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Abstract 1 

Gaze or eye contact is one of the most important non-verbal social cues, which is 2 

fundamental to human social interactions. To achieve real time and dynamic face-to-face 3 

communication, our brain needs to process another person's gaze direction rapidly and 4 

without explicit instruction. In order to explain fast and spontaneous processing of direct 5 

gaze, the fast-track modulator model (Senju & Johnson, 2009) was proposed. Here, we 6 

review recent developments in gaze processing research in the last decade to extend the 7 

fast-track modulator model. In particular, we propose that task demand or top-down 8 

modulation could play a more crucial role at gaze processing than formerly assumed. We 9 

suggest that under different task demands, top-down modulation can facilitate or interfere 10 

with the direct gaze effects for early visual processing. The proposed modification of the 11 

model extends the role of task demand and its implication on the direct gaze effect, as well 12 

as the need to better control for top-down processing in order to better disentangle the role 13 

of top-down and bottom-up processing on the direct gaze effect. 14 

 15 

  16 
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Introduction 1 

Gaze processing plays a fundamental role in human social cognition. Eye contact is a 2 

particularly important stimulus, working as threat signal for most primates (Emery, 2000), 3 

but also as an affiliative signal in humans (Kleinke, 1986). As a powerful social stimulus, eye 4 

contact communicates emotions and social intentions such as approach-oriented 5 

motivations and general interests in the observer (Adams, Ambady, Macrae, & Kleck, 2006; 6 

Adams & Kleck, 2005; George & Conty, 2008; Macrae, Hood, Milne, Rowe, & Mason, 2002). 7 

Perception of direct gaze can affect social processing, having an effect on face processing in 8 

various tasks. Direct gaze evokes positive social judgments (Bindemann, Mike Burton, & 9 

Langton, 2008; Chen, Helminen, & Hietanen, 2017; Willis, Palermo, & Burke, 2011), increases 10 

other’s likability (Kuzmanovic et al., 2009; Mason, Tatkow, & Macrae, 2005), positively 11 

affects attractiveness evaluations (Ewing, Rhodes, & Pellicano, 2010), biases face preference 12 

(Jones, Debruine, Little, Conway, & Feinberg, 2006), triggers self-referential processes 13 

(Conty, George, & Hietanen, 2016; Hietanen & Hietanen, 2017) and enhances interpersonal 14 

synchronization (Patterson, 1982). Overall, direct gaze is acknowledged as highly important 15 

in social perception, and its prioritized processing can be critical for social interaction 16 

(Emery, 2000). 17 

Direct gaze modulates other cognitive functions as well. For instance, direct gaze has 18 

been shown to capture attention and be preferentially processed compared to averted gaze 19 

in different tasks (e.g. Yokoyama et al., 2011; Palanica and Itier, 2012; Senju and Hasegawa, 20 

2005). At a developmental level, human neonates and infants can discriminate between 21 

averted and direct gaze, in adult faces (Farroni, Csibra, Simion, & Johnson, 2002; Hains & 22 

Muir, 1996) and prefer direct-gaze faces (Farroni et al., 2002; Hains & Muir, 1996; Maurer, 23 

1985). Direct gaze preference is also present in healthy adult human beings and behavioural 24 
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studies have shown that direct gaze can capture attention more readily compared to averted 1 

gaze (Mares, Smith, Johnson, & Senju, 2016; Senju & Hasegawa, 2006), even when gaze is 2 

task irrelevant (Conty, Tijus, Hugueville, Coelho, & George, 2006; Palanica & Itier, 2012; 3 

Senju & Hasegawa, 2005; Vuilleumier, George, Lister, Armony, & Driver, 2005) or not 4 

attended to (Yokoyama, Sakai, Noguchi, & Kita, 2014). Note that conversely, direct gaze 5 

holds eye movements (Dalmaso, Castelli, & Galfano, 2017). Finally, face processing is 6 

modulated by gaze direction in gender discrimination or identity recognition tasks (Burra, 7 

Framorando, & Pegna, 2018; Hood, Macrae, Cole-Davies, & Dias, 2003; Macrae et al., 2002; 8 

Vuilleumier et al., 2005). Taken together, several lines of research highlight the relevant role 9 

of direct gaze as a social cue for human beings and its privileged processing in several tasks. 10 

To account for the neural mechanisms underlying the preferential processing of 11 

direct gaze, Senju and Johnson (2009) proposed the fast-track modulator model, which 12 

extends a two-system theory, based on models of face processing divided into a subcortical 13 

route (Conspec) and a cortical social brain network (Conlern) (Johnson & Morton, 1991; 14 

Morton & Johnson, 1991). In the model of Senju and Johnson (2009), the authors proposed a 15 

dual-route to process visual information, which allows for a ‘fast-track’ processing of direct 16 

gaze, initially detected by a subcortical pathway (LeDoux, 1996), and a slow information-17 

processing pathway situated in cortical visual regions. This fast subcortical pathway has been 18 

thought to modulate the cortical processing of social signals such as emotion, intentionality, 19 

gaze direction and face identity. 20 

In line with the hypothesised processing of direct gaze through the subcortical 21 

pathway, several functional magnetic resonance imaging (fMRI) studies have reported the 22 

contribution of subcortical structures in direct gaze perception. For instance, on rhesus 23 

monkeys, a part of the amygdala, called the lateral extended amygdala (LEA, comprising the 24 
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central nucleus and the bed nucleus of the stria terminalis) was specifically sensitive to gaze 1 

direction (Hoffman, Gothard, Schmid, & Logothetis, 2007). Similar findings have been 2 

observed in humans, where greater right amygdala activation has been observed in response 3 

to direct rather than averted gaze (Kawashima et al., 1999; Wicker, Perrett, Baron-Cohen, & 4 

Decety, 2003). Accordingly, a recent study examined amygdala activation in healthy 5 

participants and in a cortically blind patient, and the results showed greater activation in the 6 

right amygdala in response to images of (neutral) faces with direct gaze as compared to 7 

faces with averted gaze, both in healthy participants and in the cortically blind patient (Burra 8 

et al., 2013). These findings suggest that amygdala responsivity does not even require an 9 

intact primary visual cortex. Furthermore, other fMRI data revealed the relation between 10 

subcortical and cortical regions, measuring an increased functional coupling between the 11 

right fusiform gyrus, an area specialized in face processing, and the right amygdala for direct 12 

compared to averted gaze (George, Driver, & Dolan, 2001). Finally, studies with patients 13 

suffering from amygdala lesions have shown that they do not look at the eye region the 14 

same way as controls do (Gamer, Schmitz, Tittgemeyer, & Schilbach, 2013; Spezio, Huang, 15 

Castelli, & Adolphs, 2007), and that they do not show gaze-cued attention orienting 16 

(Akiyama et al., 2006). In sum, these findings fit the fast-track modulator model, which 17 

proposed the involvement of a subcortical pathway for direct eye gaze detection (but see: 18 

Mormann et al., 2015). It is also consistent with a claim that direct gaze would be 19 

preferentially processed in a rather involuntary manner (for a similar conclusion in other 20 

studies using different experimental manipulations, see Madipakkam, Rothkirch, 21 

Guggenmos, Heinz, & Sterzer, 2015; Stein, Senju, Peelen, & Sterzer, 2011; Yokoyama, 22 

Noguchi, & Kita, 2013; Yokoyama et al., 2014). 23 
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 1 

Figure 1. Schematic depiction of the fast-track modulator model (Senju & Johnson, 2009). 2 

Besides the involvement of subcortical regions, the fast-track modulator model also 3 

proposed that the detection of direct gaze is 'fast', and, therefore, would occur at a very 4 

early stage in the visual processing. It is therefore crucial to evaluate the timing of direct 5 

gaze processing. Electrophysiology, especially through the use of electroencephalography 6 

(EEG) or magnetoencephalolography (MEG), provides evidence of cognitive processing with 7 

high temporal resolution (at the millisecond scale), and is informative for early neural coding 8 

of direct gaze. However, one clear limitation should be noted. These techniques that usually 9 

record neural activity at the scalp level, do not easily allow for the direct measurement of 10 

the subcortical structures critical for the fast-track modulation model. Consequently, they 11 

typically measure cortical activity of brain regions, which are hypothesised to be modulated 12 

by subcortical activation (but see Mares, Smith, Johnson & Senju, 2018, for an effect of 13 

direct gaze on the N170 component independent of the subcortical pathway). Such brain 14 

regions, defined as a so-called ‘social brain network’ (Brothers, 1990; Grossmann & Johnson, 15 

2007), include the fusiform gyrus, the anterior and posterior parts of the superior temporal 16 

sulcus (STS), and the medial pre-frontal and orbitofrontal cortex - regions that have been 17 

proposed to be modulated by the subcortical pathway via the amygdala. Typically, gaze 18 
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perception research has been focused on the electric N170 (or the magnetic M170), an early 1 

face-sensitive component, occurring over occipitotemporal sites between 130 and 200 ms 2 

after face presentation (Bentin, Allison, Puce, Perez, & McCarthy, 1996). This component is 3 

sensitive to the face configuration and it is thought to reflect the initial process of integrating 4 

facial features into a holistic percept (Eimer, 2000; Sagiv & Bentin, 2001). Conty, N'Diaye, 5 

Tijus, and George (2007) found that the effect of eye contact appeared in this component, 6 

occurring as early as 150–170 ms after stimulus onset.  7 

However, studies have reported highly inconsistent neural activity for direct, 8 

compared to averted, gaze direction. Some research has reported a larger amplitude of 9 

N170 to averted gaze, compared to eye contact in static gaze, while other studies have 10 

measured the opposite effect or no effect at all (Grice et al., 2005; Klucharev & Sams, 2004; 11 

Schweinberger, Kloth, & Jenkins, 2007; Taylor, Itier, Allison, & Edmonds, 2001). Some argued 12 

that discrepancies between studies could be due to the differences in the tasks used (for 13 

instance: Itier & Batty, 2009; Nummenmaa & Calder, 2009). For example, some EEG studies 14 

have used passive viewing tasks (Caruana et al., 2014; Puce, Smith, & Allison, 2000; 15 

Watanabe, Miki, & Kakigi, 2002). By contrast, other studies used explicit tasks, in which 16 

participants were required to report whether the gaze was oriented away or toward them 17 

(Conty et al., 2007; Itier, Alain, Kovacevic, & McIntosh, 2007). Overall, the results of the N170 18 

behaviour on gaze direction remains inconsistent. 19 

To date, the impact of task-relevant demand provided by task structure and context 20 

on gaze direction processing has not generally been fully explored (but see Itier, Alain, 21 

Sedore, & McIntosh, 2007). However, accumulating evidence started to suggest that 22 

diversity in the context and task-demand can be a potential source of inconsistency in the 23 

previous literature. For example, task demand and social context can be associated to top 24 
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down modulation via the prefrontal cortex, of key cortical structures, such as the fusiform 1 

gyrus (Itier and Taylor, 2002, Rossion et al., 2003, Watanabe et al., 2003) or the STS (Batty 2 

and Taylor, 2003, Henson et al., 2003, Itier et al., 2006, Itier and Taylor, 2004, Watanabe et 3 

al., 2003), that constitute the main sources of the N170 (for instance, Deffke et al., 2007; 4 

Itier & Taylor, 2004; Plomp, Michel, & Herzog, 2010). Therefore, top-down processing might 5 

prioritize or inhibit the processing of specific facial information depending on the task 6 

demands and context. This might result in discrepancies for direct gaze processing at a 7 

behavioural level (see opposite results of: see opposite results of: Macrae et al., 2002; 8 

Vuilleumier et al., 2005) or at an electrophysiological level, as it has been already detailed. 9 

One such example has been provided by Latinus et al. (2015). The authors used two 10 

different tasks with the same stimulus presentation as Conty et al. (2006). Specifically, they 11 

manipulated the task demand by using a ‘social’ task (discriminating gaze towards vs. away 12 

from me) and a non-social task (discriminating gaze to the left vs. right). When participants 13 

made a non-social judgment, the N170 component was significantly larger to any gaze shift 14 

away from, than towards, the observer. This occurred for stimuli depicting both direct gaze 15 

and intermediately averted gaze. However, when subjects made social judgments, the effect 16 

was attenuated in the right hemisphere, where the N170 amplitudes were not consistently 17 

larger for gaze shifts away from the observer. In sum, they claimed that the handling of 18 

these ‘modes’ in some experiments and not in others might explain the discrepancies in the 19 

prior literature. Thus, this activation of the social brain network mode would influence which 20 

regions are activated during eye contact. The dissociation between the ‘social’ and ‘non-21 

social’ modes of information processing of gaze in the brain might help to reconcile the 22 

different results observed in the literature.  23 
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However, an alternative possibility is that social and non-social tasks can be 1 

associated with different demands and thus engage a different set of cognitive processing. 2 

Specifically, in a dynamic presentation of gaze shifts, a left/right discrimination of eye 3 

movement requires only a local motion detection without detailed gaze processing, while 4 

distinguishing between towards/away would require a more global conceptual processing, 5 

including a representation of gaze direction with respect to the observer point of view. Thus, 6 

it is possible that different task demands associated with the processing of different 'modes', 7 

rather than the processing of different ‘modes’ per se, could account for the effect of direct 8 

gaze on cognitive (attentional capture) and neural processing (ERPs) reported in previous 9 

studies. 10 

This critical importance of task demand on cognitive processing in general has been 11 

well documented throughout the last decades. In visual cognition research for instance, the 12 

role of top-down processing (task at hand) on bottom-up attention (stimulus on screen) has 13 

been prominently investigated (Folk & Remington, 1998; Theeuwes, 1992). Some have 14 

demonstrated that despite being totally irrelevant, highly salient distractors capture 15 

attention (Theeuwes, 1992). In other words, low-level saliency, which is computed in an 16 

early stage of visual processing, can alter later attention selection. However, different 17 

studies have revealed that task-set or task demand (i.e. taking into account relevant 18 

information and/or suppressing irrelevant information) can reduce or even abolish the 19 

capture effect. In their seminal study, Folk & Remington (1998) revealed that a task-20 

irrelevant but salient distractor (i.e. a red stimulus) captured attention only when a matching 21 

feature defined the relevant target, i.e. colour in this example. When the relevant target was 22 

defined by another feature (for instance its shape or size), the attentional capture effect 23 

vanished.  24 
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Nonetheless, despite the well-known effects of task demand in visual attention, in 1 

the context of social cognition and more specifically, gaze processing, there is still limited 2 

understanding about the role of task demand. 3 

In the following section of this article, we highlight the possible role of task-relevant 4 

or top-down modulations on gaze processing and its related neural mechanisms. In general, 5 

top-down modulation increases the sensitivity of our perceptual system to task-relevant 6 

information - prioritization - with respect to the ongoing task (Kastner & Ungerleider, 2000). 7 

Such prioritization will increase the gain or sensitivity of the cortical pathway, in order to 8 

perform the task with minimum demand (for instance, see Herrmann, Montaser-Kouhsari, 9 

Carrasco, & Heeger, 2010). In the context of gaze perception, this modulation would enable 10 

our perceptual system to preferentially prioritize direct gaze over averted gaze or closed 11 

eyes when it is task/context appropriate, and critically, it can also be gated or attenuated at 12 

an early stage if the eyes or faces are task or self-irrelevant or even if averted gaze is more 13 

relevant for the current task. In other words, top-down modulation can have an effect on 14 

the perception of direct gaze at an early stage of visual processing. 15 

Here, we summarise two lines of evidence that task demands can influence the 16 

processing of direct gaze, one at a behavioural level and the other at an electrophysiological 17 

level. 18 

In the first line of evidence, a recent study of ours (Framorando, George, Kerzel, & 19 

Burra, 2017) revealed the influence of task demand on the “stare-in-the-crowd’ effect (von 20 

Grünau & Anston, 1995), which is defined as a faster and more efficient detection of direct 21 

gaze over averted gaze in a visual search task. In a series of behavioural experiments, 22 

Framorando et al. (2017) demonstrated that the faster processing of faces with direct gaze 23 

over averted gaze was only present when attention was focused on the target face and 24 
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when task demand required the processing of the facial features including eyes. They used 1 

one target face, with eyes straight or averted, surrounded by faces with closed eyes, similar 2 

to Experiment 3 of Cooper, Law, & Langton (2013), and did not observe a “stare-in-the-3 

crowd” effect in this condition, replicating Cooper et al. (2013) and suggesting that, in 4 

addition to top-down modulation, low-level of visual perception (e.g. presence/absence of 5 

white sclera or relationship between target and distractors) can dramatically influence the 6 

“stare-in-the-crowd“ effect. However, using the same stimuli, they could observe the “stare-7 

in-the-crowd” effect when they changed the task so that participants were required to 8 

process the eye region in a gaze direction or gender task, as gender discrimination also 9 

involves encoding information from eye region (Brown & Perrett, 1993; Dupuis-Roy, Fortin, 10 

Fiset, & Gosselin, 2009; Schyns, Bonnar, & Gosselin, 2002; Yamaguchi, Hirukawa, & 11 

Kanazawa, 1995; Zhao & Hayward, 2010),The results suggest that a task where encoding of 12 

the eyes is needed can facilitate the "stare-in-the-crowd" effect even in stimuli for which this 13 

effect would otherwise not be present.  14 

In addition, in the same study, Framorando et al. demonstrated that direct gaze failed 15 

to capture observers’ attention when gaze direction was completely irrelevant and 16 

competed for selection with another face relevant target. Using the same visual arrays as 17 

their other experiments reported above, they applied the “additional singleton paradigm” 18 

(Theeuwes, 1992), in which participants were required to focus their attention to a target 19 

face with closed eyes defined by its orientation (tilted to the left or right). Crucially, one of 20 

the face distractors, either with straight gaze or an averted gaze, competed for selection 21 

with the target, defined as neutral face with closed eyes tilted in a slightly different 22 

orientation than others faces. As a result, the presence of a distractor slowed target 23 

detection, which was unaffected by the gaze direction of the distractor. This result may also 24 
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seem inconsistent with data revealing attentional capture by task-irrelevant direct gaze or 1 

preferential detection of direct gaze under continuous flash suppression (CFS) presentation 2 

(Rothkirch, Madipakkam, Rehn, & Sterzer, 2015; Stein et al., 2011). A possible reason for 3 

such discrepancies might relate to the task used with some studies requiring the detection of 4 

a change in eye direction (Yokoyama, Ishibashi, Hongoh, & Kita, 2011), a change between 5 

face arrayss (Lyyra, Astikainen, & Hietanen, 2018) or the detection of a face target (Rothkirch 6 

et al., 2015; Stein et al., 2011; for the implication on top-down modulation on CFS, see the 7 

critical review of Sterzer, Stein, Ludwig, Rothkirch, & Hesselmann, 2014). In the attentional 8 

capture experiment of Framorando et al, study, by contrast, gaze was never relevant 9 

because the target was discernible by a low-level feature (i.e. its orientation with respect to 10 

other stimuli on screen). Moreover, the target competed for selection simultaneously with 11 

another face distractor (Rothkirch et al., 2015; Stein et al., 2011), which is a prerequisite of 12 

attentional capture effect (for more details, see the review of Theeuwes, 2010). In sum, by 13 

reducing as much as possible the impact of top-down processing that might influence 14 

attentional capture effect, this study failed to reveal an attentional capture by direct gaze 15 

over averted gaze. 16 

The second line of evidence (Burra et al., 2018) highlights the critical role of task 17 

demand on early cortical processing of gaze processing, even earlier than previously 18 

measured (Latinus et al., 2015). In this study, in Experiment 1, the authors used a gender 19 

categorization task of faces (cropped to avoid the use external features to perform the task). 20 

Despite a lack of an effect of gaze on the N170, the amplitude of P1 component, which peaks 21 

at around 100 ms following stimulus onset in adults, was larger for faces with direct gaze 22 

than those with averted gaze or closed eyes. Visual P1 (or P100) is thought to originate from 23 

striate and extrastriate visual areas (e.g. Clark & Hillyard, 1996; Di Russo, Martinez, & 24 
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Hillyard, 2003), and is known to be sensitive to many low-level properties of visual stimuli 1 

(see Regan, 1989). Previous studies in adults have reported a larger P1 (or M1 in MEG) in 2 

response to faces than to objects (e.g. Eimer, 1998; Eimer & Holmes, 2002; Goffaux, 3 

Gauthier, & Rossion, 2003; Itier & Taylor, 2004), suggesting the face sensitivity of this 4 

component. The result reported in Burra et al. (2018) is consistent with different pieces of 5 

evidence which already revealed modulations of P1 by gaze direction (Berchio et al., 2016; 6 

Burra, Kerzel, & George, 2016; Doi, Sawada, & Masataka, 2007; Schyns, Petro, & Smith, 7 

2007; Tye et al., 2013). 8 

Critically, Burra et al. (2018) demonstrated that the P1 amplitude modulation is 9 

dependent on the task demand. However, due to the P1 sensitivity to many low-level 10 

properties of visual stimuli (see Regan, 1989), the authors could not rule out the 11 

repercussion of such properties in their P1 effect. To address this point, in their second 12 

experiment, they used the same stimuli, but with a different task in which participants were 13 

instructed to detect the presence of a non-social stimulus (a house) among faces. In this 14 

study, where gaze direction was irrelevant, the P1 amplitude was not modulated by gaze 15 

direction. These results show that P1 modulation by direct gaze is task dependent. 16 

In its initial version, the fast-track modulator model implied that early cortical 17 

processing of direct gaze was immune to task-relevant modulation. Accordingly,the model 18 

did not predict a modulation of gaze processing at the early stage of visual processing, such 19 

as the P1 component, which is generated in multiple extra striate cortical areas, including 20 

the mid-occipital gyri (Di Russo et al., 2003; Foxe & Simpson, 2002), corresponding to the 21 

slow information-processing module. Thus, to account for the observed top-down 22 

modulation on direct gaze processing at an earlier stage of visual processing (Burra et al., 23 

2018) and other recent evidence highlighting the role of task demands and structures on 24 
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direct gaze processing (Framorando et al., 2017; Latinus et al., 2015), we propose that the 1 

modulation of slow information processing of gaze direction is mediated by task demand, as 2 

depicted in Figure 2.  3 

 4 

Figure 2. Modification of the fast-track modulator model (Senju & Johnson, 2009). We 5 

included an arrow from the task-relevant modulation and slow information processing. 6 

 7 

In this opinion paper, we highlighted the critical role of top-down processing in gaze 8 

perception, especially at an early stage of visual processing. The fast-track modulator model 9 

has been proposed to explain the underpinnings of such gaze processing. Despite the fact 10 

that key cerebral regions included in the model have been associated with gaze processing, 11 

their dynamic function still remains unclear, and the critical role of the task-relevant 12 

modulation is still poorly understood in this model. Here, we suggest that, by default, 13 

subcortical activation is modulated by the presence of direct gaze over averted gaze. 14 

However, at a cortical level, when the eye region, or gaze direction, is task-relevant, top-15 

down processing might increase the sensitivity of our perceptual and attentional system to 16 
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the eyes (direct or averted with respect to the current task). By contrast, it could also reduce 1 

the sensitivity to the eyes if the eye region is task-irrelevant (Burra et al., 2018; Latinus et al., 2 

2015) and prevent attentional capture by direct gaze (Framorando et al., 2017). Therefore, 3 

task relevance might play a crucial role in the detection of direct gaze at early stage of visual 4 

processing. This argument extends the ‘task-relevant modulation’ proposed in Senju and 5 

Johnson (2009), and proposes that task demand can modulate the impact of direct gaze 6 

from an early stage of visual processing.. Unfortunately, in many cases it is assumed that 7 

cortical responses, especially those measured by ERP at an early stage of visual perception, 8 

reflect the neural correlate of a stimulus that is automatically triggered by a fully bottom-up 9 

process, which is fully dependent on the processing of immediately available stimulus, 10 

without an influence of any voluntary strategy or contextual modulation. However, as 11 

discussed in the previous sections, task demands can impact visual perception at an early 12 

stage, especially when the task and stimuli remain stable among trials. In other words, the 13 

constancy of the displayed stimuli could allow observers to use particular strategies that rely 14 

on holistic or feature processing, altering task demands. Here we propose several possible 15 

strategies to control top-down modulation to further examine the role of bottom-up 16 

attention on gaze processing. Firstly, we would want to remove external features such as 17 

accessory or hair, which could allow participants to devise an alternative strategy to perform 18 

the task (e.g. gender categorization task) without relying on features around the eyes. If 19 

possible it would be ideal that only the facial features are displayed, not the totality of the 20 

face. Secondly, we could adopt a random display of stimuli at different locations on the 21 

screen (left, right, upper or lower location from the fixation cross) if appropriate, because a 22 

constant position of the stimulus on the screen could increase the likelihood of using a 23 

specific strategy to perform the task, such as using specific facial features (for instance, the 24 
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use of the size of the eyebrows or the mouth in gender categorization tasks). Thirdly, we 1 

could change the task at every trial by using a cue or by asking participants to perform the 2 

task with respect to a specific dimension following each trial (for instance, Gender: 3 

male/female; Gaze direction: direct/averted; Age: old-young; Head direction: frontal-4 

deviated), since the use of the same task during the experiment might give rise to specific 5 

strategies, which could prompt a specific top-down control and mask bottom-up processes. 6 

This design would make it more difficult for participants to adopt a strategy to give larger 7 

weight to the task-relevant information or discount task-irrelevant information, which could 8 

reduce bottom-up processing (Belopolsky, Schreij, & Theeuwes, 2010; Burra & Kerzel, 2013; 9 

Folk & Remington, 1992). Finally, we could measure inter-individual differences 10 

systematically, to rule out effects associated with personality traits. Measures of personality 11 

traits, such as anxiety, social anxiety, autism, extraversion or even attachment, are known to 12 

influence gaze perception (Burra, Massait, & Vrticka, 2019; Cecchini, Iannoni, Pandolfo, 13 

Aceto, & Lai, 2015; Nummenmaa, Engell, von dem Hagen, Henson, & Calder, 2012; Ponari, 14 

Trojano, Grossi, & Conson, 2013; Robson, 1967; Schulze, Renneberg, & Lobmaier, 2013). It is 15 

possible that these personality traits could drive some participants to employ specific 16 

strategies to perform different tasks, which might affect their behavioural and cerebral 17 

response. 18 

It is also crucial to evaluate the role of the top-down processes on gaze processing in 19 

clinical populations. In fact, deficits in eye and gaze processing are a major impairment in 20 

autism (American Psychiatric Association, 2013; Forgeot d'Arc et al., 2017; Leekam, 21 

Hunnisett, & Moore, 1998), and have been reported in different pathologies such as 22 

prosopagnosia (Caldara et al., 2005; Campbell, Heywood, Cowey, Regard, & Landis, 1990; 23 

but see Duchaine, Jenkins, Germine, & Calder, 2009; Pancaroglu et al., 2016) or even 24 
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schizophrenia (Hooker & Park, 2005). However, to our knowledge, few studies have 1 

investigated the role of the task demand on gaze processing in these clinical populations. 2 

Specifically, a lack of typical gaze processing in these clinical populations could be due to a 3 

functional impairment that reduces gaze processing when it is not mandatory for the task, 4 

rather than an impairment in the neural mechanisms underlying gaze perception per se. For 5 

instance, in a prior study, we demonstrated that PS, a patient suffering from acquired 6 

prosopagnosia, was insensitive to implicit attentional deployment to gaze direction, despite 7 

being able to explicitly discriminate gaze direction (Burra, Kerzel, & Ramon, 2017). Such 8 

dissociation between explicit and implicit performance is of major interest in understanding 9 

the underpinnings of prosopagnosia or other populations suffering from a deficit in social 10 

cognition and should be more frequently evaluated in order to ascertain the extent to which 11 

the deficit is stimulus-driven or mediated by task demand. 12 

Finally, the fast-track modulator model might be subject to further modifications. 13 

Some additional updates might be included in the future. For instance, despite the likelihood 14 

(Jiang, Borowiak, Tudge, Otto, & von Kriegstein, 2017) that slow cortical information 15 

processing (at P1 level) and sub-cortical pathways communicate (Muller-Bardorff et al., 16 

2018; Rotshtein et al., 2010), to date, no clear evidence has revealed this connectivity, in the 17 

context of gaze (for connectivity between amygdala and fusiform gyri in the context of gaze: 18 

see George et al., 2001). Further studies, measuring fMRI connectivity (see the recent work 19 

of Jiang et al., 2017) combined with EEG or even intracranial EEG study (in the amygdala) in 20 

combination with electrocorticography (on the occipital cortex) could address this question. 21 

These combined methodologies would also help us understand the extent to which task 22 

demand might functionally impact such functional connectivity. 23 
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In conclusion, we believe that investigating the role of the top-down process in the 1 

fast-track modulator model and its influence at an early stage of face processing will 2 

increase the reliability of the model. Moreover, the understanding of the balance between 3 

task demand and stimulus-driven mechanisms in gaze perception will increase the possibility 4 

of prediction based on different a priori aspects (task demand, inter-individual differences, 5 

and stimuli) that enable a better understanding of gaze processing in both the typical and 6 

clinical populations. 7 
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