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ABSTRACT: Cross-linking mass spectrometry is an emerging
structural biology technique. Almost exclusively, the analyzer of
choice for such an experiment has been the Orbitrap. We
present an optimized protocol for the use of a Synapt G2-Si for
the analysis of cross-linked peptides. We first tested six different
energy ramps and analyzed the fragmentation behavior of cross-
linked peptides identified by xQuest. By combining the most
successful energy ramps, cross-link yield can be increased by up
to 40%. When compared to previously published Orbitrap data,
the Synapt G2-Si also offers improved fragmentation of the β
peptide. In order to improve cross-link quality control we have
also developed ValidateXL, a programmatic solution that works
with existing cross-linking software to improve cross-link quality
control.

Cross-linking mass spectrometry (XLMS) can be used to
gain structural insights into proteins and complexes that

cannot easily be studied by high-resolution structural
techniques.1,2 Cross-linking is based on the covalent bonding
of two amino acids that lie within a certain proximity. This
low-resolution fixation of structure provides information on
both distance restraints and solvent accessibility. Following
digestion of the cross-linked species, a mixture containing both
linear and cross-linked peptides is produced. One of the
challenges of a cross-linking experiment is that cross-links are
low in abundance. As a result, their signal is often suppressed
by more intense linear peptide ions during analysis.3 Earlier
studies utilized an LTQ-Orbitrap mass analyzer, with most
experimental designs using linear ion trap (LIT) for both
collision-induced dissociation (CID) and analysis of fragment
ion spectra.4−6 The lower resolution data obtained using the
LIT, however, may lead to incorrect assignments of peptide
sequence. This in turn causes an increased risk of missed or
false positive cross-link assignment. Current developments in
the field now recognize that the accuracy of this analyzer is
insufficient to correctly annotate fragment ions, with higher
energy collision dissociation (HCD) becoming the dominant
analysis method.7

Recent advancements in time-of-flight (TOF) technology
have allowed an increase in achievable resolving power,
providing fragment ion scans up to 40 000 fwhm.8 In addition,
TOF resolving power does not depend on acquisition time,

offering a near constant resolution across the mass range and
faster scan speeds compatible with ultrahigh performance
liquid chromatography (UPLC) for both precursor and
fragment ion scans.9,10 Furthermore, the ability to seamlessly
integrate quadrupole time-of-flight analysers (QTOFs) with
ion mobility separation (IMS) offers an extra degree of
separation by size, shape, and charge, without the requisite
need for additional analysis time.11 This potentially provides an
opportunity to increase cross-link yield through exploitation of
the larger and more highly charged nature of cross-linked
peptides.
Although cross-linked peptides have been studied using a

variety of analyzers, including QTOFs,18,29−31 the majority of
cross-linking studies have been performed on Orbitrap mass
analyzers. As a consequence, current cross-linking software has
been optimized for Orbitrap data. Furthermore, a recent study
showed that HCD and ion trap CID required different
collision energies for optimal fragmentation of cross-linked
peptides.12 It is therefore also necessary to perform
optimization of collision energies for the analysis of cross-
linked peptides on a QTOF instrument.
Here, we present an optimized method for the analysis of

cross-linked peptides analyzed using a QTOF geometry. We
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performed triplicate analysis of six different energy ramps in
order to determine the optimal energy for cross-link
fragmentation. The resulting approach allows QTOF data to
be analyzed with existing cross-linking software, xQuest,13 with
minimal adaptations. We analyze the effects of collision energy
on the fragmentation efficiency of bovine serum albumin cross-
linked with isotopically labeled bis(sulfosuccinimdyl) suberate
(BS 3d0d12). We offer a programmatic solution, ValidateXL.-
py, which works with result files from xQuest to improve cross-
link quality control and reduce manual validation. This
software is freely available to download at https://github.
com/ThalassinosLab/ValidateXL. Finally, in contrast to data
collected from Orbitrap analyzers14 we also demonstrate
improved fragmentation of the β peptide in the cross-link.

■ RESULTS AND DISCUSSION

In order to determine the most efficient settings for cross-link
fragmentation using a QTOF, a comparison of fragmentation
energies was carried out using the collision energy ramps
described. The ramps were tested in triplicate using cross-
linked bovine serum albumin (BSA). Data were then analyzed
by xQuest according to the workflow outlined in Figure 1A.
Although only minor adaptations were necessary, QTOF data
sets were not immediately readable and required further
conversion by MSConvert. In addition, a far greater number of
cross-link identifications were found, with improved scores,
when using the slow de-isotoping algorithm during data
processing at both the precursor and fragment ion level (Figure
S1, parts A and B, and Table S1).

Figure 1. (A) Data formatting pipeline for use of xQuest with Waters QTOF data. (B) Comparison of xQuest scores for all identified unique BSA
cross-link peptide pairs across six energy ramps: scores above 20 (purple), scores below 20 (lilac). Numbers above bars indicate a count of cross-
links scoring above 20. (C) Mean and standard deviation for number of manually validated unique BSA cross-link peptide pairs in triplicate analysis
of all six energy ramps.

Figure 2. Example spectra for cross-link ID DTHKSEIAHR-FKDLGEEHFK (a4, b2). Cross-linked fragment ions are shown in red, and linear
fragment ions are in blue. xQuest scores are shown in brackets. A loss of cross-linked fragment ions is observed in the high energy ramp.
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Cross-links that pass a prescoring filter are all returned to the
user by xQuest. A final score threshold of 30 was originally
recommended to determine true positive cross-link identi-
fications.15 More recent analysis revised this score to 16 for
trypsin digests where this work also revealed a dependence of
score threshold on the enzyme used to digest samples.16

Following evaluation of the various scoring thresholds we
chose a conservative score of 20 in our initial validation
(Figures S2−S4). All identified unique BSA cross-linked
peptides are shown in Figure 1B. Unique cross-links include
those with linkages in the same absolute position but with
different peptide lengths and/or modifications such as oxidized
methionine.12

Overall, there is good reproducibility in the cross-links
scoring above 20 (Figures S5−S10). The technical replicates of
the mid energy ramp contain the greatest degree of overlap
with 38 identical cross-link residue pairs appearing in all three
repeats. The high-iTRAQ and mid-iTRAQ repeats contain an
intersection of 23 and 22 identifications, respectively (Figures
S5−S8). The mid energy ramp is the most reproducible and
identifies the most high-scoring cross-links: 103, 111, and 131
in the respective triplicate analysis.
Cross-links were then manually validated in the raw data by

confirming their charge, mass-to-charge ratio (m/z), and the
presence of doublet precursors with a 12 Da mass shift,
corresponding to the d0 and d12 versions of the cross-linker.
Figure 1C shows the mean and standard deviation for the
validated cross-links found in the triplicate studies. The wide
energy ramp and those including the iTRAQ (isobaric tags for
relative and absolute quantitation) method display the highest
degree of variability. This is most likely due to the broad range
of energies sampled by these ramps. The iTRAQ method and
the wide energy ramp expose peptides to low collision energies
irrespective of their m/z. The iTRAQ method does so in a
temporal manner with 50% of the scan time devoted to these
low ranges.17 The wide energy ramp encompasses the full
range of energies tested by all five ramps. As the m/z of the
cross-link increases the range of energies it is exposed to also
increases. Thus, by reducing the selectivity of the energy range
a greater distribution of fragmentation patterns are observed.
This most likely leads to greater variability in the number of
cross-links identified. In Figure 1C the high-iTRAQ method
shows the best performance of all energy ramps. This is due to
variability in the performance of the second and third technical
replicates (Figure S2) and is most likely the result of the
broader range of energies applied in the iTRAQ method. At
higher scoring thresholds the mid energy ramp continues to
perform the best (Figure S4). The combination of all three
triplicates analyzed using the mid energy ramp identified the
highest number, some 277 unique cross-links (see the
Supporting Information). As defined above, unique cross-
links are described by their sequence not solely their position.
Hence, this high number of identifications is due to differences
in peptide lengths and modifications.
To assess the fragmentation patterns of the cross-links

tandem mass spectrometry (MS/MS) spectra were interro-
gated for the presence of cross-linked and linear fragment ions.
Figure 2 shows spectra for one of the three cross-links
identified by all of the energy ramps (see also Figure S11 for
another such peptide). Ions corresponding to cross-linked
fragments are shown in red, and linear ones are in blue. It can
be seen that the high energy ramp contains no cross-linked
fragment ions. The sequence coverage of the low and wide

energy ramps are considerably worse, with the base peak in the
wide energy ramp representing the intact cross-linked
precursor. As this ramp covers a vast range of energies over
the course of the scan, insufficient time is spent at any one
energy to achieve efficient fragmentation. The mid energy
ramp appears to offer the best fragmentation for this cross-link,
providing the highest degree of sequence coverage. It should
also be noted that, despite the poor sequence coverage of the
cross-link in both the low and wide energy ramps, xQuest
scores each favorably at 26 and 30, respectively. This shows
that although a score threshold is necessary it is not sufficient
to differentiate reliable cross-link identifications.
xQuest distinguishes between the two types of fragment ions

and scores the correlation between the observed and
theoretical fragment ion spectra separately for each type of
ion. The results of these correlations are reported as two
subscores: XCorrx for cross-linked fragment ions and XCorrb
for linear fragment ions. In order to better visualize the effects
of the ramps on each type of fragment ion produced, a kernel
density estimation (KDE) was performed on the XCorrx and
XCorrb subscores. Kernel density estimation estimates the
underlying probability distribution from which a sample is
drawn. It requires that each instance within the sample is both
independent and identically distributed. Parts A and B of
Figure 3 show a comparison of the estimated distribution for

both the linear fragment ion correlation score and the cross-
linked fragment ion correlation score, for the high, mid, and
low energy ramps.
For the linear fragment ion correlation the low ramp

performs poorly while the high ramp performs well, as
indicated by the shifts in KDE in Figure 3A. This suggests
that at lower energies linear peptides are fragmenting less
efficiently. In Figure 3B the opposite phenomenon is observed.

Figure 3. KDE comparison of high (blue), mid (green), and low
(red) energy ramps across (A) XCorrb and (B) XCorrx xQuest
subscores.
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For cross-linked fragment ions the low ramp performs better
than the high ramp. These results demonstrate an opposing
effect between preserving cross-linked fragments and obtaining
sufficient sequence coverage for linear peptides. It is, therefore,
not surprising that the mid energy ramp provides a higher
overall number of cross-link identifications when used in
combination with the xQuest analysis software.
To further examine the fragmentation patterns associated

with each ramp, we analyzed the data for the presence of BS3/
DSS diagnostic ions18 (Figure 4). These ions have previously

been identified in 71% of cross-link spectra analyzed by
HCD.19 In good agreement with previous studies we find that
at high energy 52% of cross-link spectra contain the
tetrahydropyridine modification (Table 1). The negative
XCorrx scores in the high energy are likely due to the
fragmentation of the cross-linker amide bond preventing the
observation of cross-linked fragment ions.

When cross-links are utilized in structural modeling
approaches, cross-link residue pairs, defined solely by their
position in the structure, are of paramount importance.2,20 To
compare in detail the effects of the collision energy ramps on
residue pair identifications, cross-links were further validated
using in-house software (Figure 5A). The program works with
the xQuest xml result files to filter cross-links based on whether
the identification meets the more recent published standards
for confident cross-link assignment.7 These include signal/
noise, fragmentation of both peptides, and the presence of
both cross-linked and linear fragment ions. As expected, these
more stringent criteria lower the overall number of
identifications (Figure 5B).
The identifications exposed by the high ramp were reduced

significantly, with a mean cross-link identification rate of 11
(Figure S12). As mentioned, this is most likely due to the loss
of cross-linked fragment ions. The mid ramp remains the best
performing identifying 37, 37, and 39 cross-links in each of the
technical repeats (Table S2). In addition, the intersection of
the three best performing ramps shows that there is little

overlap between the identifications made by each one (Figure
5B). (The intersection for all energy ramps is shown in Figure
S13.)
Incorporating one or more energy ramp leads to a higher

number of cross-link identifications. This can be explained by
the relationship between fragmentation efficiency and m/z.21

Cross-links are composed of two peptides each with their own
optimal fragmentation energy. By combining different energy
ramps, optimal fragmentation of up to 40% more diverse cross-
link identities can be achieved (Figure 5B).
It has frequently been reported that fragmentation of both

peptides within a cross-link is not symmetric.7,12,14,19 One
peptide, in most cases the larger of the two, will fragment more
readily than the other, so a higher sequence coverage is
observed. In line with xQuest we define the larger of the two
peptides within the cross-link as the α peptide for this analysis.
Figure 6 displays the distribution of annotated peaks for both
the α (lilac) and β (purple) peptides within the cross-links.
Across most of the energy ramps the α peptide fragments more
than the β peptide, with the only exception being the low
ramp. However, annotation of both peptides is higher than
40%. This is in contrast to previous reports, when using both
ion trap CID14 and HCD12 with an Orbitrap analyzer, where
the β peptide consistently displayed poorer fragmentation. In
the case of ion trap CID only 22% of the most intense
annotated fragment ions corresponded to the β peptide.14

Kolbowski et al. attribute this phenomenon to the nature of
cross-linked peptides rather than the cross-linker used.12

One possible explanation for this difference in β-peptide
annotation may involve the way fragmentation energy values
by vendor instrument operator software are calculated.
Normalized collision energy reported by ThermoScientific is
a linear percentage of the available collision energy, which
compensates for the mass dependency of optimal collision
energy.22 An ion of a particular m/z value will be exposed to a
single energy value. As previously discussed, the Waters
Corporation energy ramp exposes a precursor of a particular
m/z to a range of energies across the course of a scan. As cross-
links are a combination of two peptides, each with different m/
z ranges, this may be advantageous; the optimal energy for
fragmentation is unlikely to be related solely to the m/z of the
entire species.
xQuest does not consider ions generated through

fragmentation of both peptides in a cross-link. As the software
was written to using data from fragment ions generated by ion
trap CID, with a mass range of 200−2000 Da, immonium ions
are also not considered. These ions are diagnostic of the
presence of specific amino acids in a peptide and are often used
in de novo peptide sequencing. During analysis of fragment ion
spectra the presence of these ions was found to inhibit rather
than enhance the xQuest scoring algorithms. Figure 7 shows
the fragment ion spectra of a monolink identified by xQuest.
Immonium ions for both lysine, following the loss of ammonia
(84 Da) and valine (72 Da), are present and indicated in the
figure. The mass shift between these ions is 12 Da; xQuest has
erroneously identified the peak at 84 Da as a cross-linked peak.
Although xQuest can be modified to include a wider mass
range, it cannot annotate the peaks correctly as the algorithms
do not expect the presence of immonium ions. As the
correlation algorithm does not have a low-mass cutoff this
leads to unannotated peaks in the spectra and poorer overall
correlation of the theoretical and observed cross-linked
fragment ions. Adjustment of the xQuest search parameters

Figure 4. Representation of BS3/DSS diagnostic ions created in
ChemDraw 16.0. Diagnostic ions are created by fragmentation of the
amide bond in the cross-linker.

Table 1. Percentage of Modified Cross-Linker Ions Present
in Spectra for All Energy Ramps

m/z high ramp % mid ramp % low ramp %

139.1 11 4 0
222.1 52 15 3
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to include a wider mass range is therefore not recommended as
a necessary modification for searching QTOF data.

■ CONCLUSION

QTOF mass spectrometers are ubiquitous in most lines of MS
research including metabolomics, proteomics, and small-
molecule analysis; however, they have not yet been widely
applied to the field of cross-linking mass spectrometry. We
have shown that QTOF instruments can indeed be used to
analyze cross-linked peptide samples and that data from this
instrument configuration can be processed directly with
existing cross-linking software applications, with little mod-
ification to their parameters. Due to the unique divergent
energy ramp that applies a range of energies across each scan
we have demonstrated that the Synapt G2-Si offers improved
fragmentation of the β peptide when compared with published
data collected on an Orbitrap instrument.12,14 Our analysis also
shows that, by combining two energy ramps that occupy
alternate energy ranges, different cross-links can be identified.
This presents a unique opportunity to improve cross-link yield
by up to 40%.
Given that adaptation to collision energy is not required for

the analysis of different cross-linker chemistries by an
Orbitrap,23 this protocol could be applicable to a broad
range of cross-linkers. This includes the widely used MS
cleavable cross-linkers.24,25

In addition, validation of the results is laborious; time
requirements increase with cross-link yield. Employment of a
simple score threshold serves only as a guide. We offer a
programmatic solution which works directly with the xQuest
result xml file to gain confidence in the results generated from
the search. This enables cross-link identifications to feed
directly into structural modeling approaches, as we have
previously shown that higher quality cross-link identifications
are more beneficial for modeling purposes.20,26,27

Finally, the development of an optimized method for the
analysis of cross-linked peptides on a QTOF provides the
groundwork for exploration of the addition of IMS to a cross-
linking experiment. This gas-phase fractionation is conducted
online and may lead to a reduction in sample preparation

Figure 5. (A) Schematic representation of ValidateXL.py workflow. (B) Overlap of validated cross-links for the three best performing ramps. As
limited overlap in cross-links is observed between the ramps, identification rates can be increased by combining one or more energy ramp.

Figure 6. Relative frequency of annotated α and β fragment peaks
from identified ions. The height refers to the mean for each energy
ramp. Error bars display the standard deviation.

Figure 7. Misallocation of lysine immonium ion (following loss of
ammonia) as a cross-linked peak by xQuest software. Erroneous cross-
linked peak determination affects scoring algorithms.
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requirements. Furthermore, the extra separation provided by
IMS separates low-intensity ions from chemical noise allowing
the data-dependent acquisition (DDA) process to select them
for MS/MS.

■ EXPERIMENTAL SECTION
Reagents and Apparatus. BSA (A7030) and BS3 d0/d12

were purchased from Sigma-Aldrich (St. Louis, MO) and
Creative Molecule Inc., respectively. Rapigest and solid-phase
extraction (SPE) cartridges (50 mg Sep-Pak C18) were
purchased from Waters Corporation (Milford, MA, U.S.A.).
The Superdex Peptide PC 3.2/3.0 column was purchased from
GE Healthcare (Piscataway, NJ).
Sample Preparation. Amounts of 0.3 mg/mL BSA and 1

mg BS3 d0/d12 were prepared in 20 mM HEPES at pH 7.6.
The cross-linker was added to the protein and diluted to a final
concentration of 2.5 mM BS3 d0/d12. The sample was then
incubated at room temperature for 40 min under mild
agitation. Following incubation, the reaction was quenched
by adding 1 M ammonium bicarbonate to a final concentration
of 50 mM. The samples were then evaporated to dryness in a
vacuum concentrator and resuspended in 8 M urea at 1.1 mg/
mL concentration.
A solution of 1% RapiGest to a final concentration of 0.1%

was added to aid solubilization before digestion. The sample
was then incubated with 10 mM dithiothreitol at 37 °C for 30
min to denature the protein and reduce the disulfide bonds.
Following incubation, the sample was cooled to room
temperature. In order to prevent disulfide bond reformation
iodoacetamide was added to a final concentration of 20 mM.
As iodoacetamide is unstable when exposed to light the
mixture was incubated in the dark, at room temperature for 30
min. The sample was then diluted with 50 mM ammonium
bicarbonate to reduce the final concentration of urea to <1 M.
Trypsin 50:1 protein to enzyme was added to the sample. The
reaction mixture was incubated overnight at 37 °C with mild
agitation. Following overnight incubation enzymatic activity
was quenched by adding formic acid to a final concentration of
2% (v/v). In preparation for size exclusion chromatography
(SEC) fractionation the sample was purified using Sep-Pak
SPE cartridges and evaporated to dryness.
Following SPE the sample was resuspended in 20 μL of SEC

buffer (degassed water/acetonitrile/TFA at 70/30/0.1 v/v/v).
An amount of 15 μL of sample was injected onto an
equilibrated Superdex Peptide column. Fractions of 100 μL
were collected. The samples were then evaporated to dryness
and resuspended in 10 μL of liquid chromatography−mass
spectrometry (LC−MS) buffer: 95% H2O, 5% acetonitrile, and
0.1% formic acid.
LC−MS/MS Analysis. Samples were introduced using nano

ultraperformance liquid chromatograph (10kPsi nanoACQ-
UITY Waters) with buffers (A) MS grade water with 0.1%
formic acid and (B) MS grade acetonitrile with 0.1% formic
acid. Samples were desalted by a reversed-phase Symmetry
C18 trap column (180 μm internal diameter, 20 mm length, 5
μm particle size, Waters Corporation) at a flow rate of 8 μL/
min for 3 min in 99% buffer A. Peptides were then separated
using a linear gradient (0.3 μL/min, 35 °C; 97−60% buffer A
over 90 min) using a BEH130 C18 nanocolumn (75 μm
internal diameter, 400 mm length, 1.7 μm particle size, Waters
Corporation). The TOF analyzer was externally calibrated
from m/z 175.11 to 1285.54 using [Glu1]-fibrinopeptide B at
500 fmol/μL.

Data-Dependent Acquisition. Samples were analyzed
using a Waters Synapt G2-Si quadrupole time-of-flight mass
spectrometer tuned to a resolution of 20 000 (fwhm). Accurate
mass measurements were made using DDA. The top 10 most
intense precursors with charge states between +3 and +7 were
selected over a mass range of 50−3000 Da with a scan time of
0.15 s and an interscan delay of 0.05 s. MS2 spectra were
acquired using collision energy ramps specified in Table 2.

Cross-Linking Analysis. Raw files were processed in
PLGS v3.2.0 (Waters) using slow de-isotoping algorithm for
both MS and MS2 data. After PLGS processing, the files are
exported in mascot generic format (mgf) and further converted
to mzXML format for input to xQuest.4 Conversion to
mzXML was accomplished with MSConvert (v3.0.7414) using
32-bit binary encryption.
xQuest was designed and trained on sample data obtained

from an Orbitrap mass analyzer operated with ion trap CID, as
such modifications to the search parameters were necessary to
accommodate QTOF data. These can be found in Tables S3−
S7. Briefly, data obtained from an Orbitrap mass analyzer
differs from data obtained in a QTOF as it is not deconvoluted
and contains multiple charge state fragment ions. Tolerance for
peak matching was adjusted to 5 ppm for precursors and 10
ppm for fragment ions. Additional search parameters included
the following: cross-linking was assumed to occur with lysines,
tyrosine, serine, threonine, and the protein N′ terminus; two
possible missed cleavages; variable modification of methionine
oxidation; fixed modification of cysteine carbamidomethyla-
tion. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the
PRIDE28 partner repository with the data set identifier
PXD011704.

ValidateXL. ValidateXL is available to download at https://
github.com/ThalassinosLab/ValidateXL.
ValidateXL.py is a python script written in Python 3.5.

ValidateXL.py analyses the xQuest merged_xquest.xml files
which are generated and stored in the xQuest result file after a
completed search.
ValidateXL extracts information from the XML files to assess

the quality of a cross-link identification based upon the signal/
ratio of both the cross-linked and linear fragment ions. It filters
cross-links and creates three CSV files: cross-links which are of
significantly high quality to be used for modeling, cross-links
that require manual validation, and cross-links that should be
rejected. ValidateXL requires the XML and fasta files for the
protein of interest and will run on multiple xQuest search
results. For full description and details on usage can be found
in the Supporting Information.

Table 2. Overview of Collision Energy Ramps Tested

ramp
low mass

(start−end) eV
high mass

(start−end) eV iTRAQ eV

high 6−9 67−84
high-iTRAQa 6−9 67−84 15
mid 10−20 30−60
mid-iTRAQa 10−20 30−60 15
low 6−9 10−20
wide 6−9 15−84

aFor details of iTRAQ method see text.
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