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A B S T R A C T

The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two
transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick
(myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of pro-
teins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle
is better understood, while the molecular constituents of the M-band and its function are less well defined.
Evidence discussed here suggests that the M-band is important for managing force imbalances during active
muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by
members of the myomesin family are concerned and depends on the specific mechanical characteristics of each
particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of
sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in
contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.

The paracrystalline arrangement of the contractile proteins actin
and myosin in cross-striated muscle is due to two transverse structures
in the sarcomere, the basic unit of the myofibrils, which are the Z-disc
and the M-band (Fig. 1). The structural and signalling role of the Z-disc
is studied widely and its components and role are reasonably well un-
derstood and frequently reviewed (e.g. [1–3]). The M-band has re-
ceived much less attention and the most recent reviews solely dedicated
to this structure were published somewhat out of the limelight [4,5].
Aim of this article is to put this crucial sarcomeric element into the spot
light, focusing on its molecular composition, ultrastructure and re-
sponse to mechanical challenges as well as to speculate on its function
in muscle.

The M-band is located in the middle of the sarcomere and serves to
arrange the thick filaments into the A-bands (Fig. 1A, B). The members
of the myomesin gene family (myomesin [6] encoded by MYOM1 in
humans, M-protein/myomesin-2 [7] encoded by MYOM2 and myo-
mesin-3 [8] encoded by MYOM3) are believed to act as structural

linkers between the thick filaments. They share a common domain ar-
rangement with an intrinsically unstructured head domain, followed by
twelve immunoglobulin (Ig; belonging to the I-set [9,10]) and fi-
bronectin type III (Fn) domains [8,11,12]. Myomesin itself is con-
stitutively present in the M-bands of all striated muscles in a nearly
stoichiometrical ratio to sarcomeric myosin [13], while the two other
proteins are differentially expressed in muscle types. Textbook images
tend to show electron micrographs of longitudinally sectioned fast
twitch fibres of skeletal muscle (e.g. human tibialis anterior), because
they show the most ordered version of this structure. In these images it
is possible to discern the substructures of the M-band, called the M-
lines, which are arranged symmetrically across the very centre of the
sarcomere ([14]; inset in Fig. 1C). Depending on muscle type (fast
twitch, slow twitch, cardiac), developmental stage and species, the
numbers of M-lines will vary, with only M4 (and M4′) being con-
sistently prominent [15]. It is thought that the consistent visibility of
M4 is due to M-CK (muscle isoform of creatine kinase) decoration of the
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M-lines [16]. Contrary to erroneous beliefs still purported by some that
the absence of an electron dense structure in electron micrographs
might mean the lack of an M-band [17], if assessed from a molecular

point of view, M-band proteins such as myomesin can be detected as
soon as the first A-bands can be distinguished during myofibrillogenesis
[18].

1. What is the role of the M-band?

Classical investigations on the sarcomere by Squire and colleagues
in the last decades of the 20th century, established the M-band as the
structure that cross-links the myosin filaments into a hexagonal lattice
and defines their relative rotations around their long axes [15,19,20].
The mechanical stability of the M-band network is achieved through
specific architectural features that are unique to this compartment.
Higher resolution electron micrographs of the sarcomere display a bare
zone around the M-band, which is due to the lack of myosin heads. As
the myosin filaments overlap towards the centre of the sarcomere, five
major symmetrical placed non-myosin densities are clearly observed in
fast skeletal muscle. These are mostly referred to as M-lines or M-
bridges, namely M6′, M4′, M1, M4 and M6 and they follow a trigonal
symmetry. Additional peaks have been also been observed (e.g. M3-
M3′, M8-M8′ and M9-M9′) followed by three myosin crown levels at the
M-band periphery [21]. Based on these structural observations, Agar-
kova and Perriard proposed the crucial role of the M-band for the sta-
bility of the activated sarcomere at the beginning of this century [22]. A
system constructed of only actin and myosin filaments is intrinsically
unstable in the longitudinal direction, as the forces that are produced
by activated myosin heads are not exactly the same on the left and right
halves of the bipolar myosin filament, and any deviation from the
central position will increase the imbalance (Fig. 2). The titin filament
is a rather weak spring, which is not able to counteract the forces
generated even by few myosin heads. However, a system that contains a
higher number of myosin filaments connected in the middle with short
linkers will be more stable, as stochastic differences between adjacent
filaments can be averaged by the elastic web of the M-band filaments
[22]. As the vertebrate sarcomere contains about 1000 myosin fila-
ments, the M-band reduces the longitudinal instability by about 30
times (square root of 1000). Thus, the M-band absorbs the misbalances
of active forces through the myosin filament lattice and aids titin in
keeping the central position of the A-band in the sarcomere. Playing the
role of a shock absorber, the M-band filaments can be subjected to
strong mechanical forces during sarcomere contraction, and may even
be ruptured in extreme cases, as detected in electron micrographs [23].

2. M-band composition is fine-tuned depending on developmental
stage, fibre type and species

Isolated fragments of myosin tails can assemble to helical filaments,
with the assembly mode being determined by 195 residue segments
along the tail [24]. For their integration to the bipolar filaments that
constitute the A-band it is assumed that also myomesin and the C-

Fig. 1. The M-band in the sarcomere. A) Electron micrograph of longitudinally
cut cross-striated muscle showing myofibrils (bottom half) and mitochondria
(top half). Sarcoplasmic reticulum (SR) is located alongside the myofibrils. B)
Schematic representation of A. C) Schematic representation of a sarcomere, the
basic unit of a myofibril. Thin (actin and associated proteins) and thick (myosin
and associated proteins) filaments are depicted in grey; the Z-discs are shown in
black, titin filaments are green, the M-band is shown in blue and obscurin is
shown in yellow. The inset indicates the arrangement of the M-lines, which are
substructures of the M-band. D) Model of the molecular arrangement of major
M-band components. Members of the myomesin family are shown in blue, but
only myomesin is depicted as a molecule, forming dimers that link neigh-
bouring myosin filaments (grey). Titin is shown in green and obscurin in
yellow. Associated proteins such as M-CK, FHL2, Nbr1, p62, myospryn and
myomasp are only indicated as ellipses, not as molecules. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. M-band maintains thick filament register. A scheme showing how force
imbalances are suggested to lead to a misalignment of thick filaments, which
then get realigned by contributions from titin and from structural components
of the M-band such as myomesin.
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termini of titin are required [18]. Based on antibody epitope localisa-
tion of major M-band proteins in electron micrographs, more than
twenty years ago a model was proposed that shows the C-terminal ends
of titin to overlap in an antiparallel fashion and it was suggested that
myomesin provides a link between myosin and titin [25], also based on
its ability to bind both in biochemical assays [26]. This model was re-
fined ten years later, when it was discovered that myomesin in the M-
band is actually an antiparallel dimer, with its C-termini forming a tight
interaction interface and its N-termini anchoring it to myosin ([27,28];
see Fig. 1D). The three molecules myosin, titin and myomesin are still
thought to be the minimal requirement for the assembly of an A-band
during myofibrillogenesis [18]. Depending on muscle fibre type, this
minimal M-band structure gets reinforced by the incorporation of the
two other myomesin family members. Sarcomeres in muscle types that
are exposed to higher forces (e.g. fast twitch, cardiac in mammals) tend
to express M-protein, which also binds to myosin and titin in bio-
chemical assays [29,30]. Muscles that express M-protein have a well-
defined ultrastructure in electron micrographs with prominent M1
lines, which gives rise to a model that M-protein makes up a perpen-
dicular connection between adjacent myosin filaments in the very
middle of the sarcomere [25]. Sarcomeres in slow fibres and in em-
bryonic heart on the other hand often lack clearly discernible M-bands
in electron micrographs, which is most likely due to the presence of a
splice variant of myomesin, EH-myomesin (embryonic heart), which
bears an elastic EH-domain in the middle of the molecule [31]. The
elasticity that the EH-domain confers to myomesin [32] may be re-
quired in muscle types that undergo eccentric contractions such as slow
twitch, extraocular and embryonic heart muscle [13,31,33]. The first
M-bands in the embryonic heart lack M-protein and its expression is
only switched on at later fetal stages (e.g. embryonic day 14.5 in the
mouse; Fig. 3). Around birth the expression of EH-myomesin gets
downregulated in heart and M-protein gets upregulated [4,31]. The
third member of the myomesin family, myomesin-3, is expressed
mainly in intermediate speed fibres of skeletal muscle (type IIA), but its
expression can also be detected in human heart [8,34].

The origin of myomesin is linked to the evolution of striated muscle
and the establishment of different muscle types. The genome of the
lancelet, the modern representatives of the ancient chordate lineage,
contains only one myomesin gene, and consequently, the sarcomeres
demonstrate only M4 and M4′ lines on electron micrographs [35]. A
whole-genome comparison of the three chordate groups (tunicates,
lancelets and vertebrates) has indicated that the vertebrate lineage
arose as a result of two genome-wide duplications and subsequent re-
organisations. Therefore, the myomesin protein family appeared prob-
ably as a result of two subsequent duplications of the original common
myomesin ancestor gene and the following diversification into the
different muscle fibre types.

The specific expression pattern of different myomesin family
members depending on muscle type and developmental stage (for a
scheme in mouse see [4]) is a useful tool for assessing the maturity for
cardiomyocytes derived from human embryonic stem cells or induced
pluripotent stem cells (iPSC). In electron micrographs of differentiated
human iPSC-cardiomyocytes clear M-band structures could only be
distinguished after 360 days in culture, which correlated well with the
increased expression of M-protein as detected by qPCR [36]. Im-
munofluorescence analysis of differentiated human iPSC-cardiomyo-
cytes also suggested a rather immature M-band status with high levels
of expression of EH-myomesin but little or no expression of M-protein
[37]. In our hands, M-protein positive M-bands can be detected after
long-term culture in 2D (> 60 days) or when the cells are cultured in
3D, which tends to promote their maturation (Ormrod and Ehler, un-
published). In conclusion, the expression patterns of different members
of the myomesin family correlate with the appearance of the M-band in
electron micrographs and with distinct functional properties of muscle
types.

3. Alterations in M-band composition in disease

If the expression of different myomesin family members is so spe-
cific for a muscle type, it should also be responsive to changes in de-
mand, for example in disease. Indeed, several transcriptomics and
proteomics studies showed that up- or downregulation of especially the
expression of myomesin (MYOM1) and its isoforms accompanies the
response of a muscle to varying kinds of stress in myopathy [38–40]. In
addition, re-expression of EH-myomesin was reported to be a hallmark
of dilated cardiomyopathy (DCM) in mouse models for the disease as
well as in human patients [34]. At the moment it is unclear, whether
this upregulation of EH-myomesin is an adaptive response to improve
the stability of sarcomeric structure in conditions of eccentric con-
tractions or whether it is maladaptive due to reduced contractile force
produced by less aligned contractile filaments. While in some patient
populations a direct correlation of EH-myomesin expression levels and
ventricular dilation was found, with a potentially inverse correlation of
EH-myomesin expression levels and ejection fraction [34], in other
patient populations a positive correlation between left ventricular

Fig. 3. M-protein expression is only upregulated later during heart develop-
ment. Confocal micrographs of mouse embryonic heart whole mount prepara-
tions from embryonic day 13.5 (left column) and embryonic day 14.5 (right
column) immunostained with antibodies against M-protein (second row; green
in overlay), myomesin (third row; red in overlay) and EH-myomesin (blue in
overlay). Striations for M-protein only start to appear in some of the myofibrils
at E14.5. Scale bar= 10 μm. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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ejection fraction and EH-myomesin levels was detected (Pluess and
Ehler, unpublished). The situation gets even more complex when dif-
ferent subtypes of DCM are analysed, since EH-myomesin expression is
upregulated in almost all subtypes but not in patients with peripartum
DCM [41], which often have an even worse prognosis. In one mouse
model for DCM, the MLP knockout mouse [42], almost all the cardio-
myocytes in the heart are positive for EH-myomesin and also the ex-
pression of M-protein is maintained completely [34]. The MLP
knockout mice have a normal life span [43], while another mouse
model for DCM, that is caused by overexpression of beta-catenin (delta
exon 3 mice; [44]) does not survive beyond five months. These mice
only partially upregulate EH-myomesin expression and also show a loss
of M-protein expression in a subset of cardiomyocytes [34]. The si-
tuation is further complicated by the observation that hearts from MLP-
knockout mice start to express myomesin-3, while hearts from delta
exon 3 mice fail to upregulate its expression [34]. This suggests that
whether a genetically modified mouse model can tolerate a DCM-
causing insult or not may depend on how many myomesin family
members there are in an M-band. In human DCM, M-protein and
myomesin-3 expression levels appear to be constant and it is only EH-
myomesin that gets upregulated [34]. Ultimately it may need a mouse
model that consistently expresses EH-myomesin in the adult and a de-
tailed analysis of its M-band composition and physiology to answer this
question.

The re-expression of EH-myomesin in DCM is a consequence of al-
tered alternative splicing, which is a common response in cardiomyo-
pathy (reviewed in [45]). Especially the RNA binding motif proteins 20
and 24 (Rbm20, Rbm24) appear to be major players in alternative
splicing in striated muscle cells. For example, it was shown that a loss of
function in Rbm20 in rats leads to persistently longer titin accompanied
by chamber dilation and increased frequency of sudden cardiac death
[46]. Rbm20 affects not only the splicing of titin but also of myomesin
[47] and is among the most frequently mutated genes in DCM [48].
This differential splicing of titin and myomesin is also seen in iPSC-
derived cardiomyocytes from a patient with the S635A mutation in the
Rbm20 gene [49]. Knockout mice for Rbm24 display less distinct M-
bands in electron micrographs from skeletal muscle, which could be
rescued by the expression of GFP-tagged Rbm24, suggesting a direct
effect [17]. The ultrastructure of the Rbm24 knockout skeletal muscle
could be explained by a switch from M-protein to EH-myomesin ex-
pression, resulting in M-bands similar to slow twitch fibres, but un-
fortunately the molecular composition of the M-band, especially as far
as myomesin family members is concerned, was not analysed in these
mice. Conditional knockout of Rbm24 postnatally also leads to dilated
cardiomyopathy in mice [50]. Interestingly the expression levels of
Rbm20 and Rbm24 are repressed by hypertrophic stimuli and there is
evidence for their cooperation [51]. This suggests that changes in al-
ternative splicing of elastic proteins such as myomesin and titin con-
tribute to a cardiomyopathy phenotype, especially in the case of dilated
cardiomyopathy [34,52].

4. Other M-band associated proteins

Apart from the myomesin family members, which appear to be the
major structural linkers in the M-band, several other proteins were
found in this region of the sarcomere, most of them only in this century.
M-CK, the muscle isoform of creatine kinase was shown to bind to
central domains of both myomesin and M-protein [53] and is probably
the cause for the electron dense signal that is picked up in electron
micrographs as M-lines [16]. Mice that lack M-CK are viable but show
impaired muscle function upon challenge, suggesting that M-CK at the
M-band is required for optimal contractile response and physiological
performance [54]. The C-terminus of titin interacts with obscurin and
obscurin-like1 ([55], discussed below) as well as with myospryn [56],
which is a large tripartite motif (TRIM) protein encoded by a gene as-
sociated with cardiomyopathy (CMYA5). The regulation of these

interactions and whether they are competitive is not very well under-
stood at present. Another protein that binds to an unstructured C-
terminal region of titin known as the is2 region, is the Four and a Half
LIM domain protein 2 (FHL2 or DRAL), which mediates the subcellular
targeting of metabolic enzymes such as creatine kinase, adenylate ki-
nase and phosphofructokinase [57]. The C-terminus of myosin binds
Myomasp, which is a leucine-rich protein that may be involved in
stretch sensing and appears to affect serum response factor (SRF)-de-
pendent gene expression [58].

5. No longer so obscure M-band and membrane links

First images of links between the M-band and membranous struc-
tures in the cell were provided in electron micrographs [59]. Since then
the molecular composition of these links has been elucidated in greater
detail. A first indication of the molecular nature was provided with the
discovery of obscurin, a giant protein with a similar architecture and
domain layout to titin [60,61]. The gene for obscurin gives rise to at
least three splice products: the giant obscurin-A and obscurin-B iso-
forms, and the kinase-only protein (KIAA 1639, sometimes also referred
to as obscurin MLCK), which originates from a separate promoter
[62,63]. Recent reports indicate the presence of additional splice iso-
forms, which are significantly smaller than the giant obscurin variants
[64]. Obscurin itself consists mainly of serially linked Ig domains,
which are interspersed with unstructured linkers and Fn domains. Si-
milar to titin, obscurin harbours in its C-terminus signalling properties.
However, while titin contains only one kinase domain, obscurin en-
codes two kinase domains in addition to a SH3-DH-PH domain triplet
(acting as a RhoGEF) that associate obscurin with phospholipids in the
membrane [64] and link it to Rho-dependent signalling [65], as well as
an IQ-motif that was shown to bind to calmodulin [61]. The obscurin
protein family contains two other members: obscurin-like 1 (Obsl1),
which shows high similarity to the obscurin N-terminus, and the stri-
ated muscle preferentially expressed gene (SPEG), which exhibits
homology to the obscurin C-terminus, including its kinase domains. All
proteins in the obscurin family are thought to have originated from one
ancestral gene [66], a hypothesis that is supported by the existence of
only one obscurin orthologue in invertebrates, called UNC-89 [67].
Obscurin, Obsl1 and SPEG display wide-ranging tissue-specific expres-
sion patterns and subcellular localisations. While obscurin is primarily
expressed in striated muscle tissues [68], recent studies indicate its
expression in non-muscle tissues and a role for tumorigenicity and
metastasis [69,70]. Similarly to obscurin, SPEG was found to exhibit
tissue-specific expression patterns, with high expression in skeletal
muscle, heart, aorta and brain [71]. Hence, depending on the splice-
isoform and tissue, SPEG is also called aortic preferentially expressed
gene (APEG-1) or brain preferentially expressed gene (BPEG). In con-
trast, to obscurin and Obsl1, SPEG localises to the junctional sarco-
plasmic reticulum (SR) in muscle tissue, displaying a doublet that en-
closes the Z-disc in immunofluorescence images [72,73].

Obsl1 is expressed in a wide range of tissues and displays a complex
splice-isoform pattern [66]. Accordingly, mutations in the more ubi-
quitously expressed Obsl1 gene were linked to the development of the
3M-growth disorder [74,75], while mutations in SPEG/APEG and ob-
scurin were associated with the development of cardiac and skeletal
myopathies [76–82].

Specific roles of the obscurin protein family in the M-band are lar-
gely restricted to obscurin itself and its close homologue, Obsl1. Both
proteins are localised to the M-band of mature muscles by interactions
with myomesin and the C-terminal Ig-domain M10 of titin [55,61].
Other subcellular localisations for obscurin and Obsl1 were reported
[64], depending on the antibodies used and the maturity state of the
muscle [61]. While not much is known about functions for Obsl1 in
muscle, specific roles for obscurin in cardiac and skeletal muscle were
investigated better. In addition to myomesin and titin, obscurin was
shown to interact with slow muscle myosin binding protein-C (sMyBPC)
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as well as another region in titin, the Ig-domains Z9/Z10 located at the
sarcomeric Z-disc [61,83]. Apart from its association with sMyBPC,
obscurin may also harbour an as-of-yet unidentified binding site for
myosin, as the invertebrate homologue UNC-89 via its SH3 domain was
shown to bind to paramyosin [84]. This invertebrate-specific ‘headless
myosin’ exhibits 36–38% sequence homology to the myosin rod-domain
and is found in the tubular core of thick filaments. However, while C.
elegans UNC-89 mutants display profound disruption of their myosin
filament system [84], obscurin knockout mice show no overt dis-
organisation of their thick filaments in skeletal or cardiac muscles ([68]
& unpublished observation). Another possibility is that the SH3 domain
of obscurin may interact with another as yet unidentified protein con-
taining an SH3 binding motif.

Besides its interactions with sarcomeric proteins, the best char-
acterised function for obscurin lies in the organisation of the sarco-
lemmal and sarcoplasmic reticulum (SR) membrane-architecture
(Fig. 4). This function is achieved by binding of the unstructured ob-
scurin-A C-terminus to various members of the muscle ankyrin protein
family. The first of these interactions was reported for muscle specific
small ankyrin-1 isoforms sAnk1.5 and sAnk1.9 [85–87], which lack all
structural domains of classical erythrocyte-type giant ankyrin-1 iso-
forms (e.g. the tandem ankyrin-repeats). Instead, these small ankyrin
proteins are largely unstructured, but contain a single transmembrane
spanning region that is embedded in the SR-membrane of skeletal and
cardiac muscle. Molecular studies on small ankyrin isoforms indicate
their role for localising tropomodulin-3 (Tmod3) and gamma-actin
(Actg1) to the SR [88], and in regulating the activity of the sarco(endo)
plasmic reticulum Ca2+-ATPase (SERCA) calcium pump [89,90]. Ex-
periments on cells or mice where obscurin was removed either by
siRNA or gene-knockout validated that this interaction is required for
the proper localisation and stability of sAnk1.5 at the sarcomeric M-
band [68,87,91]. Loss of obscurin also resulted in dramatic archi-
tectural changes to the SR [68]. Knockout muscles displayed severely
decreased amounts of longitudinal SR, which runs along the span of the
sarcomeric A-band (Fig. 1B). Hence, the structural functions of ob-
scurin/sAnk1.5 may be compared to a central ‘bridge pillar’, supporting
the SR (‘bridge’) and connecting it with the underlying sarcomere
(‘ground’) to provide stability to this membrane compartment. Loss of
obscurin/sAnk1.5 leads to a collapse of the ‘bridge’ with resulting
detrimental alterations to the SR architecture. Moreover, the role of
obscurin as a linker between M-band and SR seems to be conserved in
C. elegans: loss of function of UNC-89 results in disorganisation of the
SR proteins, the calcium release channel (UNC-68) and SERCA [92].

Association of obscurin to ankyrin proteins is not restricted to small

ankyrin-1 isoforms. Conserved obscurin binding domains were also
found in B-type ankyrin (Ank2), and direct their localisation to M-bands
in cardiomyocytes [93]. Giant ankyrin-B isoforms are membrane-asso-
ciated proteins that require ankyrin repeats and spectrin binding for
their membrane localisation and interaction with ion channels, trans-
porters and cell-adhesion complexes, such as the dystrophin-sarco-
glycan (DSG) complex. Due to their scaffolding functionality, these
ankyrin isoforms coordinate the sarcolemmal-bound cytoskeleton in
cardiac and skeletal muscles. Indeed, modulation of obscurin binding to
ankyrin-B in cells did not only alter the M-band association of ankyrin-B
itself, but also that of the closely bound protein phosphatase 2A (PP2A)
[93]. These results indicate that obscurin may also play a role in the
regulation and integrity of sarcolemmal membrane architecture
(Fig. 4), a hypothesis that was confirmed when investigations in ob-
scurin knockouts revealed disruptions to the localisation of dystrophin
and the sub-sarcolemmal microtubule cytoskeleton [73,94]. In con-
clusion, obscurin and its relative UNC-89 seem to be important for
providing a link between myofibrils and membraneous compartments
of the cell in mammals as well as in C. elegans.

6. Signalling from and to the M-band

Little is known about muscle specific signalling around the M-band,
despite the localisation of several protein kinases (kinase domains of
titin and obscurin), phosphatases (e.g. PP2A), proteins involved in Rho-
signalling (RhoA, obscurin) and in protein turnover (proteins of the
muscle ring finger (MURF) family), as well as signalling adaptors
(FHL2, myospryn) to this region of the sarcomere. Currently the best-
characterised signalling cascade in the M-band region is the one that
emanates from titin's kinase domain at the edge of the M-band [95].
After a conformational change that can be induced by mechanical
stretch [96], titin kinase domain can bind to nbr1, a protein involved in
autophagy in muscle cells [97]. Nbr1 in turn binds to p62, another
scaffolding protein involved in autophagy, which then interacts with
MURF2, a muscle specific ubiquitin E3 ligase. MURF2 binds to SRF,
thus creating a multistep link from the kinase domain of titin to gene
transcription in the nucleus [95]. Prevention of contraction in primary
cultures of neonatal rat cardiomyocytes leads to shuttling of SRF out of
the nucleus, suggesting that transcription of muscle specific genes by
SRF and contractile activity of a muscle cell are tightly linked, which
was also observed for the myomasp – SRF signalling axis [58]. Since
autophagy adaptors such as p62 and nbr1 as well as the E3 ubiquitin
ligase MURF2 are also involved in this signalling cascade, it may affect
not only transcription but also protein turnover [95]. There is addi-
tional data suggesting that the ubiquitin/proteasome system is built
into the M-band. In C. elegans, the M-band proteins UNC-96 and UNC-
98 were found to interact with CSN-5 [98]. CSN-5 is a component of the
COP9 signalosome complex that is found in multiple organisms and
regulates protein stability usually via SCF ubiquitin ligases. Knockdown
of csn-5 by RNAi resulted in increased levels of UNC-98 [98]. Fur-
thermore, both UNC-89 and obscurin have been reported to play roles
in regulating protein turnover via the ubiquitin/proteasome system.
Two portions of UNC-89 have been reported to interact with MEL-26, a
substrate recognition protein for cullin 3 [99]. Cullins are platforms for
assembly of the ubiquitin protein degradation machinery, including E3
ubiquitin ligases. The data support a model in which the interaction of
UNC-89 with MEL-26 inhibits the activity of the cullin complex from
promoting the ubiquitin-mediated degradation of MEI-1 (katanin), a
microtubule severing enzyme, and this is in some way required for
proper thick filament organisation. Similarly, Lange and colleagues
reported that in the mouse, degradation of sAnk1.5 is dependent upon
obscurin, and is promoted by a cullin 3 substrate recognition protein
KCTD6 [91].

While kinase domains in obscurin were cloned since the discovery of
this giant protein, their functionality and cellular targets, including
their ability to auto-phosphorylate are not very well understood

Fig. 4. M-band associations with cellular membranes. Obscurin (depicted in
yellow) mediates links between the M-band and the sarcoplasmic reticulum
(left hand panel) as well as the plasma membrane (right hand panel). (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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[62,100]. Analysis of obscurin orthologues in Drosophila and C. elegans
however identified several proteins that bind specifically to the kinase
region. Sequence analysis of UNC-89 suggests that at least one of the
two kinases is most likely catalytically inactive, only permitting scaf-
folding functions typically associated with pseudo-kinases [101,102].
Elegant studies in C. elegans demonstrated further that the lim-domain
protein Lim-9 and the phosphatase SCPL-1 (small CTD phosphatase-
like-1) associate with one or both of the kinase domains in UNC-89,
respectively [103,104]. Loss or overexpression of SCPL-1 affected
muscle function or UNC-89 organisation. The human orthologue for
SCPL-1 has not yet been identified, although there is a high degree of
sequence homology for the phosphatase domain in human SCP1, SCP2
and SCP3 [104]. In contrast, FHL2, a member of the four-and-a-half lim
domain protein family that is among the closest human orthologues for
Lim-9 in mammals has been shown to localise at M-bands [57], albeit
its interaction with obscurin has not been demonstrated.

The kinase domains of invertebrate obscurin from Drosophila were
found to provide binding sites for a range of proteins, including
bällchen (ball, an active kinase) and MASK (an ankyrin-repeat protein).
Depletion of ball or MASK in flight muscles via siRNA resulted in sar-
comeric abnormalities, including missing M-bands and either frag-
mented Z-discs or Z-disc streaming [105]. Although the Drosophila
obscurin kinases were not tested for catalytic activity, repeated at-
tempts to test for phosphorylation of identified interaction partners in
C. elegans were negative [103].

Apart from kinase domains in titin and obscurin, as well as the
metabolic enzymes creatine kinase, adenylate kinase and phospho-
fructokinase, another kinase that was demonstrated to be involved in
M-band regulation is cAMP-dependent protein kinase A (PKA). PKA
phosphorylation was shown to prevent the binding of myomesin to titin
in vitro [106] and phosphorylation of M-protein by PKA abolishes its
binding to myosin in vitro [29]. However, PKA has no effect on myo-
mesin binding to obscurin [55]. The cardiomyopathy associated gene
CMYA5 (myospryn) that binds to the C-terminus of titin was also shown
to interact with PKA [107], however, currently it is not well under-
stood, which role PKA exactly plays in the response to mechanical and
humoral stress in the M-band.

As far as the involvement of phosphatases in M-band assembly and
turnover is concerned, the strongest candidate is the phosphatase PP2A.
PP2A is targeted to this part of the sarcomere together with ankyrin B
by obscurin [93]. In C. elegans PP2A is important for myofibrillogenesis
[108]. Moreover, the B′ regulatory subunit PPTR-2 localises to the M-
band by interacting directly with the kinase region of UNC-89 [108].
Also in the mammalian heart there is evidence for a role of PP2A in
heart physiology. PP2A is regulated by beta-adrenergic signalling
[109], which is well known to be key in heart failure (reviewed in
[110]). Transgenic mice that express a dominant negative version of
PP2A (A delta 5) succumb to dilated cardiomyopathy [111] and in-
creased activity of PP2A in mice that are deficient for its regulatory
subunit B56alpha lead to a decrease in heart rate and conduction de-
fects as well as increased sensitivity to isoproterenol, a beta-adrenergic
receptor agonist [112]. While obviously PP2A has a myriad of other
targets outside of the M-band such as four key proteins involved in
excitation contraction coupling (L-type calcium channel, ryanodine
receptor 2, the Na+/Ca++ exchanger and Na+/K+ ATPase; reviewed
in [113]), it is becoming more and more likely that a delicate balance of
phosphorylation and dephosphorylation may also be involved in the
regulation of M-band structure and protein-protein interactions.

Besides kinases and phosphatases, the M-band has also been im-
plicated to be an important hub for Rho-associated and Ca2+/calmo-
dulin-dependent signalling. Obscurin harbours an IQ-motif in its C-
terminus, which was demonstrated to bind to calmodulin, regardless of
presence or absence of calcium [61]. While IQ-domains are present in a
variety of signalling proteins and may contribute to their activation and
functionality, nothing is known about the functions for this domain in
obscurin. However, its close proximity to the SH3-DH-PH domain

triplet at the obscurin C-terminus may indicate a modulatory function
for its Rho-associated signalling. Indeed, detailed molecular analysis of
this signalling node in obscurin revealed their direct interaction with
RhoA, localising this small GTPase to the sarcomeric M-band [65]. In-
triguingly, this interaction is conserved in invertebrates, as the DH-PH
region of UNC-89 binds to Rho-1, the C. elegans RhoA orthologue [114].
Analysis of obscurin knockout muscle revealed that M-band association
of RhoA is completely lost, with RhoA exhibiting a diffuse localisation
pattern [91]. In contrast, overexpression of the SH3-DH-PH domains
resulted in increased RhoA activity and expression levels, as well as
increased downstream signalling through rho kinase (ROCK1) and ci-
tron rho-interacting serine/threonine kinase (Stk21) [65].

7. Structure determines function of the M-band

The crucial role in the M-band architecture and consequently me-
chanical stability is played by the three members of the myomesin fa-
mily, supported by titin, obscurin and Obsl1. At the molecular level the
myomesin proteins comprise 13 domains with a common domain
layout, i.e. a unique N-terminal domain followed by two Ig, five Fn and
another five Ig domains at the C-terminus [8]. However, despite the
shared domain layout and the high sequence similarity, they are located
in different subregions of the M-band. Similarly, titin and obscurin fa-
mily members comprise an array of Ig domains that are crossing
through the M-band. For titin, its C-terminal 10 Ig domains are localised
within the M-band [25]. However, unlike the arrays of titin Ig domains
in other parts of the sarcomere, here they are separated by large pos-
sibly unstructured sequences with some of them reported to interact
through adaptor proteins such as FHL2/DRAL with metabolic enzymes
[57]. Less is known about the Ig domains of the obscurin proteins,
where at least the first 3 N-terminal of them are assumed to localise
within the M-band [55]. During the past decade significant amounts of
structural information and biophysical analysis of the interactions be-
tween myomesin, obscurin and titin provided a better picture of the M-
band architecture and its mechanical properties (Fig. 5).

Crystal structures of the myomesin C-terminus confirmed the anti-
parallel dimerisation of the domain 13 reported before [27,115] (Fig. 5
top right), further supporting the interpretation that myomesin dimers
cross through the M1 line to link the symmetrical parts of the sarcomere
[18]. However, more striking was the structure of the C-terminal Ig
domains 9–13, revealing an unprecedented Ig-helix pattern, referred to
as a hybrid IgH fold [116] (Fig. 5, bottom right). These domains in the
myomesin antiparallel dimer are about 36 nm in length, covering most
of the total 44 nm distance between the M4′-M4 lines. Atomic force
microscopy revealed that this kind or arrangement can be reversibly
unfolded on the α-helices that connect the Ig domains to a length of
about 2.5 times its original size thus leaving the Ig domains as well as
the dimerisation of the protein intact [116,117].

Additional structural evidence on M-band components was recently
reported focusing on the M4-M4′ lines where the three major filaments,
myomesin, obscurin and titin interconnect. Specifically, the C-terminal
Ig domain of titin interacts with the N-terminal Ig domain of obscurin
or obscurin-like 1 in an antiparallel conformation, which is conserved
in several different examples of Ig domain interactions of the I-set
(Fig. 5 top left [118]). On the other side the interaction of obscurin with
myomesin-1 is slightly different. Here the third Ig domain of obscurin
interacts with a long linker connecting the FnIII domains 4 and 5 of
myomesin-1 [119–121] (Fig. 5 bottom left). These interactions support
previous evidence that the titin filaments are crossing through the M1
line towards the symmetrical M4 line of the other half of the sarcomere
[25]. Similarly, since the N-termini of obscurin filaments are located at
the M4 line, they also should be directing towards the M1 line (Fig. 5).

Interestingly the mechanical stability of the obscurin/titin interac-
tion is within a similar range as forces to unfold helices between the C-
terminal domains of myomesin (30 pN vs 25 pN), while the disruption
of the obscurin/myomesin interaction requires an initial force of about
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129 pN, which is similar to the unfolding of Ig domains in the region
[116]. The C-terminal domain of myomesin is a very robust domain,
but is also protected from dissociation at physiological forces by the
alpha-helical linkers leading up to it [117]. Molecular dynamics simu-
lations have suggested that the antiparallel C-terminal dimer outper-
forms all other myomesin Ig domains mechanically [122]. These results
support a basic model where the C-terminal domains of myomesin are
the major absorber of mechanical stress that can prevent conforma-
tional changes on other interacting sites of the M-band.

Having established a structural/mechanical role for the central part
of the sarcomere, further questions arise regarding the role of the ad-
ditional myomesin isoforms for M-band integrity and how these are
related to the specific function of each muscle. Sequence comparison of
myomesin with M-protein and myomesin-3 indicates that is quite
plausible for all three proteins to hold the same IgH pattern at the C-
terminus. It is also striking that even though myomesin and M-protein
have a very similar linker between the domains 4 and 5 (identical
length and highly conserved amino-acids) there is clear evidence that
this linker on M-protein is not interacting with obscurin [121]. Fur-
thermore only myomesin-3 and not M-protein has a confirmed dimer-
isation ability of the C-terminal domain 13 [8]. Previous work using
specific antibodies mapped M-protein to the M1 line [25], but its exact
arrangement is unknown at the moment. Given that myomesin-3 is
mostly localised at the peripheral M6-M6′ lines a scenario that this
protein is building the next transversal level of M-band crosslinks ap-
pears to be the most plausible [8].

8. Is there life without an M-band?

While the absence of an electron dense M-band in electron micro-
graphs may delude some to the interpretation that this structure is
superfluous to sarcomere function [17], all the molecular evidence that
is available at present suggests that myomesin-mediated crosslinks be-
tween titin and myosin are absolutely crucial. Myomesin accumulations
can be detected in the very first sarcomeres that are assembled during
myofibrillogenesis [18,123–125]. No animal model(s) that delete one
or more members of the myomesin family have been reported. Hence,
all loss-of-function studies are based on mutant zebrafish or knockdown
experiments of myomesin expression in primary cultures of neonatal rat
cardiomyocytes (NRC), which confirm its crucial role in the

maintenance of sarcomeres [55]. Short-term (3 days) knockdown of
myomesin expression interferes with the integration of obscurin [55],
while long-term knockdown (8 days) leads to a disintegration of myo-
fibrils (Fig. 6). Interestingly, the knockdown effect is dependent on the
molecular composition of the M-band and also on contractile activity.
M-bands in NRC, which already express M-protein in addition to
myomesin are protected from disintegration and the phenotype can also
not be observed, when contraction is prevented by the Ca++ channel
blocker verapamil (Fig. 6). More indirect evidence for the relevance of
proteins such as myomesin for the maintenance of myofibrils comes
from Mef2c knockout mice [126]. Mef2c is a transcription factor that
governs among others the expression of myomesin and M-protein and
its conditional deletion in skeletal muscle leads to sarcomere frag-
mentation and perinatal lethality, if a myogenin-Cre strain was used to
eliminate the floxed gene [126]. Translation of Mef2 appears to be
controlled by muscle activity, via the mTor signalling pathway [127],
again linking muscle contraction with downstream transcription of
sarcomeric proteins. Titin deletions that eliminate the entire M-band
region lead to a failure of myofibrillogenesis [128], while embryos with
conditional deletions of two M-band exons of titin (Mex1, Mex2) can
initially assemble myofibrils, but display embryonic lethality and sar-
comere disassembly, with the severity depending whether an early or
later onset strain of Cre was used (alpha-MHC versus M-CK [129]).
Interestingly these mice show a broader signal for myomesin compared
to their wildtype counterparts, which may indicate that myomesin is
targeted via its obscurin/Obsl1 interaction rather than via its conven-
tional binding to titin m4 [130]. Finnish patients that carry a mutation
in another exon (Mex6) in the C-terminus of titin, which leads to a loss
of C-terminal titin epitopes in histology, show late onset tibial muscular
dystrophy [131], potentially due to a loss of binding of titin to obscurin
[55]. The muscle phenotype in patients with titin mutations is strongly
dependent on the mutational burden, for example homozygous dele-
tions of the C-terminus of titin will lead to early onset myopathy with
death due to cardiomyopathy [132,133]. Apart from the evidence from
the Mef2c knockout mice discussed above, not much is known about
whether M-protein is crucial for muscle function. Patients with an
8p23.2pter deletion, which in addition to several other genes also
covers the region that encodes for MYOM2 show developmental delay
and a brain phenotype, but their muscles were not investigated [134].
Gene trap experiments that abolished myomesin-3 expression in

Fig. 5. M-band organisation and crystal structures. Correlation of solved crystal structures with a schematic model of the M-band. PDB codes are reported at the
bottom of the insets.
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zebrafish embryos did not result in myofibrillogenesis defects [135],
suggesting that there may be a redundancy due to at least five different
myomesin genes in zebrafish.

A truncating mutation in MYOM3, which encodes for myomesin-3
in humans, was recently suggested to be a candidate gene for dilated
cardiomyopathy [136] and fragments of myomesin-3 in serum were
suggested as a biomarker for muscular dystrophy that may even be
more reliable than the generally used creatine kinase [137]. Missense
mutations in myomesin and obscurin were correlated to a hypertrophic
cardiomyopathy phenotype in patients, too [77,138], but clear de-
monstrations of a functional correlation are still to be carried out. With

the advance of next generation sequencing it is very likely that many
more missense mutations will be identified in different genes encoding
for M-band components, even if the direct correlation between geno-
type and phenotype will require stringent analysis to differentiate true
disease-causing mutations from benign variants [139].

In conclusion, the M-band is central to sarcomere function not only
due to its location but also due to its ability to deal with active me-
chanical stress and to respond in its composition to changes in demand.
Its role in (cardio)myopathy is only beginning to be understood, but is
expected to expand as more mutations in M-band proteins are detected
thanks to next generation sequencing.

Fig. 6. Maintenance of myomesin expression is required for M-band integrity. Confocal micrographs of primary cultures of neonatal rat cardiomyocytes (NRC) either
transiently transfected with control plasmid (top row) or myomesin knockdown (KD) plasmid ([55]; four bottom rows) for eight days. The plasmids also encode for
GFP to be able to identify the transfected cells (second column). Depletion of myomesin by knockdown in actively contracting NRC leads to disrupted myofibrils
(second, fourth row), unless the cardiomyocytes already have started to express M-protein (third row) or contraction is prevented by the addition of verapamil (V) to
the culture medium. Antibodies used for immunostaining and their colours in the overlay are indicated in the individual panels. Scale bar= 10 μm. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the online version of this chapter.)
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