
BIROn - Birkbeck Institutional Research Online

Reidl, Felix and Sánchez Villaamil, F. and Stavropoulos, K. (2018)
Characterising bounded expansion by neighbourhood complexity.
Characterising bounded expansion by neighbourhood complexity 75 ,
pp. 152-168. ISSN 0195-6698.

Downloaded from: http://eprints.bbk.ac.uk/24753/

Usage Guidelines:
Please refer to usage guidelines at http://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/199197606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/24753/
http://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Characterising Bounded Expansion by
Neighbourhood Complexity

Felix Reidl Fernando Sánchez Villaamil
Konstantinos Stavropoulos

RWTH Aachen University
{reidl,fernando.sanchez,stavropoulos}@cs.rwth-aachen.de.

Abstract
We show that a graph class G has bounded expansion if and only if

it has bounded r-neighbourhood complexity, i.e. for any vertex set X
of any subgraph H of G ∈ G, the number of subsets of X which are
exact r-neighbourhoods of vertices of H on X is linear in the size of
X. This is established by bounding the r-neighbourhood complexity
of a graph in terms of both its r-centred colouring number and its
weak r-colouring number, which provide known characterisations to
the property of bounded expansion.

1 Introduction
Graph classes of bounded expansion (and their further generalisation, nowhere
dense classes) have been introduced by Nešetřil and Ossona de Mendez [23,
24, 25] as a general model of structurally sparse graph classes. They include
and generalise many other natural sparse graph classes, among them all
classes of bounded degree, classes of bounded genus, and classes defined by
excluded (topological) minors. Nowhere dense classes even include classes
that locally exclude a minor, which in turn generalises graphs with locally
bounded treewidth.

The appeal of this notion and its applications stems from the fact that
bounded expansion has turned out to be a very robust property of graph classes
with various seemingly unrelated characterisations (see [19, 25]). These include
characterisations through the density of shallow minors [23], quasi-wideness [3]
low treedepth colourings [23], and generalised colouring numbers [31]. The
latter two are particularly relevant towards algorithmic applications, as we
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will discuss in the sequel. Furthermore, there is good evidence that real-
world graphs (often dubbed ‘complex networks’) might exhibit this notion
of structural sparseness [6, 27], whereas stricter notions (planar, bounded
degree, excluded (topological) minors, etc.) do not apply.

It seems unlikely that bounded-expansion and nowhere dense classes
admit global Robertson-Seymour style decompositions as they are available for
classes excluding a fixed minor [28], a topological minor [21], an immersion [30],
or an odd minor [5]. However, Nešetřil and Ossona de Mendez showed [24] that
bounded-expansion and nowhere dense classes admit a ‘local’ decomposition, a
so-called low r-treedepth colouring, in the following sense: for every integer r,
every graph G from a bounded expansion (nowhere dense) class can be
coloured with f(r) (respectively O(no(1))) colours such that every union
of p < r colour classes induces a graph of treedepth at most p. We denote by
χr(G) the minimal number of colours needed for a low r-treedepth colouring
of G. These types of colourings generalise the star-colouring number [25]
introduced by Fertin, Raspaud, and Reed [12]. In that context, low r-treedepth
colourings are usually called r-centred colourings1 (the precise definition of
which we defer to Section 2).

This ‘decomposition by colouring’ has direct algorithmic implications. For
example, counting how often an h-vertex graph appears in a host graph G as
a subgraph, induced subgraph or homomorphism is possible in linear time [24]
through the application of low r-centred (r-treedepth) colourings. A more
precise bound for the running time of O(|c(G)|2h6hh2 · |G|) was shown by
Demaine et al. [6] if an appropriate low treedepth colouring c is provided as
input. Low r-centred (r-treedepth) colourings can be further used to check
whether an existential first-order sentence is true [25] or to approximate the
problems F-Deletion and Induced-F-Deletion to within a factor that
only depends on the precise bounded expansion graph class G belongs to and
the set F [27].

Another characterisation of bounded expansion is obtained via the weak
r-colouring numbers, denoted by wcolr(G). The name ‘colouring number’
reflects the fact that the weak 1-colouring number is sometimes also called
the colouring number of the graph, which only differs to the degeneracy of a
graph by one. Roughly, the weak colouring number describes how well the
vertices of a graph can be linearly ordered such that for any vertex v, the
number of vertices that can reach v via short paths that use higher-order
vertices is bounded. We postpone the precise definition of weak r-colouring

1 Depending on the way r-treedepth colourings are defined, r-centred colourings might
appear in the literature as r−1-treedepth colourings, as for example in [25]. For convenience,
here we define them in a way so that the gap in the depth r is alleviated.
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numbers to Section 2, but let us emphasise their utility: Grohe, Kreutzer,
and Siebertz [20] used weak r-colouring numbers to prove the milestone result
that first-order formulas can be decided in almost linear time for nowhere-
dense classes (improving upon a result by Dvořák, Král, and Thomas for
bounded expansion classes [11] and the preceding work for smaller sparse
classes [4, 13, 17, 29]).

Our work here centres on a new characterisation, motivated by recent
progress in the area of kernelisation. This field, a subset of parametrised
complexity theory, formalises polynomial-time preprocessing of computa-
tionally hard problems. For an introduction to kernelisation we refer the
reader to the seminal work by Downey and Fellows [8]. Gajarský et al. [18]
extended the meta-kernelisation framework initiated by Bodlaender et al. [2]
for bounded-genus graphs to nowhere-dense classes (notable intermediate
results where previously obtained for excluded-minor classes [14] and classes
excluding a topological minor [22]). In a largely independent line of research,
Drange et al. recently provided a kernel for Dominating Set on nowhere-
dense classes [9]. Previous results showed kernels for planar graphs [1],
bounded-genus graphs [2], apex- minor-free graphs [14], graphs excluding a
minor [15] and graphs excluding a topological minor [16].

A feature exploited heavily in the above kernelisation results for bounded
expansion classes is that for any graphG from such a class, every subsetX ⊆ G
has the property that the number of ways vertices from V (G) \X connect
to X is linear in the size of X. Formally, we have that

|{N(v) ∩X}v∈V (G)| 6 c · |X|

where c only depends on the graph class from which G was drawn. One
wonders whether this property of bounded expansion classes can be turned
into a characterisation. It is, however, missing one important ingredient
present in all known notions related to bounded expansion: a notion of depth
via an appropriate distance-parameter. This brings us to the central notion of
our work: If we denote by N r[◦] the closed r-neighbourhood around a vertex,
we define the r-neighbourhood complexity as

νr(G) := max
H⊆G,∅6=X⊆V (H)

|{N r[v] ∩X}v∈H |
|X|

.

That is, the value νr tells in how many different ways vertices can be joined
to a vertex set X via paths of length at most r. Note that we define the value
over all possible subgraphs: otherwise uniform dense graphs (e.g. complete
graphs) would yield very low values2.

2While this might be an interesting measure in and of itself, in this work we want to
develop a measure for sparse graph classes and therefore choose the above definition.
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The main result of this paper is the following characterisation of bounded
expansion through neighbourhood complexity. We say that a graph class G
has bounded neighbourhood complexity if there exists a function f such that
for every r it holds that νr(G) 6 f(r).

Theorem 1. A graph class G has bounded expansion if and only if it has
bounded neighbourhood complexity.

Specifically, we show that the following relations between the r-neighbourhood
complexity νr, the r-centred colouring number χr, and the weak r-colouring
number wcolr of a graph.

Theorem 2. For all graphs G and all non-negative integers r it holds that

νr(G) 6 (r + 1)2χ2r+2(G)r+2
.

Theorem 3. For every graph G and all non-negative integers r it holds that

νr(G) 6 1
2(2r + 2)wcol2r(G)wcol2r(G) + 1.

The characterisation of bounded expansion through generalised colouring
numbers in [31] was provided by relating r-centred colourings to generalised
colouring numbers. We believe that this interaction of the two notions is
also highlighted in this paper, in the sense that when one can use one of
the two notions as a direct proof tool, it might often be the case that the
other might also serve as a direct proof tool, the most appropriate to be
chosen depending on the occasion. As we believe it is also the case with
neighbourhood complexity, it is still, as a consequence, useful to have access
to a result through both parameters, since the general known bounds relating
r-centred colourings and generalised colouring numbers seem to be very
loose and most probably not optimal. For example, it is still unclear to our
knowledge if one is always smaller than the other. Moreover, bounds for both
parameters are not in general known for all kinds of specific graph glasses. It
can then be the case that for different questions and different graph classes,
r-centred colourings are more appropriate than generalised colouring numbers
or vice versa.

2 Preliminaries
The main challenge is to prove that graphs from a graph class of bounded
expansion have low neighbourhood complexity. To this end, some definitions
will be necessary to prove Theorems 2 and 3.
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2.1 Graphs and Signatures
For an integer n we write [n] = {1, . . . , n}. All logaritms in this paper are of
base 2 and we only write log x instead of log2 x. We only consider non-empty,
finite and simple graphs. For a graph G we write V (G) and E(G) to denote
vertices and edges of G, respectively. We use the notations |G| = |V (G)|
and ‖G‖ = |E(G)|. Following the notation of Diestel [7], we denote an edge
between two nodes u, v ∈ V (G) by uv. In the following we will sometimes
use the symbol ◦ to denote an arbitrary vertex and it should be understood
that each occurence of ◦ can denote a different vertex. The statement ‘there
exist two edges v◦,w◦’ therefore means ‘there exist two edge va1,va2’ and we
will prefer the former if a1, a2 are not referenced later.

For a vertex v ∈ V (G), we denote by N r
G(v) := {u ∈ V (G) | distG(u, v) =

r} the r-th neighbourhood around v for r > 0. Analogously, the r-th closed
neighbourhood around v is defined as N r

G[v] := ⋃r
i=0N

i(v). In particular,
N0
G(v) = N0

G[v] = {v}. We usually omit the subscript G if the context is
clear.

A signature σ over a universe U is a sequence of elements (ui)16i6`, ui ∈ U
where ` is the length of the signature, also denoted by |σ|. Accordingly, an
`-signature is simply a signature of length `. We use the notation σ[i] := ui
to signify the i-th element of σ. A signature is proper if all its elements are
distinct. We assume that the elements of U are ordered. We assume an order
on all signatures (say, lexicographic). Thus for a set S of signatures and a
function f : S → A for an arbitrary set A, we employ the notation (f(σ))σ∈S to
obtain sequences over elements of A derived from that ordering. For example,
(|σ|)σ∈{σa,σb,σc} is shortand for the sequence (|σa|, |σb|, |σc|) if σa 6 σb 6 σc
according to our (arbitrary) total order.

For a path P = x1 . . . x` we write P [xi, xj] = xi . . . xj to denote the
subpath of P starting at xi and ending at xj. As such, we treat paths as
ordered. Similarly, for an integer 1 6 i 6 |P | we denote by P [i] the i-th
vertex on the path and we call i the index of that vertex on P . Hence, for
non-empty paths, P [1] is the start and P [|P |] the end of the path. If G is a
graph coloured by c : V (G)→ [ξ] for some ξ ∈ N and P is a path in G, then
we write σP to denote the |P |-signature over [ξ] with σP [i] = c(P [i]). For a
fixed signature σ, we say that P is a σ-path if σP = σ.

For a fixed signature σ over [ξ], we define the σ-neighbourhood of a vertex v
in G as

Nσ(v) := {w ∈ V (G) | ∃vPw such that σvPw = σ}

Note that Nσ(v) ⊆ N |σ|(v) and that Nσ(v) = ∅ whenever σ[1] 6= c(v). We
use the following extension to vertex sets X ∈ V (G) and sets of signatures S
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over [ξ]:

NS(v) :=
⋃
σ∈S

Nσ(v) Nσ(X) :=
⋃
v∈X

Nσ(v) NS(X) :=
⋃
v∈X

⋃
σ∈S

Nσ(v)

Similarly, the σ-in-neighbourhood of a vertex v is defined

N−σ(v) := {w ∈ V (G) | ∃wPv such that σwPv = σ}

and we extend this notation to vertex and signature sets in the same manner
as above:

N−S(v) :=
⋃
σ∈S

N−σ(v) N−σ(X) :=
⋃
v∈X

N−σ(v) N−S(X) :=
⋃
v∈X

⋃
σ∈S

N−σ(v)

The following basic fact about σ-neighbourhoods for proper signatures σ is
easy to verify.

Observation 1. Let u, v ∈ V (G) be distinct vertices and uP◦, vP◦ be two
σ-paths for some proper signature σ. Then for any x ∈ uσ◦ ∩ vσ◦ it holds
that x has the same index on both uσ◦ and vσ◦ and that xs colour appears
exactly once in uP◦ ∪ vP◦.

Finally the lexicographic product G1 • G2 is the graph with vertices V (G1)×
V (G2), where two nodes (u, x) and (v, y) are connected by an edge iff either
a) uv ∈ E(G1) or b) u = v and xy ∈ E(G2).

2.2 Grad and Expansion
The property of bounded expansion was introduced by Nešetřil and Ossona de
Mendez using the notion of shallow minors [23, 24]: the basic idea is to exclude
different minors depending on how ‘local’ the contracted portions of the graph
is. Building on Dvořák’s work [10], Nešetřil, Ossona de Mendez, and Wood
later introduced an equivalent definition via shallow topological minors [26].
This seem surprising at first, since graphs defined via (unrestricted) forbidden
minors are vastly different objects than graphs defined via forbidden topological
minors. We will only introduce the topological variant here.

Definition 1 (Topological minor embedding). A topological minor embedding
of a graph H into a graph G is a pair of functions φV : V (H) → V (G),
φE : E(H)→ 2V (H) where φV is injective and for every uv ∈ H we have that

1. φE(uv) is a path in G with endpoints φV (u), φV (v) and
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2. for every u′v′ ∈ H with u′v′ 6= uv the two paths φE(uv), φE(u′v′) are
internally vertex-disjoint.

We define the depth of the topological minor embedding φV , φE as the half-
integer (maxuv∈H |φE(uv)| − 1)/2, i.e. an embedding of depth r will map the
edges of H onto paths in G of length at most 2r + 1.

Accordingly, if H has a topological minor embedding of depth r into G we
say that H is a an r-shallow topological minor of G and write H 4r

t G. Note
that this relationship is monotone in the sense that an r-shallow topological
minor of G is also an r + 1-shallow topological minor of G.

Definition 2 (Grad and bounded expansion). For a graph G and an in-
teger r > 0, we define the topologically greatest reduced average density
(top-grad) at depth r as

∇̃r(G) = max
H4rtG

‖H‖
|H|

.

We extend this notation to graph classes as ∇̃r(G) = supG∈G ∇̃r(G). A graph
class G then has bounded expansion if there exists a function f : N→ R such
that for all r we have that ∇̃r(G) 6 f(r).

2.3 r-Centred Colourings and Weak r-Colouring Num-
ber

Equivalent definitions for classes of bounded expansion are related to the
r-centred colouring number and the weak r-colouring number of graphs.

Definition 3 (r-centred colourings). An r-centred colouring of a graph G is
a vertex colouring such that, for any (induced) connected subgraph H, either
some colour c(H) colours exactly one node (a centre) in H or H gets at least
r colours.

The minimum number of colours of an r-centred colouring of G is denoted by
χr(G). Let us see the characterisation of bounded expansion via χr.

Proposition 1 (Nešetřil, Ossona de Mendez [23]). Let G be a graph class of
bounded expansion. Then there exists a function fc such that for every r ∈ N
and every G ∈ G it holds that χr(G) 6 fc(r).

Let Π(G) be the set of linear orders on V (G) and let � ∈ Π(G). We represent
� as an injective function L : V (G)→ N with the property that v � w if and
only if L(v) 6 L(w).

A vertex u is weakly r-reachable from v with respect to the order L, if
there is a path P of length at most r from v to u such that L(u) 6 L(w) for
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all w ∈ V (P ). Let WReachr[G,L, v] be the set of vertices that are weakly
r-reachable from v with respect to L. The weak r-colouring number wcolr(G)
is now defined as

wcolr(G) = min
L∈Π(G)

max
v∈V (G)

|WReachr[G,L, v]|.

For a set of vertices X ⊆ V (G), we let

WReachr[G,L,X] =
⋃
v∈X

WReachr[G,L, v].

Zhu [31] showed that a graph class has bounded expansion if and only if the
weak r-colouring number wcolr of every member is bounded by a function
that only depends on r.

2.4 Neighbourhood Complexity

Definition 4 (Neighbourhood complexity). For a graphG the r-neighbourhood
complexity is a function νr defined via

νr(G) := max
H⊆G,∅6=X⊆V (H)

|{N r[v] ∩X}v∈V (H)|
|X|

.

We extend this definition to graph classes G via νr(G) := supG∈G νr(G).

Alternatively, we can define the neighbourhood complexity via the index of
an equivalence relation. This turns out to be a useful perspective in the
subsequent proofs. For r ∈ N and X ⊆ V (G), we define the (X, r)-twin
equivalence over V (G) as

u 'G,Xr v ⇐⇒ N r[u] ∩X = N r[v] ∩X

which gives rise to the alternative definition

νr(G) = max
H⊆G,∅6=X⊆V (G)

|V (H)/'H,Xr |
|X|

.

We will usually fix a graph in the following and hence omit the superscript G
of this relation. Recall that we say that a graph class G has bounded neigh-
bourhood complexity if there exists a function f such that for every r it holds
that νr(G) 6 f(r).
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3 Neighbourhood Complexity and r-Centred
Colourings

This section is dedicated to proving the following relation between the r-
neighbourhood complexity and the (2r + 2)-centred colouring number of a
graph.

Theorem 2. For all graphs G and all non-negative integers r it holds that

νr(G) 6 (r + 1)2χ2r+2(G)r+2
.

For the remainder of this section, we fix a graph G, a subset of vertices
∅ 6= X ⊆ V (G), an integer r and a (2r + 2)-centred colouring c : V (G)→ [ξ]
where ξ = χ2r+2(G). We will assume that G and X are chosen such that
|V (G)/'G,Xr | = νr(G) · |X|. For readability we will drop the superscript G
from 'G,Xr in the following.

In the following we introduce a sequence of equivalence relations over V (G)
and prove that they successively refine 'Xr . To that end, define S6r to be the
set of all signatures over [ξ] of length at most r. The subsequent lemmas will
elucidate the connection between centred colourings and proper signatures.

Lemma 1. For any proper signature σ ∈ S6r and any vertices u, v ∈ V (G),
either Nσ(u) ∩Nσ(v) = ∅ or Nσ(u) = Nσ(v).

Proof. Assume there exists x ∈ Nσ(u)∩Nσ(v) but Nσ(u) 6= Nσ(v). Without
loss of generality, let y ∈ Nσ(v) \Nσ(u).

Fix a σ-path Pux and a σ-path Pvx. Let s ∈ Pux ∩ Pvx be the first vertex in
which both paths intersect (since both paths end in x, such a vertex must
exist). Further, fix a σ-path Pvy. Now if Pvy ∩ Pux is non-empty, then y is
σ-reachable from u: by Observation 1, there would be a vertex z ∈ Pvy ∩ Pux
that has the same index on both paths. Since σ is proper, the subpath of
Pvy[z, y] cannot share a vertex with Pux[u, z], thus we can construct a σ-path
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by first taking the subpath Pux[u, z] and then the subpath Pvy[z, y]. This
path would mean that y ∈ Nσ(u), contradicting our choice of y.

Hence, assume Pvy and Pux do not intersect. But then the graph Pux ∪
Pvx ∪ Pvy is connected and contains every colour of σ at least twice. Since
|σ| 6 2r + 1 this contradicts our assumption that the colouring c is (2r + 2)-
centred.

We see that a single proper signature σ imposes a very restricted structure
on the respective σ-neighbourhoods in the graph. Even more interesting is
the interaction of proper signatures with each other. To that end, let us
introduce the notion of (X, σ)-equivalence: vertices u and v are equivalent if
their respective σ-neighbourhoods in X are the same, i.e.

u 'Xσ v ⇐⇒ Nσ(u) ∩X = Nσ(v) ∩X.

Lemma 2. Let σ1, σ2 be a pair of proper signatures. Let further Yσ1,σ2 =
N−σ1(X) ∩N−σ2(X) be all vertices that can reach at least one vertex in X
via a σ1-path and at least one vertex via a σ2-path.

Fix two arbitrary equivalence classes Cσ1 ∈ Yσ1,σ2/'Xσ1 and Cσ2 ∈ Yσ1,σ2/'Xσ2.
Then either Cσ1 ∩ Cσ2 = ∅, Cσ1 ⊆ Cσ2, or Cσ1 ⊇ Cσ2.

Proof. The statement is trivial if σ1 = σ2 or Cσ1 = Cσ2 . Otherwise, assume
that there exist Cσ1 6= Cσ2 such that indeed Cσ1 and Cσ2 are not related in
the three above ways. Since this is impossible when |Cσ1| = 1 or |Cσ2 | = 1, we
know that there exists vertices u, v, w ∈ Yσ1,σ2 with u ∈ Cσ1\Cσ2 , v ∈ Cσ2\Cσ1

and w ∈ Cσ1 ∩ Cσ2 .
The respective membership in these classes tell us the following about the

vertices u, v, w:

Nσ1(u) ∩X = Nσ1(w) ∩X 6= Nσ1(v) ∩X and
Nσ2(u) ∩X 6= Nσ2(w) ∩X = Nσ2(v) ∩X.

Using Lemma 1 we can strengthen this statement: Nσ1(u) ∩Nσ1(v) = ∅ and
Nσ2(u) ∩Nσ2(v) = ∅ and since u, v, w are contained in Yσ1,σ2 , we know that
all the involved neighbourhoods intersect X.

Therefore, we can pick distinct vertices x1, y1, x2, y2 ∈ X such that x1 ∈
Nσ1(u), y1 ∈ Nσ1(v) and x2 ∈ Nσ2(u), y2 ∈ Nσ2(v).
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Since Nσ1(w) = Nσ1(u), we can connect the vertices u,w with two (not
necessarily disjoint) σ1-paths P σ1

u , P σ1
w that start both in x1. Further, there

exists a σ1-path P σ1
v from y1 to v. If P σ1

v would intersect either P σ1
u or P σ1

w ,
we could not have that Nσ1(v) ∩ Nσ1(u) = ∅ according to Lemma 1. We
conclude that indeed P σ1

v is disjoint from both P σ1
u and P σ1

w .
We repeat the same construction for x2, y2 and the signature σ2 to obtain

paths P σ2
u , P σ2

v , P σ2
w . This time, P σ2

u is necessarily disjoint from both P σ2
v and

P σ2
w (cf. figure above). We reach a contradiction: observe that the graph

induced by the paths P σ1
u , P σ1

v , P σ1
w , P σ2

u , P σ2
v , P σ2

w is connected, contains every
colour of σ1 ∪ σ2 at least twice and in total at most 2r + 1 colours. This is
impossible if c was indeed (2r + 2)-centred.

For the next lemma we extend the notion of (X, σ)-equivalence to sets of
proper signatures S. We define the (X,S)-equivalence relation on the vertices
of G as follows:

u 'XS v ⇐⇒ for all σ ∈ S, Nσ(u) ∩X = Nσ(v) ∩X

Lemma 3. Let Ŝ ⊆ S6r be a set of proper signatures and let WŜ =⋂
σ∈Ŝ N

−σ(X) be those vertices in G which have a non-empty σ-neighbourhood
in X for every σ ∈ Ŝ. Then |WŜ/'XŜ | 6 |Ŝ| · |X|.

Proof. Define the set family F := ⋃
σ∈Ŝ(WŜ/'Xσ ) of the classes of all equiva-

lence relations defined via a signature contained in Ŝ. By Lemma 2 and our
choice of WŜ , every pair B1, B2 ∈ F satisfies B1 ∩ B2 ∈ {∅, B1, B2} (i.e. F
is a laminar family).

Consider a class B ∈ WŜ/'XŜ . Then B is the result of a intersection of at
most |Ŝ| classes in F . Since B 6= ∅ and F is laminar, it follows that B ∈ F .
We conclude that

|WŜ/'
X
Ŝ | 6 |F| 6 |Ŝ| · |X|,

where the second inequality follows from Lemma 1.
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In order to apply the above lemma it is left to bound the number of possible r-
neighbourhoods in X by σ-neighbourhoods of proper signatures. We establish
this bound by successively refining the (X, r)-twin equivalence. The following
figure gives an overview over the proof (using relations yet to be introduced).

u 'Xr−1 v ⇐⇒ N r−1[u] ∩X = N r−1[v] ∩X~www Lemma 4

u 'XS6r v ⇐⇒
(
Nσ(u) ∩X

)
σ∈S6r

=
(
Nσ(v) ∩X

)
σ∈S6r~www Lemma 5

u 'XŜ6r v ⇐⇒
(
N σ̂
Ĝ

(u1) ∩X |σ̂|
)
σ̂∈Ŝ6r

=
(
N σ̂
Ĝ

(v1) ∩X |σ̂|
)
σ̂∈Ŝ6r

Where the last relation is defined with the help of an auxiliary graph Ĝ and
signature set Ŝ6r whose construction is described later. The bound on the
index of this last relation will prove Theorem 2.

Lemma 4. The equivalence relation 'XS6r over V (G) defined via

u 'XS6r v ⇐⇒
(
Nσ(u) ∩X

)
σ∈S6r

=
(
Nσ(v) ∩X

)
σ∈S6r

is a refinement of 'Xr−1.

Proof. Assume u 'XS6r v. We need to prove that N r−1[u] ∩X = N r−1[v] ∩X.
The equivalence of u and v implies that

w ∈ N r−1[v] ∩X ⇐⇒ ∃σ ∈ S6r : w ∈ Nσ(v) ∩X
⇐⇒ ∃σ ∈ S6r : w ∈ Nσ(u) ∩X
⇐⇒ w ∈ N r−1[u] ∩X.

We now construct an auxiliary graph and colouring as follows: Let Ĝ = G •Kr.
Assuming that V (Kr) = [r] and hence V (Ĝ) = V (G) × [r], we will use the
shorthand vi = (v, i) for v ∈ V (G), i ∈ [r] and call vi the ith copy of v.
Using this notation, we define a colouring ĉ : V (Ĝ) → [ξ] × [r] of Ĝ via
ĉ(vi) = (c(v), i). Note that ĉ is a (2r + 2)-centred colouring of Ĝ: any
connected subgraph Ĥ ⊆ Ĝ with less than 2r+ 2 colours and no centre would
directly imply that the subgraph H ⊆ G with vertex set V (H) = ⋃

16i6r{v ∈
V (G) | vi ∈ Ĥ} contains at most 2r + 2 colours and no centre, contradicting
our choice of c.
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For a signature σ ∈ S6r we define the proper signature σ̂ = ((σ[i], i))16i6|σ|.
Accordingly, we define the set of proper signatures Ŝ6r over colours [ξ] ×
[r] as Ŝ6r = {σ̂ | σ ∈ S6r}. The following lemma connects the sigma-
equivalence 'XS6r over V (G) with a suitable equivalence defined over the above
auxiliary structure.
Lemma 5. The equivalence relation 'XŜ6r over V (G) defined via

u 'XŜ6r v ⇐⇒
(
N σ̂
Ĝ

(u1) ∩X |σ̂|
)
σ̂∈Ŝ6r

=
(
N σ̂
Ĝ

(v1) ∩X |σ̂|
)
σ̂∈Ŝ6r

is a refinement of 'XS6r where X i := {vi | v ∈ X}.

Proof. Assume u 'XŜ6r v. Then for every signature σ̂ ∈ S6r we have that
N σ̂
Ĝ

(u1) ∩X |σ̂| = N σ̂
Ĝ

(v1) ∩X |σ̂|. Now note that if w|σ̂| is σ̂-reachable from u1

in Ĝ, then w is σ-reachable from u in G: if u1x2
2 . . . x

|σ̂|−1
|σ̂|−1w

|σ̂| is a σ̂-path in Ĝ,
then ux1 . . . x|σ̂|−1w is, by construction of σ̂, a σ-path in G.

Accordingly w|σ̂| ∈ N σ̂(u1) implies that w ∈ Nσ(u). We conclude that
therefore Nσ(u) ∩X |σ| = Nσ(v) ∩X |σ| and thus u 'XS6r v.

Lemma 6. |V (G)/'XŜ6r| 6 r2ξr+1 · |X|.

Proof. To obtain the bound, we apply Lemma 3 to every subset of signa-
tures Ŝ ⊆ Ŝ6r. Let X̂ ⊆ Ĝ be the set containing all copies of vertices
in X.

|V (G)/'XŜ6r| 6 |V (Ĝ)/ 'X̂r

Ŝ6r
| 6

∑
Ŝ⊆Ŝ6r

|Ŝ| · |X̂| = r2ξr+1 · |X|

The proof of this section’s theorem is now only a technicality.

Proof of Theorem 2. By Lemma 4 and 5 we have that

|V (G)/'Xr | 6 |V (G)/'XS6r+1
| 6 |V (G)/'XŜ6r+1

|

Which, by Lemma 6, is at most (r+1)2χ2r+2(G)r+2 ·|X| and the claim follows.

4 Neighbourhood Complexity and Weak Colour-
ing Number

Having obtained a bound for the neighbourhood complexity in terms of
the r-centred colouring number, we now derive a bound in terms of the
weak r-colouring number. For the next proof, we say that two vertices
u, v ∈ V (G) have the same distances to Z ⊆ V (G) if for every z ∈ Z we have
dG(u, z) = dG(v, z).
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Theorem 3. For every graph G and all non-negative integers r it holds that

νr(G) 6 1
2(2r + 2)wcol2r(G)wcol2r(G) + 1.

Proof. Fix a graph G and choose any subset ∅ 6= X ⊆ V (G). We will show
in the following that

|V (G)/'Xr | 6
(1

2(2r + 2)wcol2r(G)wcol2r(G) + 1
)
|X|,

from which the claim immediately follows.
Let α0 ∈ V (G)/'Xr be the equivalence class of 'Xr corresponding to

the vertices of G with an empty r-neighbourhood in X and let W =(
V (G)/'Xr

)
\ {α0}. Moreover, let L ∈ Π(G) be such that wcol2r(G) =

maxv∈V (G) |WReach2r[G,L, v]|. We will estimate the neighbourhood com-
plexity of X via the neighbourhood complexity of a certain good subset of
WReachr[G,L,X].

For a vertex v ∈ N r(X) and a vertex x ∈ N r[v] ∩X, let Pxv be the set of
all shortest (v, x)-paths (of length at most r). We define as Gr[v] the graph
induced by the union of the paths of all Pxv , namely

Gr[v] = G
[ ⋃
x∈Nr[v]∩X

⋃
P∈Pxv

V (P )
]
.

By its construction, Gr[v] contains, for every x ∈ N r[v]∩X, all shortest paths
of length at most r that connect v to x.

Now, for every equivalence class κ ∈ W, choose a representative vertex
vκ ∈ κ. Let C = {vκ}κ∈W be the set of representative vertices for all classes
in W . Using the representatives from C, we define for every class κ ∈ W the
set (see Fig. 1)

Yκ = WReachr[Gr[vκ], L, vκ] ∩WReachr[G,L,N r[vκ] ∩X]

and join all such sets into Y = ⋃
κ∈W Yκ. Then,

Y ⊆
⋃
κ∈W

WReachr[G,L,N r[vκ] ∩X] ⊆WReachr[G,L,X].

Moreover, by definition and the fact that L is an ordering achieving wcol2r(G)
(and not necessarily one achieving wcolr(G)), we have

|Yκ| 6 |WReachr[G,L, vκ]| 6 |WReach2r[G,L, vκ]| 6 wcol2r(G).

Notice that for every x ∈ N r[v]∩X, the minimum vertex (according to L) of a
path in Pxv will always belong to Yκ, therefore the set Yκ intersects every path of

14



Figure 1: A set Yκ and the set Y .

the sets Pxvκ forming Gr[vκ]. We want to see how many different equivalence
classes of W produce the same Yκ set. This will allow us to bound the
neighbourhood complexity of X by relating it to the number of different Yκ’s.

Suppose that κ 6= λ with Yκ = Yλ = Z. Recall that Yκ intersects all the
shortest paths from vκ to the vertices ofN r[vκ]∩X and thatGr[vκ] is formed by
all such shortest paths. Hence, if vκ and vλ have the same distances to Z, then
we clearly get N r[vκ] ∩X = N r[vλ] ∩X, a contradiction. This means that if
Yκ = Yλ = Z, the vertices vκ and vλ cannot have the same distances to Z. But
there are at most (r+1)|Z| possible configurations of distances of the vertices of
a set Z to a vertex v that has distance at most r to every vertex of Z. It follows
that the number of equivalence classes of W that produce the same set Yκ
through their representative vκ from C is at most (r+ 1)|Yκ| 6 (r+ 1)wcol2r(G).

Let Y := {Yκ | κ ∈ W} be the set of all (different) Yκ’s, and define
γ : Y → Y by γ(Yκ) = arg maxy∈Yκ L(y). That is, γ(Yκ) is that vertex in Yκ
that comes last according to L. Observe that—by definition—every vertex
in Yκ is weakly r-reachable from vκ. It follows that every vertex in Yκ is weakly
2r-reachable from γ(Yκ) via vκ. In other words, Yκ ⊆WReach2r[G,L, γ(Yκ)].
Consequently, for every vertex y ∈ γ(Y), it holds that3⋃

γ−1(y) ⊆WReach2r[G,L, y],

i.e. the union ⋃ γ−1(y) of all Yκ’s that choose the same vertex y via γ has size
at most wcol2r(G). But every set in the family γ−1(y) is a subset of ⋃ γ−1(y)
that contains y. Since there are at most 2|

⋃
γ−1(y)|−1 different such subsets

of ⋃ γ−1(y), the number of different Yκ’s for which the same vertex is chosen
via γ is bounded by 2wcol2r(G)−1, i.e.

|γ−1(y)| 6 2wcol2r(G)−1.

Recalling that one Yκ corresponds to at most (r + 1)wcol2r(G) equivalence
classes of W and that Y ⊆WReachr[G,L,X], we can now bound the size of

3We remind the reader that this union expresses the union of a set in the set theoretical
sense, i.e. the union of a set is the union of all of its elements (as sets).
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W as follows:

|W| 6 (r + 1)wcol2r(G) · |Y| = (r + 1)wcol2r(G) ·
∑

y∈γ(Y)
|γ−1(y)|

6 (r + 1)wcol2r(G) ·
∑

y∈γ(Y)
2wcol2r(G)−1

= 1
2(2r + 2)wcol2r(G) · |γ(Y)|

from which we obtain that

|V (G)/'Xr | 6 |W|+ 1 6
1
2(2r + 2)wcol2r(G) · |γ(Y)|+ 1

6
1
2(2r + 2)wcol2r(G) · |Y |+ 1

6
1
2(2r + 2)wcol2r(G) · |WReachr[G,L,X]|+ 1

6
1
2(2r + 2)wcol2r(G)wcol2r(G) · |X|+ 1

6
(1

2(2r + 2)wcol2r(G)wcol2r(G) + 1
)
|X|,

as claimed.

5 Completing the Characterisation
We have seen in the previous two sections that bounded expansion implies
bounded neighbourhood complexity. Let us now prove the other direction to
arrive at the full characterisation. We begin by proving that every bipartite
graph with low neighbourhood complexity must have low minimum degree.
To that end, we will need the following Lemma.

Lemma 7 (Nešetřil & Ossona de Mendez [25]). Let G = (A,B,E) be a
bipartite graph and let 1 6 r 6 s 6 |A|. Assume each vertex in B has degree
at least r.

Then there exists a subset A′ ⊆ A and a subset B′ ⊆ B such that |A′| = s

and |B′| > |B|/2 and every vertex in B′ has at least r |A
′|
|A| neighbours in A′.

The minimum degree and depth-one neighbourhood complexity ν1 of a bipar-
tite graph can now be related to each other as follows:

Lemma 8. Let G = (A,B,E) be a non-empty bipartite graph. Then

δ(G) < 4ν1(G)
(
2dlog ν1(G)e+ 1

)(
64ν1(G)3dlog ν1(G)e+ 16ν1(G)2 + 1

)
.
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Proof. Let

α = 4ν1(G)
(
2dlog ν1(G)e+ 1

)(
64ν1(G)3dlog ν1(G)e+ 16ν1(G)2 + 1

)
and suppose that δ(G) > α. Assume without loss of generality that |B| > |A|
and let ν = 2dlog ν1(G)e. Observe that both ν, log ν are integers and that
ν1(G) 6 ν < 2ν1(G). Therefore,

|B| > |A| > δ(G) > 2ν(2 log ν + 1)
(
8ν3 log ν + 4ν2 + 1

)
.

Let us apply Lemma 7 on G with r = 8ν3 log ν+4ν2 +1 and s = b |A|
2ν(2 log ν+1)c.

Notice that this is indeed possible, because |A| > 2ν(2 log ν + 1) · r and
therefore s > r. We obtain a subgraph G′ = (A′, B′, E ′) with

1. |A|
2ν(2 log ν+1) − 1 < |A′| = s 6 |A|

2ν(2 log ν+1) ,

2. |B′| > |B|
2 , and thus |B′| > |A|

2 > ν(2 log ν + 1)|A′|,

3. and such that for every v ∈ B′ we have that degG′(v) > r · |A
′|
|A| .

Combining the first and third property with |A| > 2ν(2 log ν+1) ·r, we obtain

degG′(v) > r · |A
′|
|A|

> r
( 1

2ν(2 log ν + 1) −
1
|A|

)
> r

( 1
2ν(2 log ν + 1) −

1
2ν(2 log ν + 1) · r

)
= r − 1

2ν(2 log ν + 1) = 2ν2.

Now, note that any graph H with at least two vertices trivially has ν1(H) > 2
by taking X to be a single vertex of H. Hence, if K2ν2,2 log ν+1 is a subgraph
of G′, we have that

ν1(G) > ν1(G′) > ν1(K2ν2,2 log ν+1) > 2ν2

2 log ν + 1 > ν,

where the last inequality follows by the fact that ν > 2, a contradiction.
So, let us call two vertices u, v ∈ V (G′) twins if N1

G′(u) = N1
G′(v) and let us

partition B′ into twin-classes B′1, . . . B′`. Since each twin-class has at least 2ν2

neighbours, the size of each twin-class must be bounded by |B′i| < 2 log ν + 1.
Hence, the number of twin-classes is at least ` > |B′|

2 log ν+1 . Since each twin-class
has, by definition, a unique neighbourhood in A′, we conclude that

ν1(G′) > `

|A′|
>

|B′|
2 log ν + 1

ν(2 log ν + 1)
|B′|

= ν > ν1(G),

a contradiction.
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It easily follows that every graph with low neighbourhood complexity must
have low average degree.

Corollary 1. Let G be a graph. Then ∇̃0(G) < 5445 · ν1(G)4 log2 ν1(G).

Proof. We assume that ∇̃0(G) = ‖G‖/|G|, otherwise we restrict ourselves
to a suitable subgraph of G with that property. The case where |G| = 1
is trivial, therefore we may assume that |G| > 2. It is folklore that G
contains a bipartite graph H such that ‖H‖ > ‖G‖/2. We can further ensure
that δ(H) > ‖H‖/|H| by excluding vertices of lower degree (this operation
cannot decrease the density of H). Applying Lemma 8 to H, we obtain that

∇̃0(G) = ‖G‖
|G|

6 2‖H‖
|H|

6 2δ(H).

We apply the bound provided by Lemma 8 and relax it to the more concise
polynomial (5445/2) · ν1(G)4 log2 ν1(G), using the fact that ν1(G) > 2.

The next theorem now leads to the full characterisation as stated in Theorem 1.

Theorem 4. For every graph G and every half-integer r it holds that

∇̃r(G) 6 (2r + 1) max
{

5445ν1(G)4 log2 ν1(G), ν2(G), . . . , νdr+1/2e(G)
}
.

Proof. Fix r and let H 4r
t G be an r-shallow topological minor of maximal

density, i.e. ∇̃0(H) = ∇̃r(G). Let further φV , φE be a topological minor
embedding of H into G of depth r.

Let us label the edges of H by the respective path-length in the embedding
φV , φE: an edge uv ∈ H receives the label ‖φE(uv)‖. Let r′ be the label of
highest frequency and let H ′ ⊆ H be the graph obtained from H by only
keeping edges labelled with r′. Since there were up to 2r + 1 labels in H, we
have that (2r + 1)‖H ′‖ > |H| and therefore

∇̃r(G) = ∇̃0(H) 6 (2r + 1)‖H
′‖

|H ′|
6 (2r + 1)∇̃0(H ′). (1)

First, consider the case that r′ = 1, i.e. H ′ is a subgraph of G. Combining
(1) with Corrollary 1, we obtain

∇̃r(G) 6 (2r + 1)∇̃0(H ′) 6 (2r + 1)∇̃0(G)
6 (2r + 1) · 5445 ν1(G)4 log2 ν1(G).

Otherwise, assume that r′ > 2, i.e. every edge of H ′ is embedded into a path
of length at least 2 in G by φV , φE. Construct the subgraph G′ ⊆ G that
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contains all edges and vertices involved in the embedding of H ′ into G, that is,
G′ has vertices ⋃v∈H′ V (φV (v)) ∪ ⋃e∈H′ V (φE(e)) and edges ⋃e∈H′ E(φE(e)).

Let X = ⋃
v∈H′ V (φV (v)) and let S ⊆ V (G′) be a set constructed as

follows: for every edge e ∈ H ′ we add the middle vertex of the path φE(e)
to S—in case r′ is odd, we pick one of the two vertices that lie in the middle
of φE(e) arbitrarily. Because X is an independent set in G′ and r′ > 1,
every vertex in S has exactly two neighbours in X at distance dr′/2e in the
graph G′. By construction, there is a one-to-one correspondence between
these dr′/2e-neighbourhoods and the edges of H ′. Accordingly,

‖H ′‖ = |{N dr
′/2e

G′ (v) ∩X}v∈S|

and therefore, using also the fact that G′ is a subgraph of G,

‖H ′‖
|H ′|

= |{N
dr′/2e
G′ (v) ∩X}v∈S|

|X|
6 νdr′/2e(G′) 6 νdr′/2e(G).

which, taken together with (1) and the fact that G′ is a subgraph of G, yields

∇̃r(G) 6 (2r + 1)∇̃0(H ′) 6 (2r + 1)νdr′/2e(G).

Putting everything together, we finally arrive at

∇̃r(G) 6 (2r + 1) max
{

5445 ν1(G)4 log2 ν1(G), ν2(G), . . . , νdr+1/2e(G)
}
.

proving the theorem.

We conclude that graph classes with bounded neighbourhood complexity have
bounded expansion. Theorem 1 follows by Theorems 2, 3 and 4.

6 Concluding Remarks
One should note that in Theorems 2 and 3 the derived bounds are exponential
in the measures χ2r+2 and wcol2r. Consequently, we cannot use neighbour-
hood complexity to characterise nowhere dense classes: in these classes, the
quantities χr and wcolr can only be bounded by O(|G|o(1)) which only results
in superpolynomial bounds for νr.

This constitutes an unusual phenomenon in the following sense: so far,
every known characterisation of bounded expansion translated to a direct
characterisation of nowhere denseness, but this has not yet been the case for
neighbourhood complexity. It would be remarkable if one could only charac-
terise the property of bounded expansion through neighbourhood complexity
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and not that of nowhere denseness. So far, it is only known that ν1 is bounded
by O(|G|o(1)) in nowhere dense classes [18]. We pose as an interesting open
question whether this holds true for νr for all r, or whether nowhere dense
classes can indeed have a neighbourhood complexity that cannot be bounded
by such a function.
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