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Abstract. Transform faults are a fundamental tenet of plate tectonics,

connecting offset extensional segments of mid-ocean ridges in ocean basins

worldwide. The current consensus is that oceanic transform faults initiate

after the onset of seafloor spreading. However, this inference has been dif-

ficult to test given the lack of direct observations of transform fault forma-

tion. Here, we integrate evidence from surface faults, geodetic measurements,

local seismicity, and numerical modelling of the subaerial Afar continental

rift and show that a proto-transform fault is initiating during the final stages

of continental breakup. This is the first direct observation of proto-transform

fault initiation in a continental rift, and sheds unprecedented light on their

formation mechanisms. We demonstrate that they can initiate during late-

stage continental rifting, earlier in the rifting cycle than previously thought.

6Institute of Geophysics Space Science

and Astronomy, Addis Ababa University,

Addis Ababa, Ethiopia

7School of Earth Sciences, University of

Bristol, Bristol, United Kingdom

8Institute of Geophysics Space Science

and Astronomy, Addis Ababa University,

Addis Ababa, Ethiopia

c©2018 American Geophysical Union. All Rights Reserved.



Future studies of volcanic rifted margins cannot assume that oceanic trans-

form faults initiated after the onset of seafloor spreading.

Keypoints:

• We document the initiation of a proto-transform fault during late stage

continental rifting in Afar, Ethiopia.

• Surface faulting, seismicity and geodetic observations reveal extensional

transfer between magmatic segments.

• Numerical modelling predicts that the region between the offset mag-

matic segments will evolve to a stable oceanic transform fault.
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1. Introduction

Transform faults have long been known to play a key role in seafloor spreading

(Macdonald et al., 1988). They link and accommodate strike-slip motion between lat-

erally offset mid-ocean ridge segments, and occur in ocean basins worldwide. Despite the

prevalence of oceanic transform faults, their initiation has not been directly observed and

thus their formation mechanisms are poorly understood. Oceanic transform faults rely

heavily on strain accommodation by magmatism and are orthogonal to spreading seg-

ments and parallel to the spreading direction (Taylor, Goodliffe, Martiniez, & Hey, 1995).

In contrast, extension in early-stage continental rifts is controlled by slip on overlapping,

en-echelon normal faults (Ebinger, 1989). Where these faults overlap, they are linked by

oblique accommodation zones (Ebinger, 1989 ; Bosworth, Lister, Ethington, & Symonds,

1986). Previous numerical modelling of continental rifting has suggested that oceanic-

style transform faults do not form in early-stage rifts (Allken, Huismans, & Thieulot,

2012), so it is generally assumed that transform faults originate during seafloor spreading

(Eagles, Pérez-Dı́az, & Scarselli, 2015 ; Nguyen, Hall, Bird, & Ball, 2016). However, it is

not known whether transform fault can initiate in mature continental rift systems.

The geometric correspondence between mid-ocean ridges and the segmentation of pas-

sive margins has led some studies to propose that some large-scale fracture zones have

structural inheritance from the late stages of continental rifting (Cochran & Martinez,

1988 ; McClay & Khalil, 1998 ; Behn & Lin, 2000). In contrast, many studies suggest

that short-scale transform faults are not inherited from continental rift geometry and the

majority of transform faults show no clear evidence of structural inheritance (Bosworth
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et al., 1986 ; Taylor et al., 1995 ; Taylor, Goodliffe, & Martinez, 2009). The Danakil re-

gion, in northern Afar, Ethiopia/Eritrea, is one of the few areas on Earth where the final

stages of continental rifting are subaerially exposed (Figure 1). The region thus provides a

unique opportunity to explore the timing of transform fault initiation, and to understand

the kinematics of their formation.

1.1. Continental Rifting in Northern Afar

In Afar, the southern extent of the Red Sea rift steps on-land into the Afar depres-

sion (McClusky et al., 2010) (Figure 1). The crust thins from ∼27 km in the central

and southern Afar rift, to <15 km beneath the Danakil region in the north (Hammond

et al., 2011 ; Makris & Ginzburg, 1987). However, the crust in the Danakil region is

still significantly thicker than that commonly observed in the oceans (White, McKenzie,

& O’Nions, 1992), which, together with its seismic velocity structure (Hammond et al.,

2011 ; Makris & Ginzburg, 1987), suggests it is thinned and heavily intruded continental

crust. The marked thinning of the crust into the Danakil region has been attributed to

a late stage of plate weakening and stretching caused by protracted and localized magma

intrusion (Bastow & Keir, 2011). Since the Quaternary, strain in Afar has localized to

axial magmatic segments, hypothesized to be the future boundary of continental breakup

(Hayward & Ebinger, 1996), and is thought to be accommodated through magmatic in-

trusions and associated mechanical faulting (Barberi & Varet, 1977 ; Wolfenden, Ebinger,

Yirgu, Renne, & Kelley, 2005 ; Manighetti et al., 2001). (Illsley-Kemp et al., 2018) have

shown that the majority of seismicity and extension is focused at the rift-axis, which steps

en-echelon to the Northeast from the Dabbahu magmatic segment. However, a signifi-
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cant amount of seismicity occurs at the western rift margin, in a complex set of marginal

grabens (Figure 1).

In the Danakil region, two currently active magmatic spreading segments, the Erta-Ale

and Tat-Ale segments, separate the Nubian plate from the Danakil microplate (Figure 1).

The Erta-Ale magmatic segment consists of 12 volcanic centres, including Erta-Ale vol-

cano with its persistent lava lake (Keir, Bastow, Pagli, & Chambers, 2013). To the south,

offset laterally by ∼20 km to the east is the Tat-Ale magmatic centre. The Giulietti Plain

lies in the offset region between the Erta-Ale and Tat-Ale magmatic segments (Figure 3).

The plain is below sea level and is predominantly overlain by evaporites from repeated

marine incursions (Keir et al., 2013) and contains the saline Lake Afrera. Acoustic bathy-

metric profiles from the lake reveal Red Sea parallel normal faults intersected by oblique

structures. These structures have been compared to those responsible for nodal deeps

at oceanic transforms (Bonatti et al., 2017). Extension rates in the Danakil region are

analogous to ultraslow/slow spreading ridges (Dick & Schouten, 2003) varying from ∼7

mm yr−1 in the north (15◦N) to ∼20 mm yr−1 in the south (13◦N). Extension is orientated

058◦, roughly perpendicular to the spreading segment axes (McClusky et al., 2010).

2. Observational Methods and Results

2.1. Structural Geology

Surface faults were mapped remotely using Google Earth (DigitalGlobe) and ArcGIS.

The surface expression of faults was mapped and digitized to create a detailed fault map

(Figure 2). The strike of the faults was approximated using the start and end points

of each mapped fault. Strike distributions are weighted according to fault length and

displayed in 10◦ binned rose diagrams (Figure 2).
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Analysis of the mapped surface faults (>2000 faults) demonstrates that mean orien-

tations within the Erta-Ale (157◦±14◦) and Tat-Ale (145◦±8◦) segments are consistent

with the direction of maximum extension, which is approximately 058◦ (McClusky et al.,

2010). In addition, these segments exhibit low variation in fault orientations, whereas

surface faults in the Giulietti Plain show greater variability (147◦±28◦) (Figure 2). While

we must consider the possibility that not all of these surface faults are tectonic in origin

(Eusden, Dykstra, Pettinga, & Campbell, 2005), we interpret the increased variability in

fault orientations in the Giulietti Plain as being due to interaction between the Erta-Ale

and Tat-Ale magmatic segments. The increased variability may also be evidence for an

immature, evolving fault zone (Hatem, Cooke, & Toeneboehn, 2017).

2.2. Seismicity

A network of 20 seismometers in both Ethiopia and Eritrea (Figure 1) provided continu-

ous seismic data for two years between February 2011 and February 2013. A total of 4971

earthquakes of magnitude 0.4–5.8 were recorded during the experiment and were located

with a 2-D velocity model (Hammond et al., 2011 ; Makris & Ginzburg, 1987 ; Lomax,

Virieux, Volant, & Berge-Thierry, 2000). These earthquakes have average location errors

of ±1.9 km and ±4.1 km in the horizontal and vertical directions respectively, and the

catalogue is complete above magnitude 2.0 (Illsley-Kemp, Keir, et al., 2017). Generally,

earthquakes are focused at the western rift margin, which separates the Ethiopian plateau

from the Afar depression, or in the vicinity of volcanic centres (Illsley-Kemp et al., 2018)

(Figure 1). In addition, there is a cluster of 418 earthquakes focused within the Giulietti

Plain, at the region of observed horizontal strain and fault interaction (Figure 1).
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We relocate the seismicity within the Giulietti Plain using GrowClust (Trugman &

Shearer, 2017) (Figure 3a), a technique which develops upon the double-difference re-

location method (Waldhauser & Ellsworth, 2000). This process increases the relative

location accuracy for clustered earthquakes. Initial average location errors were markedly

improved for relocated events, which have an average relative hypocentral error of ±0.55

km. The majority of the relocated earthquakes occur in the upper 5 km of the crust.

Focal mechanisms were calculated for three clusters of relocated earthquakes using the

polarities of the first P and S-wave arrivals and the software FocMec (Snoke, 2003). The

resultant focal mechanisms display a characteristic right lateral strike slip motion with

a component of extension (Figure 3b). The nodal plane is inferred from surface faults

resulting in a mean strike and dip of 135◦±9◦ and 75◦±7◦ respectively.

2.3. Satellite Geodesy

We combine an extensive set of InSAR from multiple tracks and GPS measurements

(Figure S1) to invert for the three-dimensional velocity and strain field of Afar, following

a two-step approach (Pagli, Wang, Wright, Calais, & Lewi, 2014). We obtained maps

of the line of sight (LOS) average surface velocities for each InSAR track using a multi-

interferogram method (Wang & Wright, 2012) and then we combined these with the GPS

velocities using a velocity-field method (Kogan et al., 2012). The LOS interferograms were

created using images from the Envisat satellite in both descending and ascending orbits,

in image and wide-swath modes, spanning the period between 2007 and 2010 (Pagli et

al., 2014). GPS sites in central Afar were measured between 2007 and 2010 (Kogan et

al., 2012), while GPS velocities from the Red Sea coast, the Gulf of Aden, and the Main

Ethiopian rift are from other sources (McClusky et al., 2010 ; Kogan et al., 2012 ; Saria,
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Calais, Stamps, Delvaux, & Hartnady, 2014 ; Vigny, Huchon, Ruegg, Khanbari, & Asfaw,

2006 ; Vigny et al., 2007). All GPS velocities were combined in the common International

Terrestrial Reference Frame 2008 and given with respect to a stationary Nubian plate.

Sudden deformations, induced by eruptions and dyke intrusions in Afar, were subtracted

from the GPS as well as the InSAR data as they may affect the strain-field in the Giulietti

Plain (Pagli et al., 2014). No sudden deformations were removed from the Giulietti Plain,

therefore the strain field in our study area is complete.

To invert for the continuous three-dimensional velocity field we divided the Afar re-

gion into a mesh of triangular elements (Figure S1) and assumed that the velocity varies

linearly within each triangle (Pagli et al., 2014). The geodetic observations (InSAR and

GPS) within each triangle are related to the velocities of their vertices by an interpola-

tion function. We inverted for the velocities of the triangular vertices using the system

of equations described by (Nooner et al., 2009). The system was solved using a least

square method that included full variance-covariance matrices as well as smoothing with

a Laplacian operator. A smoothing factor that minimizes the trade-off between the so-

lution roughness and the weighted RMS misfit of the model was selected (Pagli et al.,

2014). After finding the velocities at the vertices of the triangles, we calculate the hori-

zontal strain rates at each vertex using spherical approximation equations (Savage, Gan,

& Svarc, 2001).

We find a region of elevated maximum horizontal shear strain rate (up to 4×10−7 yr−1)

concentrated between the Tat-Ale and Erta-Ale segments, with the maximum shear strain

rate to the west of the Tat-Ale segment (Figure 3c). No sudden discrete or large magnitude

deformation has occurred in the vicinity of the Giulietti Plain during this period, and
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therefore we interpret the strain rates as representative of the tectonic regime. These

geodetic results show that active shear is occurring in the Giulietti Plain.

2.4. Summary of Observations

The strike slip events show excellent correlation with the observed region of maximum

shear strain rate (Figure 3c). In addition our focal mechanisms are consistent with the

orientations of principal strain rate axes, which suggest right lateral strike slip faults on

planes generally trending NW-SE (Figure 4). The surface faults in the Giuletti Plain

have a range of orientations, from ∼NW-SE to ∼N-S (Figure 2), the strike of the focal

mechanisms (135◦) aligns with the most NW-SE of these surface faults. This suggests

that the NW-SE oriented surface faults are active in the present day. By extension, this

suggests that the ∼N-S oriented surface faults were active in the past but are inactive

now. Therefore, the orientation of faulting within the Giulietti Plain has rotated in an

anticlockwise direction through time. The combination of earthquake locations, focal

mechanisms, surface faulting trends and geodetic strain rates, imply that the right lateral

strike slip events are accommodating oblique shear between the two magmatic segments.

In this way, extension is transferred between the two magmatic segments.

3. Thermomechanical Numerical Modelling

The nucleation and evolution of oceanic transform faults has been the subject of several

analogue and numerical modelling studies (Gerya, 2012). Analog freezing wax experiments

(O’Bryan, Cohen, & Gilliland, 1975) reproduced features indicative of seafloor spreading,

including transform faults and inactive fracture zones. These studies showed that the

spreading-parallel pattern of transform faults is an intrinsically preferential orientation.
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With the advent of high-powered computing, studies involving complex three-dimensional

numerical models have begun to investigate transform fault formation. Such numerical

studies (Hieronymus, 2004 ; Choi, Lavier, & Gurnis, 2008 ; Gerya, 2013b), suggest that

crustal thinning is promoted in the region of the transform fault at low to intermediate

spreading rates. In addition, these studies suggest that transform faults can form at

initially straight ridges which become unstable due to asymmetric crustal accretion. This

leads to the formation of a new transform fault and suggests that they are not necessarily

inherited from offsets in the initial rift (Gerya, 2010a, 2010b).

To investigate the temporal evolution of this extension transfer in the Giulietti Plain

we use high-resolution 3D thermomechanical numerical models that simulate the exten-

sional setting in the Danakil region. The Eulerian-Lagrangian visco-plastic model with an

internal free surface allows for large strains and spontaneous crustal growth by magmatic

accretion. The employed numerical technique (Gerya, 2010a, 2010b, 2013b) is based on a

combination of a finite difference method applied on a uniformly spaced staggered finite

difference grid, with the marker-in-cell technique. Full details of the numerical modelling

are given in (Gerya, 2013b).

The initial model setup corresponds to late stage continental rifting in Northern Afar,

with a 20 km thick crust (Figure S3). Similarly to previous numerical models of spon-

taneous plate fragmentation (Gerya, 2013b ; Hieronymus, 2004 ; Choi et al., 2008), two

linear thermal perturbations (weak seeds) with an offset of 20–40 km are imposed at the

bottom of the lithospheric mantle. The modelled (full) spreading rate corresponds to 20

mm yr−1, taken from GPS studies in the region (McClusky et al., 2010). The numeri-
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cal model thus simulates the final stages of continental rifting, where the crust has been

significantly modified by repeated magmatic intrusions, such as in Afar.

The momentum, mass and heat conservation equations are solved with the thermome-

chanical code I3ELVIS (Gerya & Yuen, 2007) on the non-deforming Eulerian grid, whereas

the advection of transport properties including viscosity, plastic strain, temperature etc.

is performed by advecting the Lagrangian markers. We adopted the tectono-magmatic

numerical model of rifting and spreading developed by (Gerya, 2013b), which accounts for

the four key physical processes: (i) thermal accretion of the oceanic mantle lithosphere

resulting in plate thickness growth, (ii) partial melting of the asthenospheric mantle, melt

extraction and percolation toward the ridge resulting in crustal growth, (iii) magmatic

accretion of the new crust under the ridge and (iv) hydrothermal circulation at the axis

of the ridge, resulting in excess cooling of the crust. These physical processes are included

in our numerical model in a simplified manner.

Thermal accretion of the mantle lithosphere is modelled by solving the heat conduc-

tion equation combined with a temperature-dependent viscosity for the non-molten man-

tle (Katz, Spiegelman, & Langmuir, 2003). Consequently, cooling causes asthenospheric

mantle to become rheologically strong and accrete spontaneously to the bottom of the

lithosphere. Hydrothermal circulation at the axis of the ridge, producing rapid cooling of

the new crust (Theissen-Krah, Iyer, Rüpke, & Morgan, 2011), is parameterized with an

enhanced thermal conductivity of the crust in the regions located below sea level (Gregg,

Behn, Lin, & Grove, 2009). The hydrothermal circulation in the crust is controlled by the

Nusselt number, which we range between 1–2 (Gerya, 2013b) and find that it has little

effect on model evolution. Partial melting of the asthenospheric mantle, melt extraction
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and percolation toward the ridge is implemented in a simplified manner. According to

our model, crustal growth at the ridge is balanced by the melt production and extraction

in the mantle. However, melt percolation toward the ridge (Katz, 2010) is not mod-

elled directly and considered to be nearly instantaneous (Connolly, Schmidt, Solferino,

& Bagdassarov, 2009). Lagrangian markers track the amount of melt extracted during

the evolution of each experiment. Magmatic accretion of the new crust is modelled by

spontaneous cooling and crystallization of melts at the walls of the lower-crustal magma

regions (Wanless & Shaw, 2012).

The rheological response to elastic strain in the mantle and crust is controlled by the

upper strain limit for fracture-related weakening (γ0). The Eulerian computational domain

is equivalent to 98 × 98 × 50 km and is resolved with a regular rectangular grid of 197 ×

197 × 101 nodes and contains 34 million randomly distributed Lagrangian markers. We

performed 16 numerical experiments (Table S1) by systematically varying different model

parameters in their uncertainty ranges. Here we describe the evolution of the reference

model afab.

3.1. Modelling Results

During the initial stages of the model, offset rift grabens form above the thermal per-

turbations (Figure 6a). At 0.9 Myr into the model, two volcanic ridges form at the centre

of the two grabens as a result of decompression melting of the rising asthenosphere. At

this stage of the model new oceanic style crust begins to form at the volcanic centres

through the crystallization of melt at the walls of the magmatic regions (Figure 6). The

model does not attempt to simulate small scale intrusions, thus this formation of oceanic

style crust may be analogous to the intrusion of dykes and sills, commonly observed in
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the Danakil region. Initially these volcanic ridges are separated by ∼80 km in the along

strike direction. As the model develops the ridges propagate towards each other such that

by 1.8 Myr they are separated along strike by ∼40 km and laterally by ∼20 km (Figure

b), broadly the same configuration as the Erta-Ale and Tat-Ale segments in the Danakil

region (Figure 3a). At this stage the volcanic centres begin to interact and form a narrow

region of maximum horizontal shear-strain that is orientated ∼27◦ to the trend of the

volcanic ridges and has shear-strain rates of ∼10−6–10−5 per year, which is of a similar

magnitude to the observed maximum horizontal shear-strain (Figure 3c). This stage of

the model can be considered to represent the emergence of a proto-transform fault (Fig-

ure b). The angle of the proto-transform fault with respect to the volcanic ridges closely

matches the angle between the average strike of earthquakes within the Giulietti Plain

and the Erta-Ale segment (Figure 3b).

The model predicts that the deformation within the proto-transform fault is transten-

sional. This deformation would manifest itself as oblique strike-slip earthquakes in the

upper crust, as is observed in the Giulietti Plain (Figure 3b). The extensional compo-

nent of the proto-transform fault promotes opening and volcanism at the end of each

volcanic segment, causing the segments to propagate towards each other (Figure ). The

proto-transform fault continually reconnects to the propagating segment tips, such that

it undergoes an anti-clockwise rotation towards a spreading parallel orientation (Figure

c). Evidence for this anti-clockwise rotation of deformation is shown in the surface faults

of the Giulietti Plain (Figure 3a).

As the model further develops (∼2.8 Myr), the lithosphere in the proto-transform fault

region is predicted to remain continental in composition and acts as a ‘bridge’ maintaining
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a connection between the two plates (Figure 6c). The model then predicts that, at ∼3.8

Myr a transform fault will form between the volcanic segments (Figures d). At this stage

deformation on the transform fault is purely strike-slip. These transform faults are then

stable features that are persistent in the model as it develops into a mature ridge-transform

pattern which closely resembles young, seafloor spreading segments (Taylor et al., 1995).

Therefore, our results also suggest that once transform faults have initiated they are

stable, persistent features that focus deformation during the transition from continental

rifting to seafloor spreading; and that they will continue through to the mature oceanic

ridge stage of plate tectonics.

4. Discussion

The mode of extensional transfer in the Giulietti Plain is not observed in early-stage

continental rifts. In these less developed rifts, extension is focused along asymmetric

half graben structures, and transferred through complex, oblique accommodation zones

(Rosendahl, 1987 ; Bosworth et al., 1986 ; Ebinger, 1989 ; Corti, 2008) (Figure 7a). These

regions are extremely structurally complex and are dominated by oblque-slip normal faults

which strike sub-parallel to the rift (Bosworth et al., 1986). In analogue models of oblique

rifting in the Main Ethiopian rift (Corti, 2008 ; Agostini, Corti, Zeoli, & Mulugeta,

2009 ; Corti, Philippon, Sani, Keir, & Kidane, 2013), offset rift segments are connected

by a region of strike-slip deformation very similar to what we observe in northern Afar.

Conversely, these models predict that the accommodation zone will rotate in line with the

sense of strike-slip motion. However, they do not account for the segment propagation

which is shown to play a key role in the rotation of the proto-transform fault towards

a spreading parallel orientation (Figure 7e). It may be that the regions of strike-slip

c©2018 American Geophysical Union. All Rights Reserved.



deformation observed in the Main Ethiopian Rift are pre-cursors to proto-transform fault

initiation.

Where ocean ridge segments overlap by several kilometres, a variety of mechanisms for

the transfer of extension have been observed. In Iceland, shear motion between overlap-

ping magmatic segments is shown to occur through bookshelf faulting. (Green, White,

& Greenfield, 2014) detail how a region of focused seismicity between the Askja and

Kverkfjöll segments is accommodating right-lateral shear motion. This occurs through

strike-slip motion along a system of left-lateral faults which are sub-parallel to the mag-

matic segments (Figure 7b). The bookshelf faulting mode of extensional transfer is there-

fore fundamentally different to observations from the Giulietti plain as the orientation of

slip is opposite, and the active faulting in the Giulietti plain is oblique to the magmatic

segments (Figure 3).

Another style of non-transform ocean ridge discontinuity is found where magmatic seg-

ment overlap by 10s of kilometres. This results in a focused region of rotational defor-

mation which results in a volcanically active, elevated terrain (Macdonald & Fox, 1983 ;

Tyler, Bull, Parson, & Tuckwell, 2007) (Figure 7c). This central domain is the focus for

shear and rotational deformation and is thought to be unstable with time. (Macdonald

& Fox, 1983) use analogue models of spreading processes to suggest that the overlapping

spreading segments will link, leading to the abandonment of the deformation zone. In

contrast to previous examples, ocean ridge segments are often arranged en-echelon, with

characteristic, ridge-perpendicular oceanic transform faults (Behn & Lin, 2000) (Figure

7f). A mode of extension transfer that is analogous to that currently observed in the

Danakil region, and oceanic transform faults, is seen in small-scale faults in bedrock
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(Willemse, Peacock, & Aydin, 1997) (Figure 7d). In this setting, shear zones form en-

echelon veins which are connected by a system of perpendicular to oblique solution seams.

Extensional strain is transferred between veins through displacement along these solution

seams.

Similar proto-transform fault systems (Figure 7e) have been observed in young seafloor

spreading segments in the Woodlark Basin, Papua New Guinea (Taylor et al., 1995).

These systems have been postulated to mark the initiation of transform faults yet are

observed only in regions of young seafloor spreading. In addition, a similar mechanism

of interacting, propagating magmatic rifts has been proposed for the formation of hyper-

extended margins such as those observed in the South Atlantic (Le Pourhiet, May, Huille,

Watremez, & Leroy, 2017). The Danakil region is therefore the first observed example

of extension transferring between axial magmatic segments through a region of oblique

shear, prior to the initiation of seafloor spreading.

Previous studies on transform fault formation do not consider axial localization of strain

during continental breakup. However, observations and models of continental rifts increas-

ingly show that as extension increases, faulting and magmatism become focused in-rift

to a narrow swath of dense faulting, volcanic centers, and aligned cones with subsurface

dykes (Hayward & Ebinger, 1996 ; Manighetti et al., 2001 ; Kendall, Stuart, Ebinger,

Bastow, & Keir, 2005 ; Buck, 2006). The border faults that controlled the architecture

of the young rift become less active as extension is focused at the rift axis (Hayward &

Ebinger, 1996 ; Ebinger & Casey, 2001 ; Wolfenden et al., 2005). In terms of deformation

mechanisms this mode of continental rifting is more closely analogous to seafloor spread-

ing than early stage continental rifting. In addition, the mechanisms of magmatic crustal
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accretion that have been observed at mid-ocean ridges (Carbotte et al., 2013), have initi-

ated in the Danakil region (Illsley-Kemp et al., 2018). Thus, the transition from late-stage

continental rifting to seafloor spreading must be considered as a prolonged process, and

processes which are considered indicative of seafloor spreading can initiate prior to final

continental breakup.

Considering that the observations from the Danakil region cannot be explained by any

previously proposed modes of extensional transfer, the close correspondence between the

numerical model and observations provides compelling evidence that the Giulietti Plain is

at the proto-transform fault stage of formation. Our results therefore document the direct

observation of proto-transform initiation and corroborate previously proposed mechanisms

of formation (Gerya, 2013b). The development of the numerical model towards a stable

oceanic-style transform fault lends support to the interpretation that the Giulietti Plain is

a proto-transform fault. However, we cannot preclude that the Giulietti Plain may develop

into a throughgoing, continuous magmatic segment with a zero-offset transform (Schouten

& White, 1980) and this behaviour is predicted by model runs with elevated mantle

temperatures (Table S1). The transfer of extension between magmatic segments through

transform faults is a fundamental characteristic of seafloor spreading (Atwater & Menard,

1970 ; Macdonald et al., 1988). Our results demonstrate, that proto-transform faults can

initiate during late stage continental rifting, prior to seafloor spreading (Figure 8). This

provides further evidence that seafloor spreading processes can initiate earlier in the rifting

cycle than previously thought. During our study period (2011–2013), deformation was

focused at the Giulietti Plain, however it is not clear whether this is a long-term pattern.

There are many offset magmatic segments in Afar and it is not clear whether the proto-
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transform process is limited to the Giulietti Plain. This study focuses on the Giulietti

Plain as that is the only segment offset with measurable seismic and geodetic deformation.

The lack of measurable deformation between other segment offsets strongly suggests that

deformation related to rift linkage is episodic. Other regions of segment offset may have

been active in the past and may become active in the future. For example, (Pagli et al.,

2014) suggest that the rift axis steps from the Tat-Ale segment to the Dabbahu segment

in the SW (Figure 1). The sporadic seismicity in this region may be associated with

this transfer of extension, however significant deformation was not observed in this region

during our study period.

Rifting in Afar occurs above anomalously hot mantle, which causes significant magma

intrusion (Ferguson et al., 2013 ; Gallacher et al., 2016). This magmatism may enable

the style of extension in Afar to be more similar to that observed at oceanic ridges (Keir

et al., 2013 ; Illsley-Kemp et al., 2018). Studies of the magmatically less active Woodlark

basin, Papua New Guinea, which exhibits the transition from continental rift to seafloor

spreading, suggest that transform faults initiate as, or after, spreading nucleates (Gerya,

2013a). It is therefore not clear whether our interpretations regarding the timing of trans-

form fault initiation applies beyond the formation of a volcanic rifted margin. However,

our research suggests that future work on volcanic rifted margins should not assume that

transform faults initiated after the onset of seafloor spreading.
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Figure 1. Main figure shows the location of the seismic network (blue inverted triangles) and all
recorded earthquakes with horizontal errors <5 km (red circles) from 2011–2013 (Illsley-Kemp et al.,
2018), superimposed on topography taken from the Shuttle Radar Topography Mission (SRTM). A
cluster of events is located in the Giulietti Plain, between the offset Erta-Ale and Tat-Ale segments.
The box encloses the area shown in Figures 2, 3, 4. White arrows denote GPS velocities, relative to a
stationary Nubian plate (McClusky et al., 2010). Surface faults shown in black taken from (Manighetti
et al., 2001) and (Illsley-Kemp, Savage, et al., 2017). Cross section X–X’ marks the seismic refraction
profile of (Makris & Ginzburg, 1987), showing thinned crust (<20 km) beneath the Giulietti Plain.
Inset shows the location of the Danakil region in East Africa.
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Figure 2. Surface faults and their associated rose diagrams show mean orientations that are

consistent with regional extension in the Erta-Ale (green rose diagram) and Tat-Ale (blue rose

diagram) segments. However, within the Giulietti Plain (orange rose diagram) surface faults

display a greater variation, consistent with an interaction between the two spreading segments.

Inset shows a zoom of the Giulietti Plain faults overlain on satellite imagery (Google Earth).
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Figure 3. a) Relocated earthquakes with average location error of ±0.55 km highlight a

clear zone of deformation. b) Focal mechanisms for three clusters (colour coded in a) display

characteristic right-lateral, oblique strike slip motion. c) InSAR and GPS derived maximum

horizontal shear strain rate clearly showing a region of high strain rate within the Giulietti Plain.

The combination of observations from the Giulietti Plain indicates that extension is transferred

between the spreading segments through oblique shear.
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Figure 4. The principal axes of observed maximum horizontal shear strain rates in the Giulietti

Plain, from InSAR and GPS data. Extensional (red) and compressional (blue) principal axes

of the strain rates, plotted on the maximum shear strain rate. Axes are consistent with right-

lateral strike-slip on NW-SE fault planes within the Giulietti plain, in agreement with observed

seismicity (Figure 3).
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Figure 5. Time steps refer to time after model initiation. Topography (pink below sea level) and
horizontal shear-strain rate (at depth of 5 km) initially show a diffuse distribution of shear-strain. This
shear-strain develops into a narrow region of transform oblique shear-strain at ∼1.8 Myr (b) and acts
as a proto-transform fault. The topography and ∼27◦ angle between proto-transform fault and volcanic
segment closely resemble the topography and strike of earthquakes in Afar. In addition the modelled
horizontal shear-strain is of a similar magnitude to that observed in the Giulietti Plain (Figure 3c).
The model predicts that the proto-transform fault is transtensional, which would produce oblique strike
slip earthquakes, as seen in the Giulietti Plain. The proto-transform fault then rotates (c) towards a
spreading parallel orientation, this would produce and anticlockwise rotation of surface faults as seen
in the Giulietti Plain. At 3.8 Myr (d), the proto-transform fault becomes a stable, spreading parallel
transform fault, which separates the two magmatic segments and is a persistent feature for the remaining
model time.
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Figure 6. Viscosity variation and pseudo-geological cross-sections within the numerical model of
the Giulietti Plain, Northern Afar. Time steps refer to time after model initiation. The viscosity plots
clearly show an evolution from broadly distributed deformation in (a) followed by the development of
the proto-transform fault (b). The proto-transform fault rotates anti-clockwise (c) and subsequently
evolves to a stable, spreading parallel transform fault (d). Pseudo-geological cross sections show the
thinning of the continental crust and accretion of new crustal material. Continental lithosphere is
present in the model up until 3.8 Myr, after the formation of a stable transform fault.
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Figure 7. a) Extensional transfer observed in early-stage continental rifting. Extension is

focused along half-graben structures and transferred through a region of complex, oblique faults

(Rosendahl, 1987 ; Bosworth et al., 1986 ; Ebinger, 1989 ; Corti, 2008). b) Bookshelf faulting

accommodates transfer of extension between between overlapping oceanic spreading segments

(Green et al., 2014). c) Extension is transferred between overlapping spreading centres through

a region of rotational deformation (Macdonald & Fox, 1983 ; Tyler et al., 2007). d) Centimetre

scale faulting observed in bedrock that accommodates extensional transfer between microcracks

(Willemse et al., 1997). e) Extensional transfer through a proto-transform fault, observed in

young seafloor spreading segments (Taylor et al., 2009) and proposed here for Northern Afar.

The proto-transform fault links propagating magmatic segments and rotates anti-clockwise as the

segments propagate. f) Ridge-perpendicular, spreading parallel oceanic transform faults which

are characteristic of ocean ridges (Macdonald et al., 1988).
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Figure 8. a) Topography taken from the numerical model at 1.8 Myr (shaded below sea-level,

light above sea- level) overlain on topography from the Giulietti Plain (pink below sea-level)

shows good agreement in the location of topographic highs and lows. The oblique, strike-slip

faults that are observed in the Giulietti Plain are caused by the transtensional proto-transform

fault, as predicted by the numerical model. Modelling further predicts that the proto-transform

fault will rotate in an anti-clockwise sense as volcanic segments propagate towards each other

(b). The anti-clockwise rotation of the proto-transform fault results in the observed rotation of

surface faulting in the Giulietti Plain. The proto-transform fault then develops into a spreading

parallel transform fault (c), with pure strike-slip motion. This is then a stable and persistent

feature such as transform faults observed at mid-ocean ridges worldwide.
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