross cutting 827 

sequence and channel direction changes we consider the possible development controls over the channel area 828 

and these, included slope gradient and dilatational stress.  829 

 830 

An erosional environment is required for channel creation and requires flow with either lava, water or water 831 

mediated material flow as the likely agents, and these are considered to have existed from the Late Noachian to 832 

the late Amazonian Periods (Howard et al., 2005, & Carr and Clow (1981), & Christiansen, 1989 & Tanaka et 833 

al., 1992 & Russell and Head, 2003, & Madeleine et al., 2009). The Elysium Rise gradient is less than 1, and at 834 

these gradients other factors, for example lava, debris flow or aeolian deposits, and surface features including 835 

channels, fissures or graben will have increased influence on flow direction. To achieve the channel direction 836 

matches demonstrated between the channels relying only on the direction of maximum slope would require a 837 

region wide influence on slope gradient, locally adjusted to accommodate dissimilarities in pre-flow gradient 838 

profiles, overcome surface deposits and features and yet produced matching profiles in this low energy flow 839 

environment. We consider this possibility unlikely considering the factors above and propose the presence of 840 

tectonically created features to achieve channel matching. 841 

   842 

Fault control is associated theatre-headed morphologies (Laity and Malin, 1985 &Lamb et al., 2006 & Lamb et 843 

al., 2014,& Schultz et al.,2007). For maximum effect in influencing channel direction change the stress has to 844 



 

 

act either perpendicular to or parallel with the graben axis, which in-turn controls the channel direction. These 845 

effects constrain the stress source relative position to the channel; for example, assuming the channel develops 846 

up-dip from mouth to head, the Channel 1 channel azimuth perpendiculars in the order below (Fig 10). 847 

 848 

Initially Stage 1 points to the NWSE graben in the study area; 849 

Stage 1 changes clockwise to Stage 2, S to NWSE region;  850 

Stage 2 changes clockwise to Stage 3, further S to HT (HTs);  851 

Stage 3 changes anticlockwise to Stage 4, N to HT (HTn);  852 

Stage 4 changes anticlockwise to Stage 5, further N to HTn;  853 

Stage 5 changes clockwise to Stage 6 , southwards to HTn; and finally  854 

Stage 6 azimuth changes anticlockwise to Stage 7 and this azimuth perpendicular moves to the north of 855 

HTn. 856 

 857 

In summary, the azimuth perpendicular axes in steps 1 to 5 vary in the directions towards the NWSE graben 858 

strings and HT and this sequence of direction changes compares favorably with the first three changes in the 859 

regional stress field changes inferred from the graben cross cutting in Fig 5(c). In this case the channel wall 860 

direction, parallel with the graben direction, is fault controlled and step 6 and step 7 could reflect further 861 

changes in the stress fields generated by NWSE or HT.  However, stress directions related to SER and EM are 862 

more likely to act on the channel heads (Lamb, 2014) and in this case step 6 azimuth would point in the same 863 

direction as SER and step 7 channel azimuth point in the direction of EM. In these cases faulting is 864 

perpendicular to the channel axis at the channel head and controls the direction of channel development. So step 865 

6 and step 7 then match the changes in the later stress field variations observed in graben cross cutting sequence 866 

i.e. from HTs to SER returning to EM, Fig 5(d). 867 

This analysis shows a match can be achieved between the channel direction change sequence and the variations 868 

in the graben cross cutting sequence, thus inferring stress change over time controlling the channel direction. 869 

However this is provided two constraints are met, first, this match is conditional on the channel developing from 870 

mouth to head. Second, fault control on the channel walls influences the early development of channels (step 1 871 

to step 5) but the control changes to faulting and jointing controlling the direction from the channel head (step 6 872 

and step 7). A match cannot be achieved if the channel is considered to develop from head to mouth. 873 

 874 

Similarities in the slope gradient during the initial stages of channel erosion cannot be assumed so initial 875 

channel directions may differ, however, as the channel deepens fault control would become more dominant as 876 

the floor gradient reduces and mass wasting proceeds. 877 

 878 

Matching channels include both theater headed and rille-like morphologies, however we identified earlier 879 

(Section 3.4) that arcuate and linear rille development direction cannot be generally predicted but these 880 

developments occur within the orientation of the stress field prevailing at the time. Therefore the order of 881 

development of the fissures, graben, or dike emplacements can occur in any ordered within a straight section of 882 

rille. However when the next stage of the rille is formed with a different stress orientation the growth needs to 883 

be from the head of the previous section. This migration upslope could be achieved either by an eccentric dike, 884 



 

 

as defined by Acocella  (2001) migrating upslope if that was the general behavior or by a radial dike migrating 885 

upslope. The FEM models of Hurwitz et al., (2008) and Galgana et al. (2013) both showed the radial dike flow 886 

is vertically constrained at the contact between the edifice and the upper crust. So as the province inflated and 887 

flank deposition continued it is possible that the radial dike conduits increased in elevation. 888 

 889 

From above (Section 3.4), the theatre headed channels require an aqueous source for development within  890 

a stress regime similar to that influencing Channel 8, whose development is dependent on volcanic processes for 891 

its creation. This implies coeval activity of these two erosional processes producing matching channels under 892 

similar tectonic conditions, an occurrence considered unlikely. Considering the channel morphologies 893 

(Supplement S1); Channel 1 is theatre headed like; Channel 2 has a theatre headed like lower section with 894 

narrower sinuous upper section; Channel 6 is a much narrower and theater head like and similar in width to 895 

Channel 8; and Channel 8 is thin and arcuate rille-like; which suggests a mix of morphologies amongst them. It 896 

is proposed that all matching channels were initially rille-like and some transformed to theatre headed 897 

morphology later by mass wasting. This is based on the assumptions the occurrence of coeval erosional events 898 

is unlikely and the mix in channel morphologies observed. This would require the presence of water after final 899 

stage volcanism, which is possible from synvolcanic melting of sub surface ice or snow (Madeine, 2009 & 900 

Christiansen, 1989 & Tanaka et al, 1992, & Russell and Head, 2003). This reuse of existing channels by other 901 

erosional events on Mars has already proposed by Gulick (2001). 902 

 903 

 904 

7 Discussion  905 

 906 

In this study we have shown that there is a spatial and directional relationship between graben, the volcanic 907 

edifices and other tectonic features in the study area. We have also shown that there is a correlation between 908 

changes in channel direction and regional stress variations over time; and demonstrated that there is 909 

commonality in channel axial direction change between rille-like and theatre-headed like channel morphologies. 910 

In this section we will investigate the implications of these observations. 911 

 912 

We now consider the stress distributions derived by Hall et al. (1986). Our models differ in their base data and 913 

processing however there is commonality in some of the analysis outcomes. Hall used gravity, topography and a 914 

thin elastic shell flexure model to determine a regional stress distribution, which they then reconciled with the 915 

regional tectonic features. Our model was based on tectonic feature mapping and analysis of their attributes.  916 

Hall (1986, their Fig 12) included the superposition of EM and HT loading, regional uplift and Tharsis Montes 917 

isostatic and flexural stress on the lithosphere in the synthesis of their results. Our mapped model made no 918 

assumptions on stress sources and their location, and we analyzed these data and based our observations and 919 

conclusions on these results. 920 

 921 

There is coincidence between the results of Hall et al., (1986) and our observations of the concentric rings 922 

around EM, and the graben clusters pointing in the direction of HT.  Hall et al. (1986) showed an offset in the 923 



 

 

EM center of mass from the caldera towards the NW, an observation shared by Janle and Ropers (1983). We 924 

observed the concentric graben rings focal points moving away from the center of EM as the concentric graben 925 

arc diameters increased. This shift in graben focus away from the EM axis could be interpreted as a shift in the 926 

center of mass (principles established by Comer et al. (1985). We note this observation as a possible indication 927 

of increasing center of mass offset from EM developing during volcanic activity, however further analysis is 928 

required to substantiate this proposition. Hall et al. (1986) does not account for the NWSE graben but suggests 929 

they are formed either by un-modeled asymmetries in the uplift model or local lithospheric heterogeneities, 930 

creating fractures by thinning. Hall et al. (1986) and Banerdt et al. (1982) considered their isostatic model of 931 

Tharsis generated stress in our study area, and this is used to account for the formation of Cerberus Fossae (Fig 932 

1b), which have the same NW to SE orientation as the NWSE graben. Our results suggest the Cerberus Fossae 933 

graben are similar to those elsewhere in the SE Quadrant and those seen in the NW Quadrant, Fig 1(b).  If this is 934 

the case these observations contradict Hall et al. (1986) and Bandert et al (1982) as it is thought the main 935 

Tharsis activity occurred after the growth of EM (Werner, 2009) and the NWSE graben precede the EM graben 936 

in the graben crosscutting sequence. We suggest that the NWSE graben are more likely to be the consequence of 937 

regional uplift, and are formed by plume related extensional uplift with σ3 acting horizontally in the NE or SW 938 

direction; alternatively a large σ1 stress could have acted vertically within an horizontally constrained crust and 939 

produce similar features. The absence of the southerly band of NWSE graben, and other graben, in the western 940 

regions of the NW quadrant is distinctive, however the explanation for this absence is beyond the scope of this 941 

paper. Hall et al., (1986) does not identify stress sources associated with the SER graben set.  942 

 943 

We now compare our results with the conclusions drawn from FEM modeling, however an FEM model for the 944 

Elysium Province has not been available for comparison and our comments are based on generalized models. 945 

We consider some of the outcomes of previous work and others in the following paragraphs, and from these 946 

observations we suggest a possible development sequence for the Elysium Province.   947 

 948 

From our observations we note that EM and AT are confined between the northerly and southerly NWSE 949 

graben bands whereas HT lies outside and to the north of this fracture zone.  The preferential development of 950 

EM over HT could be due to magma rising between the N and S, NWSE graben bands boundaries or the HT 951 

magma feeder dikes could have been diverted by EM lithospheric loading (Muller et al., 2001). AT appears as a 952 

flank cone on the SE flank of EM. 953 

 954 

The conditions for the creation of the linear clusters HTn and HTs are now considered. The absence of 955 

concentric graben around HT could be due to several factors including; insufficient loading to create 956 

lithospheric flexure capable of creating graben; their burial as the EM edifice developed; or the distance of HT 957 

graben from the HT vertical axis of symmetry. The EM concentric graben occur within a zone equivalent to the 958 

radius of the edifice outwards from the stratocone periphery Fig 3(e); whereas the HT, graben begin to occur 959 

beyond three HT radii and they are not concentrically aligned. It is considered unlikely that flexure would occur 960 

at this distance about HT for this relatively small edifice basal diameter and mass. This assumption is supported 961 

by comparing Fig 3(d) and Fig 3(e), which show two different volcanic scenarios each providing the same 962 

distance relationship. One scenario is EM (Comer, 1985), and the other, a volcano on Venus (Galgana et al., 963 



 

 

2013) and in each case the region of maximum dilatational stress on the forebulge peak occurs at a distance, 964 

approximately equal to an edifice radius, from the edifice periphery as shown.  It is suggested as unlikely that 965 

HT loading would be the primary cause for the creation of HTs and HTn graben. 966 

 967 

We consider two scenarios for the development of HT graben; a radial dike swarm or the influence of HT 968 

related stress during NWSE graben development. Radial dike swarms have been shown to occur when the main 969 

volcano conduit is blocked  (Hurwitz et al., 2009 & Galgana et al., 2013) promoting radial lava flow. HT graben 970 

crosscut each other implying multiple events, which is consistent with the observations of Galgana (2013) 971 

whose time stepped analysis identified cyclical successions of central conduit blockages generating episodes of 972 

radial lava discharge.  The HT graben strings can be seen to tend towards parallelism with the NWSE graben 973 

bands distally from the EM edifice in the upper western area of the NW quadrant (Fig 4a). This radial graben 974 

configuration is consistent with the observations of others, for example Ernst et al., 2001, where graben emanate 975 

radially from the edifice center aligning distally with regional stress influences.  An alternative hypothesis is 976 

that while the NWSE graben are created by the regional stress fields; they are also influenced by the stresses 977 

related to HT development. We consider this unlikely, first HT is N of the northern NWSE band of regional 978 

fractures and as such any HT generated σ3 stress would be likely to be accommodated within northern fracture 979 

zone. Second, it is unlikely HT could directly influence regional vertical σ1 stress due to the fracture zone. These 980 

factors, and the distance of HT from the HTn and HTs graben which we have previously discussed, plus the 981 

relative timing of  HT graben creation indicated by the cross cutting sequence, make it unlikely HT was an 982 

influence in the creation of the NWSE graben, In conclusion we consider graben we assigned to HT are likely to 983 

be dike swarms acting radially from the EM edifice and tending to the regional stress tensor distally. The 984 

diversion of conduit flow to radial flow requires the edifice to have accreted sufficient mass for that to occur 985 

implying their formation possibly mid to late stage EM stratocone development. 986 

 987 

The concentric graben about EM are consistent with the lithospheric flexure models of Hall et al, (1986), Comer 988 

et al. (1985), and Galagana (2013). These graben are not radially distributed in a uniform manner but are 989 

arranged as concentric clusters of graben with varying interspaces and graben density; the possible cause of 990 

these features will now be discussed. The shallow magma chamber Fig 3(f) shows a forebulge maximum at 991 

twice the edifice radius from the edifice axis with a distinguishable maximum, similar to Comer, 1985, and the 992 

forebulge predicted for the deeper magma chamber is beyond the two-radius limit with little bulge visible. We 993 

propose that a shallower magma chamber and/or a smaller Te produce a more pronounced forbulge since they 994 

have greater influence on the lithosphere upper boundary, which is consistent with the models of Grosfils, 995 

(2007), Hurwitz et al., (2009), Galgana et al., (2011), and Galgana et al., (2013).  996 

 997 

The bands of concentric graben about EM (Fig. 4) could represent episodes of growth if the preference for 998 

graben development occurred primarily in the region of maximum dilatational stress, the forebulge. This 999 

argument is consistent with the multiple events of radial dike swarms discussed above; provided there is 1000 

sufficient dwell time between these radial flow events to allow edifice accretion and renewed lithospheric 1001 

flexure. The graben density in each concentric band increases with the increase in band radius, inferring an 1002 

increase in surface stress primarily at the forebulge. This increase in forebulge prominence can imply influences 1003 



 

 

from the increase in edifice mass, a shallower magma chamber as time progresses, as discussed above, or a 1004 

decreasing Te, possibly due to lithospheric thinning.  Using some conclusions from Grosfils (2007), Hurwitz et 1005 

al. (2009),  Galgana et al. (2011), and Galgana et al. et al. (2013) we suggest the concentric graben bands about 1006 

EM could record cycles of  radial dike formation with sufficient elapsed time between these events to permit 1007 

lithospheric flexure, where the increase in graben density in each graben band with increasing radius  not only 1008 

implies increase in edifice mass but could also infer magma chamber shallowing or lithospheric erosion as time 1009 

progressed. 1010 

 1011 

We now consider the disposition of the matching channels, which are more distally located from the EM caldera 1012 

than many other features mapped in the study area. It has been suggested earlier these channels were originally 1013 

the output from eccentric dikes (Allcocella et al., 2002) produced after the restrictions of the main conduit flow, 1014 

so diverting magma radially. The up slope development of eccentric dikes has not been explained, however they 1015 

have been associated with slopes and edifice instability (Allcocella et al., 2002).  An alternative hypothesis 1016 

could attribute province growth as a control of channel head ward development., both Hurtwitz (2009) and 1017 

Galgana (2013) predict radial magma flow on the edifice-lithosphere boundary. This boundary would have a 1018 

tendency to move upslope as the province grew due to growth of volcanic deposition and increase in uplift. The 1019 

channels crosscut the recent flank flows implying late stage activity however the sequential nature of the 1020 

measured channel changes and its linkage to the graben cross cutting sequence infers these channels 1021 

contemporaneously developed overtime and started with only the Province basement in place and before any 1022 

volcanic activity. In summary the matching channels have been active throughout the graben creation phases 1023 

and have reflected changes in regional stress by variations by their channel axis direction changes. It is possible 1024 

that all channels first developed as rilles and later, after the volcanic activity subsided, ephemeral supplies of 1025 

water created an environment for selective mass wasting converting some rilles, or parts of them, into theater 1026 

headed channel morphology. 1027 

 1028 

We summarize the progression and possible sources of tectonic influence during channel development in Fig 11 1029 

where the possible event sources influencing channel directions are shown. We constrained the channel 1030 

development timescales using our regional stress sequence reconciled with volcanic activity estimates based on 1031 

crater counting (Platz and Michael, 2001 and Werner, 2009 and Robbins et al., 2011.. We have argued the 1032 

NWSE graben are not likely to be the product of Tharsis Montes related flexure but possibly regional uplift. The 1033 

correspondence between plume related uplift and volcanism is consistent with our development sequence, since 1034 

after the formation of the NWSE graben the HT and EM edifices are developed. The NWSE graben 1035 

development influenced the first two stages of channel growth (Fig 11(a) and Fig 11 (b)). There is a distinct 1036 

change in channel azimuth between Fig 11(a) and Fig 11(b) however graben clustering is less distinctive. The 1037 

development of HT preceded EM but there is no evidence of this event influencing the growth of EM, rather the 1038 

converse, where EM development possibly limited the growth of HT. We suggest during EM stratocone 1039 

development radial dike formations occurred which we initially categorized these as HT graben, and these are 1040 

shown as stages 3, 4 and 5 in Fig 11. SER is shown as stage 6 in Fig 11 however we have been unable to 1041 

affiliate this group with an event or tectonic feature.  From the number of discrete sets of concentric EM graben 1042 

rings (possibly 5) there are several intervals where sufficient time delay has occurred in EM edifice mass 1043 



 

 

accretion for lithospheric flexure and forebulge development to occur.  The increase in EM concentric graben 1044 

density with increase in radius provides possible indications of edifice mass increase, magma chamber 1045 

shallowing or lithospheric thinning. The delays inferred between concentric graben clusters could imply cycles 1046 

of main conduit blockage halting edifice growth (Galgana et al. 2013) and radial graben creation.  The growth of 1047 

HT prior to EM is consistent with the sequence proposed by Robbins et al. (2011) however this does not 1048 

exclude lower levels of activity of HT continuing into the late Amazonian (Werner, 2009 and Robbins et al., 1049 

2011). AT has been considered as flank volcano and its size has excluded it from consideration, and the tectonic 1050 

influence of HT on Province development has not been evident from the study.    1051 

 1052 

An observation worthy of note is the unique disposition and number of similar channels within the study area in 1053 

comparison the remainder of the Province. The larger channels are mutually parallel and enclosed by the 1054 

northwesterly projections of the N and S bands of, the NWSE graben. These large channels have their 1055 

longitudinal development to the NW relatively unconstrained as they discharged into the Utopia Planitia Basin 1056 

(Thomson et al. 2001). The relationship between the channels, the regional topography, and the impact of the 1057 

Utopia Basin on the development of the Province western flank of this beyond the scope of this study.  1058 

 1059 

8 Conclusion  1060 

 1061 

We have demonstrated: 1) graben are systematically arranged around sources of lithospheric loading and 1062 

tectonic stress; 2) there is a correlation between the graben crosscutting sequence, channel direction and tectonic 1063 

control and ; 3) from cross cutting analysis we have determined a common sequence of stress events across the 1064 

study area implying a regional development sequence of  volcanic and tectonic activity 1065 

 1066 

Our approach to the analysis has been novel and we have been able to provide accurate data for the support of 1067 

our propositions. We understand this is the first time the temporal sequence of tectonic, volcanic and channel 1068 

evolution for the northwestern region of this major magmatic province on Mars has been proposed, using data 1069 

which is independent of crater dating techniques. 1070 

 1071 
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Figure Captions 1308 

 1309 

Fig.1. An overview of the channel locations, their regional, stratigraphic and lithospheric stress 1310 

distributions. (a) The study area channel locations showing their relative positions on the Elysium 1311 

Rise, and the channel direction changes in channels 1&2 that were initially observed. (b) An 1312 

indication of the regional graben distribution, and the location of the study area in the NW quadrant 1313 

within the Elysium Province. The regional NW to SE graben (dark brown) are shown mostly in the 1314 

NW and SE quadrant. (c) An adaptation of Hall 1986 Fig 12 showing the lithospheric stress 1315 

distribution within the region by assuming loading from Tharsis Montes, Elysium Mons and Hecates 1316 

Tholus. Also included were the influences of plume activity and regional uplift. (d) Regional geology 1317 



 

 

(Tanaka, 2014) where Hve – Hesparian volcanic units;  AHv the younger Amazonian/Hesparian 1318 

volcanic units;  IHvf a late Hesparian volcanic field. 1319 

 1320 

Fig 2: The initial evaluation of the spatial and azimuthal dependence of mapped graben (342 1321 

samples). (a) the locations of mapped graben. (b) The population probability density function showing 1322 

multiple modes M1 to M5. (c) Each mode was individually selected using ArcGIS functionality  and 1323 

the graben members of each mode can be seen color matched with the mode selected. The average 1324 

direction of each mode azimuth is shown in the table.  1325 

 1326 

Fig. 3  Graben azimuth population Probability Density Function (PDF). (a) The PDF three distinct 1327 

modes. (b) The PDF color coded showing the PDF components that align with identifiable surface 1328 

features shown with a breakdown of their relative contributions summarized below. (c) Rose 1329 

frequency diagram of the NWSE graben occurring in the SE quadrant. (d) Rose frequency diagram of 1330 

the NWSE graben occurring in the NW quadrant. (e) Details of the lithospheric forebulge profile 1331 

modeled by Comer(1985) for EM and  (f) the lithospheric stress distribution for a Venusian  volcano  1332 

by Galgana (2013) using a finite element model. It is noted that the forebulge for either model occurs 1333 

at a similar distance from the edifice periphery, which is approximates to the edifice radius.  1334 

 1335 

Fig 4. Graben azimuth distribution. (a) Summary showing the association of graben with sources of 1336 

dilatational stress and the graben physical clustering with respect to these sources, which are linear, 1337 

arcuate or clustered. (b) A revised version of Hall et .al (1986) Fig 12 showing the stress field 1338 

distributions predicted by them and their relationship with the Elysium Province topography. 1339 

Equivalence can be seen between the study results (a) and the distributions in (b) though their relative 1340 

positions can be different. The study area is marked as grey shading in (b),  1341 

 1342 

Fig 5. Study Area Crosscutting Relationships. (a) Crosscutting graben locations showing examples of 1343 

the crosscutting images in the inset. (b) A summary of all crosscutting relationships showing the time 1344 

ordered relationships and their locations. (c) The crosscutting relationships summarized from 5(b) 1345 

showing the cross cutting time progression. (d) The cross cutting further summarized and expressed 1346 

as changes in direction.  1347 

 1348 

Fig 6 Channels 1, 2 and 8 Linear Reference Axes (LRA) and floor area polygons.  (a),(c),(e) The LRA 1349 

profile in graphic form showing the detailed variation in channel azimuth along their lengths. (b), (d), 1350 

(f) The LRA  is shown as red line in these images and floor area polygon in yellow. Channel 1, 1351 

Figures (a) & (b), Channel 2 Figures (c) & (d), Channel 8 Figures (e) & (f) showing the section of 1352 

profile used. 1353 

 1354 



 

 

Fig 7. Channels 3,4,5,7 and 6 (in order).  (a), (c), (e), (g), (i)  The LRA in graphic form showing the 1355 

detailed variation in channel azimuth along their lengths. (b), (d), (f), (h), (j) The LRA  is shown as 1356 

red line in these images and floor area polygon in orange. Showing Channel 3, Figures (a) & (b), 1357 

Channel 4 Figures (c) & (d), Channel 5 Figures (e) & (f), Channel 7 (g) & (h) and Channel 6 (i) & (j). 1358 

 1359 

Fig.8 Channel profile matching for Channels 1 and 2, and Channels 1 and 6. The initial profiles are 1360 

normalized to 200 bins. The first column, the initial profile, shows plots of binned channel location 1361 

(ordinate) and channel axis azimuth (abscissa). The second column, the post warped profiles, show 1362 

both channel profiles after dynamic time warping and the regions where original profiles have been 1363 

moved with respect to each other to achieve a match. In column three, a linear regression of the data, 1364 

shows equivalent point alignment by warping providing a useful measure of correlation. The fourth 1365 

column, the DTW standard 3way plot, shows the equivalent points and how they have been moved to 1366 

achieve a match along the warping function. Channels 1 and 2 match along their complete lengths. 1367 

The match between Channels 1 and 6 shows no match up to bin 90 Channel 6. Referring to Fig 8(i) 1368 

and (j) the lack of matching excludes the lower section of the channel below the confluence at around 1369 

bin 65 Channel 6. By implication the lower channel could be a separate development under different 1370 

erosional conditions. 1371 

 1372 

Fig 9 Channel profile matching for Channels 1 and 7, and Channels 1 and 8. The initial profiles are 1373 

normalized to 200 bins. The first column, the initial profile, shows plots of binned channel location 1374 

(ordinate) and channel axis azimuth (abscissa). The second column, the post warped profiles, show 1375 

both channel profiles after dynamic time warping and the regions where original profiles have been 1376 

moved with respect to each other to achieve a match. In column three, a linear regression of the data, 1377 

shows equivalent point alignment by warping providing a useful measure of correlation. The fourth 1378 

column, the DTW standard 3way plot, shows the equivalent points and how they have been moved to 1379 

achieve a match along the warping function. Channel 1 and 7 match has many regions of inserted 1380 

spaces and a major section of channel 1 profile has been shifted up axis to achieve a match. Only 1381 

stages 1 and 2 are matched on a very few channel features (c and d). Channel 8 matches in the stages 1382 

as shown even though Channels 1 and 8 morphologies are different. 1383 

 1384 

Fig 10. Comparisons of Channels 1, 2, 6 and 8 showing equivalence in direction change along 1385 

channel. (a) Changes in channel LRA (red line); the black arrows indicate the channel stage average 1386 

azimuth; the yellow lines are the perpendiculars to each stage average azimuth indicating the possible 1387 

direction of average dilatational stress. (b) Summarizes the changes in direction due to fault control 1388 

assuming channel erosion migrated from mouth to head. (c) Summarizes the changes in direction due 1389 

to fault control assuming channel erosion migrated from head to mouth. Diagrams (d) and (e) 1390 



 

 

respectively summarize diagrams (b) and (c) by assuming a continuation of a general direction 1391 

between channel stages can be consolidated e.g. stages 2 and 3 in 10(b).  1392 

 1393 

Fig 11. The change of regional stress through time and its influence on channel development 1394 

direction. We propose the extensional stress first acts on the channel mouth section and the changes in 1395 

stress direction are shown stage by stage as the channel develops from mouth to channel head. We 1396 

suggest the channel section shown in the window forms contemporaneously as the graben indicated in 1397 

yellow are formed. Spatially defined subsets occur within the stage graben clusters and those graben 1398 

not created in a particular stage are shown in red. For example in (c), (d) and (e) the sum of the red 1399 

circles and yellow circles represent the total population of HT orientated graben in that cluster but 1400 

only the yellow graben are being formed during the stages indicated.  1401 

 1402 

 1403 
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