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Key Points (up to three points in less than 140 characters) 

1) Collisions between particles and surfaces during aeolian abrasion of basalt sands can 

produce dust.  

2) Experimental results from an abrasion chamber range from less than 0.005% to 50%, 

by mass, of sample reduced to dust in 72 hours. 

3) A Mars analogue weathered volcaniclastic sediment produced two orders of 

magnitude more dust than basalt dune sands. 

Abstract 

Dust is nearly ubiquitous on Mars, covering much of the planet’s surface, having been 

redistributed by dust storms. Analysis of dust via landed instrumentation indicates a basaltic 

composition for its protolith; the same is interpreted for the dark dune sands encountered 

at rover field sites.  In this paper, we used samples of aeolian sands derived from basaltic 

volcanoes in an experiment to simulate dust production from basalt dune sands within an 

abrasion chamber. In addition, we used samples from gypsum dunes because gypsum is 

found within dune fields on the northern plains of Mars. The results, expressed as weight % 

of sample reduced to dust, show a remarkably broad range over four orders of magnitude. 

Aeolian abrasion of basalt sands can produce similar amounts of dust, as is the case for 

some desert sands on Earth. Some plausible Mars analogue materials can produce large 

amounts of dust, suggesting that aeolian movement of basaltic sand, and volcanic 

sediments on the surface of Mars is a potential source of fine-grained sediment or dust. 

Plain Language Summary 

Mars is covered in dust that is stirred up and spread around the planet by dust storms. But 

where did the dust come from, and how was it made? We explore these questions using 

sands from volcanoes that were blown around in a large test tube that acts as an abrasion 

chamber. The results show that wind-blown particles of basalt sands and volcanic ash can 

produce dust. The volcanic ash produced more dust than the basalt sand, and is a likely 

source for some of the dust on Mars. 
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1. Introduction 

The majority of the surface of Mars is covered by a layer of dust (Christensen, 1986), and 

dust plays a key role in determining the current climate on Mars (Kahn et al., 1992), and 

affects missions to Mars. Dust can be defined as a suspension of solid particles in a gas, or a 

deposit of such particles (Pye 1987). Mars dust has been described as an assemblage of clay-

and fine silt-sized particles (< 5 μm), that contains primary igneous minerals: olivine, 

pyroxene, feldspar and magnetite, as well as sulphate-bearing alteration/weathering 

products (Morris et al., 2006). Berger et al. (2016) confirm a basaltic composition for Mars 

dust, including approximately 45-50wt% X-ray amorphous component that might be 

volcanic glass, with around 20wt% nanophase iron oxide. Dust is especially abundant in the 

regions of Tharsis, Arabia and Elysium (Christensen 1986, Bridges et al., 2010), with dust 

deposits reaching thicknesses of 20m or more in Arabia (Mangold et al., 2009).  

The surface of Mars is cold and dry with limited chemical weathering (Cornwall et al., 2015). 

Given the cold and arid conditions that occur on the surface of Mars, aeolian processes 

dominate, including wind erosion, aeolian sediment transport and deposition (e.g. 

Christensen and Moore 1992, Greeley et al. 1992).  These arid conditions have apparently 

prevailed for around 3.7 Ga (Tanaka, 1986, Ehlmann et al., 2011). On Mars there is evidence 

for aeolian activity from dust storms (Cantor, 2007), dust devils (Greeley et al., 2006), 

avalanches on dune slipfaces (Fenton, 2006, Horgan and Bell 2012a), wind ripple movement 

(Sullivan et al., 2008, Silvestro et al., 2010, 2013, Baker et al., 2018), sand dune migration 

(Silvestro et al., 2011, 2013, Bridges et al., 2012). Abrasion from saltating sand is a likely 

cause of erosion on the surface of Mars, and saltating sand grains could act as triggers to 

launch dust into suspension (Greeley et al., 1982, Bridges et al., 2012a).  Greeley (2002) 

showed that saltating sand grains are capable of raising dust from existing dust deposits on 

Mars.  

The origins of dust on Mars are discussed by Bridges and Muhs (2012), who suggest that 

most fine-grained (dust) particles on Mars are probably produced from ancient volcanic, 

impact, and fluvial processes. They argue that rates of primary dust production on Mars are 

very low and that the dust is more likely to be derived from extensive reworking of fine-

grained, silt and clay sized sediments and aggregates. Greely et al. (1992) outline four 

potential sources for fine grained aggregates on Mars: deposits settled from the 

atmosphere as part of the dust cycle; ancient lake bed sediments that have since been 

proven to exist on Mars (Grotzinger et al., 2014, 2015); aggregates derived from evaporite 

crusts; and weathered surfaces disrupted by outgassing. The presence of dust as fragile, low 

density, sand sized aggregates that are easily entrained and transported has been confirmed 

by images acquired by rovers on Mars (Sullivan et al., 2008, Edgett and Newsom 2017). Such 

aggregates are likely to have low cohesion so that collisions that occur during saltation 

cause them to disaggregate (Sagan et al., 1977). In this paper we test a selection of Mars 

analogue sands in an abrasion chamber to determine how much dust might be produced by 

aeolian abrasion of basalt sands, gypsum sands, and JSC Mars 1-A Martian simulant. 

On Mars, aeolian dunes are typically darker than their surrounding surfaces. The low albedo 

has been interpreted to indicate the presence of mafic minerals (Cutts and Smith 1973), and 
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a basaltic composition (Jaumann et al., 2006, Tirsch et al., 2011). In a study of low-albedo 

surfaces in western Arabia Terra, Edgett (2002) noted that the relations between dunes, 

wind streaks and subjacent areas implies that dark-toned grains, finer than those that 

comprise dunes, are lifted into suspension and deposited downwind. Spectral analysis of the 

dark dunes and sand sheets on Mars by Tirsch et al. (2011) indicates that they nearly all 

have the same mafic composition and that they are most likely to be derived from volcanic 

rocks.  However, Charles et al. (2017), using thermal emission spectra, have shown that 

there are differences in dune sand composition. The Bagnold Dunes in Gale Crater are 

olivine-enriched while dunes in Ogygis Undae are olivine-deficient (Charles et al., 2017). The 

North polar dunes are basaltic with a hydrated mineral interpreted to be gypsum (Langevin 

et al., 2005, Horgan et al., 2009, Massé et al., 2012). The gypsum appears to be locally 

concentrated on the crests of the dunes (Calvin et al., 2009) and potentially forms around 

45% of the dune sediments, although this might be a lower limit (Fishbaugh et al., 2007). 

Analysis of Martian soils and aeolian sands conducted by the Mars Exploration Rovers (MER) 

at Gusev and Meridiani show similar compositions, suggesting either global-scale mixing of 

basaltic material or similar regional-scale basaltic sources (Blake et al., 2013). Recent 

investigation of the Bagnold dunes in Gale Crater by the Mars Science Laboratory (MSL) 

rover Curiosity has found basaltic minerals including plagioclase, pyroxene and olivine with 

42% X-ray-amorphous minerals (Achilles et al., 2017), probably volcanic glass or an 

alteration product such as allophane. Achilles et al. (2017) also noted remarkable similarity 

between the peak positions and relative intensity of the X-ray diffraction patterns at 

Rocknest and the Gobabeb locality on the Bagnold Dunes. Measurements at Namib and 

High dunes also indicate a basaltic composition for dune sands (Ehlmann et al., 2017), 

although Elmann et al., note that the dune sands were better sorted and contain fewer silt-

sized or finer grains than other Martian soils. Ehlmann et al. (2017) also report a substantial 

amorphous component (35% ± 15%), that includes a sand-sized phase which is likely to be 

poorly crystalline hydroxylated minerals or  impact or volcanic glass, as well as a second 

amorphous phase that is associated with finer-grained sands and soils and is possibly 

nanophase iron oxides. 

At the Gobabeb site, on Namib dune in Gale crater on Mars, sand grains are well-rounded to 

sub-rounded with a high sphericity, and typically range in size from very fine to medium 

sand (~50 - ~500µm) (Ehlmann et al., 2017). Ripples on the nearby dune named High are 

composed mostly of fine to medium sand (125-500µm), and appear to be less well sorted 

than the sands at Gobabeb, Namib dune (Ehlmann et al., 2017). At the Rocknest sand 

shadow in Gale crater aeolian sediments are less well sorted and contain less than 10% 

coarse to very coarse particles (0.5 – 2 mm), and 40- 60% very fine to fine grained sand 

(100-150 µm) as well as an estimated 30 – 50%  fine particles (<100 µm) (Minitti et al., 

2013). 

Basaltic dunes on Earth are considered to be analogues for Martian dunes (Edgett and 

Lancaster, 1993). But they are rare, most likely due to a combination of chemical and 

physical weathering on Earth’s surface. While aeolian features are widespread on Mars 

(Cutts and Smith 1973, Greeley et al. 1992), fields of sand dunes are most common at higher 

latitudes with 90% of dune fields within the north and south polar regions higher than 
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latitude 60° (Hayward et al. 2014). This study of basaltic dune sand is relevant because the 

Mars Science Laboratory (MSL) ‘Curiosity’ rover visited the Bagnold dunes in Gale Crater 

(Achilles et al., 2017, Bridges et al., 2017).   

In our experiment we used samples from sand dunes from Arizona, as well as the islands of 

Hawaii and Iceland as analogues for Martian sands. We selected these samples because the 

islands have a basaltic crust with little or no quartz sand and the volcanic activity is recent so 

that the sands have undergone only limited weathering and alteration. The likely source of 

the basalt sands in Arizona is dated at around 20 ka (Duffield et al., 2006), occurs in a desert 

environment, and shows a lack of physical and chemical weathering (Hanson et al., 2008).  

The selection of basalt sands for these experiments is consistent with observations of dust 

on Mars; for example, Goetz et al. (2005) conclude that Martian dust is formed from parent 

basaltic rocks by physical processes including: diurnal temperature cycles, comminution by 

meteoritic impacts, and wind abrasion. However, Goetz et al. (2005) also note that the dust 

particles cannot be exclusively unaltered ‘small basaltic rocks’ because the presence of ferric 

oxides indicates that some chemical alteration must have taken place. 

Physical experiments on Mars analogue mafic minerals and basalt grains were conducted by 

Krinsley et al. (1979), Krinsley and Greeley (1986), Greeley et al. (1982), and Cornwall et al. 

(2015). Krinsley et al. (1979) constructed a Mars Erosion Devise (MED) which could operate 

at low pressure and simulate grain impacts under Mars atmospheric pressure. Krinsley and 

Greeley (1986) used the MED to simulate aeolian abrasion under Martian and Earth 

conditions using crushed Brazilian quartz and crushed glassy basalt from Kilauea volcano, 

Hawaii. Their results suggest that abrasion may be more vigorous under Martian conditions 

than it is on Earth due to the higher velocities required for Martian aeolian activity. They 

also noted the production of fine clay-sized particles, and aggregates of clay and silt-sized 

particles are described as ubiquitous (Krinsley and Greeley, 1986). Krinsley and Leach (1981) 

used an aeolian abrasion device to produce aggregates of olivine and basalt held together 

by electrostatic forces that were very weak and easily broken. Greeley et al. (1982) used an 

un-named apparatus with a rotating arm that flung sand-sized particles of quartz, basalt, 

basalt ash, and aggregates of fine material, at targets arranged around the inside of a 

chamber. They found that basalt targets were subject to similar levels of erosion when 

impacted by quartz grains or basalt particles. They also found that erosion rates under 

simulated Martian conditions are relatively high, and discuss ways in which their results 

might be reconciled with Mars surface geomorphology. Cornwall et al. (2015) used a 

modified Bond air mill to investigate the durability and rounding of mafic grains, volcanic 

glass and basalt rock fragments, as well as a mix of minerals, glass and basalt together. They 

found that olivine became rounded most rapidly and achieved a high sphericity within two 

hours; in contrast, augite and labradorite took slightly longer to become well rounded and 

retained a platy shape, never achieving a high sphericity within the two and a half hour 

experiments. They found that the volcanic glass and basalt were the slowest to decrease in 

grain size and took longer (7 hours) to become well rounded (Cornwall et al., 2015).  

In this paper we investigate the production of dust particles by aeolian abrasion using Mars 

analogue dune sands. Aeolian sands have been selected because wind is the dominant 



 

 
© 2018 American Geophysical Union. All rights reserved. 

surface process on Mars today and in all likelihood has been the dominant process for most 

of Martian geologic history. The samples were collected from active sand dunes and have 

been subject to aeolian transport and deposition under natural physical conditions on 

Earth’s surface. The samples include seven basaltic sand samples, three samples from 

Hawaii, three from Iceland and one from Arizona. In addition, we have included two aeolian 

gypsum sands from White Sands National Monument which are potential Mars analogue 

dune sands (Szynkiewicz et al., 2010), and known dust sources (Baddock et al., 2011, White 

et al., 2015). Furthermore, we investigated a representative split of the JSC Mars 1-A 

Martian regolith simulant, a volcaniclastic sediment that has not been subject to aeolian 

reworking. The samples are natural sediments, and with the exception of JSC Mars 1-A, they 

have not been sieved or processed before the experiments. The sands contain fine-grained 

particles, less than 63 microns, termed resident fines (Bullard et al., 2004) (Table 1). 

2. Sample locations 

2.1 Hawaii, USA 

In this study we used samples of aeolian basaltic sand from the Ka’u desert of Hawaii 

(Samples DS 1, DS 2 and DS 6.2, Table 1). Sample DS 1 is a medium grained sand from the 

surface of a 3 m high falling dune (19⁰ 16’ 36.1” N 155⁰ 22’ 39.89” W). Sample DS 2 is a very 

coarse grained sand from a climbing dune (19⁰ 20’ 39.43” N 155⁰ 18’ 26.56” W). Sample DS 

6.2 is a medium grained sand from a partially vegetated parabolic dune (19⁰ 21’ 17.52” N 

155⁰ 21’ 51.59” W). For further details of these samples see Tirsch et al. (2012). Satellite 

images of the sample locations are included in the supplementary information. Gooding 

(1982) and Tirsch et al. (2012) described the petrology of basaltic sands from the Ka’u desert 

in Hawaii. Tirsch et al. (2012) suggest that their composition correlates very well with the 

composition of dark aeolian dunes on Mars. As noted by Gooding (1982) and Tirsch et al. 

(2012), the Ka’u desert sands are composed dominantly of glass fragments with subsidiary 

amounts of lithic fragments and crystals which include olivine, pyroxene, and plagioclase 

(Figure 1 and Table 2). However, Tirsch et al. (2012) noted that the very coarse grained sand 

sample DS 2 is dominated by rock fragments (Table 2), and a very coarse grained basalt clast 

can be seen in Figure 1B.  

2.2 Iceland 

Three Icelandic dune samples were used in this study; two from inland dunes near 

Kvensödull and one from a nebka dune close to the village of Saudarkrokur on the north 

coast of Iceland (65° 44’ 7.61”N 19° 25’ 54.58”W).  The Saudarkrokur sample is very dark 

grey, moderately well sorted, fine-grained sand (Table 1)  composed of volcanic glass and 

basaltic lithic particles with crystals of feldspar and olivine. The largest inland dunes in 

Iceland are found near Kvensödull (Arnalds et al., 2001). The dunes are dark grey and their 

surface is covered with wind ripples. Two surface sand samples were collected from a 

transverse dune that is around 500 m wide and over 10 m high (65° 53’ 48.59” N 16° 21’ 

8.1” W). Sample KV 50 is 50 m from the upwind margin of the dune while KV 200 is a further 

150 m downwind. KV 50 is very dark grey, moderately-sorted fine sand. KV 200 is very-dark 

grey, poorly sorted, medium-grained sand. Petrographically, the Kvensӧdull sands are 
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dominated by particles of basaltic glass, with basalt rock fragments and minor amounts of 

feldspar and olivine (Table 2). The medium-grained KV 200 contains more rock fragments 

than the fine grained KV 50 (Table 2). 

2.3 Arizona, USA 

The Grand Falls sample is from a falling dune on the south bank of the Little Colorado River 

located 500 m downstream from the Grand Falls (35° 25’ 46” N 111⁰ 12’ 24” W). The dune is 

approximately 1 km downwind from basalt outcrops of the San Francisco volcanic field, and 

approximately 10 km downwind from the volcanic vents Merriam Crater and Sproul Crater. 

The basalt sand is likely to be derived from ash deposits of the San Francisco volcanic field 

(Redsteer and Hayward 2015). Duffield et al. (2006) report a near absence of physical and 

chemical weathering of the lavas which are believed to be around 20 ka in age (Duffield et 

al., 2006). The Grand Falls basalt sand is a moderately well sorted, fine-grained sand D50 

162 μm (Table 1), composed of volcanic glass (80.5 %) with less than 10% basaltic rock 

fragments and subsidiary feldspar and olivine crystals (Table 2). 

2.4 New Mexico, USA 

The dune sand samples from White Sands National Monument, New Mexico, USA, are 

composed of gypsum and come from two different dunes. Sample T-1 is from a transverse 

dune close to the center of the dune field (32° 49’ 14.8” N 106° 16’ 37.0” W), while sample 

P-1 (32° 47’ 41”N 106° 12’ 56” W) is from a parabolic dune close to the downwind edge of 

the dune field. Sample T-1 is a moderately well-sorted medium-grained sand D50 289.5 μm 

(Table 1), while P-1 is a moderately well sorted fine-grained sand D50 272.6 μm (Table 1). 

2.5 JSC Mars 1-A Martian simulant 

The Johnson Space Center (JSC) Mars 1-A regolith simulant is composed of weathered 

volcanic ash from the Pu’u Nene cinder cone (19⁰ 41’ 47.38” N 155⁰ 29’ 51.62” W). The JSC 

Mars 1-A simulant has a spectral signature close to that of the  dust covered regions of Mars 

(Allen et al. 1997, 1998), and has been used to simulate Martian dust (Calle et al. 2011), and 

soil (Wamelink et al., 2014). While Seifererlin et al. (2008) caution against using JSC MARS 1 

for aeolian simulations due to sample variability, we find that the JSC MARS 1-A simulant is 

more appropriate because it has been sieved to remove particles greater than 1000 

microns.3. Methods 

3.1 Aeolian abrasion 

We used an abrasion chamber based upon the designs of Whalley et al. (1982), Wright et al. 

(1998), Bullard et al. (2004, 2007) - modified with the addition of a second electrostatic dust 

trap (Figure 2)- because  we found, in our tests, that dust was passing through the exhaust 

tube and trapping efficiency was less than previously reported. Ten grams of sample were 

placed in the bottom of the glass chamber and agitated by a constant stream of air with a 

flow rate of 28 liters per minute provided by an electric air pump. The air flow was close to 

the 0.0279 m3/min-1 used by Bullard (2004, 2007), and sufficient to lift fine sand to 

elevations of around 10 cm within the test tube, although coarser sands showed less 

movement. The resulting impact velocities are likely to be slightly less than the impact 
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velocities for saltating sand. Fine particles produced by agitation and abrasion of the sample 

were transported vertically out of the 40 cm high abrasion chamber in suspension.  

Dust produced by abrasion was collected on two electrostatic precipitators operating at 5 

kV. The laboratory was climate controlled and room temperature maintained at 20° C ± 1° C 

and 55% ± 5% relative humidity through the experiments. At the end of each run, the brass 

rods and brass tubes that comprise the electrostatic dust traps were washed with distilled 

water to remove the dust. The water was then filtered through a pre-weighed Whatman 

0.45 micron nylon membrane filter. The filters were placed in a drying oven for 24 hours and 

weighed again after drying. The difference in mass of the filter before and after was 

considered to be the mass of dust collected in the experiment. After each run, the 

brassware was wiped clean and dried. Gypsum is described as slightly soluble but we found 

that in a powdered dust form gypsum was soluble in distilled water. Due to the solubility of 

gypsum, we washed the brass electrostatic precipitators with acetone and then wiped them 

with isopropyl alcohol to remove any residue. The acetone-soaked filtrate was evaporated 

to dryness at room temperature and weighed as previously described. The abrasion 

experiments were run continuously for 72 hours for all of the samples to facilitate 

comparison with the results from earlier studies by Bullard et al. (2004, 2007). In addition, a 

second set of experiments were conducted, in which the air flow was stopped periodically, 

and the amount of dust collected was measured over time. In these experiments, we used 

representative sub-samples from Grand Falls Arizona, DS 6.2 from Hawaii, and the JSC Mars 

1-A Martian simulant. The time intervals were 1, 2, 4, 8, 16 and 32 hours, extending to 119 

hours for JSC Mars 1-A.  

We conducted further experiments with sample JSC Mars 1-A to ensure that the dust 

collected was produced within the abrasion chamber. For this case we sieved the sample to 

isolate the coarse sand sized fraction (500-1000 microns), and the medium grain sized 

fraction (250-500 microns). The reason for isolating the coarse fraction,and the medium 

fractions, was so that we knew that the dust produced was generated within the abrasion 

chamber rather than mobilizing pre-existing dust sized particles, the resident fines, which 

were present in the original sample. 

 

3.2 Grain size, sorting and roundness 

The grain sizes of the samples were determined by dry sieving. The particle size distributions 

of the dust collected were measured using a Malvern Mastersizer 2000E. Portions of the 

nylon filters holding the dust were cut with scissors, immersed in a 50-ml vial of de-ionised 

water, and agitated in an ultrasonic bath for 30 seconds.  The denuded filter was removed 

and the suspension added to a 500-ml beaker of tap water in a Malvern dispersion unit with 

the stirrer set at 2,000 rpm.  The Malvern Mastersizer was calibrated against clean tap water 

and run with the Standard Operating Procedure set for 'clay'.  Each sample was run five 

times for durations of 30 seconds.  Laser obscuration values ranged between 0.14 and 

7.4.  Aberrant particle distribution graphs were discarded and the remaining graphs 

averaged for statistical grain size distribution using GRADISTAT (Blott and Pye, 2001), which 
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provides grain size statistics based on the graphical methods of Folk and Ward (1957). 

Sorting is determined as a standard deviation (ϕ) and expressed here as the inclusive graphic 

standard deviation (σ1) which takes an average of the standard deviations 84-16 ϕ as well as 

95 -5 ϕ (Folk and Ward 1957). Roundness can be used as an indication of the abrasion of 

clastic particles as shown by the sharpness of the edges and corners, independent of shape 

(Wadell, 1932). The roundness of particles varies within each sample and was assessed 

visually in comparison with standard charts portraying degrees of roundness (e.g., Pettijohn 

1975). 

3.3 Bulk density 

Before the experiments, the bulk density of representative sub-samples was measured by 

pouring sand samples into a pre-weighed, graduated cylinder. The sediment mass was 

obtained by weighing the sediment-filled cylinder and subtracting the weight of the empty 

cylinder. After tapping the cylinder until no noticeable change in volume occurred, the 

volume of sediment was read from the graduated cylinder, and the mass of the sediment 

was divided by the volume to obtain a bulk density. The bulk density of the samples was 

measured because low density particles are more readily entrained by wind than higher 

density particles of a similar size. 

3.4 Petrology 

Representative subsamples of the sands were impregnated with epoxy resin and then cut 

and polished to form thin sections for petrographic analysis. In order to make a quantitative 

assessment of the composition of the sand grains, point-counting of 300 grains per thin 

section were conducted using a Swift mechanical stage. Modal analysis of petrographic thin-

sections is common practice in igneous petrology (Nielson and Brockman 1977). With 300 

points, the error expressed as a standard deviation is generally better than 5% (Van Der Plas 

and Tobi 1965), although this does not account for operator error in identifying minerals 

correctly. Polymineralic grains were counted as rock fragments while monomineralic grains 

are identified as the minerals, e.g. feldspar, or olivine. Some segregation of grains by size or 

density can occur during the preparation of impregnated blocks that might affect results. 

3.5 Color 

The color of the samples was determined by comparison with Munsell soil color charts using 

dry samples in daylight. 

4. Results 

The results of the point count analysis are shown in Table 2. Most of the basalt sands are 

dominated by volcanic glass. The exceptions are the two coarser grained samples DS 2 and 

KV 200 which contain more basaltic rock fragments. The bulk density of the basalt sands 

ranges from 1.42 g/cm3 to 1.68 g/cm3, with an average of 1.54 g/cm3 (n = 7) (Table 1). These 

bulk densities are within the range of values for typical dry, desert dune sands – i.e. which 

range from 1.33 to 1.81 g/cm3 with an average of 1.57 g/cm3 (n = 1000) (Ritsema and 

Dekker 1994). The bulk density of the gypsum sand P1 is 1.29 g/cm3 and T1 is 1.37 g/cm3 

(Table 1). These values are within the range of bulk densities for gypsum dune sands at 
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White Sands, 1.17 to 1.4 g/cm3, with a mean of 1.3 g/cm3 (N = 250), measured by Ritsema 

and Dekker, (1994). The bulk density of the JSC Mars 1-A sample is 0.87 gcm-3, which is 

lower than the other samples (Table 1), but within the range of densities for scoria from 

Hawaii, 0.19 to 1.44 g/cm3, with a mean of 0.78 g/cm3 (n = 200) (Houghton and Wilson 

1979).  

The grain size of the basalt sands ranges from very coarse sand to fine sand; the sorting 

ranges from poorly sorted to very well sorted (Table 1).  Four of the basalt sand samples are 

fine grained sand-sized, and moderately well sorted (DS6.2, Saudarkrokur, KV50 and Grand 

Falls), DS2 is very coarse sand and very well sorted. JSC Mars 1-A is fine sand-sized but 

poorly sorted. Two of the basalt sands are medium sand but DS1 is well sorted while KV200 

is poorly sorted (Table 1). The gypsum sands are both moderately well sorted but P1 is fine 

sand and T1 is medium sand (Table 1). 

Within the abrasion chamber the airflow was sufficient to entrain fine sand and lift it to 

elevations of around 10 cm within the test tube, although coarser sands showed less 

movement and were lifted only 1 – 2 cm. Sand particles interacted in several ways: some of 

the entrained particles impacted the bed and set  other particles in motion, some particles 

collided with other grains in mid-air, some collided with the chamber walls, others rolled 

and occasionally avalanched at the base of the chamber, simulating a range of natural sand 

transporting processes and particle interactions (see supplementary video). The results of 

the abrasion experiments are shown in Table 3 and range from just 0.51 mg for the very-

coarse grained sand DS 2, and up to 5,039 mg (JSC Mars 1-A) spanning four orders of 

magnitude.  

Abrasion of basaltic aeolian sands from Hawaii (DS 1, DS 2 and DS 6.2) produced 4.57, 0.51 

and 69.41 mg of dust, respectively. It is notable that the basalt sand sample which produced 

the most dust, DS 6.2, has the finer grain size (D50 = 164 μm), while the sand that produced 

the least dust, DS 2, has the coarsest grain size (D50 = 1148 μm). A similar scenario applies 

to the Icelandic samples where the range of results is not so wide (10.48 – 55.73 mg) nor is 

the range in grain size; however, the coarser sand (KV 200) produced the least dust (10.48 

mg) and the finer grained sand (Saudarkrokur) produced the most dust (55.73 mg) (Table 3). 

The sample from Grand Falls Arizona, which has a D50 of 162 μm, produced a similar 

amount of dust (55.93 mg) as the Icelandic sample, which has a similar grain size (Table 3). 

The amount of dust collected over time decreases for all samples, but the amount and the 

rates of decrease vary between samples (Figure 5 A and B).  

The grain size of the dust produced in these experiments is mainly in the silt size range with 

median grain size (D50) between 5.6 µm (JSC Mars 1-A), and 17.05 µm (DS2), with one 

exception (KV200) in which the median is 65.9 µm (Table 3). The latter is classed as very fine 

sand, the coarser particle size might be due to the poor sorting of KV200 and the release of 

resident fines. 

5. Discussion  

These experiments were conducted in Earth surface conditions, at room temperature and 

ambient air pressure. On Mars, gravity is lower and the density of the atmosphere is lower; 



 

 
© 2018 American Geophysical Union. All rights reserved. 

this results in saltating grains following a higher and longer path (Kok et al., 2012). In 

addition, the impact is likely to be more energetic (e.g. Greeley, 2002, Kok, 2010), with 

collisions resulting in increased abrasion and fracturing of grains (Krinsley et al., 1979). 

However, it is reasonable to expect the particles to behave in a similar manner, i.e. basalt 

sand particles on Mars will fracture or fragment in a similar manner to basalt sand particles 

on Earth. Sand fluxes on Mars are believed to be similar to those of seasonally frozen dunes 

in the Victoria Valley, Antarctica  (Bridges et al., 2012a), which are reversing dunes (Bristow 

et al. 2010), and thus relatively slow moving.  These experiments are not a direct simulation 

of aeolian abrasion under Martian conditions but use Martian analogue materials to provide 

some indications for the potential for dust production on Mars. 

5.1 Error 

The replicability of the method was tested by Bullard et al. (2004) who found that results 
varied by a factor of two (17.1 to 3.08 mg) after four hours. Our own repeats with sample 
KV50 produced values of 21.67 mg, 19.30 mg, 12.24 mg, 10.33 and 8.80 mg after 72 hours 
give slightly higher values but a similar range of results. As noted by Bullard et al. (2004) 
some of the variability can be attributed to small sample size where fracturing and 
fragmentation of a small number of grains will have a large impact on the total mass of dust 
produced. The samples used in these experiments are natural dune sands, the composition 
of which is inhomogeneous and thus differences in the mechanical properties of particles 
are expected. The electrostatic dust trap was described by Whalley et al. (1987) as having an 
estimated efficiency greater than 95%. Tests by Bristow and Moller (2017) showed dust in 
the exhaust outlet, demonstrating that dust could pass through the system. As a 
consequence, we added a second electrostatic dust trap to the apparatus (Figure 2). 
Comparing results from the two electrostatic dust traps, we have found similar amounts of 
dust in each trap, suggesting that the trapping efficiency might be closer to 50%. The 
efficiency of the electrostatic dust trap is potentially a large source of error resulting in an 
underestimate of the dust produced. There are other potential losses within the apparatus. 
Small amounts of dust adhere to the glassware and the washing of the brass electrodes is 
not completely effective and leaves some dust behind (Bristow and Moller 2017). The 
amount of dust lost in each run has not been quantified. However, it is apparent that the 
amount of dust recovered in each run is less than the amount of dust produced; therefore, 
the errors are all in the same vector and probably of a similar magnitude. 

5.2 Grain size  

A cross plot of dust collected against grain size for the basalt sand samples shows a negative 

relationship between dust production and median  grain size (D50), R2 = 0.9299, with coarse 

sands producing less dust than finer grained sands (Figure 3b). In experiments with 

aggregate grains, Bristow and Moller (2017) found that reducing the size of the aggregates 

increased the amount of dust collected, with coarse grained (500-1000 µm) aggregates 

producing twice as much dust as very coarse grained (1000-2000 µm) aggregates. The 

correlation between particle size and dust production could be a function of the number of 

active particles within the abrasion chamber and the resulting increase in collisions between 

particles. Fine-grained sands are more readily entrained, and there are a greater number of 

particles within a given mass of fine sand than there are within a similar mass of coarse-
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grained sand. Similar plots for the fine fraction, D10, do not show such a strong relationship 

R2 = 0.5815 (Figure 3a), suggesting that the concern about resident fines is less significant 

than the median grain size. Indeed, the relationship with the coarse fraction D90 R2 = 

0.7173, is slightly stronger than that for D10 (Figure 3c).  

5.3 Armour 

Within the abrasion chamber, very-coarse sand sized grains sometimes formed an armour 

that prevented finer grained particles from becoming entrained. The lack of entrainment 

results in fewer collisions between particles within the chamber, and consequently very 

little fracturing or fragmentation of particles, and thus very little dust is produced. Layers of 

very coarse grained sands overlying finer grained sands have been observed on Mars by the 

Mars Exploration Rovers, Opportunity (Sullivan et al., 2005) and Spirit (Sullivan et al., 2008), 

as well as the Mars Science Laboratory (MSL) rover Curiosity (Blake et al., 2013). Very-coarse 

particles have greater mass than smaller particles of the same density and require stronger 

airflows to be entrained. Sullivan et al. (2005) estimated local wind shear velocities of ~3 ms-

1, or up to 4 ms-1 are required to initiate motion of the coarse-grained particles depending 

on clast composition and density. Assuming a basaltic sand composition with a density of 

3.0 g/cm3, Blake et al. (2013) calculated a critical shear velocity of 2.6 ms-1, to initiate 

particle motion. Sullivan et al. (2015) and Blake et al. (2013) indicate that the wind velocities 

required to produce the shear stress required to move coarse-grained, 1-2 mm, particles on 

Mars are rare. Armoured surfaces with a coarse grained lag will reduce the potential for 

dust production on Mars and within the abrasion apparatus. On the other hand, lower 

density scoria particles can be entrained at lower wind velocities than similar sized clasts of 

greater density. 

5.4 Resident fines 

The fine-grained particles that are present within the sand samples have been termed 

resident fines (Bullard et al., 2004, 2007), where fines include clay and silt sized particles less 

than 63 microns (Wentworth 1922). The release of these fine-grained particles will 

contribute to the dust produced in these experiments. We tested the hypothesis that 

resident fines will control dust production by cross plotting the mass of particles less than 63 

µm determined by sieve analysis, against dust produced (Figure 3d and e). The plot of dust 

produced verses resident fines (Figure 3d) appears to show a very good correlation R2 = 

0.9897. However, plotting the results for the basalt sands alone (Figure 3e) does not show a 

clear relationship, correlation of R2 = 0.022. Samples DS1 and DS 6.2 produced more dust 

than their resident fines, while the dust collected from DS2 is the same as the resident fines, 

most likely because DS2 is very coarse grained and the large grain size limited activity within 

the abrasion chamber. Samples from Iceland show a similar spread of results; the sample 

Saudarkrokur produced more dust than the resident fines content while KV50 and KV200 

produced less.  The cross-plot in Figure 3d is greatly influenced by the sample JSC Mars 1-A 

which has resident fines of 11% and produced 50% dust with a mean grain size of 5.61µm. 

The other samples contained fewer resident fines and produced much less dust clustering 

close to the origin on Figure 3D. The resulting linear trend approximates to drawing a 

straight line between two points, a cluster of samples with very low values and one sample 
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with extremely large values.  The results indicate that there can be a correlation between 

resident fines and dust production, but this result is contingent on one sample, the Mars 

analogue JSC Mars 1-A. The result also demonstrates that the abrasion apparatus is creating 

fine particles because the amount of dust produced is more than four times the resident 

fines. In addition, the production of fine material can also be demonstrated by sieving JSC 

Mars 1-A to remove the resident fines. The sample JSC Mars 1A 250-500 µm, produced 29.7 

% dust with a mean grain size of 6.83µm, having been sieved to remove resident fines. 

Overall, it is apparent that some dust can be released by entrainment of resident fines but it 

is obvious that additional dust has been produced within the abrasion apparatus. 

Fine-grained particles have been observed within aeolian sand deposits on Mars. At the 

Rocknest sand shadow in Gale crater, aeolian sediments are estimated to contain 30 – 50 % 

fine particles, where fine particles are described as being smaller than 100µm, with 

approximately equal proportions of silt and very fine sand (Minitti et al., 2013). Mobilisation 

of these sediments is likely to release the resident fines. 

5.5 Roundness and sorting 

A cross plot of dust collected versus sorting shows no clear relationship (Figure 3f). The 

basalt sands used in these experiments are subangular to rounded (Table 1) and therefore 

less well rounded, and less well sorted than Martian dune sands at the Gobabeb site.  The 

Rocknest sediment is probably more poorly sorted than the samples used in these 

experiments but a direct comparison is not possible due to the limited resolution of the 

instruments on the Curiosity rover (Minitti et al., 2013). Due to the subjective nature of 

particle roundness by visual estimation, and the variability of particle roundness within 

samples, no quantitative assessment of the relationship between roundness and dust 

production has been attempted here. However, other abrasion experiments (e.g. Kueppers 

et al., 2012) that used crushed, angular scoria show a non-linear decrease in ash (< 2 mm) 

produced over time that they attribute to rounding of particles. In addition, Cornwall et al., 

(2015) noted particle rounding in their abrasion experiments, and increased roundness is 

commonly associated with aeolian sediment transport (Kuenen, 1960, Garzanti et al., 2012). 

5.6 Gypsum sands 

The two gypsum sands from White Sands National Monument, P1 and T1, produced 199.98 

mg and 51.07 mg respectively (Table 2). The sample P1, which produced more dust than T1, 

is finer grained.  Given that the air flow is similar, it is likely that entrainment and activity of 

the finer sand is more vigorous; this resulted in more collisions between grains and the 

abrasion chamber and thus an increase in grain fracturing and fragmentation for the finer 

grained sand. The gypsum sand P1 produced almost twenty times as much dust as 

equivalent sized basalt sand (KV 200). We suggest that this can be attributed to differences 

in the mechanical properties of the grains. Gypsum is a relatively soft mineral with a value of 

2 on Mohs hardness scale, and absolute hardness value of 3 (Mukherjee, 2012). It is also a 

crystal with a well-developed cleavage; this makes it fissile. As a consequence, gypsum 

might be more likely to fracture or fragment than the amorphous volcanic glass that is the 

most abundant component of the basalt sands. Our results contrast with those of 
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Szynkiewicz et al. (2013) who used a tumbling apparatus to simulate aeolian erosion. They 

found that the decrease in size of gypsum particles was less than the decrease measured for 

quartz particles. In addition, the quartz sand produced more dust (< 60 microns) than the 

gypsum. Szynkiewicz et al. (2013) suggest that the softness of the gypsum might protect the 

grains from significant physical erosion. However it should be noted that some of the dust 

sized particles from the quartz could be derived from erosion of the glass during the 

experiment (Szynkiewicz et al., 2013), and the quartz sand used in their experiments is 

MERCK analytical grade quartz which is a crushed quartz with very angular particles. 

Previous abrasion experiments with crushed quartz grains show that abrasion rates are 

higher for angular grains than rounded grains (Kuenen, 1960, Whalley et al., 1987, Wright et 

al., 1998, Bullard et al., 2004).  

5.7 JSC Mars 1-A 

The sample JSC Mars 1-A produced the most dust 5,039 mg (Table 3) which is equivalent to 

over 50% of the initial sample weight and four orders of magnitude greater than the very 

coarse grained DS 2. The difference can, in-part, be attributed to the difference in grain size; 

DS 2 is coarser grained and consequently was less often entrained and showed less activity 

than the finer grained JSC Mars 1-A. In addition, JSC Mars 1-A contains significant fines with 

a D10 of 43.9 microns while DS 2 has a D10 of 595.9 microns. Thus JSC Mars 1-A contains 

more than 10% dust sized particles (< 63 microns) at the outset which are not present in DS 

2. Comparison of the results from the Iceland samples shows that grain size does make a 

difference. However, grain size alone cannot account for the vast difference in the results. 

Sieving JSC Mars 1-A to isolate the medium and coarse fractions still produced more dust 

than all of the other samples. Another and probably more significant difference is the 

composition. JSC Mars 1-A is composed of 90% glass fragments, some partially altered to 

palagonite, with less than 10% rock fragments. In contrast, DS 2 contains 49% rock 

fragments and less than 50% glass fragments and these are fresh and not altered. 

Furthermore, the bulk density of JSC Mars 1-A is 0.87 g/cm3, which is less than all of the 

basalt sands (Table 1). The low density is in part attributed to the presence of scoria clasts 

which contain gas bubbles. Low density particles are more easily entrained by the wind and 

once entrained will be subject to collisions, fractures and fragmentation and production of 

dust.  

5.8 Weathered glass on Mars 

Low albedo sediments covering large areas of the northern lowlands of Mars are 

interpreted to be a poorly crystalline high silica phase interpreted to be iron-bearing 

volcanic glass partially obscured by a silica enriched glass rind (Horgan and Bell, 2012). Their 

interpretation suggests a history of explosive volcanism followed by widespread acid 

leaching. They suggest that glass-rich volcaniclastics are a major source of aeolian sands on 

Mars and that widespread surficial aqueous alteration has occurred under Amazonian 

climatic conditions. This combination of explosive volcanism and subsequent alteration 

provides a suitable scenario for the precursor to abundant dust production from weathered 

volcanic sands on Mars.  
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5.9 Comparison with desert dunes on Earth 

It has been suggested that sand dunes in the Sahara are major sources of atmospheric 

mineral dust (Crouvi et al., 2012). The production of dust from desert dune sands has been 

simulated by Bullard et al. (2004, 2007), who conducted similar experiments to ours using 

sand samples collected from desert dunes in Australia. The average amount of dust 

produced by the 22 samples used by Bullard et al. (2007) is 0.61% of the initial weight. For 

comparison, we ran the experiments for the same duration, 72 hours, and started with the 

same sample weight of 10 grams. Three of the basalt sand samples (DS 6.2, Saudarkrokur, 

and Grand Falls), produced similar amounts of dust, 0.69%, 0.56% and 0.56% respectively 

(Figure 3). However, this does not adequately illustrate the difference in the range of the 

results. While the minimum value for the Australian sands is 0.41% and the maximum is 

0.98%, the minimum value for the basalt sands expressed as a percentage is 0.005% (DS 2) 

and the maximum value is 50% (JSC Mars 1-A). The range of results from these experiments 

is much greater than the range of results from Australia. This is interpreted to be due to the 

range in composition of the basaltic sands, as well as the range in grain size, and bulk 

density. The Australian dune sands are all quartz rich (99% quartz) and mostly fine grained 

sands (Bullard et al., 2007). The basalt sands studied here show a wider range in grain size 

(Table 1), and composition (Table 2). 

The apparent similarity in values between the Australian dune sands and the basalt dune 

sands DS 6.2, Saudarkrokur, and Grand Falls, does not necessarily indicate similar particle 

properties or similar modes of dust production. The most important factor affecting the 

amount of dust produced by aeolian abrasion of the Australian sands is the removal of clay 

coatings (Bullard et al., 2007).  The experiments by Bullard et al. (2004, 2007) found that the 

rate of fine particle production was high during the first 16 hours of abrasion, and then 

reduced considerably after 48 hours (Bullard et al., 2004). The initial, relatively high rates of 

fine particle production may be attributed to the removal of resident fines (Bullard et al., 

2004), that is pre-existing fine-grained particles within the sediments or weakly bonded to 

the surface of larger particles. While the later dust appears to contain finer particles < 10 

μm, they attributed this to the removal of grain surface coatings (Bullard et al., 2004).  

Repeating the experiment with the basalt dune sands from Grand Falls Arizona and DS 6.2 

from Hawaii shows that the dust collected from these sands does decrease slightly over 

time (Figure 5A). However, the Australian dune sand (R64) initially produced more dust than 

the basalt sands (Figure 5A) but the amount of dust collected decreased, over time, in a 

logarithmic manner (Figure 5A). After 64 hours of abrasion, the basalt sands from Hawaii 

and Arizona had produced more dust than the Australian dune sand (Figure 5A). Although 

the amount of dust collected after aeolian abrasion of the basalt sand from Grand Falls 

Arizona shows some reduction in dust production over time, the DS 6.2 rate of decline was 

lower (Figure 5A). The reduction in the rate of fine particle production from red desert 

sands was attributed to the removal of resident fines followed by removal of clay coatings 

(Bullard et al., 2007). There is a finite amount of grain coatings, and once removed they are 

unlikely to be replaced on an active dune sand, which likely contributes to gradual reduction 

in dust production from red desert dune sands. The basalt sands lack the red coloration and 

grain coatings typically associated with desert dunes (e.g. Walker 1979), and thus removal of 
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grain coatings can be discounted as a mechanism for producing dust. The different behavior 

overtime, and the more linear rate of dust production are attributed to the fracture and 

fragmentation of basalt sand particles. A non-linear decrease in particles < 2 mm, produced 

by abrasion of scoria was attributed to rounding of particles (Kueppers et al., 2012). 

However, their experiments used angular particles of crushed scoria whereas the particles 

used in our experiments were initially rounded to sub-rounded.   Cornwall et al. (2015), also 

noted a reduction in the rate of material lost during abrasion which they attribute to the 

rounding of particles, as well as the fracturing of some minerals. For the JSC Mars 1A 

Martian simulant, the amount of dust collected decreases over time and the decrease 

approximates a logarithmic decay (Figure 5B). We suggest that this is due to the fracturing 

and fragmentation of the altered and weathered glass in JSC Mars 1-A. 

5.10 Alternative models 

While Bridges and Muhs (2012) acknowledge that abrasion of rocks and soil by sand blasting 

is capable of producing dust, they regard this as a minor process arguing that higher energy 

processes active on Mars in the past, such as volcanic eruptions, meteorite impacts, as well 

as erosion associated with channels and possibly glaciation, have been more effective dust 

producers. However, the surface of Mars has been dry for a very long time, potentially since 

the end of the Noachian around 3.7 Ga (Tanaka, 1986). This leaves a huge time span for 

aeolian process on the surface of Mars to produce dust, so that even if the rates of 

production are very low there is a vast amount of time for dust to be generated and to 

accumulate on an arid Martian desert. In addition, Kuenen (1960) observed that wind 

abrasion of quartz is 100 to 1000 times more effective over the same distance than the 

mechanical action of a river. Previous abrasion experiments using Martian analogue 

materials have shown relatively high rates of abrasion (Greeley et al., 1982, Krinsley and 

Greeley, 1986). In our experiments we have shown that aeolian abrasion of basalt sands can 

produce significant amounts of dust, and even more from one volcaniclastic sediment. This 

does not rule out the potential for reworking of fines. Indeed, multiple cycles of erosion are 

highly likely, but, given the relatively limited duration of wet conditions on Mars and the 

effectiveness of aeolian abrasion, these earlier cycles might also have been dry and aeolian 

rather than wet and fluvial. Aeolian abrasion during saltation of basalt sand, and 

volcaniclastics, should be considered as a potentially significant source of dust production 

on Mars. Volcanoes and volcanic sediments are present on Mars (Mouginis-Mark, Wilson 

and Zuber 1992, Wilson and Head 1994, 2007). If the volcanic particles have been physically 

and chemically weathered, then the potential for dust production is much greater, even 

though weathering of basalt on Mars differs from weathering on Earth (Hurowitz et al., 

2006). Ojha et al. (2018) suggest that deflation of the Medusae Fossae Formation (MFF) is a 

likely source for dust on Mars based upon the chemistry of Martian dust and the MFF.  

While the origins of the MFF are uncertain, it was suggested that the MFF might be 

composed of volcanic sediments e.g. (Hynek 2003, Bradley et al. 2002, and Kerber et al 

2011). Our results appear to support the hypothesis that deflation of volcanic ash could be a 

potent dust source on Mars.  
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6. Conclusions 

The abrasion apparatus produces dust particles due to the agitation and abrasion of basalt 

and gypsum sands that are analogues for surface sediments on Mars. Some of the dust 

trapped can be attributed to the entrainment of resident fines, additional dust is produced 

within the abrasion apparatus. Our results show that aeolian abrasion of basalt sands can 

produce similar amounts of dust as some desert sand dunes on Earth. However, dust 

production from desert dune sands appears to decrease rapidly over time whilst dust 

production from basalt sands is maintained longer, presumably due to the fracturing and 

fragmentation of particles. The results suggest that fine-grained sands produce more dust 

than coarse grained sands within the abrasion apparatus, possibly due to greater activity 

and an increased number of collisions between fine grained particles. In addition, coarse 

sand grains can form a surface layer that prevents the entrainment of finer grained 

particles.  Weathered volcanic glass, which might be widespread on the surface of Mars 

(Horgan and Bell, 2012), represented here by the Mars analogue material JSC Mars 1-A 

simulant, produces orders of magnitude more dust than either the basalt sands or terrestrial 

desert dune sands. The low bulk density of JSC Mars 1-A makes it easy to entrain and results 

in increased dust production through fracturing and fragmentation. Low-density scoria 

particles will be more easily entrained than other volcanic clasts of similar size. Saltation is 

known to occur on Mars (Sullivan et al. 2008, Baker et al. 2018), and is apparently 

widespread on the surface of Mars (Bridges et al., 2012b). Assuming that the materials used 

in these experiments are appropriate analogues for Martian dune sands, the results suggest 

that saltation of basalt sands on Mars  ̶  and weathered volcaniclastic sediments in 

particular  ̶  have the potential to produce significant amounts of dust.  
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Figure 1. Photomicrographs of petrographic thin sections prepared from unconsolidated 

sands mounted in epoxy resin. The field of view for each photomicrograph is 4.4 mm. 

Photographs A to H were taken in plain polarized light. Photographs I and J were taken with 

crossed polars because gypsum is clear and almost translucent in plain polarized light. 

Descriptions of each sample can be found in the text: A) DS1, Hawaii, USA. B) DS2, Hawaii, 

USA. C) DS6.2, Hawaii, USA. D) Grand Falls, Arizona, USA. E) Saudarkrokur, Iceland. F) JSC 

Mars 1-A 250-500 µm, Hawaii, USA. G) KV50, Kvensödull, Iceland. H) KV200, Kvensödull, 
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Iceland. I) P1, gypsum, New Mexico, USA. J) T1, gypsum, New Mexico, USA. The letters W, X, 

Y and Z respectively, show examples of dark glass, fresh glass, altered glass, and a basalt 

rock fragment. 
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Figure 2. Schematic diagram of the abrasion apparatus used for the experiments with inset 

photograph. 
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Figure 3. Cross-plots of dust collected after aeolian abrasion of basalt sands for 72 hours: (a) 

dust against D 10,  (b) median grain size (D 50), (c) the coarse fraction D90, (d) dust mass 

and resident fines including JSC Mars 1-A,  (e) dust mass against basalt sands without JSC 

Mars 1-A and the gypsum sands, (e) dust vs sorting. 
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Figure 4. Distribution of dust collected after 72 hours of aeolian abrasion of basaltic sands 

shown as a percentage of the initial sample weight. The vertical axis has a logarithmic scale 

to encompass the four orders of magnitude difference in results. On the left side are results 

of aeolian abrasion of red-colored desert dune sands from Australia, from Bullard et al., 

(2007). 
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Figure 5A. The amount of dust collected after aeolian abrasion of basaltic dune sands from 

Grand Falls Arizona, and DS 6.2 from Hawaii, compared with a red-colored, quartz-rich dune 

sand from Australia R64 from Bullard et al., (2004). B. The amount of dust collected after 

aeolian abrasion of JSC Mars 1-A Martian simulant over 119 hours compared with a quartz 

rich dune sand from Australia from Bullard et al., (2004). Note the difference in the vertical 

axes with results expressed as weight percent of the initial sample mass. 
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Table 1. Sample locations, grain size characteristics, bulk density and color. 

Sample 
name 

Location 
State/ 
Country 

Latitude N Longitude W 
Grain 
size 

D 10 
(μm) 

D 50 
(μm) 

D 90 
(μm) 

Resident 
fines % 

(< 63 μm) 

Sorting 
(σ1) 

 
Roundness 

Bulk 
density 
(gcm-3) 

Color 

DS1 Hawaii 
USA 

19⁰ 16’ 36” 155⁰ 22’ 40” Medium 
sand 

179 298 354 0.02 well sorted 
0.417 

subrounded 1.42 Hue 5Y black 
2.5/1 

DS2 Hawaii 
USA 

19⁰ 20’ 42” 155⁰ 18’ 23” Very 
coarse 
sand 

596 1148 1350 0.005 very well 
sorted 
0.315 

subangular 1.63 
 

Hue 5Y very 
dark grey 3/1 

DS6.2 Hawaii 
USA 

19⁰ 21’ 16” 155⁰ 21’ 50” Fine sand 128 164 321 0.05 moderately 
well sorted 
0.606 

subangular 1.46 Hue 5Y black 
2.5/1 

Saudark
rokur 

Iceland 65° 44’ 
7.6” 

19° 25’ 55” Fine sand 131 163 323 0.02 moderately 
well sorted 
0.506 

subrounded 1.58 Hue 5Y very 
dark grey 3/1 

KV50 Iceland 65⁰ 53’ 31” 16⁰ 19’ 21” Fine sand 79 178 667 0.44 moderately 
well sorted 
0.818 

subrounded 1.58 Hue 5Y very 
dark grey 3/1 

KV200 Iceland 65⁰ 53’ 34” 16⁰ 19’ 16” Medium 
sand 

83 274 524 1.0 poorly sorted 
1.164 

rounded 1.68 Hue 5Y very 
dark grey 3/1 

Grand 
Falls 

Arizona 
USA 

35⁰ 25’ 46” 111⁰ 12’ 24” Fine sand 127 162 330 0.54 moderately 
well sorted 
0.631 

rounded 1.44 Hue 2.5 black 
N2.5 

JSC 
Mars 1-
A  

Hawaii 
USA 

19⁰ 41’ 45” 155⁰ 29’ 46” Fine sand  44 166 567 11 poorly sorted 
1.192 

rounded 0.87 Hue 10Yr dark 
yellowish brown 
3/4 

P-1 New 
Mexico 
USA 

32⁰ 47’ 41” 106⁰ 12’ 56” Fine sand 134 273 339 0.27 moderately 
well sorted 
0.521 

rounded to 
well 

rounded  

1.29 Hue 10Yr white 
8/2 

T-1 New 
Mexico 
USA 

32⁰ 49’ 15” 106⁰ 16’ 37” Medium 
sand 

145 290 349 0.32 moderately 
well sorted 
0.565 

rounded 1.37 Hue 10Yr white 
8/1 
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Table 2. Petrology of the basaltic sands 

Sample name Fresh 
glass 

Dark 
Glass 

Altered 
Glass 

Total 
Glass 

Lithic rock 
fragments 

Feldsp
ar 

Olivine Others 

DS1 61.3 9.3 15.0 85.6 9.0 0.6 1.6 3.0 

DS2 8.3 4.3 35.0 47.6 48.6 0.6 2.0 1.0 

DS6.2 73.3 8.0 10.3 91.6 1.0 1.0 5.6 0.6 

Saudarkrokur 19.0 9.6 18.6 47.2 39.6 4.6 2.6 5.6 

KV50 51.3 23.6 14.3 89.2 8.0 1.6 0.6 0.3 

KV200 45 11.3 16.3 72.6 19 6 1.6 0.6 

Grand Falls 22.6 20.3 37.6 80.5 9.6 5.0 4.0 0.6 

JSC Mars 1A < 1mm 0 74.9 16.3 91.2 8.6 0 0 0 
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Table 3 Results of the aeolian abrasion experiments. The amount of dust collected in milligrams (mg), and grain size in microns (µm). 

Sample 
name 

Location Dust 
(mg) 

Dust 
(%) 

First trap (lower) Second trap (higher) 

Mean grain 
size of dust 

(μm) 

D 10 
(μm) 

D50 
(μm) 

D 90 
(μm) 

Mean grain 
size of dust 

(μm) 

D 10 
(μm) 

D 50 
(μm) 

D 90 
(μm) 

DS1 Hawaii, USA 4.57 0.04 10.27 1.8 7.99 115.1 15.9 2.42 13.0 117.7 

DS2 Hawaii, USA 0.51 0.005 16.00 2.86 11.9 113.4 17.05 2.75 16.5 99.6 

DS6.2 Hawaii, USA 69.41 0.69 11.42 2.28 12.3 46.1 8.51 2.09 7.74 88.1 

Saudarkrokur Iceland 55.73 0.55 9.12 1.73 9.69 39.9 7.93 1.84 7.97 32.9 

KV50 Iceland 21.67 0.21 11.28 2.12 12.0 50.7 10.28 1.93 8.07 149.5 

KV200 Iceland 10.48 0.10 65.93 3.88 49.5 976.1 17.48 2.25 23.2 95.1 

Grand Falls Arizona, USA 55.93 0.56 6.94 1.46 6.37 38.5 6.57 1.53 6.05 36.3 

JSC Mars 1A 
< 1mm 

Hawaii, USA 5,039 50.3 9.2 2.42 10.0 27.6 5.61 1.79 5.89 14.9 

JSC Mars 1A 
250-500 μm 

Hawaii, USA 2,967 29.7 7.34 1.99 7.88 22.1 6.83 1.99 7.16 20.1 

JSC Mars 1A 
>500  μm 

Hawaii, USA 2,526 25.3 6.51 1.81 7.05 18.5 10.9 2.77 11.9 32.7 

P1 (gypsum) New Mexico, 
USA 

199.9 1.99 na na na na na na na na 

T1 (gypsum) New Mexico, 
USA 

51.07 0.51 na na na na na na na na 

 


