
BIROn - Birkbeck Institutional Research Online

Karoudis, K. and Magoulas, George (2018) User model interoperability in
education: sharing learner data using the experience API and distributed
ledger technology. In: Khan, B.H. and Corbeil, J.R. and Corbeil, M.E.
(eds.) Responsible Analytics and Data Mining in Education. Abingdon, UK:
Routledge. ISBN 9781138305885.

Downloaded from: http://eprints.bbk.ac.uk/25511/

Usage Guidelines:
Please refer to usage guidelines at http://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

http://eprints.bbk.ac.uk/25511/
http://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

User Model Interoperability in Education: Sharing Learner Data using the
Experience API and Distributed Ledger Technology

Konstantinos Karoudis

University of London, Birkbeck College, United Kingdom
Orcid.org/0000-0002-6848-9020

George D. Magoulas

University of London, Birkbeck College, United Kingdom
Orcid.org/0000-0003-1884-0772

Abstract

Learning analytics and data mining require gathering and exchanging learner data
for further processing and designing of activities tailored to learner’s characteristics,
context, and needs. Currently, systems that store learners’ attributes should, ideally,
be operated and controlled by responsible and trustworthy authorities that guarantee
the protection and sovereignty of data, and use objective criteria to protect and
represent all parties’ interests. This chapter introduces a peer-to-peer method for
storing and exchanging learner data with minimal trust. The proposed approach,
underpinned by the Experience API standard, eliminates the need of a mediator
authority by using distributed ledger technology.

Introduction

The past decade has seen the development of numerous user-adaptive systems that
can adapt their behaviour to the individual user. In order to provide the adaptation
effect, these systems typically acquire and store relevant information about each
user in an internal representation called user model. The process of creating and
maintaining user models, either implicitly by observing users’ interactions or explicitly
by requesting their direct input, is called user modelling (Brusilovsky & Millán, 2007).

Learner modelling refers to the process of gathering relevant information about a
learner, inferring their current cognitive state, and generating a representation that
can be used by a system to offer adaptation (Chrysafiadi & Virvou, 2013). Such a
representation, which is a special type of user model and consists of data about the
learner or about what the learner does, is called learner model (Cocea & Magoulas,
2015). Adaptive systems that employ learner models are called adaptive learning
systems. These provide an environment that intelligently adjusts to individual
learners by presenting suitable information, instructional materials, feedback and
recommendations based on their unique characteristics and situation (Graf &
Kinshuk, 2014). In the rest of this chapter, the scope is limited to dynamic user
models that can change over time (Kay, 1999).

User modelling and adaptive learning systems have historically contributed to
developments in the area of learning analytics, but at the same time research in
learning analytics has been used to generate user models for adaptive learning
systems (Siemens, 2013). Current practice indicates that learning analytics can
make significant contributions and act as an enabler for the development and
introduction of adaptive personalised learning because it can enable tracking

individual student engagement, attainment, and progression in near-real time
(Sclater, Peasgood, & Mullan, 2016). According to Bienkowski, Feng, and Means
(2012), user modelling and adaptation belong to the broad application areas of
educational data mining and learning analytics. The latter two provide data that can
be used not only to build user models, but also to profile users, i.e. to group similar
users into categories using salient characteristics. User modelling and profiling can
enable real-time adaptations and their long-term objective is to provide adapted and
personalised learning environments for individuals or groups of users in order to
maximize learning effectiveness and efficiency.

Both of the terms adaptation and personalisation are used to indicate the capacity of
a system to adapt to users. However, adaptation refers to the changes a system
produces for individual users based on their models while personalisation refers to
the effect the system has on the users. It is thus important to distinguish between
personalisation, which is the purpose, and adaptation, which is the mechanism to
achieve the purpose (Cocea & Magoulas, 2015).

Recent developments in adaptive learning highlight the advantages of learner data
exchange between adaptive learning systems for potentially improved
personalisation services (Ghorbel, Zayani, & Amous, 2015; Martínez-Villaseñor,
González-Mendoza, & Danvila Del Valle, 2014). The process of exchanging
distributed user data across applications is called user model interoperability
(Carmagnola, Cena, & Gena, 2011).

This chapter will review the area of user model interoperability and examine the
emerging role of distributed ledger technology in the context of learner modelling.
The aim is to propose a new methodology for sharing learner information that can
guarantee the quality (provenance and accuracy) of the exchanged learner data
while minimising the need of trust between the parties that share information. The
adopted approach envisages a distributed ledger storing learning experiences in the
form of Experience API statements, which can be used to build individual learner
models.

The next section will introduce the background of user model interoperability and
discuss the classification of interoperable systems, as well as ways of addressing
privacy issues. The following section will present the Experience API specification,
which enables various types of educational technologies to capture and exchange
learner data, and its affordances. It will also define the term provenance and
describe the xAPI Extended, a proposed enhancement to the existing standard. The
subsequent section will explain basic terms of distributed ledger technology and
provide a classification of blockchain systems based on consensus process and
determination. The second part of this section will consider six well-known
consensus protocols and introduce the reader to smart contracts and the Ethereum
blockchain.

The penultimate section will propose a theoretical framework for storing xAPI
statements on the blockchain and also provide an overview of the steps performed
by the storage mechanism. Finally, the last section will summarise the advantages of
the framework and outline future research directions.

User Model Interoperability

In one of the early definitions of the term, interoperability is described as the ability of
two or more software components to exchange data and cooperate overcoming
differences in language, interface, and execution platform (Wegner, 1996). Three
main types of interoperability have been identified in the literature so far
(Carmagnola et al., 2011):

 Structural interoperability refers to the possibility of overcoming the
differences between information systems at the access level (e.g.
communication protocols, application programming interfaces, etc.)

 Syntactic interoperability (also referred to as language interoperability) is
required for any attempts of further interoperability and concerns the
communication and exchange of data between information systems at the
application level, i.e. the capability of different systems to interpret the syntax
of the data in the same way.

 Semantic interoperability (also called logical interoperability) overcomes
differences between information systems at the knowledge (meaning) level.
Systems exchange information on the basis of shared, pre-established, and
negotiated meanings of terms and expressions.

Different educational systems may use distinct representations for the same data,
e.g. other syntactic and conceptual structures, terminologies, or interpretations of the
same terminology. Therefore, achieving syntactic and semantic interoperability is
challenging because it requires a high degree of alignment among the applications,
especially in an open and dynamic environment like the Web (Aroyo et al., 2006).

This section will discuss interoperability with regard to user models. The process of
user model data exchange can be analysed in four phases (Carmagnola et al.,
2011). In the first phase, the systems that collect information about a specific user
have to be discovered (service discovery phase) (Carmagnola & Cena, 2009). Then,
all discovered systems have to reach an agreement on the identity of the user (user
identification phase). The third phase is where the actual exchange of user
information takes place (data exchange phase). Finally, the reliability of the
exchanged data has to be evaluated qualitatively and quantitatively by the
applications (data evaluation phase). In the rest of this chapter, the discussion
focuses on issues related to the third phase of the user model data exchange
process.

The main motivations for supporting interoperable user models relate to key user
modelling issues identified so far. The first issue is the initialisation of user models,
also known as the cold start problem, where applications have to provide appropriate
adaptation for new users when the corresponding models do not hold enough
information (Alfred Kobsa, 2007; Wang et al., 2008). User model initialisation can
also save users time because they do not need to fill in information to complete their
model every time they interact with a new system (Vassileva, 2001). Other issues
described in the literature include the qualitative and quantitative improvement of
user models, which have the potential to produce better adaptation results. The
former improvement refers to the accuracy of user model data in representing users’
interests and needs while the latter can be described as increased coverage, i.e.
user models covering more aspects of the users (Berkovsky, Kuflik, & Ricci, 2008;

Heckmann, Schwartz, Brandherm, Schmitz, & Wilamowitz-Moellendorff, 2005;
Walsh, O’Connor, & Wade, 2012).

Classification of Interoperable Systems

Systems handling interoperable user models can be classified into three categories
with respect to their main interoperability task (Carmagnola et al., 2011). The first
category includes systems designed to facilitate user model exchange but are non-
adaptive and thus do not need user models for themselves. In the second category,
fall systems that are designed to provide the service of real-time reasoning and
adaptation over received sets of data. Such systems do not share user model
information as they provide a one-to one service. The third type of systems is
designed to collect user data from different sources, integrate this information to form
richer user models, and then share the resulting models across applications.

The architecture of interoperable systems has changed dramatically since their first
appearance. A recent survey reported three possible architectures for classifying
interoperable systems defined by the centralisation degree of their user models: The
centralised, the decentralised, and the mixed architectures (Carmagnola et al.,
2011).

In centralised architectures, a centralised repository known as user modelling server
stores user models for a group of (remote) systems (called clients). In this case, all
user models (for a given client group) are unique and their data exchange takes
place between user modelling servers. By contrast to the centralised architectures, in
decentralised architectures each system develops independent, (partial or
fragmented) local user models that do not necessarily adhere to a common
representation scheme (Niu, McCalla, & Vassileva, 2003). This means that a certain
degree of user model duplication may exist either for parts or for complete user
models. Decentralised systems exchange user model data using peer-to peer
connections. Finally, mixed architectures combine both previously described
approaches, i.e. locally stored user models refer to a central user model (stored on a
centralised repository) to ensure interoperability.

Interoperable systems can also be classified according to their internal
representation of exchanged user data. Two major approaches for representing
interoperable data are the standardisation-based user modelling (or common user
model representation) and the mediation-based user modelling (or translation
approach) (Viviani, Bennani, & Egyed-Zsigmond, 2010). In the former (top-down)
approach, all applications have to conform to one or more predefined standards. In
learner modelling, such standards are the IEEE PAPI, IMS RDCEO and LIP (Dolog
& Schäfer, 2005). A common user model representation is also possible through a
shared user model ontology, like the General User Model Ontology (GUMO)
(Heckmann et al., 2005), or the Unified User Context Model (UUCM) (Mehta et al.,
2005). In the latter (bottom-up) approach, the various user model representations are
being translated into a central, shared user model through a mediator component
that manages the mapping (Van Der Sluijs & Houben, 2006), whilst there also exist
other automatic or semi-automatic ontology mapping techniques (Doan, Madhavan,
Dhamankar, Domingos, & Halevy, 2003; Carmagnola & Dimitrova, 2008).

Recent advances in the field address the problem of the representation of
exchanged user data using a third approach, which combines the previous two
approaches and aims to overcome their disadvantages (Ghorbel et al., 2015). A
notable example is the FUSE domain-aware approach that uses a canonical model
as a consistent shared user model representation together with a translation process
based on mappings (Walsh, O’Connor, & Wade, 2013). Other examples of hybrid
approaches found in the literature use multiple mediation types (Berkovsky et al.,
2008), or a distributed semantic conversation framework for the exchange of user
data (Cena, 2011).

Internal data representation of exchanged user information goes hand in hand with
data integration. Therefore, a further classification of interoperable systems can be
made with regard to the way they integrate exchanged data and deal with arising
conflicts. Two possible data integration approaches have been employed so far, i.e.
no integration and fusion of collected data and existing user models (Ghorbel et al.,
2015). The majority of existing systems adopt the first approach using exchanged
user data only when needed without merging it with existing user models. It is the
role of the mediator to convert data from the source to the destination format on the
fly upon request without necessarily storing the information locally. The term active
learner modelling has been used in the literature to describe the just-in-time
computation of user models to a specific breadth and depth when a client application
makes a request (McCalla, Vassileva, Greer, & Bull, 2000). Alternatively, user
models can be constantly updated as new information is provided (Assad,
Carmichael, Kay, & Kummerfeld, 2007). Systems that adopt the second approach
incorporate conflict resolution to merge exchanged data with existing user models.
Possible ways of resolving conflicts found in the literature include the measurement
of credibility of the exchanged data and their supplier (Carmagnola & Dimitrova,
2008), and the manual method where conflict detection is performed by an
administrator (Walsh et al., 2013).

Privacy and Trust

Respecting users’ privacy and enabling users’ control over their data has been
recognised as one of the fundamental challenges of user data sharing across
applications, not only in the primary phase of data collection, but also in the
secondary phase of data sharing and reuse. However, existing work on privacy
addresses this challenge mostly in the context of centralised architectures (Iyilade &
Vassileva, 2013). Interoperable systems that handle user information must be
trustworthy, i.e. they must obtain users’ permission to collect and exploit their data,
and not release it to third party systems without user consent (Kay & Kummerfeld,
2006).

Proposed solutions and approaches to address the challenge of users’ privacy can
be grouped into six categories, i.e. different access rights, pseudonymous
personalisation, encryption techniques, perturbation techniques, scrutable user
model, and joining consortia and organisations (Carmagnola et al., 2011). The first
category attempts to tackle the privacy issue by assigning different access rights to
services through a role-based access control mechanism. A variation of this
approach splits the user model into multiple levels and assigns different access
rights to each of them (Kay, Kummerfeld, & Lauder, 2002). In pseudonymous

personalisation, each user has a unique and persistent identifier called pseudonym,
which is used to differentiate them from other users (Alfred Kobsa & Schreck, 2003).
The third category includes approaches that encrypt user data to preserve user
privacy. A notable example in this category uses the distributed Probabilistic Latent
Semantic Analysis (PLSA) as a mean to preserve user privacy (Mehta, 2007).
Perturbation is a privacy-preserving data mining technique in the area of
collaborative filtering where some changes are introduced in the exchanged user
information, in order to hide the exact user model from malicious attacks (Berkovsky,
Eytani, Kuflik, & Ricci, 2005). The fifth category uses scrutable user models that can
be scrutinised, and associated with security preferences by their users (Kay &
Kummerfeld, 2006). In the final category, fall approaches where systems adopt
standards, and join third-party independent consortia and organisations in order to
ensure user privacy. The use of the Lightweight Directory Access Protocol (LDAP) is
such an example because it provides a security model that is used to secure user
information and privacy (Alfred Kobsa & Fink, 2006).

The Experience API

The Experience API (xAPI) is a specification that enables different learning
technologies to capture data about a person’s or a group’s wide range of learning
experiences in a consistent format using the xAPI vocabulary. Having xAPI
statements as a common format for sharing collected streams of learning
experiences guarantees semantic interoperability because no data translation or
mapping is needed. Structural interoperability is achieved by exposing the API as
RESTful web services, while following the rules of JavaScript Object Notation
(JSON) for serialisation ensures syntactic interoperability.

This section will provide a brief overview of the Experience API (xAPI) specification
and discuss its pedagogical and interoperability affordances. Moreover, it will
examine the possibility of using xAPI statements as provenance and look into the
xAPI Extended, a suggested enhancement to the existing xAPI standard.

xAPI Specification Overview

The Experience API was developed by the Advanced Distributed Learning (ADL)
Initiative as a means of tracking/recording learning experiences and learner activities
between a client called Learning Record Provider (LRP) and a server called Learning
Record Store (LRS). xAPI is both a learning-technology specification and a suite of
four APIs provided as RESTful web services, namely Statement, State, Agent, and
Activity Profile API. LRPs utilise the Statement API to track formal and informal
learning experiences both online and offline, while the rest APIs enable richer
reporting and learning analytics. xAPI enables the trusted exchange of information
between trusted sources by offering optional security methods (U.S. Department of
Defence, Advanced Distributed Learning (ADL) Initiative, 2017).

Typically, a learning experience is tracked on behalf of a learner by a LRP, who
creates a Learning Record (LR) and sends it to one or more LRSs. A LR can take on
many forms, including statements, documents, and their parts. The Statement API
tracks and retrieves LRs in the form of immutable statements consisting of four parts,
i.e. the actor, the verb, the activity and additional properties. A basic form of an xAPI

statement corresponds to the sentence “I did this”, where “I” is modelled as an actor,
“did” as a verb, and “this” as an object. xAPI supports persona management for
allowing selective access to one's personal data. Each persona represents the “I” in
the previous sentence, and multiple personas can be associated with a single
learner (U.S. Department of Defence, Advanced Distributed Learning (ADL)
Initiative, 2016).

xAPI Affordances

The selection of xAPI for the learner data representation was mainly motivated by
both its pedagogical and interoperability affordances. This chapter will refer to the
term affordance as “a perceived action-promoting property or relation between
particular aspects of the situation and the subject who plans or undertakes actions in
a certain environment” (Normak, Pata, & Kaipainen, 2012, p. 268).

One of the most important pedagogical affordances of xAPI is the ability to record
both online and offline learning experiences into immutable statements for all types
of learning settings. This makes xAPI suitable for lifelong learner modelling, and
previous research has established that claim by demonstrating how xAPI
affordances can be mapped on to pedagogical framework affordances, in order to
enable the design of personalised learning paths for lifelong learners across the
cumulative learning continuum (Karoudis & Magoulas, 2016).

Lifelong learner modelling refers to the ability to model a dynamic and changing user
throughout lifetime interactions with a variety of resource providers (Kay, 2008).
Investigating how to enable the interoperability of dynamic user models could,
therefore, provide a promising solution for lifelong learner modelling.

Provenance

One of the prominent characteristics of the xAPI is the ability to track and retrieve
learning information in the form of immutable statements, i.e. statements that cannot
be changed once they have been created. However, this property alone is not
sufficient to guarantee the reliability of recorded learner data. In order to fully trust
xAPI statements, one needs information about the people, institutions, entities, and
activities, involved in producing, influencing, or delivering that data. A record that
contains all the above information and is used to form assessments about the data
quality, reliability or trustworthiness is called provenance. W3C has published the
provenance specification in PROV, a set of documents that describe how inter-
operable interchange of provenance information can be achieved in heterogeneous
environments, such as the Web (Groth & Moreau, 2013).

Recent research suggests that learning process logs are, in essence, provenance
and thus it is possible to perform a lossless conversion from xAPI statements to
W3C PROV (De Nies, Salliau, Verborgh, Mannens, & Van de Walle, 2015). The
proposed method uses a formal ontology of the xAPI vocabulary, an xAPI statement
interpreter to JSON-LD, and a tool implementing the mapping from JSON-LD to
PROV statements. In this way, the trustworthiness and interoperability of xAPI can
be increased by creating a reversible mapping workflow from xAPI statements to

valid PROV statements. These statements can then be used by recommender
systems e.g. to build recommendations upon learning paths (Corbi & Burgos, 2014).

The xAPI Extended

The current Experience API specification provides the technical means for sufficient
user data protection in the form of a Persona Data Locker (PDL), which is a
database that stores all learning activities for a specific user. Each PDL is secured
through the user credentials, two-factor authentication, and a unique PDL identity.
However, the PDL is only a theoretical element of the xAPI specification. In standard
practice, xAPI envisages the flow of learning content from a learning provider to a
learning record store, which can then transfer all stored information to third party
applications without user consent. In this way, the recommended implementation
supplants the functionality of the PDL and therefore deprives users’ right to
sovereignty over their own data.

An enhancement that can resolve this data privacy issue in the original Experience
API specification has recently been proposed by Schaffarzyk (2015). The xAPI
Extended envisages the flow of data from a learning content provider to the
respective PDL of each learner in a first step. Information stored in a PDL can then
be transferred to a LRS or xAPI enabled third-party applications according to users’
personal settings defined in each PDL.

Although this approach solves the issue of user privacy and control over their data, it
still requires systems that provide the PDLs for users to be operated and controlled
by responsible and trustworthy authorities. A way to overcome this limitation using
distributed ledger technology will be described in the following sections.

Distributed Ledger Technology

A distributed ledger can be defined as a shared database that stores assets
(financial, legal, physical or electronic) across multiple sites, geographies or
institutions. All changes to the ledger are reflected to all copies, and each participant
can have their own identical copy of the ledger. The security and accuracy of the
assets is enforced by means of cryptographic keys, signatures and distributed
consensus, which control the access and modification rights of the participants
(Walport, 2015).

The most notable implementation of distributed ledger technology is blockchain,
which became popular as the core technology that underlies the cryptocurrency
Bitcoin (Nakamoto, 2008). A blockchain comprises a chain of data packages (called
blocks) that hold a complete list of transaction records and thus depicts a ledger of
the entire transaction history (Nofer, Gomber, Hinz, & Schiereck, 2017). Additions to
the ledger are decided on a consensus basis by multiple network nodes that agree
on the validity of a block and its contained transactions. The key characteristics of
blockchain are persistency, anonymity, auditability, and decentralisation, i.e.
decentralised transactions that take place without the need of a central trusted
agency. These properties can reduce transaction cost significantly while at the same
time improving efficiency (Zheng, Xie, Dai, Chen, & Wang, 2017).

Classification of Blockchain Systems

There are two important terms that one needs to understand when examining
blockchain systems, the consensus process and the consensus determination. The
former term is used to specify who is eligible to join the consensus process and
generate blocks. Systems that are free for anyone to join are called unpermissioned
(or permissionless), whereas systems that are not open to the public are called
permissioned. Therefore, the consensus process measures the openness of a
system. The latter term specifies the number of nodes that are allowed to participate
in the block validation process and determine the current state of the chain.

With regard to the above-mentioned terms, blockchain systems can be classified into
public blockchains, consortium blockchains, and (fully) private blockchains (Buterin,
2015). The rest of this part will analyse these three blockchain categories while also
considering additional criteria like read permission, degree of centralisation,
immutability, and efficiency (Zheng et al., 2017).

Public blockchains. Public blockchains are unpermissioned blockchains because
their consensus process is open, i.e. it is free for anyone to join. All members take
part in the block verification process and all transactions are visible to the public.
Immutability of transaction records is guaranteed by the large number of participants,
which, however, has a negative impact on efficiency because the large number of
nodes increases transaction and block propagation time.

Consortium blockchains. In consortium blockchains, a predetermined set of users
controls both consensus process and determination. Such blockchains are partially
centralised (and therefore permissioned), and have three variants for read
permission, i.e. public, restricted to the members or a hybrid approach. In terms of
immutability, the limited number of participants makes consortium blockchains less
tamper-proof when compared with public blockchains. However, the smaller number
of validators increases their efficiency.

Private blockchains. In a private blockchain, consensus process and determination
are controlled by a single entity (e.g. an organisation). These blockchains, which are
also permissioned like the consortium ones, are regarded as centralised networks
and have read permission that is either public or restricted to a random degree.
Transactions on private blockchains are less tamper-resistant than those of the
previous two categories. However, private blockchains have the lowest transaction
cost and the highest efficiency.

Consensus Protocols

The previous part of this section discussed the terms consensus process and
consensus determination, which describe who can control and update the shared
state of a blockchain. This part will present various sets of rules and procedures that
preserve a consistent transaction state between multiple nodes and help them reach
an agreement about the overall state of the chain. The process by which a majority
of nodes comes to an agreement on the state of a ledger is called consensus
mechanism (Swanson, 2015).

The problem of finding a consensus first appeared in the literature in the early
eighties with the Byzantine Generals Problem (Lamport, Shostak, & Pease, 1982). In
a simplified version, the problem describes a scenario where several divisions of the
Byzantine army, each commanded by its own general, circle an enemy city. Some of
the generals want to attack whereas others prefer to retreat. In order for the attack to
be successful, all the divisions must attack together. The challenge for the generals
in this case is how to reach a consensus either to attack or to retreat, considering
also the possibility that some of the generals may be traitors and may want to
mislead the loyal ones. The Byzantine Generals Problem resembles the problem of
nodes reaching a consensus in a distributed ledger environment.

Several consensus algorithms have been proposed so far for both permissioned and
unpermissioned blockchains. This part will discuss six of these algorithms that are
well-known and mostly used by blockchain systems nowadays, i.e. proof of work,
proof of stake, practical byzantine fault tolerance, delegated proof of stake, ripple,
and tendermint. Table 1 below, adapted from Zheng et al. (2017), provides a brief
comparison of the examined consensus algorithms in terms of tolerated power of
adversary.

Table 1: Security models of consensus algorithms
[Insert Table 1 Here]

 Ripple

PoW PBFT
 Tendermin

t

DPoS

PoS

Consens
us

process

unpermission
ed

unpermission

ed
permission

ed

permission

ed

unpermission

ed

unpermission

ed

Tolerated
power of
adversar

y

< 20%
faulty nodes

in a UNL

< 25%

computing
power

< 33.3%
faulty

replicas

 < 33.3%
byzantine

voting
power

< 51%

validators

< 51%
stake

Ripple is a consensus algorithm for unpermissioned blockchains introduced in 2014
by Schwartz, Youngs, and Britto (2014). Its core characteristic is that it circumvents
the requirement for synchronous communication of the nodes by utilising collectively-
trusted subnetworks called Unique Node Lists (UNLs). More precisely, the protocol
defines two types of nodes, namely server nodes and client nodes. Server nodes
have a set of servers in their UNL that allows them to participate in the consensus
process, whereas client nodes can only transfer funds. Transactions broadcasted by
a server (proposer) can be included in the consensus only when the vast majority
(80%) of server nodes in its UNL confirms their validity. Therefore, the security of a
blockchain adopting the Ripple protocol can be guaranteed only when the number of
faulty nodes in each UNL is less than 20%.

Proof of Work (PoW) is the consensus mechanism underlying Bitcoin and it was
described in the original paper by Nakamoto (2008). In PoW, nodes that want to
generate a block have to prove they do not intend to attack the network by doing
some work. This means they have to calculate the hash value of a block header that

contains a nonce, and reach a calculated value that is equal to or smaller than a
target value provided by the network. When the work is finished, the block is
broadcasted to all other nodes, which must agree on the correctness of the
calculated hash value before the block can be added to the chain.

Practical Byzantine Fault Tolerance (PBFT) first appeared in the late nineties as a
replication algorithm that can tolerate any number of Byzantine faults over a
system’s lifetime, provided that fewer than 1/3 of the replicas become faulty (Castro
& Liskov, 1999). In PBFT, the process by which a new block is added to the chain is
called a round, and it is divided into the three distinct phases pre-prepared, prepared
and commit. In each round, the members of the chain follow a set of rules to select a
different primary node, which is responsible for completing the transaction. The
primary node needs to receive votes from a majority of 2/3 of all nodes to progress
from one phase to the next until it completes the transaction. This consensus
mechanism can only be applied to permissioned blockchains. There exist several
other implementations of the Byzantine agreement like the stellar consensus
protocol (Mazières, 2016), the delegated Byzantine fault tolerance (Zhang, 2016),
and the scalable consensus protocol (Luu et al., 2015).

Tendermint is yet another protocol designed to offer Byzantine fault tolerance (Kwon,
2014). Like in the case of PBFT, the next block is determined in a round comprising
the steps prevote, precommit, and commit. In the first step, validators have to
prevote for a new block broadcasted by a designated proposer chosen in a round-
robin fashion. If a prevote is broadcasted from a 2/3 majority of validators, the
proposer proceeds to the second step and broadcasts a precommit for the new
block. The third step can be entered only when the proposer receives precommits
from more than 2/3 of the validators. In that case, the proposer broadcasts a commit
after having validated the new block. Finally, the block is accepted if a commit vote is
casted by more than 2/3 of the validators. In contrast to PBFT, only nodes that lock
their coins can become validators.

Delegated Proof of Stake (DPoS) stems from the PoS protocol and was established
in 2014 as the consensus mechanism underlying BitShares (BitShares community,
2014). The only difference between the two algorithms is that in the latter
stakeholders can generate and validate new blocks themselves, whereas in the
former this job is assigned to elected delegates. The smaller number of block
validators improves the overall transaction speed significantly while the safety of the
chain can be easily protected by voting out malicious delegates.

Proof of Stake (PoS) emerged in a Bitcoin forum post in 2011 as an alternative
design to PoW consensus (QuantumMechanic, 2011), and was later adopted by
peercoin (King & Nadal, 2012). In PoS, nodes that want to generate a block must
hold a stake in the blockchain’s currency, in order to prove their innocuous motives.
This approach may seem unfair at first sight because nodes controlling the majority
of stakes could dominate the network. However, there exist several solutions to this
problem, e.g. randomising the prediction of the next block generator or selecting
them based on the age of their stake. A more recent implementation of PoS is
described in Kiayias, Russell, David, and Oliynykov (2017).

Smart Contracts

Another concept that has received considerable attention since the introduction of
distributed ledger technology is that of smart contract. The term first appeared in the
literature in 1997 as an attempt to combine protocols with user interfaces, in order to
formalise, secure and execute contractual terms over computer networks (Szabo,
1997). With the benefit of trustless public ledgers, smart contracts have the potential
to replace the current online contract law with a law of bargained-for exchange
(Fairfield, 2014). In other words, smart contracts may disintermediate online
exchange of money or other valuable assets (Kaplanov, 2012). Moreover, smart
contracts may also replace human intermediation as a means of verifying the
ownership of tangible or intangible property (Nofer et al., 2017), which represents a
shift from trusting people to trusting math (Antonopoulos, 2014).

Recent research distinguishes two different types of definitions for the generic term
smart contracts, i.e. smart contract code and smart legal contract (Stark, 2016). The
first type of definitions is used to refer to code that is stored, verified and executed on
a blockchain, and the capability of this code depends on the programming language
used for its implementation. The second type of definitions considers ways of
applying the specific code to complement or substitute legal contracts. Thus, the
capability of smart legal contracts is proportional to their adoption by legal, political
and commercial institutions, and does not depend on the underlying technology. For
the sake of simplicity, the term smart contract will be used to refer to smart contract
code in the remaining of this chapter.

Smart contracts can be broadly classified into two types: deterministic and non-
deterministic (Morabito, 2017). Deterministic smart contracts do not require
information stored outside their blockchain, in order to be triggered, make decisions,
and work effectively. This means that all needed information is stored within their
own blockchain environment. On the other hand, non-deterministic smart contracts
need information about human behaviour, events or predictions, which is located
outside the network that hosts their code. In this case, the information that enables
smart contracts to make decisions about the data flow, is provided by an external
party called oracle. Nevertheless, research on the subject suggests that the use of
external state does not always introduce the need for trusting an oracle (Xu et al.,
2016).

Several distributed ledger platforms that provide scripting languages for developing
smart contracts have been identified in the literature, with the most notable being
Bitcoin, Nxt and Ethereum (Seijas, Thompson, & McAdams, 2017). Bitcoin has a
very limited scripting capability, and Nxt provides an application programming
interface that delimits the execution of scripts on the client side. Ethereum, on the
other hand, offers a virtual machine that runs a Turing-complete stack-based
programming language, which allows the creation of more advanced and customised
contracts for a hypothetically unlimited number of applications (Al-Khalil, Butler,
O’Brien, & Ceci, 2017; Alharby & Moorsel, 2017).

Conceptual Model of the Proposed Architecture Framework

This chapter proposes a conceptual model of an architecture for storing and sharing
learner models in the form of xAPI statements using the Ethereum blockchain
platform. The framework regards learner models and their parts as assets belonging
to learners, and thus the release of such information to third parties needs to be
regulated by smart contracts. This approach builds on the xAPI Extended notion of
PDL, where learner data from a learning record provider is initially stored on the
respective PDL of each learner, which regulates the subsequent release to third-
party LRSs and applications. However, PDLs are not implemented according to the
xAPI specification. Their functionality is provided by a Decentralised Application
(ÐApp), which runs on a P2P network and has its own suite of associated smart
contracts that store xAPI statements on the Ethereum blockchain (Ethereum
community, 2016b; Yedlin, 2017). ÐApps and smart contracts enable the creation of
robust, versatile, cost effective, and low maintenance solutions for all kinds of
applications that rely on a network and require some form of property rights
management (Glaser & Bezzenberger, 2015). Figure 1 below shows the proposed
framework for storing xAPI statements on the blockchain.

[Insert Figure 1 Here]
Figure 1. Proposed framework for storing xAPI statements on the blockchain

As depicted in Figure 1, the components of the framework are the two types of
Ethereum accounts controlled by learners, content providers and a ÐApp, and an
Ethereum blockchain. In the following, each of the framework parts, as well as the
way they communicate and exchange information, will be reviewed starting with the
accounts.

Accounts. There are two types of accounts in Ethereum, the Externally Owned
Accounts (EOAs) and the Contract Accounts (CAs) (Ethereum community, 2016a).
The former type can be controlled by either a learning content provider or a learner,
and is used to send transactions, i.e. transfer wei (Ethereum currency) (Ethereum
community, 2016c), or trigger smart contract code. The latter is controlled by a smart
contract belonging to a ÐApp and has associated code stored on the blockchain.
The execution of the code is triggered either by transactions send by EOAs or by
other smart contracts. When a smart contract is executed, it manipulates its own
state and may also call other contracts. The state of both types consists of a nonce,
a balance, a storageRoot and a codeHash (Tikhomirov, 2017). Nonce stores the
number of transactions sent by an EOA, or the number of contracts created by a CA.
Balance holds the number of wei owned by an account, while storageRoot stores the
Merkle Patricia tree root for an account’s storage (Ethereum community, 2014).
Finally, codeHash stores the hash of the contract bytecode for an account.

Blockchain. The sum of the local storage of the nodes forms a decentralised
database (the blockchain) depicted as a grey rounded rectangle area in Figure 1.
Apart from learners’ data and public keys, the decentralised database stores smart
contracts that regulate transactions, as well as the transactions themselves.

Smart contracts. They are used to regulate two types of transactions, namely create
transactions and transfer transactions. The former type is used to register learner

data (xAPI statements) in the decentralised database, and also establishes in its
outputs (in the form of a new smart contract) the conditions that must be met in order
to transfer that data. These conditions may include a list of public keys that have
full/partial control over the learner data, or may define that any transfer transaction
must be digitally signed by an organisation and/or a learner. Transfer transactions
check the validity of the conditions specified in a smart contract before transferring
learner data to another node. These transactions must also specify, in a new smart
contract, the transfer conditions that bind the new node. Figure 2 shows an example
of a smart contract.

[Insert Figure 2 Here]

Figure 2. A smart contract written in Solidity

Storing xAPI statements on the Blockchain. The process of storing a xAPI statement
on the blockchain starts when a learning record provider sends a transfer
transaction, which triggers a message from the LRP’s EOA to their forwarding
contract. Among other things, the message contains an xAPI statement (signed by
the LRP) that describes the activity completed by the learner. The forwarding
contract forwards the message to the statement contract, which checks the transfer
conditions and forwards the message to the learner’s forwarding contract. If the
learner agrees with the content of the xAPI statement, they act as a validation oracle
(human arbitrator) that signs valid transactions (Xu et al., 2016). The learner then
sends a transfer transaction in form of a message from their EOA to their forwarding
contract, which sends the message to the statement contract. The latter issues a
create transaction after checking that both the LRP and the learner have signed the
contract, and notifies them that the transaction has been approved. The validated
transaction will be stored on the blockchain with the next mined block. The steps of
this process are depicted in Figure 3.

[Insert Figure 3 Here]
Figure 3. Storing xAPI statements on the blockchain

pragma solidity ^0.4.19;

contract Migrations {

 address public owner;

 // Define a function with the signature ‘last_completed_migration()’, which returns a uint

 uint public last_completed_migration;

 modifier restricted() {

 if (msg.sender == owner) _;

 }

 function Migrations() {

 owner = msg.sender;

 }

 // Define a function with the signature ‘setCompleted(uint)’

 function setCompleted(uint completed) restricted {

 last_completed_migration = completed;

 }

 function upgrade(address new_address) restricted {

 Migrations upgraded = Migrations(new_address);

 upgraded.setCompleted(last_completed_migration);

 }

}

Summary

This chapter discussed user model interoperability in education, and tried to address
issues arising from the need to implement data mining and learning analytics
responsibly. More precisely, it investigated the use of innovative and disruptive
emerging technologies, like blockchain, and the Experience API as a means of
regulating data ownership, access, and control, in order to increase the quality of
and trust in learner data.

The Experience API standard has already received considerable attention in the
literature. However, no previous study has investigated the combination of the
Experience API with the blockchain technology. Learning process logs in the form of
immutable Experience API statements are, in essence, provenance and thus can be
used to form assessments about the data quality, reliability or trustworthiness. Trust
in these statements can be further increased by storing them on a blockchain
because the disintermediation property of blockchain eliminates the need for a
trusted third party.

Recent research claims that the amount of effort required to develop a user model
that holds a comprehensive set of attributes cannot be carried out by a single
application (Dim & Kuflik, 2012). Moreover, existing learner data exchange
approaches based on decentralised architectures do not fully leverage the
advantages of sharing not only the control of the learner data but also the
infrastructure that stores that data. Theoretically, in current decentralised systems, a
sharing partner could exchange model parts with all other partners and own all
shared models by having a local copy. In blockchain technology, ownership and
control of learner models is regulated by smart contracts. Thus, even if a node has a
copy of all learner models, it needs the authorisation of a smart contract in order to
view or share that data. The literal sharing of infrastructure means that none of the
sharing parties controls all of the shared data by itself. This is an inherent property of
blockchain technology, which enables data sharing while at the same time allowing
sharing partners to own only part of it.

The advantages of distributed ledger technology combined with the those of the
Experience API could offer adaptive learning technologies a common data layer for
creating better learner models in terms of interoperability, portability, security, privacy
and trust. Future research could focus on existing issues like scalability and ways of
linking different blockchains.

Chapter questions

1. How can user modelling and interoperability of user models enhance learning
analytics?

2. What are the benefits of and challenges for interoperable learning systems?
3. In the context of personalised systems, what approaches have been proposed

to enhance users’ privacy and trust?
4. Why do the authors suggest the use of the Experience API standard for the

creation of learner models?
5. What are the main benefits of using distributed ledger technology for storing

learner models?

6. Which features/aspects of the Experience API does the use of a blockchain
improve and how?

Listed References

Alharby, M., & Moorsel, A. van. (2017). Blockchain-based Smart Contracts: A

Systematic Mapping Study. Proceedings of the Fourth International
Conference on Computer Science and Information Technology, United Arab
Emirates, 125–140. doi:10.5121/csit.2017.71011

Al-Khalil, F., Butler, T., O’Brien, L., & Ceci, M. (2017). Trust in Smart Contracts is a
Process, As Well. Proceedings of the 1st Workshop on Trusted Smart
Contracts, Malta, 74-83.

Antonopoulos, A. (2014). Bitcoin Security Model: Trust by Computation. O'Reilly
Radar. Retrieved from http://radar.oreilly.com/2014/02/bitcoin-security-model-
trust-by-computation.html

Aroyo, L., Dolog, P., Houben, G.-J., Kravcik, M., Naeve, A., Nilsson, M., & Wild, F.
(2006). Interoperability in Personalized Adaptive Learning. Journal of
Educational Technology & Society, 9(2), 4–18. Retrieved from
http://www.jstor.org/stable/jeductechsoci.9.2.4

Assad, M., Carmichael, D. J., Kay, J., & Kummerfeld, B. (2007). PersonisAD:
Distributed, Active, Scrutable Model Framework for Context-Aware Services.
In A. LaMarca, M. Langheinrich, & K. N. Truong (Eds.), Lecture Notes in
Computer Science: Vol. 4480. Pervasive Computing (pp. 55–72).
doi:10.1007/978-3-540-72037-9_4

Berkovsky, S., Eytani, Y., Kuflik, T., & Ricci, F. (2005). Privacy-Enhanced
Collaborative Filtering. UM05 Workshop on Privacy-Enhanced
Personalization, Edinburgh, UK, 75–83. Retrieved from
http://isr.uci.edu/pep05/papers/w9-proceedings.pdf

Berkovsky, S., Kuflik, T., & Ricci, F. (2008). Mediation of user models for enhanced
personalization in recommender systems. User Modeling and User-Adapted
Interaction, 18(3), 245–286. doi:10.1007/s11257-007-9042-9

U.S. Department of Education, Office of Educational Technology. (2012). Enhancing
teaching and learning through educational data mining and learning analytics:
An issue brief. Retrieved from https://tech.ed.gov/wp-
content/uploads/2014/03/edm-la-brief.pdf

BitShares community. (2014). Delegated Proof-of-Stake Consensus [Technology
Article]. Retrieved from https://bitshares.org/technology/delegated-proof-of-
stake-consensus/

Brusilovsky, P., & Millán, E. (2007). User Models for Adaptive Hypermedia and
Adaptive Educational Systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.),
Lecture Notes in Computer Science: Vol. 4321. The Adaptive Web (pp. 3–53).
doi:10.1007/978-3-540-72079-9_1

Buterin, V. (2015, August 7). On Public and Private Blockchains [Web log post].
Retrieved from https://blog.ethereum.org/2015/08/07/on-public-and-private-
blockchains/

Carmagnola, F., & Cena, F. (2009). User Identification for Cross-system
Personalisation. Journal of Information Science, 179(1–2), 16–32.
doi:10.1016/j.ins.2008.08.022

Carmagnola, F., Cena, F., & Gena, C. (2011). User model interoperability: a survey.
User Modeling and User-Adapted Interaction, 21(3), 285–331.
doi:10.1007/s11257-011-9097-5

Carmagnola, F., & Dimitrova, V. (2008). An Evidence-Based Approach to Handle
Semantic Heterogeneity in Interoperable Distributed User Models. In W. Nejdl,
J. Kay, P. Pu, & E. Herder (Eds.), Lecture Notes in Computer Science: Vol.
5149. Adaptive Hypermedia and Adaptive Web-Based Systems (pp. 73–82).
doi:10.1007/978-3-540-70987-9_10

Castro, M., & Liskov, B. (1999, February). Practical Byzantine Fault Tolerance. In P.
J. Leach & M. Seltzer (Chair), Third Symposium on Operating Systems
Design and Implementation. Symposium conducted at the meeting of the
USENIX Association, New Orleans, USA.

Cena, F. (2011). Integrating web service and semantic dialogue model for user
models interoperability on the web. Journal of Intelligent Information Systems,
36(2), 131–166. doi:10.1007/s10844-010-0126-3

Chrysafiadi, K., & Virvou, M. (2013). Student modeling approaches: A literature
review for the last decade. Expert Systems with Applications, 40(11), 4715–
4729. doi:10.1007/s10844-010-0126-3

Cocea, M., & Magoulas, G. D. (2015). Participatory Learner Modelling Design: A
methodology for iterative learner models development. Information Sciences,
321, 48–70. doi:10.1016/j.ins.2015.05.032

Corbi, A., & Burgos, D. (2014). Review of current student-monitoring techniques
used in elearning-focused recommender systems and learning analytics. The
Experience API & LIME model case study. International Journal of Interactive
Multimedia and Artificial Intelligence, 2(7), 44–52. doi:10.9781/ijimai.2014.276

De Nies, T., Salliau, F., Verborgh, R., Mannens, E., & Van de Walle, R. (2015).
TinCan2PROV: Exposing Interoperable Provenance of Learning Processes
Through Experience API Logs. Proceedings of the 24th International
Conference on World Wide Web, USA, 689–694.
doi:10.1145/2740908.2741744

Dim, E., & Kuflik, T. (2012). User Models Sharing and Reusability: A Component-
based Approach. Workshop and Poster Proceedings of the 20th Conference
on User Modeling, Adaptation, and Personalization, Montreal, Canada.

Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., & Halevy, A. (2003).
Learning to Match Ontologies on the Semantic Web. The VLDB Journal,
12(4), 303–319. doi:10.1007/s00778-003-0104-2

Dolog, P., & Schäfer, M. (2005). A Framework for Browsing, Manipulating and
Maintaining Interoperable Learner Profiles. In L. Ardissono, P. Brna, & A.
Mitrovic (Eds.), Lecture Notes in Computer Science: Vol. 3538. User Modeling
2005 (pp. 397–401). doi:10.1007/11527886_52

Ethereum community. (2014). Merkle Patricia Trie Specification (also Merkle Patricia
Tree) [Ethereum Homestead Documentation]. Retrieved from
https://github.com/ethereum/wiki/wiki/Patricia-Tree

Ethereum community. (2016a). Account Types, Gas, and Transactions [Ethereum
Homestead Documentation]. Retrieved from
http://www.ethdocs.org/en/latest/contracts-and-transactions/account-types-
gas-and-transactions.html

Ethereum community. (2016b). Dapps [Ethereum Homestead Documentation].
Retrieved from http://www.ethdocs.org/en/latest/contracts-and-
transactions/developer-tools.html#dapps

Ethereum community. (2016c). Ether [Ethereum Homestead Documentation].
Retrieved from http://www.ethdocs.org/en/latest/ether.html

Fairfield, J. A. T. (2014). Smart Contracts, Bitcoin Bots, and Consumer Protection.
Washington and Lee Law Review Online, 71(2), 35–50. Retrieved from
https://scholarlycommons.law.wlu.edu/wlulr-online/vol71/iss2/3/

Ghorbel, L., Zayani, C. A., & Amous, I. (2015). A Novel Architecture for Learner’s
Profiles Interoperability. In R. Lee (Ed.), Studies in Computational Intelligence:
Vol. 614. Computer and Information Science 2015 (pp. 97–108).
doi:10.1007/978-3-319-23467-0_7

Glaser, F., & Bezzenberger, L. (2015). Beyond Cryptocurrencies - A Taxonomy of
Decentralized Consensus Systems. Proceedings of the 23rd European
Conference on Information Systems, Münster, Germany.
doi:10.18151/7217326

Graf, S., & Kinshuk. (2014). Adaptive Technologies. In J. M. Spector, M. D. Merrill, J.
Elen, & M. J. Bishop (Eds.), Handbook of Research on Educational
Communications and Technology (pp. 771–779). New York, NY: Springer.

Groth, P., & Moreau, L. (2013, April 30). PROV-Overview [W3C Working Group
Note]. Retrieved from https://www.w3.org/TR/prov-overview/

Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., & Wilamowitz-
Moellendorff, M. (2005). Gumo – The General User Model Ontology. In L.
Ardissono, P. Brna, & A. Mitrovic (Eds.), Lecture Notes in Computer Science:
Vol. 3538. User Modeling 2005 (pp. 428–432). doi:10.1007/11527886_58

Iyilade, J., & Vassileva, J. (2013). A Framework for Privacy-Aware User Data
Trading. In S. Carberry, S. Weibelzahl, A. Micarelli, & G. Semeraro (Eds.),
Lecture Notes in Computer Science: Vol. 7899, User Modeling, Adaptation,
and Personalization (pp. 310–317). doi:10.1007/978-3-642-38844-6_28

Kaplanov, N. M. (2012). Nerdy Money: Bitcoin, The Private Digital Currency, And
The Case Against Its Regulation. Loyola Consumer Law Review, 25(1), 111–
174. Retrieved from https://lawecommons.luc.edu/lclr/

Karoudis, K., & Magoulas, G. D. (2016). Ubiquitous Learning Architecture to Enable
Learning Path Design across the Cumulative Learning Continuum.
Informatics, 3(4), 19. doi:10.3390/informatics3040019

Kay, J. (1999). A scrutable user modelling shell for user-adapted interaction.
(Doctoral thesis, Basser Department of Computer Science, University of

Sydney, Australia). Retrieved from
http://www.cs.usyd.edu.au/~judy/Homec/Pubs/thesis.pdf

Kay, J. (2008). Lifelong Learner Modeling for Lifelong Personalized Pervasive
Learning. IEEE Transactions on Learning Technologies, 1(4), 215–228.
doi:10.1109/TLT.2009.9

Kay, J., & Kummerfeld, B. (2006). Scrutability, User Control and Privacy for
Distributed Personalization. Proceedings of the CHI2006 Workshop on
Privacy-Enhanced Personalization, Canada 21–22.

Kay, J., Kummerfeld, B., & Lauder, P. (2002). Personis: A Server for User Models. In
P. De Bra, P. Brusilovsky, & R. Conejo (Eds.), Lecture Notes in Computer
Science: Vol. 2347. Adaptive Hypermedia and Adaptive Web-Based Systems
(pp. 203–212). doi:10.1007/3-540-47952-X_22

Kiayias, A., Russell, A., David, B., & Oliynykov, R. (2017). Ouroboros: A Provably
Secure Proof-of-Stake Blockchain Protocol. In J. Katz & H. Shacham (Eds.),
Lecture Notes in Computer Science: Vol. 10401. Advances in Cryptology –
CRYPTO 2017 (pp. 357–388). doi:10.1007/978-3-319-63688-7_12

King, S., & Nadal, S. (2012). PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-
Stake. Retrieved from https://peercoin.net/assets/paper/peercoin-paper.pdf

Kobsa, A. (2007). Generic User Modeling Systems. In P. Brusilovsky, A. Kobsa, &
W. Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web
Personalization (Vol. 4321, pp. 136–154). Berlin, Heidelberg: Springer.

Kobsa, A., & Fink, J. (2006). An LDAP-based User Modeling Server and its
Evaluation. User Modeling and User-Adapted Interaction, 16(2), 129–169.
doi:10.1007/s11257-006-9006-5

Kobsa, A., & Schreck, J. (2003). Privacy Through Pseudonymity in User-adaptive
Systems. ACM Transactions on Internet Technology, 3(2), 149–183.
doi:10.1145/767193.767196

Kwon, J. (2014). Tendermint: Consensus without mining [Specification]. Retrieved
from https://tendermint.com/static/docs/tendermint.pdf

Lamport, L., Shostak, R., & Pease, M. (1982). The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3), 382–401. doi:10.1145/357172.357176

Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert, S., & Saxena, P. (2015).
SCP: A Computationally-Scalable Byzantine Consensus Protocol For
Blockchains. Retrieved from
https://eprint.iacr.org/2015/1168/20151214:030215

Martínez-Villaseñor, M. de L., González-Mendoza, M., & Danvila Del Valle, I. (2014).
Enrichment of Learner Profile with Ubiquitous User Model Interoperability.
Computación y Sistemas, 18(2), 359–374. doi:10.13053/CyS-18-2-2014-037

Mazières, D. (2016, February 25). The Stellar Consensus Protocol: A Federated
Model for Internet-level Consensus (White Paper). Retrieved from
https://www.stellar.org/papers/stellar-consensus-protocol.pdf

McCalla, G., Vassileva, J., Greer, J., & Bull, S. (2000). Active Learner Modelling. In
G. Gauthier, C. Frasson, & K. VanLehn (Eds.), Lecture Notes in Computer

Science: Vol. 1839. Intelligent Tutoring Systems (pp. 53–62). doi:10.1007/3-
540-45108-0_9

Mehta, B. (2007). Learning from What Others Know: Privacy Preserving Cross
System Personalization. In C. Conati, K. McCoy, & G. Paliouras (Eds.),
Lecture Notes in Computer Science: Vol. 4511. User Modeling 2007 (pp. 57–
66). doi:10.1007/978-3-540-73078-1_9

Mehta, B., Niederée, C., Stewart, A., Degemmis, M., Lops, P., & Semeraro, G.
(2005). Ontologically-Enriched Unified User Modeling for Cross-System
Personalization. In L. Ardissono, P. Brna, & A. Mitrovic (Eds.), Lecture Notes
in Computer Science: Vol. 3538. User Modeling 2005 (pp. 119–123).
doi:10.1007/11527886_16

Morabito, V. (2017). Smart Contracts and Licensing. In V. Morabito (Ed.), Business
Innovation Through Blockchain: The B3 Perspective (pp. 101–124). Cham,
Switzerland: Springer.

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved
from https://bitcoin.org/bitcoin.pdf

Niu, X., McCalla, G., & Vassileva, J. (2003). Purpose-Based User Modelling in a
Multi-agent Portfolio Management System. In P. Brusilovsky, A. Corbett, & F.
de Rosis (Eds.), Lecture Notes in Computer Science: Vol. 2702. User
Modeling 2003 (pp. 398–402). doi:10.1007/3-540-44963-9_56

Nofer, M., Gomber, P., Hinz, O., & Schiereck, D. (2017). Blockchain. Business &
Information Systems Engineering, 59(3), 183–187. doi:10.1007/s12599-017-
0467-3

Normak, P., Pata, K., & Kaipainen, M. (2012). An Ecological Approach to Learning
Dynamics. Journal of Educational Technology & Society, 15(3), 262–274.
Retrieved from http://www.jstor.org/stable/jeductechsoci.15.3.262

QuantumMechanic. (2011, July 11). Proof of stake instead of proof of work [Online
forum comment]. Retrieved from
https://bitcointalk.org/index.php?topic=27787.0

Schaffarzyk, H. (2015). The enhanced version of Experience API (xAPI Extended)
[Open Source Project]. Retrieved from https://personal-data-locker.org/en/

Schwartz, D., Youngs, N., & Britto, A. (2014). The Ripple Protocol Consensus
Algorithm (White Paper). Retrieved from
https://ripple.com/files/ripple_consensus_whitepaper.pdf

Sclater, N., Peasgood, A., & Mullan, J. (2016). Learning Analytics in Higher
Education: A review of UK and international practice. Retrieved from Jisc
website: https://www.jisc.ac.uk/reports/learning-analytics-in-higher-education

Seijas, P. L., Thompson, S., & McAdams, D. (2017). Scripting Smart Contracts for
Distributed Ledger Technology. Proceedings of the 1st Workshop on Trusted
Smart Contracts, Malta. Retrieved from
http://fc17.ifca.ai/wtsc/Scripting%20smart%20contracts%20for%20distributed
%20ledger%20technology.pdf

Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American
Behavioral Scientist, 57(10), 1380–1400. doi:10.1177/0002764213498851

Stark, J. (2016, June 4). Making Sense of Blockchain Smart Contracts [Online
article]. Retrieved from https://www.coindesk.com/making-sense-smart-
contracts/

Swanson, T. (2015). Consensus-as-a-service: A Brief Report on the Emergence of
Permissioned, Distributed Ledger Systems. Retrieved from
https://pdfs.semanticscholar.org/f3a2/2daa64fc82fcda47e86ac50d555ffc24b8
c7.pdf

Szabo, N. (1997). Formalizing and Securing Relationships on Public Networks. First
Monday, 2(9). doi:10.5210/fm.v2i9.548

Tikhomirov, S. (2017). Ethereum: State of Knowledge and Research perspectives. In
A. Imine, J. M. Fernandez, J.-Y. Marion, L. Logrippo, & J. Garcia-Alfaro
(Eds.), Lecture Notes in Computer Science: Vol. 10723. Foundations and
Practice of Security (pp. 206–221). doi:10.1007/978-3-319-75650-9_14

U.S. Department of Defence, Advanced Distributed Learning (ADL) Initiative. (2016).
xAPI-Spec [Specification]. Retrieved from https://github.com/adlnet/xAPI-
Spec/

U.S. Department of Defence, Advanced Distributed Learning (ADL) Initiative. (2017).
xAPI Technical Specifications [Specification]. Retrieved from
https://www.adlnet.gov/adl-research/performance-tracking-
analysis/experience-api/xapi-technical-specifications/

Van Der Sluijs, K., & Houben, G.-J. (2006). A generic component for exchanging
user models between web-based systems. International Journal of Continuing
Engineering Education and Life Long Learning, 16(1), 64–76.
doi:10.1504/IJCEELL.2006.008918

Vassileva, J. (2001). Distributed User Modelling for Universal Information Access. In
C. Stephanidis (Ed.), Proceedings of the 9th International Conference on
Human-Computer Interaction: Vol. 3. Universal access in HCI: Towards an
information society for all (pp. 122–126). New Orleans, USA: Lawrence
Erlbaum.

Viviani, M., Bennani, N., & Egyed-Zsigmond, E. (2010). A Survey on User Modeling
in Multi-Application Environments. Proceedings of the Third International
Conference on Advances in Human-Oriented and Personalized Mechanisms,
Technologies and Services, Nice, France, 111–116.
doi:10.1109/CENTRIC.2010.30

Walport, M. (2015). Distributed Ledger Technology: beyond block chain. London,
UK: Government Office for Science. Retrieved from
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
492972/gs-16-1-distributed-ledger-technology.pdf

Walsh, E., O’Connor, A., & Wade, V. (2012). Evaluation of a Domain-aware
Approach to User Model Interoperability. Proceedings of the 23rd ACM
Conference on Hypertext and Social Media, New York, USA, 197–206.
doi:10.1145/2309996.2310030

Walsh, E., O’Connor, A., & Wade, V. (2013). The FUSE domain-aware approach to
user model interoperability: A comparative study. Proceedings of the 14th

International Conference on Information Reuse Integration (IRI), San
Francisco, USA, 554–561. doi:10.1109/IRI.2013.6642518

Wang, Y., Cena, F., Carmagnola, F., Cortassa, O., Gena, C., Stash, N., & Aroyo, L.
(2008). RSS-Based Interoperability for User Adaptive Systems. In W. Nejdl, J.
Kay, P. Pu, & E. Herder (Eds.), Lecture Notes in Computer Science: Vol.
5149. Adaptive Hypermedia and Adaptive Web-Based Systems (pp. 353–
356). doi:10.1007/978-3-540-70987-9_52

Wegner, P. (1996). Interoperability. ACM Computing Surveys, 28(1), 285–287.
doi:10.1145/234313.234424

Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A. B., & Chen, S.
(2016). The Blockchain as a Software Connector. Proceedings of the 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice,
Italy, 182–191. doi:10.1109/WICSA.2016.21

Yedlin, R. (2017). What’s a ÐApp? [Web article]. Retrieved from
https://www.stateofthedapps.com/whats-a-dapp

Zhang, E. (2016). A Byzantine Fault Tolerance Algorithm for Blockchain (White
Paper). Retrieved from http://docs.neo.org/en-us/node/whitepaper.html

Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain
Technology: Architecture, Consensus, and Future Trends. Proceedings of the
2017 IEEE International Congress on Big Data, Honolulu, USA, 557–564.
doi:10.1109/BigDataCongress.2017.85

	S3-3_Karoudis_Konstantinos-complete
	Figure 1
	Figure 3

