1				
2	U-PB DETRITAL ZIRCON GEOCHRONOLOGY OF THE LOWER DANUBE AND			
3	ITS TRIBUTARIES; IMPLICATIONS FOR THE GEOLOGY OF THE			
4	CARPATHIANS			
5				
6	Mihai N. Ducea ^{1,2} , Liviu Giosan ³ , Andrew Carter ⁴ , Adriana M. Stoica ^{1,2} , Relu D. Roban ² ,			
7	Constantin Balica ⁵ , Ion Balintoni ⁵ , Florin Filip ⁶ , Lucian Petrescu ²			
8				
9	¹ University of Arizona, Tucson, AZ 85721, USA			
10	² Faculty of Geology and Geophysics, University of Bucharest, 010041, Bucharest, Romania			
11	³ Woods Hole Oceanographic Institution, USA			
12	⁴ - University of London, UK			
13	⁵ - Babes-Bolyai University, Cluj Napoca, Romania			
14	⁶ Institute for Fluvial and Marine Systems, Romania			
15				
16				
17	Corresponding author: Mihai Ducea ducea@email.arizona.edu			
18				
19	August 19, 2018			
20	Key Points:			
21				
22	* A detrital zircon U-Pb study of modern sands from the lower Danube and its tributaries			
23	documents the main magmatic events that led to the continental crustal formation of the			
24	nearby Carpathians;			
25	* The great majority of basement was formed in latest Proterozoic – Ordovician island arcs, a			
26	finding that is consistent with previous studies;			
27	* An unexpected and prominent Carboniferous magmatic peak in the detrital record has no			
28	known source in the nearby Carpathians.			

30

31 ABSTRACT

32

We performed a detrital zircon (DZ) U-Pb geochronologic survey of the lower parts of the Danube River approaching its Danube Delta- Black Sea sink, and a few large tributaries (Tisza, Jiu, Olt and Siret) originating in the nearby Carpathian Mountains. Samples are modern sediments. DZ age spectra reflect the geology and specifically the crustal age formation of the source area, which in this case is primarily the Romanian Carpathians and their foreland with contributions from the Balkan Mountains to the south of Danube and the East European Craton.

40

41 The zircon cargo of these rivers suggests a source area that formed during the latest 42 Proterozoic and mostly into the Cambrian and Ordovician as island arcs and backarc basins in 43 a Peri-Gondwanan subduction setting (~600 -440 Ma). The Inner Carpathian units are 44 dominated by a U-Pb DZ peak in the Ordovician (460-470 Ma) and little inheritance from the 45 nearby continental masses, whereas the Outer Carpathian units and the foreland has two 46 main peaks, one Ediacaran (570-610 Ma) and one in the earliest Permian (290-300 Ma), 47 corresponding to granitic rocks known regionally. A prominent igneous Variscan peak (320-48 350 Ma) in the Danube's and tributaries DZ zircon record is difficult to explain and points out 49 to either an extra Carpathian source or major unknown gaps in our understanding of 50 Carpathian geology. Younger peaks corresponding to arc magmatism during the Alpine period 51 make up as much as about 10% of the DZ archive, consistent with the magnitude and surface 52 exposure of Mesozoic and Cenozoic arcs.

53

54 KEYWORDS: Danube, Carpathians, detrital zircon, U-Pb geochronology, continental crust

55

56 1. INTRODUCTION

58 Although it is well established that the South and East Carpathians as well as the Apuseni and 59 the Balkan mountains (comprising a Z-shaped double orocline of the easternmost part of the 60 Carpathians and Balkans) were assembled during the Alpine orogeny a significant component 61 of pre-Jurassic basement (Schmid et al., 2008, Matenco et al., 2010, 2017) records an older 62 history that, in most places, is poorly known and sometimes controversial (Balintoni et al., 63 2014). A major obstacle is that more than 70% of the orogen is densely vegetated and thus 64 poorly exposed. Some progress has been made over the past decade helped by modern 65 geochronology data (see Balintoni et al., 2014 for a review of basement geochronology and 66 the geological background below). This has led to most of the older interpretations regarding 67 the origin and evolution of the Carpathians basement (Krautner, 1994, for a review) being 68 revised or abandoned.

69

70 The relatively few zircon U-Pb geochronological studies of basement (pre Jurassic igneous and 71 metamorphic) rocks (Balintoni et al., 2009, 2010, 2011, 2014, Balintoni and Balica, 2016) from 72 each of the major geologic domains or their syn-tectonic cover rocks, (Stoica et al., 2016) have 73 shown that the majority of basement rocks in the Romanian Carpathians and their foreland 74 regions are Ediacaran to early Paleozoic island arcs. Confirmation and dating of Variscan 75 magmatic and metamorphic rocks has also helped place the Romanian Carpathians within the 76 regional geologic framework of nearby European basement terrains (von Raumer et al., 2013). 77 But, despite these advances large areas, such as the Fagaras Mountains of the South 78 Carpathians (the highest mountain range in the Carpathians), have not been visited by recent 79 studies. As a consequence fundamental questions remain, such as whether there are 80 Precambrian basement rocks to the Cambro-Ordovician arcs and if there was a succession of 81 magmatic events associated with the Variscan collision. Future advances require new geologic 82 and geochronological data as demonstrated for example by a recent study of a ductile shear 83 zone in the South Carpathians basement (Ducea et al., 2016). Results in that study showed 84 that terrane assembly took place during the latest Permian, much later in the evolution of the 85 Paleotethys than previous models allowed and this changed understanding of the timing of 86 metamorphism and terrane assembly of the South Carpathians. It is within this context that

87 we conducted a DZ U-Pb study of modern river sediments from the Danube and its tributaries; 88 our approach is a reverse engineering attempt at filling geochronologic/tectonic gaps in the 89 scarcely known history of the regional basement through the lens of the sedimentary record 90 of modern rivers. By comparing the known incomplete geologic record of the basement in the 91 Carpathians with the limited but spatially significant collection of zircon ages from the most 92 important rivers draining the Carpathian mountains (Radoane et al., 2003) and the lower 93 Danube itself, we aim to detect what is missing from the regional geologic knowledge and 94 where to target future localized studies of the basement.

95

96 Detrital zircon U-Pb geochronology is routinely used to investigate continental regions 97 (Cawood et al, 2012; Gehrels, 2014). The ability to measure large numbers of zircons by in-situ 98 mass spectrometry, mostly by laser ablation ICP-MS (Gehrels et al., 2008) has turned detrital 99 zircon chronology into one of the most widely used quantitative provenance tools. Most 100 studies aim to identify source area(s) of a sedimentary package by comparing zircon age 101 distributions with bedrock ages from potential source areas (e.g. Barbeau et al., 2005; 102 Thomas, 2011, Robinson et al., 2012; Gehrels and Pecha, 2014). Source regions are often 103 distinguishable because each plausible source area has a specific geologic/tectonic history 104 that includes different times, durations and fluxes of zircon producing magmatism and to a 105 lesser extent, metamorphism. The goal of this study is the opposite in that we want to 106 expand regional geochronological datasets by using modern river sediments to capture the 107 zircon U-Pb age structure of rocks in river catchment areas. Here, we focus on the Danube and 108 its tributaries that drain the easternmost segment of the Carpathian Mountains in Romania 109 (Matenco et al., 2016). We found an unexpected abundance of Carboniferous (Variscan) 110 zircons, a relatively young provenance age of the East Carpathian foreland, as well as some 111 unexpected Eocene ages that among other data help to clarify existing hypotheses. Results 112 also help guide future regional work.

113

114 2. GEOLOGIC BACKGROUND AND ZIRCON AGES

116 The Romanian Carpathians comprise a series of Alpine units each comprising several 117 individual thrust sheets, stacked up during compressional tectonics. The main units are shown 118 in the simplified map (Fig. 1 after Matenco et al., 2010, and previous work cited therein). From 119 top to bottom, the major units are: (a) Tisza, which makes up the northern part of the 120 Apuseni Mountains and parts of the Transylvanian Basin (Ciulavu and Bertotti, 1994), (b) east 121 Vardar, a sequence of several thrusts that includes some primitive island arc rocks and 122 pseudo-ophiolites of Jurassic age, (c) the Supragetic, making up the northern, western and 123 eastern parts of the south Carpathians, (d) the Getic in the South Carpathians and equivalent 124 Bucovinic thrust sheets in the East Carpathians (the Supragetic and Getic are sometimes 125 collectively referred to as Dacia), (e) the Ceahlau-Severin thrust sheets represented in the 126 South Carpathians by a narrow belt of serpentinites and attenuated flysch and in the East 127 Carpathians by a larger flysch belt, (f) the Danubian, the lowest trust sheet package in the 128 South Carpathians and (g) the thin skinned thrusts of the East Carpathians, which override the 129 foreland to the east. In detail, these are complicated structures and have numerous alternate 130 names and interpretations in the literature. In this study we follow the scheme of Matenco et 131 al. (2010), which at the large scale is not fundamentally different from earlier syntheses 132 (Burchfiel, 1976, 1980).

133

134 The compressional assembly of these distinct blocks took place between mid- and late 135 Cretaceous during at least two poorly dated distinct tectonic events (confusingly referred to as "Austrian" and "Laramide" orogenic phases in the Romanian literature, Sandulescu, 1984), 136 137 followed by a later sequence of thrusting in the East and South Carpathians, which started in 138 the Miocene and extended into the Pliocene and Quaternary. The Apuseni Mountains, which 139 contain internal evidence of Cretaceous thrusting, may have been translated from more 140 southerly latitudes and has almost certainly been rotated clockwise during a Mid-Miocene 141 (Balla et al., 1987; Patrascu et al., 1994; Dupont Nivet et al., 2005) episode of tectonic escape 142 attributed to the Tisza bloc (Ratschbacher et al., 1993). Thus, the postulated position of the 143 Apuseni Mountains on top of the other Carpathian units may be the result of a relatively 144 young tectonic event. Clearly, the overall assembly of these thrust sheets is multiphase and

their structural position today is complicated by translation along strike slip faults (Ratschbacher et al., 1993; Tischler et al., 2007; Ducea and Roban, 2016) and by the reactivation of some thrust faults as extensional structures (Schmid et al., 1998; Fügenschuh and Schmid, 2005).

149

150 For more detail on the tectonic elements and Alpine evolution of the Romanian Carpathians, which remain highly debated in the regional literature, we refer the reader to seminal papers 151 by Schmid et al (2008), Matenco et al (2010; 2017), Csontos and Vörös (2004) and the earlier 152 153 review by Burchfiel (1976), whose main points were made popular in the local literature by 154 Sandulescu (1984). What is of importance to this paper is that the major units appear to contain thinned continental basement (igneous and metamorphic rocks of pre-Mesozoic age) 155 156 and are separated by some relatively narrow basins in which sedimentation was marine (East 157 Vardar, Ceahlau-Severin, and its later variant found in the East Carpathians, the Paratethys). 158 None of these appear to have been part of the major Tethys ocean, whose main suture is 159 located to the south of the Carpathians and the Balkans (Schmid et al., 2008). Instead they 160 were basins possibly linked to the greater Tethys at times, formed on thinned continental 161 crust and possibly containing small fragments of oceanic crust. This thinning presumably took 162 place at the end of the Variscan orogeny, when a collisional belt collapsed in a Basin and Range-like fashion (Menard and Molnar, 1988), thus priming the Eastern European 163 164 continental crust for the later development of the Tethys and related basins. Few of the 165 Carpathian units described previously as ophiolites (Sandulescu, 1984, 1988) are 166 geochemically or even geologically in the larger sense true ophiolites (lanovici et al., 1976; 167 Ionescu et al., 2009; Gallhofer et al., 2017). For example, the ones in the South Apuseni area, which were emphatically labeled as the "Main Tethysian Suture" by Sandulescu (1984), are 168 169 actually rocks found in association with a predominantly calc-alkaline suite ranging from 170 basalt to rhyolites (Gallhofer et al., 2017). In the broader sense these basins were back arc 171 domains to the greater Tethys ocean, similar to basins of the Caucasus (Cowgill et al., 2016). 172 Closure of these basins in the South Carpathians led to Alpine metamorphism (Ciulavu et al., 173 2008). Tisza, part of the east Vardar thrust sheet, the Supragetic, Getic, Bucovinic and the

Danubian units, all contain pre-Alpine continental basement, as does the foreland to the south and east. The thin skinned nappes of the East Carpathians do not have much exposed basement per se, but petrography of these units show clearly that they were sourced by rocks from the nearby foreland to the east.

178

179

180

Figure 1. Modern configuration of the Carpathian orocline, with major geological and structural units, magmatic arcs (Ca=Neogene calc-alkaline, A-Ca= late Cretaceous calc-alkaline, and K-Na =Jurassic) and major faults. The map is compiled on the basis of the Geological Maps of Romania executed by the Geological Institute of Romania at various scales (1:1,000,000, 1:200,000, and 1:50,000) and subsequent work by the Free University of Amsterdam/University of Utrecht groups led by Prof. Liviu Matenco (e.g. Maţenco et al. 2010).

187 In the foreland there are several distinct blocks, some of which (Moesia, Scythia and the East 188 European Platform) were viewed historically as platforms or even cratonic blocks based on 189 the apparent lack of deformation of their cover rocks. In between them, lies North and South-190 Central Dobrogea, which are exposed in the province of Dobrogea (but continue unexposed 191 under the Romanian plains) and clearly have a complicated Paleozoic and, in the case of North 192 Dobrogea, even a Mesozoic history. The North Dobrogea does not represent a platform, 193 whereas South-Central Dobrogea, which continues under east Moesia is considered by some as platformal. As more industry data (drilling and seismic) become available from the foreland
regions of the Carpathians, it is clearer that none of these areas acted as rigidly as previously
thought during the Alpine orogeny (Krezsek et al., 2017). In addition, they have a complex
(and at the moment poorly resolved) Paleozoic history including magmatism as young as
Carboniferous (e.g. in Western Moesia, Paraschiv, 1979).

199

200 While Moesia, Dobrogea, Scythia and even the western-most reaches of the East European platform close to the Carpathians remain highly debated in the geologic literature and poorly 201 202 known due to lack of exposure, one aspect relevant to this study has become clear: none of 203 these areas are legitimate cratonic areas free of deformation and magmatic activity for a 204 sizable fraction of the Earth's history. Instead, as we will show below, they are dominated by 205 Neoproterozoic U-Pb ages (560-610 Ma) and a distinctive array of less abundant 1-2 Ga 206 zircons that are rather similar to the Danubian unit in the South Carpathians but very different 207 from the higher Alpine structural units found towards the Carpathians interior.

208

209 Figure 2 is a compilation Kernel Density Estimate (KDE) type plot of igneous and (mostly) 210 detrital zircons measured in various Carpathian and foreland units over the past decade. The 211 great majority of these data were acquired at the Arizona Laserchron facility (and its 212 precursors) at the University of Arizona and published by various groups cited in the figure. 213 Recently, Gallhofer et al. (2015, 2017) have contributed to the U-Pb geochronology knowledge 214 of the Jurassic and Cretaceous Carpathian magmatic arc rocks of South Apuseni and Banat, 215 respectively. Older (pre-2008) zircon data from this segment of the Carpathians and its 216 foreland are few: some TIMS work from the Edmonton laboratory in the early 2000s on a few 217 Jurassic plutons of the east Vardar region (Pana et al., 2002), earlier TIMS work on 218 Neoproterozoic Danubian granitic plutons (Liégeois et al., 1996) and limited 1960s-1980s 219 geochronology performed in Soviet laboratories and published in local journals, without 220 analytical details.

222 Zircon U-Pb ages from the interior of the Carpathians orocline (basement and cover units 223 derived from them) are dominated by latest Precambrian (~600 Ma) to Cambro-Ordovician 224 ages, in some areas continuing into the Silurian (Balintoni et al., 2009, 2010, 2011, 2013, 2014) 225 (Figure 2). The following structurally higher units share this history: Tisza, East Vardar, 226 Supragetic, and Dacia (Getic and Bucovinic). We refer to these as the Inner Carpathian Units. 227 These rocks represent the products of relatively long-lived peri-Gondwana island arcs over that time period (600 - 420 Ma) with is a distinct dominant peak at 466 ± 10 Ma representing 228 229 the culmination of a high flux magmatic event (Stoica et al., 2016). Older zircons are few and 230 they make up a small Grenville peak and few ages older than 2.0 Ga- they are thought to be 231 derived from a landmass closest to the island arcs. A less pronounced peak at 330±20 Ma 232 represents the Variscan orogen and is believed to record a period of high grade 233 metamorphism (Dallmeyer et al., 1998; Dragusanu and Tanaka, 1999; Medaris et al., 2003), 234 which marks a continent-continent collisional event. Variscan zircons are mostly 235 metamorphic. The end of high-grade metamorphism is tentatively constrained by the 236 extension-related tectonic emplacement of some mantle peridotite into the crust (Medaris et 237 al., 2003) at 316 ± 4 Ma.

238

In contrast with the interior units described above, the Danubian of the South Carpathians, all 239 240 three Dobrogea blocks, the sedimentary units of the thin skinned thrust sheets of the East 241 Carpathians (presumably derived from eastern sources) and the limited data on Moesia's 242 basement all show a different U-Pb signature (Figure 2). They are referred to as the Outer 243 Carpathian Units below and are found structurally in lower positions in the Alpine stack and 244 toward or within the foreland. They have a late Variscan (285-300 Ma) signature, which in the 245 exposed Danubian is represented by post-collisional often S-type granitoids commonly found 246 elsewhere in the Peri Gondwanan basement of Europe (Stampfli and Borel, 2002; Stampfli et 247 al., 2011; von Raumer et al., 2013) but which is not present in the inner units of the Romanian 248 Carpathians (where the Variscan peak is at 320-350 Ma and is predominantly metamorphic). 249 The dominant age peak of the Outer Units is Neoproterozoic one, 580±30 Ma with progressively fewer ages toward ~ 800 Ma. In the exposed Danubian, Neoproterozoic plutons 250

251 are intruded into a metamorphosed sequence of 800 Ma island arc rocks (Liégeois et al., 252 1996); presumably a similar scenario applies to lesser exposed units of the foreland. Cambro-253 Silurian peaks (with a maximum at 460 Ma) which are common in the Inner Units do not exist 254 here. The other distinctive feature of the outer units is the relatively abundant Proterozoic 255 peaks at 1.2 Ga, 1.5 Ga, 1.75 Ga, 2.0 Ga and the late Archean peak at 2.7 Ga (Figure 2). While 256 there is no evidence for basement of that age to have existed in the Danubian and probably 257 the other outer units, they may have been located near to such a source (and the exact continental fragment representing that source remains debated, see Balintoni et al., 2014, 258 259 Balintoni and Balica, 2016) whereas the inner units were not.

Figure 2. KDE (Kernel Density Estimate) age probability diagrams of Carpathians and foreland zircons (compiled from various published sources). The pink line representing sedimentary cover (thin skinned nappes) of Albian rocks combine zircons derived from Inner and Outer Carpathian units. The Outer Carpathians include the foreland domains to the east and south of the Carpathians

265 266

Overall, despite cursory knowledge of the geologic history of the Romanian Carpathian basement, all basement units above the Ceahlau-Severin suture (the Inner Carpathian Units) have a distinctive U-Pb zircon age distribution from the one found below it, including the foreland (the Outer Carpathians Units).

272 Alpine magmatism is relatively scarce; the Romanian Carpathians are covered by about 12% 273 volcanic and intrusive rocks of post Permian rocks. A few early extension-related rocks in 274 Dobrogea and the East Carpathians are known to be of Triassic age; the Ditrau alkaline massif 275 of the East Carpathians (Ar-Ar age of 230 Ma, Dallmeyer et al., 1997) with a diameter of about 276 20 km is sizable, but unlikely to be a major source of detrital zircons.. The East Vardar region comprises latest Jurassic ophiolites and island arc rocks ranging in composition from basalt to 277 278 rhyolites and syn- to late- granitoid plutons (lanovici et al., 1976, Pana et al., 2002). These 279 rocks occupy a sizable portion of the southern Apuseni Mountains but are probably zircon-280 poor due to their relatively mafic average composition. A belt of intermediate calc-alkaline 281 rocks extending into the South Carpathians to the Apuseni Mountains, sometimes referred to 282 as banatites (Berza et al., 1998), formed in response to the Sava ocean subduction to the 283 south over a short period between 75 and 82 Ma in the Romanian segment (Zimmerman et 284 al., 2008; Gallhofer et al., 2015). Although well studied for their numerous ore deposits and 285 rich mineral diversity associated with them, outcrops cover only a small area. Mid Miocene 286 volcanic and hypabyssal intermediate to silicic intrusives are found in the southern Apuseni 287 Mountains (Seghedi et al., 2004, 2011; Rosu et al., 2004) mainly along an extensional 288 lineament, but they too occupy a small fraction of the overall Carpathian region map area. 289 Finally, volcanic and some hypabyssal intrusions of Miocene (~15 Ma) to Quaternary are 290 found immediately to the west of the East Carpathians; they represent a sizable volcanic arc 291 associated with the closure of the Paratethys ocean; the arc ranges in composition from basalt 292 to rhyolite (Seghedi et al., 2011), and is on average an andesite. Given the catchment areas of 293 the river sands sampled for this study (only the Tisza draws somewhat more heavily from 294 rivers that cross cut this arc), Miocene or younger detrital zircons are unlikely to be common. 295 Overall, these various plutonic and volcanic rocks are expected to be present in the river sands 296 but only in low numbers.

297

298 One of the critical assumptions in the interpretations below is that the lower Danube in 299 Romania and Bulgaria was closed in recent times to sediment supply from west of the Carpathian barrier (the Golden Gate gorge) (Matenco et al., 2016) and thus the great majority of zircons measured in this study are sourced from the modern catchment areas in the nearby mountain range. This assumption may break down in detail as the Dacian Basin, for example (the foreland of the South Carpathians), may have been connected in the past (e.g. Miocene) to other segments of Paratethys and as such, may have recycled zircons from most distant sources contained in basin sediments. If zircons did come from outside of the Carpathian orocline, this assumption states it is unlikely they would be abundant.

307

308 3. SAMPLES

309

Fine to medium grained sand samples were collected from the recent alluvial deposits of the active bars and banks along the Danube River and four of its main tributaries (Siret, Olt, Jiu and Tisza) (Figure 3 and Table 1). Samples on tributaries were collected as close as possible to their confluence with the Danube.

314

315 Zircon concentrates were prepared using standard heavy liquids and a Franz Isodynamic 316 magnetic separator set < 0.5 amps. Zircon rich fractions were then mounted in epoxy resin 317 and polished to expose internal surfaces. At no point were zircons hand picked as this can 318 introduce bias. Analyses were made on every zircon like grain intersected during scanning 319 along transects across polished grain mounts using a New Wave 193 nm aperture-imaged, 320 frequency-quintupled laser ablation system coupled to an Agilent 7700 quadrupole-based ICP-321 MS. A typical laser operating condition for zircon uses an energy density of ca 2.5 J/cm² and a 322 repetition rate of 10 Hz. Repeated measurements of external zircon standard Plesovice (TIMS 323 reference age 337.13±0.37 Ma; Slama et al., 2008) was used to correct for instrumental mass 324 bias and depth-dependent inter-element fractionation of Pb, Th and U. Temora (Black et al., 325 2003) and 91500 (Wiedenbeck et al., 2004) zircon were used as secondary age standards. Ages were based on the 206 Pb/ 238 U ratio for grains < 1000 Ma and the 207 Pb/ 206 Pb ratio for 326 older grains. Data were processed using GLITTER 4.4 data reduction software and grains with 327

- 328 a complex growth history or disturbed isotopic ratios, with > +5/-15% discordance, were
- 329 rejected.
- 330 Data tables are provided in the Supplementary Material.
- 331
- Table 1 . Sampling locations along Danube and tributaries.

Sample location	Latitude	Longitude	Distance to mouth [km]
Danube samples			
Tulcea	45°13'15.99"N	28°42'46.94"E	115
Brăila	45°19'22.59"N	28° 0'8.84"E	164
Turnu	43°42'46.30"N	24°53'28.30"E	596
Tributary samples			
Siret	45°23'56.80"N	28° 0'41.90"E	155
Olt	43°44'50.97"N	24°46'35.68"E	604
Jiu	44°34'09.80''N	23°27'19.80''E	694
Tisa	46°08'48.76"N	20°03'52.47"E	1214

Figure 3. Sample locations along the Danube (blue symbols) and tributaries (red circles) from downstream to upstream: 1. Tulcea; 2. Siret River; 3. Braila; 4. Turnu; 5. Olt River; 6. Jiu River. 7. Tisza River. Catchment areas are show for each tributary sample. The map is color coded based on elevation- blue-green colors correspond to low elevations, whereas brown and red are higher elevations. The highest peaks are shown in the brightest of the red nuance.

342

343 4. RESULTS

344

345 Figure 4 shows KDE age distributions of Danube tributary samples and figure 5 shows KDE 346 plots of Danube samples at different locations. The Kernel Density Estimate plots (Vermeesch, 347 2012) used an adaptive bandwidth. Below we present these results in detail and highlight the 348 important age groups found in each sample. First, we discuss the results on the tributary 349 samples followed by the presentation of the Danube samples. All samples are dominated by 350 igneous zircons based on U/Th ratios (see supplementary data tables). U/Th ratios is excess of 351 10 are taken to reflect a metamorphic origin, whereas lower ratios (most commonly lower 352 than 2-3) are typical of igneous zircons. Despite the fact that a dominant proportion of the 353 Carpathian basement area is metamorphic, very few (<2% of the total analyzed population of zircons from the Danube and tributaries) zircons are metamorphic; they reflect the igneous 354 355 crystallization of the protoliths. In previous studies (e.g. Balintoni et al., 2009, 2010), we 356 observed that when zooming in at zircon rim scales (10 microns or less), metamorphic 357 overgrowths are not uncommon among Carpathian basement zircons. In this detrital study, 358 we measured only cores of zircon grains and did not focus on intragrain complexities.

- 359
- 360

361 4.1. Danube tributary samples

362

363 Tisza River

Tisza has a broad and complex provenance in that it mixes major tectonic units from the Bucovinic in the East Carpathians (mostly the Apuseni Mountains), with source areas of its tributary Mures, which draws from both the Getic-Supragetic and even the Danubian units. Therefore, the range of detrital zircon ages is expected to be diverse although dominated by

368 zircons from the Inner Carpathian units. The Tisza age plot (Figure 4A) has a mixed age signal 369 which is dominated by Inner Carpathians (Cambro-Ordovician 550-440 Ma with Variscan 370 zircons 320-350 Ma) as expected, but it also shows significant input from the Danubian (290 371 Ma, which on Figure 4c can be seen as a secondary peak to larger 320 Ma and 600 Ma peaks). 372 A few Precambrian zircons are also present. The most noteworthy feature, as is the case with 373 the Olt River, is the predominance (50% of measured ages) of Variscan magmatic zircons, which is significantly different than one would predict based on existing data from any of the 374 Inner Carpathians units. The presence of a few Jurassic zircons is attributed to the southern 375 376 Apuseni island arc-MORB corridor whereas the late Cretaceous grains are part of the 377 banatititc arc. Less expected are a few latest Permian to Triassic ages, which are difficult to 378 correlate to known magmatic rocks in the Carpathians.

379

380 Jiu River

381 The river Jiu drains mostly Danubian rocks, with only a minor set of tributaries being sourced 382 in the Getic unit. In this respect, the Jiu zircon population should be the simplest of all samples 383 in this study and reflect the Danubian basement, which it does rather accurately (Figure 4C). 384 The main age peak (575 Ma) corresponds to the dominant Danubian Neoproterozoic 385 magmatic event found in the Danubian (Liégeois et al., 1996) as well as in other outer 386 Carpathian units (Figure 2). Neoproterozoic ages decrease in number towards the 800 Ma age 387 of the Dragsan Series, which is considered the oldest basement of the lower Danubian 388 (Balintoni et al., 2011). Also present are some Cambro-Silurian ages from the Getic unit above 389 which is drained by a few of the eastern tributaries of the Jiu. There is no evidence that such 390 ages exist in the Danubian thrust sheets. There is also not a real Variscan sensu stricto peak at 391 330 Ma in the Danubian, apart from a couple of ages that may again be derived from the Getic 392 unit. A second peak (290-300 Ma) corresponds to abundant late Variscan post-tectonic 393 granitoids known from the Danubian. Older inherited age peaks at 1.0 Ga, 1.5Ga, 1.75 Ga, 394 1.95 Ga, 2.4 Ga and 2.7 Ga are also typical for Outer Carpathians units. The dominance of 395 Neoproterozoic versus Permian ages in the detrital record is expected because the Jiu and its 396 tributaries drain primarily the southern slopes of the South Carpathians, where the older ages

397 prevail at outcrop. Rivers washing the northern slopes of the Danubian domain (e.g. Retezat
398 Mountains) are more likely to be dominated by c. 300 Ma ages because of the high surface
399 area occupied by a granitic batholith of that age.

400

401 Also present are a few late Permian and Triassic age (263 to 219 Ma) that do not fit with 402 known Carpathian rocks. A few Mesozoic and Cenozoic ages are also present (see 403 Supplementary Data Table as they do not properly show on Figure 4 due to the band width of 404 the age spectrum) although these are attributable to the banatitic magmatism or Miocene 405 tuffs that are known to be present in the foreland of the South Carpathians.

Figure 4. Danube tributaries river samples (A. Tisza, B. Olt, C. Jiu and D. Siret;) KDE (n = number of zircons ages).
See text for further explanations.

- 410
- 411
- 412
- 413 Olt River

The Olt River drains mostly Getic and Supragetic units and since it originates in the South East Carpathians, it may contain some Bucovinic (Getic equivalent) in it. Some tributaries (Lotru or Cibin) may bring into the provenance mix material from the Danubian and southern Apuseni but it is subordinate compared to Getic-Supragetic sources. The greatest amount of sediment is driven from the glaciated Fagaras Mountains as well as the elevated areas of the central South Carpathians, all of which are Getic and Supragetic units and are overwhelmingly metamorphic (basement) rocks.

421

The Olt sample (Figure 4B) contains a large number of latest Precambrian to Cambro-Silurian ages typical for the Inner Carpathian units previously seen in the basement proper and in various sediments derived from it (Figure 2). However, the peak distribution is unlike the average of the Getic units. The surprise here is that more than Variscan (320-350 Ma) zircons dominate (\geq 50%) which is unlike any previous study of the Getic basement.

427

The Olt sample has the characteristically low abundance of older Precambrian peaks especially between 1.2 and 2 Ga (Balintoni et al., 2014), although there is a sizable Grenville peak (1-1.2 Ga) which is not common to Inner Carpathian units. A single late Eocene age is similar to Eocene zircons detected in some of the other samples but puzzling because such ages are unknown in any of the Carpathian units to the north of the Danube, or in the south in the Balkan Mountains. Eocene magmatism is prominent in the Rhodope Mountains south of the Balkans but this area does not drain into the Danube.

435

436

437 Siret River

The Siret River is the largest tributary of the Danube originating on the eastern slopes of the East Carpathians. Through its tributaries, the Siret's source areas include the Inner Carpathian Units as well as the outer Units and the East Carpathians foreland. The zircon KDE plot (135 zircons, Figure 4D) is complex and dominated by magmatic zircons, only two Precambrian grains show metamorphic Th/U ratios (>20). The Inner Carpathian Units diagnostic Cambro-

Ordovician-Silurian age pattern with a lesser group of Neoproterozoic ages is clearly
distinguishable. Some zircon ages belonging to the Neoproterozoic peak may come from the
Outer Carpathian Units. The range of Variscan ages suggest mixing of Getic metamorphic
rocks (~ 330 Ma) with late Variscan S-type granitoids of the Danubian (290-300 Ma).

447

448 In addition, a more pronounced 1-2 Ga spectrum of ages is found in this sample compared to 449 all others samples and relevant source areas (Figure 2). These ages make up more than half of 450 the zircon age population. More than 5% are Archean (2.4 and 2.7 Ga), more than in other 451 samples and is indicative of the Sarmatian craton as a source area. Taken together, these 452 older than 1.0 Ga age peaks make up the largest grouping of pre Grenville zircons found in any 453 basement or cover rock from the Romanian Carpathians and nearby foreland. Harder to 454 explain are the presence of Mesozoic zircons. Eight zircons (making up 6% of the population) 455 are Triassic, Jurassic or Cretaceous. Although there is a large Triassic alkaline massif 456 (Dallmeyer et al., 1997) in the East Carpathians (Ditrau) the ages do not exactly match. 457 Younger Mesozoic ages are also puzzling, and conceivably they may have been sourced from 458 some of the Mid-Cretaceous flysch units of the Ceahlau unit (although there is no magmatic 459 arc associated with the flysch units).

460

To summarize, the Siret river sand contains a diagnostic Carpathian signal but it also contains a significant number of Precambrian zircons and a group of Mesozoic ages that are not obviously tied to known source rocks within the river catchment area.

464

465 4.2. Danube samples

466 Danube at Turnu

The Danube at Turnu (103 zircons measured, Figure 5A) is a mix of sediment downstream of most inputs from most of the major South Carpathian rivers and this provides a good average of provenance prior to the arrival of rivers from the East Carpathians (e.g. Siret) and from more East European cratonal sources (Prut). In addition to being located downstream from the major Carpathian rivers Turnu is also found downstream of the largest Bulgarian rivers

draining the Balkan Mountains. Variscan intrusions are abundant in the Balkans (Carrigan et
al., 2005) but their age span, between 317- 297 Ma, is distinctively younger than our
magmatic ages that fall between 350-320 Ma.

475

476 The Turnu sample appears a mixture between a Jiu-like (Danubian) KDE and an Olt-like (Getic-477 Supragetic) age distribution. Both Neoproterozoic (at around 850 Ma) and late Variscan 478 granitoid ages are present although Arguably Danubian sources are slightly more important 479 than Getic-Supragetic ages supported by distinct Mesoproterozoic peaks. The unexpected 480 Variscan peak (igneous zircons of 320-360 Ma) found in the Olt River sample is also present 481 and has the same magnitude relative to the Cambro-Silurian peaks of the Getic-Supragetic 482 units. A few Cenozoic ages (45 Ma, 23 Ma, 6 Ma) are unlike any igneous activity known in the 483 mountainous regions representing the source of the lower Danube at this location. It is 484 possibly that some tuffs or loess derived from them, found in the foreland of the Carpathians 485 and other lesser studied volcanic units in the Balkans to the south could prove to the sources 486 of these zircons. At this point, however, these ages do not match the existing Cenozoic 487 regional geologic record and are difficult to use forward.

488

489 Danube at Braila

This sample (118 zircons measured, Figure 5B) location was chosen to give an integrated Danube signal prior to the arrival of the last two rivers from the Moldovan foreland, some of which could carry a much more East European cratonal age signature (dominantly Archean see Figure 2) compared to the ones derived from the Carpathian and Balkan orogens. Otherwise the signal should not be much different from that at Turnu.

495

The bulk of of the detrital zircon age distribution is consistent with a mix of Inner and Outer Carpathians plus foreland sources (including the now ubiquitous magmatic Variscan signal from the Getic-Supragetic). It is clear that overall no one event dominates, neither the Neoproterozoic of the Danubian, nor the Cambro-Silurian arcs of the Getic/Supragetic, nor the Variscan ages of the Getic (possibly also from the Balkans in the south), or the post Variscan

granitoids of the Danubian. In all, they contributed more or less similarly to the zircon budget
and are consistent with erosion of the modern Carpathians. A few young outlier ages exist at
Braila, some derived from the Neogene Volcanic field (<10 Ma), other representing either the
Eocene ages seen in other samples or the well-established latest Cretaceous magmatism.

505

506 Danube at Tulcea

507 This sample (104 individual zircons measured, Figure 5C) represents the integrated Danube DZ 508 signal downstream from the arrival of the main cratonal tributary (Prut) and just before 509 entering the Danube Delta to drain into the Black Sea. The breakdown of ages is about 40% 510 Inner Carpathian Units, 40 % Outer Carpathian Units, 10% Alpine ages (Jurassic East Vardar, 511 late Cretaceous banatitic magmatism, Neogene magmatism including two unexplainable 512 Oligocene ages), about 5% inferred to be from the nearby North Dobrogea terrain (based on 513 the dominance of 250 Ma igneous ages there, Balintoni and Balica, 2016) and the remainder 514 probably being derived from either East European craton or more likely peri-cratonal areas 515 similar to the Outer Carpathians but dominated by 1-2 Ga ages. Only two of these zircons 516 (dated at 420 and 322 Ma) have high Th/U rations and are therefore metamorphic in origin. 517 The integrated Danube signal shows that the Inner and Outer Carpathians each contribute 518 about half of the present-day zircon cargo despite the greater exposure of Inner Carpathian 519 units in the mountainous regions. The integrated signal undoubtedly contains zircons that 520 were derived from sedimentary sources such as the thin-skinned nappes of the East 521 Carpathians that primarily came from Outer Carpathian Units. Overall the great majority of 522 the Carpathians and foreland were formed in the latest Proterozoic to the middle of the 523 Paleozoic (600-420 Ma) followed by the enigmatic Variscan (320-350 Ma) episode of 524 magmatism, which still makes up about 17% of the integrated signal at Tulcea.

Figure 5. Danube River samples (A. Turnu, B. Braila, C. Tulcea) KDE (number of individual zircons shown in the
 diagram). See text for further explanations.

528

529 5. INTEPRETATIONS AND IMPLICATIONS

530

531 Comparison of previously published data from the Romanian Carpathians basement and 532 results from this study allow us to make a crude estimate of the igneous and metamorphic events responsible for the making of this segment of continental crust (Figure 6). Below wedetail our findings and uncertainties associated with them.

535

536 5.1.Nature of basement

The main results of this study confirm previous work that suggest all Carpathian units and the 537 538 foreland formed during the Neoproterozoic and early Paleozoic in a series of island arcs and marginal basins formed in a peri-Gondwanan setting (Balintoni et al., 2014). This scenario 539 540 applies to much of the pre Alpine basement of mobile Europe (Stampfli et al., 2011; von 541 Raumer et al., 2013). Results also support the view that age structure and composition of the 542 Inner Carpathian units are different from the Outer Carpathian units and foreland. The Inner 543 units have little inheritance from earlier Precambrian zircons and have two stages of major 544 crustal growth, one at 560 Ma and the other at 460 Ma. These are followed by well-known 545 Variscan barrovian metamorphism and some poorly documented associated magmatism (320-546 350 Ma). The Danubian unit in the South Carpathians and the foreland (including Dobrogea), 547 are better represented by inherited ages in the 1-2 Ga interval (Balintoni et al., 2012; Balintoni 548 and Balica, 2013), and record a distinct magmatic age between 570-620 Ma, along with a 549 lesser but important age peak at around 800 Ma (the oldest rocks of the Carpathians),. There 550 is also a distinct episode of post collisional magmatism at 290-300 Ma, some post Variscan S-551 type granitoids known regionally in the Danubian but no obvious Variscan metamorphism 552 (315-350 Ma) as seen elsewhere. The study detrital zircon age distributions of the main 553 Danube tributaries match these established events and can therefore be considered 554 representative of the regional geology.

555

Each of these two major domains (separated by Alpine basins, now closed as sutures) contributes about 37% of the total DZ signal of the Danube as it enters its delta. The remainder is made up of some Alpine magmatic ages, limited craton input from the Eastern European stable area to the north and an unexplained but sizable (17% of the total DZ budget) group of Variscan magmatic ages not known in the Romanian Carpathians or Variscan magmatism in the Balkan Mountains to the south (see below). These ages aside, the bulk of

the Carpathian continental crust was formed in island and transitional arcs and other marginal (e.g. backarc) basins close to Gondwana, between about 600 and 420 Ma, and with a dominant age peak at around 460 Ma. The oldest arc is found in the Danubian unit and is a mafic island arc remnant of about 800 Ma.

567

Figure 6. Major magmatic (red) and metamorphic (blue) events in the Romanian Carpathians and foreland, as evident from this and previous studies. The enigmatic Variscan magmatic event described in this paper is not shown here. DM – Dragsan metamorphism (age unresolved but prior to Ediacaran magmatic event). NDM – North Dobrogea metamorphism, also age unresolved. Vertical length of the boxes shown in this figure is proportional to the zircon abundance budget in the rivers studied here, whereas the extent of metamorphism is based on the surface exposure of these metamorphic rocks relative to magmatic rocks.

- 574
- 575

576 5.2. Ages of the East Carpathian foreland

577

It is impossible to quantify how much of the river signal is foreland-derived since almost all of the Carpathian foreland is covered by younger sediment and vegetation. The Dobrogea forebulge (Matenco et al., 2013) is located in the foreland to the Carpathian oroclinal bend and its zircon budget is somewhat similar to the Outer Carpathian units (Balintoni et al., 2014, 582 Balintoni and Balica, 2016). Ultimately, we still know very little about the basement of Moesia 583 and the Eastern European foreland east of the Carpathians and this study was not designed to 584 add much to that. However, a noteworthy feature is that the Siret River, which drains the East 585 Carpathians and a significant part of the East European foreland, has a DZ pattern similar to 586 Outer Carpathian units and is not dominated by craton sources from the east. Rivers to the 587 east, such as the Dniester in Ukraine and Moldova and certainly the Volga and Don in Russia, 588 may provide a more accurate craton signal. Recognizing that the Siret river DZ signature 589 probably mostly derives from the thin skinned nappes and not the foreland, we argue that the 590 immediate foreland to the east Carpathians is not part of the craton. The Scythian and other 591 poorly known mobile belts bordering the East European craton (Kuznetzov et al., 2014) must 592 make up the majority of the basement of the Moldovan foreland, while legitimate cratonic 593 Archean blocks are nowhere near.

594

595 5.3. Variscan ages

596

597 The Variscan (315-350 Ma) igneous (low Th/U) ages so prevalent in the analyzed samples, 598 represent the most surprising finding of this study, based on the known regional geology. 599 Limited numbers of metamorphic ages are to be expected but not magmatic ages. There are 600 three potential explanations: (1) magmatism of Variscan age is more prevalent in parts of the 601 Carpathians basement than previously recognized, (2) these grains were brought into the 602 foreland basins (e.g. the Dacian basin, or Moesia) from a southerly origin (the Balkans) and 603 recycled in the modern Danube and tributaries, and (3) these ages are extra-Carpathian, i.e. 604 brought by the Danube or paleo-Danube from significantly upstream where Variscan 605 magmatism is more widespread (Neubauer and Handler, 1999; von Raumer et al., 2013).

606

The first explanation is highly unlikely despite our limited U-Pb geochronologic knowledge of large areas of the South Carpathians, in particular the Fagaras Mountains. While the glaciated and elevated Fagaras Mountains may represent a major source of sediment in the Olt River, and only one sample (detrital, Balintoni et al., 2009) has ever been analyzed for U-Pb ages

611 from the northern slopes of the range, it is clear that they are not made up of predominantly 612 igneous rocks, but instead they are dominated by various metamorphic sequences (Pana and 613 Erdmer, 1994). Garnet Sm-Nd geochronology data (Dragusanu and Tanaka, 1999) shows 614 conclusively that metamorphism is Variscan (320-360 Ma). All areas from the Romanian Carpathians undergoing Variscan modifications are characterized by amphibolite grade 615 metamorphism that ended at about 315 Ma (Medaris et al., 2003) with extensional collapse; 616 neither the peak metamorphism nor the extension that followed it is associated with 617 significant felsic plutonism. Many of the high grade rocks of Dacia contain some leucogranite 618 619 and pegmatites (Hann, 1995), but they represent less than 1% of the exposed area (Horst 620 Hann, personal communication, 2017), are Permian (255-280 Ma) in age and have distinctively 621 large Th/U as high as 300 (our work in progress). It is thus unlikely that a yet to be identified 622 Carpathian terrain can be the source of these zircons.

623

624 The second and third possibilities presuppose that Variscan zircons were transported into the 625 peri Carpathian Paratethys basins at an earlier time either from the south (the Balkan 626 Mountains) or west of the Romanian Carpathians (various locations in central Europe) and 627 later incorporated as local sources into the lower Danube and tributaries (see Figures 3 and 6 628 in von Raumer et al., 2013). The Balkan mountains do contain, in contrast to the Carpathians, 629 significant areas of Variscan magmatism (Carrigan et al., 2005), but their age is somewhat 630 younger (317-297 Ma) than the Variscan peak identified in this study. We do not identify the 631 Balkan ages with those in our data.

632

An exo- Carpathian source – to the west and beyond the Carpathian double bend – is plausible for the Danube itself if it can carry coarse material through the Iron Gates gorge, which is debatable. But for the tributary rivers, such as the glaring example of Olt, an Outer Carpathian source would presume that the Dacian basin fill (part of the Paratethys in recent times) contains relatively far traveled zircons from times when this basin was interconnected to others of the Paratethys (Pannonian, etc.) (Matenco et al., 2013). Those Variscan zircons were then transported further downstream by the Olt River from the Miocene-Pliocene

640 sedimentary fill of the Dacian basin. Alternatively, in the so-called "spill and fill" model (Bartol, 641 et al., 2012, Leever et al., 2010, 2011), a paleo-Danube that formed upstream in the 642 Pannonian basin infilled parts of the Dacian basin and Variscan zircons are now eroded and 643 carried by the Olt. The puzzling fact that the Jiu River, which also traverses the Moesian 644 foreland (the Dacian basin) does not have such Variscan ages may be explained by a rapid infill 645 of the western Dacian basin by local rivers (Fongngern et al., 2016). The "concurrent basin fill" 646 model (Olariu et al., 2018) calls for Carpathian rivers infilling most of the Dacian Basin, which 647 would have limited the import of zircons from beyond the Iron Gates .

648

The more than 50% Variscan ages found at the mouth of the Olt River, the dominance of the same peak in the Tisza sample and smaller but significant fractions found downstream along the Danube (with about 17% of the total zircon being Variscan at Tulcea, the terminus point of Danube before entering the Delta) remains unresolved and puzzling. Future studies should investigate this in more detail using detrital records, especially from along the Olt River and its archive immediately to the south of the South Carpathians and into the Moesian plain.

655

656

5.4.Younger ages

657

658 Clearly, only a small fraction of the DZ ages in the Danube's archive is made of Alpine ages. 659 About 10% of the mountainous terrain in the Carpathians consists of Mesozoic and younger 660 magmatic rocks, and the Danube budget of zircons reflect roughly that (although the East 661 Carpathians so called Neogene volcanic belt is located in an unusual position relative to the 662 hydrographic network and is located far from the samples studied here). Of the Alpine 663 magmatic rocks of the Carpathians and Balkans, the East Vardar island arc and its MORB-like 664 basement are not significant zircon producers (because there are abundant gabbros and mafic 665 rocks), the late Cretaceous Banatitic arc is poorly exposed in a couple of narrow belts that are 666 unlikely to produce a large zircon cargo, and the Neogene volcanism in the East Carpathians 667 and Apuseni Mountains are most volumetrically significant. Regardless, the Neogene arc only 668 provides a minuscule number of zircons along the lower course of the Danube, as expected.

669 They are volumetrically overpowered by the main crustal-forming peri Gondwanan magmatic670 arcs and marginal basins of both the inner and outer Carpathians and its foreland.

671

672 Two minor but unusual groups of ages stand out among the Alpine ones and generate two 673 additional problems in matching zircons sources to sinks : Triassic and Eocene ages. The only 674 Triassic magmatic bodies known in the Romanian Carpathians and North Dobrogea, 675 respectively, are the alkaline massif of Ditrau and a suite of small alkaline bodies in western 676 north Dobrogea assumed to be of similar age. However, the existence of a few Permo-Triassic 677 ages in almost all analyzed samples suggests that Triassic magmatism may be more prevalent 678 in the Carpathians. We have some evidence that suturing of Paleozoic terranes in the South 679 Carpathians continued into the Triassic (Ducea et al. 2016) and that the Getic pegmatites are 680 of that age as well. Either other early extension plutons similar to Ditrau (but volumetrically 681 smaller) exist in the Carpathian nappes or post collisional pegmatites provide this age range in 682 the detrital record.

683

684 Eocene ages (40-30 Ma) are even more puzzling because there is no Cenozoic magmatism of 685 that age in the Romanian Carpathian realm (Seghedi et al., 2011). An Eocene arc is well 686 developed in the Rhodope mountains to the south, but the current hydrographic network or 687 even known ancient ones (Matenco et al., 2013) do not link that source area to the Danube or 688 its lower tributaries. Possibly earlier links between various basins of the Paratethys (Matenco 689 et al., 2016) may have brought zircons from such a far source area into the lower Danube's 690 current basin. There is no obvious resolution to the question as to whether a previously 691 continuous Paratethys could have transported laterally a significant amount of material from 692 west of the Romanian Carpathians; there are no sedimentological data from the Dacian basin 693 to support or refute that. However, a future study, perhaps a DZ study of the sedimentary 694 archive of the Dacian basin, could resolve this question. This and the other puzzling 695 complexities found in our data illustrate how the DZ record can be complicated by second or 696 third order sedimentary processes that go beyond a simple (and direct) source to sink 697 relationship in a fluvial system.

699 6. CONCLUSIONS

700

A detrital zircon U-Pb study of modern sands from the lower Danube and the most important four tributaries originating in the Carpathian Mountains documents the main magmatic events that led to the continental crustal formation of the nearby Carpathians. The main conclusions of this study are:

705

The great majority of basement was formed in latest Proterozoic – Ordovician island
 arcs, a finding that is consistent with limited previous studies performed on the
 basement itself;

709

710 2- A prominent Carboniferous (350-320 Ma, Variscan) magmatic peak in the detrital 711 record has no known source in the nearby Carpathians, either because it was 712 overlooked by previous basement studies or implying that lateral transport from 713 outside of the source area (and subsequent recycling) has taken place in the recent 714 geologic past. Some Variscan intrusions do exist in the Carpathians but according to 715 the current geochronologic knowledge, are small volume plutons, and cannot account 716 for such a large regional DZ peak. We cannot distinguish between these two 717 explanations at this point due to limited existing data.

718

A small proportion of unexplained igneous Eocene ages exist along the Danube and
 tributaries; their closest exposed plausible sources are in the Rhodope Mountains well
 to the South without a clear sedimentary pathway from source to sink in the modern
 configuration of the river drainages.

- 723
- 724

725 <u>Acknowledgements, Samples and Data</u>. M.N.D. acknowledges support from US 726 National Science Foundation grant EAR 1725002 and the Romanian Executive Agency for

Higher Education, Research, Development and Innovation Funding project PN-III-P4-ID-PCE2016-0127. LG acknowledges support from the Ocean and Climate Change Institute of the
Woods Hole Oceanographic Institution. There are no financial conflicts of interests for any
author. The data supporting the conclusions are tabulated in the Supporting Information,
available with this paper.

733 REFERENCES

- 735 Balintoni, I. and C. Balica (2016), Peri-Amazonian provenance of the Euxinic Craton
- components in Dobrogea and of the North Dobrogean Orogen components (Romania): A
 detrital zircon study, *Precambrian Research*, *278*, 34-51.
- Balintoni, I., C. Balica, M. Ducea, F. Chen, H. Hann, and V. Sabliovschi (2009), Late CambrianEarly Ordovician Gondwanan terranes in the Romanian Carpathians: A zircon U-Pb provenance
 study, *Gondwana Research*, *16*, 119-133.
- 741 Balintoni, I., C. Balica, M. Ducea, H. Hann, and V. Sabliovschi (2010), The anatomy of a
- 742 Gondwanan terrane: The Neoproterozoic-Ordovician basement of the pre-Alpine Sebeş-Lotru
- 743 composite terrane (South Carpathians, Romania), *Gondwana Research*, *17*, 561-572.
- 744 Balintoni, I., C. Balica, M. N. Ducea, and C. Stremtan (2011), Peri-Amazonian, Avalonian-type
- and Ganderian-type terranes in the South Carpathians, Romania: The Danubian domain
- 746 basement, *Gondwana Research, 19*, 945-957.
- 747 Balintoni, I. and C. Balica (2013), Avalonian, Ganderian and East Cadomian terranes in South
- 748 Carpathians, Romania, and Pan-African events recorded in their basement, *Mineralogy and*
- 749 *Petrology*, *107*(5), 709-725.
- 750 Balintoni, I., C. Balica, M. N. Ducea, and H. P. Hann (2014), Peri- Gondwanan terranes in the
- 751 Romanian Carpathians: A review of their spatial distribution, origin, provenance and
- r52 evolution, *Geoscience Frontiers*, *5*, 395–411.
- Balla, Z. (1987), Tertiary paleomagnetic data for the Carpatho-Pannonian region in light of
 Miocene rotation kinematics, *Tectonophysics*, *139*, 67-98.
- 755 Barbeau, D., Ducea, M.N., Gehrels, G.E., and Saleeby, J.B., (2005) Detrital-zircon U-Pb
- 756 geochronology and the origin of Salinia: *Geological Society of America Bulletin*, 117, 466-481.
- 757 Bartol, J., L. Matenco, D. Garcia-Castellanos, and K. Leever (2012), Modelling depositional
- 758 shifts between sedimentary basins: Sediment pathways in Paratethys basins during the
- 759 Messinian Salinity Crisis, *Tectonophysics*, *536*, 110-121.

- Berza, T., E. Constantinescu, and S. N. Vlad (1998), Upper Cretaceous magmatic series and
 associated mineralisation in the Carpathian–Balkan Orogen. *Resource Geology*, *48*(4), 291306.
- 763 Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.A., Davis, D.W., Korsch, R.J., Foudoulis, C (2003)
- TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170.
- Burchfiel, B. C. (1980), Eastern European Alpine system and the Carpathian orocline as an
 example of collision tectonics, *Tectonophysics*, *63*, 31-61.
- Burchfiel, B. C. (1976), Geology of Romania, *Geological Society of America Special Paper 158*,
 82 p.
- 770 Carrigan, C. W., S. B. Mukasa, I. Haydoutov, and K. Kolcheva (2005), Age of Variscan
- magmatism from the Balkan sector of the orogen, central Bulgaria, *Lithos*, *82*(1-2), 125-147.
- Cawood, P. A., C. J. Hawkesworth, and B. Dhuime (2012), Detrital zircon record and tectonic
 setting, *Geology*, 40(10), 875-878.
- 774 Ciulavu, D., and G. Bertotti (1994), The Transylvanian Basin and its Upper Cretaceous
- substratum, *Romanian Journal of Tectonics, 75(2),* 59-64.
- 776 Ciulavu, M., R. F. Mahlmann, S. M. Schmid, H. Hofmann, A. Seghedi, and M. Frey (2008),
- 777 Metamorphic evolution of a very low-to low-grade metamorphic core complex (Danubian
- window) in the South Carpathians, in *Tectonic Aspects of the Alpine-Dinaride-Carpathian*
- 779 System, edited by S. Siegesmund, B. Fugenschuh, and N. Froitzheim, Geological Society,
- 780 *London, Special Publication, 298(1), 281-315.*
- 781 Condie, K. C. and R. C. Aster (2010), Episodic zircon age spectra of orogenic granitoids: the
- supercontinent connection and continental growth, *Precambrian Research*, 180(3-4), 227-236.

- Cowgill, E., A. M. Forte, N. Niemi, B. Avdeev, A. Tye, C. Trexler, Z. Javakhishvili, M. Elashvili,
 and T. Godoladze, T. (2016), Relict basin closure and crustal shortening budgets during
 continental collision: An example from Caucasus sediment provenance, *Tectonics*, *35*(12),
 2918-2947.
- 787 Csontos, L. and A. Vörös (2004), Mesozoic plate tectonic reconstruction of the Carpathian
 788 region, *Palaeogeography, Palaeoclimatology, Palaeoecology, 210*(1), 1-56.
- 789 Dallmeyer, D. R., H. G. Kräutner, and F. Neubauer (1997), Middle-late Triassic 40Ar/39Ar
- 790 hornblende ages for early intrusions within the Ditrau alkaline massif, Rumania: Implications
- for Alpine rifting in the Carpathian orogeny, *Geologica Carpathica*, 48(6), 347-352.
- 792 Dallmeyer, R. D., F. Neubauer, H. Fritz, and V. Mocanu (1998), Variscan vs. Alpine
- tectonothermal evolution of the Southern Carpathian orogen: constraints from Ar-40/Ar-39
- 794 ages, *Tectonophysics*, *290(1-2)*, 111-135.
- 795 Drăguşanu, C. and T. Tanaka (1999), 1.57-Ga magmatism in the South Carpathians:
- implications for the pre-Alpine basement and evolution of the mantle under the European
- 797 continent, *The Journal of Geology*, *107*(2), 237-248.
- 798 Ducea, M. N., and R. D. Roban (2016), Role Played by Strike-Slip Structures in the
- 799 Development of Highly Curved Orogens: The Transcarpathian Fault System, South
- 800 Carpathians, *The Journal of Geology*, *124*(4), 519-527.
- 801 Ducea, M. N., E. Negulescu, L. Profeta, G. Săbău, D. Jianu, L. Petrescu, and D. Hoffman (2016),
- 802 Evolution of the Sibişel Shear Zone (South Carpathians): A study of its type locality near
- 803 Răşinari (Romania) and tectonic implications, *Tectonics*, *35*(9), 2131-2157.
- 804 Dupont-Nivet, G., I. Vasiliev, C. G. Langereis, W. Krijgsman, and C. Panaiotu (2005), Neogene
- 805 tectonic evolution of the southern and eastern Carpathians constrained by paleomagnetism,
- 806 *Earth and Planetary Science Letters, 2361, 374-387.*

- Fongngern, R., C. Olariu, R. J. Steel, and C. Krézsek (2016), Clinoform growth in a Miocene,
 Para-tethyan deep lake basin: thin topsets, irregular foresets and thick bottomsets, *Basin*
- 809 *Research*, *28*(6), 770-795.
- 810 Fügenschuh, B. and S. M. Schmid (2005), Age and significance of core complex formation in a
- 811 very curved orogen: evidence from fission track studies in the South Carpathians (Romania),
- 812 *Tectonophysics*, 404(1-2), 33-53.
- 813 Gallhofer, D., von Quadt, A., Peytcheva, I., Schmid, S.M., Heinrich, C.A. (2015) Tectonic,
- magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan
 orogen. Tectonics 34, 1813-1836, DOI: 10.1002/2015TC003834.
- 816 Gallhofer, D., A. von Quadt, S. M. Schmid, M. Guillong, I. Peytcheva, and I. Seghedi (2017),
- 817 Magmatic and tectonic history of Jurassic ophiolites and associated granitoids from the South
- 818 Apuseni Mountains (Romania), *Swiss Journal of Geosciences*, *110*, 699-719.
- 819 Gehrels, G. E., V. A. Valencia, and J. Ruiz (2008), Enhanced precision, accuracy, efficiency, and
- 820 spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-
- mass spectrometry, *Geochemistry Geophysics Geosystems*, 9, Q03017, DOI:
- 822 10.1029/2007GC001805.
- 823 Gehrels, G.E. and Pecha, M. (2014), Detrital zircon U-Pb geochronology and Hf isotope
- 824 geochemistry of Paleozoic and Triassic passive margin strata of western North America,
- 825 *Geosphere, 10,* 49-65, 10.1130/GES00889.1.
- Gehrels, G. (2014), Detrital zircon U-Pb geochronology applied to tectonics, *Annual Review of Earth and Planetary Sciences*, *42*, 127-149.
- 828 Hann, H. P. (1995), Central South Carpathians: Petrologic and structural investigations,
- 829 *Romanian* Journal of Petrology, *76*, 13–19.
- 830 Ianovici, V., M. Borcoş, M. Bleahu, D. Patrulius, M. Lupu, R. Dimitrescu, and H. Savu (1976),
- 831 Geology of the Apuseni Mountains, *Editura Academiei Române, București*.

832 Ionescu, C., Hoeck, V., Tomek, C., Koller, F., Balintoni, I., Besutiu, L., (2009a), New insights into
833 the basement of the Transylvanian Depression (Romania), Lithos, *108*, 172-191.

834

Kräutner, H. G. (1994), Pre-Alpine terranes in the Romanian Carpathians, *Rom. J. Tect. Reg. Geol, 75*, 31-32.

837 Krézsek, C., R. I. Bercea, G. Tari, and G. Ionescu (2017), Cretaceous sedimentation along the

838 Romanian margin of the Black Sea: inferences from onshore to offshore

839 correlations, *Geological Society, London, Special Publications, 464,* 1-10.

- 840 Kuznetsov, N. B., J. G. Meert, and T. V. Romanyuk (2014), Ages of detrital zircons (U/Pb, LA-
- 841 ICP-MS) from the Latest Neoproterozoic–Middle Cambrian (?) Asha Group and Early Devonian

Takaty Formation, the Southwestern Urals: A test of an Australia-Baltica connection within

- 843 Rodinia, *Precambrian Research*, 244, 288-305.
- Leever, K. A., L. Matenco, T. Rabagia, S. Cloetingh, W. Krijgsman, and M. Stoica (2010),
- 845 Messinian sea level fall in the Dacic Basin (Eastern Paratethys): palaeogeographical

846 implications from seismic sequence stratigraphy, *Terra Nova*, 22(1), 12-17.

- Leever, K. A., L. Matenco, D. Garcia-Castellanos, and S. A. P. L. Cloetingh (2011), The evolution
- of the Danube gateway between Central and Eastern Paratethys (SE Europe): insight from
- 849 numerical modelling of the causes and effects of connectivity between basins and its
- expression in the sedimentary record, *Tectonophysics*, *502*(1-2), 175-195.
- Liégeois, J. P., T. Berza, M. Tatu, and J. C. Duchesne (1996), The Neoproterozoic Pan-African
- 852 basement from the Alpine Lower Danubian nappe system (South Carpathians,
- 853 Romania), *Precambrian Research*, *80*(3-4), 281-301.
- 854 Matenco, L., C. Krezsek, S. Merten, S. Schmid, S. Cloetingh, and P. Andriessen (2010),
- 855 Characteristics of collisional orogens with low topographic build-up: An example from the
- 856 Carpathians, *Terra Nova*, *22*(3), 155-165.

- Matenco, L., P. Andriessen, and the SourceSink Network (2013), Quantifying the mass transfer
 from mountain ranges to deposition in sedimentary basins: Source to sink studies in the
 Danube Basin–Black Sea system, *Global and planetary change*, *103*, 1-18.
- 860 Matenco, L., I. Munteanu, M. Ter Borgh, A. Stanica, M. Tilita, G. Lericolais, C. Dinu, and G. Oaie
- 861 (2016), The interplay between tectonics, sediment dynamics and gateways evolution in the
- B62 Danube system from the Pannonian Basin to the western Black Sea, Science of the Total
- 863 *Environment*, 543, 807-827.
- 864 Matenco, L. (2017), Tectonics and exhumation of Romanian Carpathians: inferences from
- 865 kinematic and thermochronological studies. In Landform Dynamics and Evolution in Romania,
- edited by M. Radoane, and A. Vespremeanu-Stroe, *Springer Geography*, 15-56.
- Medaris, G., M. Ducea, E. Ghent, and V. Iancu (2003), Timing of high-pressure metamorphism
 in the Getic-Supragetic basement nappes of the South-Carpathian mountains fold-thrust belt, *Lithos, 70*, 141-161.
- Ménard, G. and P. Molnar (1988), Collapse of a Hercynian Tibetan plateau into a late
 Palaeozoic European Basin and Range province, *Nature*, *334*(6179), 235.
- 872 Neubauer, F., and R. Handler (1999), Variscan orogeny in the eastern Alps and Bohemian
- 873 Massif: How do these units correlate, Mitteilungen der Österreichischen Geologischen
- 874 Gesellschaft, *92*, 35–59.
- 875 Olariu, C., C. Krezsek, and D. C. Jipa (2018), The Danube River inception: Evidence for a 4 Ma
 876 continental-scale river born from segmented ParaTethys basins, *Terra Nova*, *30*(1), 63-71.
- Pană, D., and P. Erdmer (1994), Alpine crustal shear zones and pre-Alpine basement terranes
 in the Romanian Carpathians and Apuseni Mountains, *Geology 22*, 807–810.
- Pană, D. I., L. M. Heaman, R. A. Creaser, and P. Erdmer (2002), Pre-alpine crust in the Apuseni
- 880 Mountains, Romania: insights from Sm-Nd and U-Pb data, *The Journal of geology*, *110*(3), 341-
- 881 354.

Paraschiv, D. (1979), Moesian Platform and its hydrocarbon fields, *Romanian Academy*, *Bucharest*, 196p.

Pătrașcu, S., C. Panaiotu, M. Șeclăman, and C. E. Panaiotu (1994), Timing of rotational motion
of Apuseni Mountains – Paleomagnetic data from Tertiaty magmatic rocks, *Tectonophysics*, *223*, 163-176.

Radoane M., Radoane N., Dumitriu, N. (2003), Geomorphological evolution of longitudinal
river profiles in the Carpathians, *Geomorphology*, *50*, 293-306.

889 Ratschbacher, L., H. G. Linzer, F. Moser, R.-O. Strusievicz, H. Bedelean, N. Har, and P.-A. Mogoş

890 (1993), Cretaceous to Miocene thrusting and wrenching along the Central South Carpathians

due to a corner effect during collision and orocline formation, *Tectonics*, *12(4)*, 855-873.

892 Robinson, A.C., Ducea, M., and Lapen, T.J., (2012) Detrital zircon and isotopic constraints on

the crustal architecture and tectonic evolution of the northeastern Pamir: *Tectonics*, v. 31, doidoi:10.1029/2011TC003013.

895 Roşu, E., I. Seghedi, H. Downes, D. H. Alderton, A. Szakács, Z. Pécskay, C. Panaiotu, C. E.

896 Panaiotu, and L. Nedelcu (2004), Extension-related Miocene calc-alkaline magmatism in the

897 Apuseni Mountains, Romania: origin of magmas, Swiss Bulletin of Mineralogy and

898 *Petrology*, *84*(1), 153-172.

899 Săndulescu, M. (1984), Geotectonica României, București, Editura Tehnică, 336 pp.

900 Săndulescu, M. (1988), Cenozoic Tectonic History of the Carpathians, in *The Pannonian Basin*,

901 *a study in basin evolution*, edited by L. H. Royden, and F. Horváth, AAPG Memoir, 45, 17-25.

902 Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.,

903 Morris, G.A., Nasdala, L., Norberg, N., 2008. Plešovice zircon—a new natural reference

904 material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1-35.

- Stampfli, G. M., and G. D. Borel (2002), A plate tectonic model for the Paleozoic and Mesozoic
 constrained by dynamic plate boundaries and restored synthetic oceanic isochrones, *Earth and Planetary Science Letters*, *196*, 17–33.
- 908 Stampfli, G. M., J. von Raumer, and C. Wilhem (2011), The distribution of Gondwana derived
- 909 terranes in the early Paleozoic, in *The Ordovician of the World*, , edited by J. C. Gutiérrez-
- 910 Marco, I. Rábano, and D. García-Bellido, D., Instituto Geológico y Minero de España,
- 911 Cuadernos del Museo Geominero, 14, 567–574.
- 912 Schmid, S. M., T. Berza, V. Diaconescu, N. Froitzheim, and B. Fügenschuh (1998), Orogen-
- parallel extension in the Southern Carpathians, *Tectonophysics*, 297, 209–228.
- 914 Schmid, S., D. Bernoulli, B. Fügenschuh, L. Maţenco, S. Schefer, R. Schuster, M. Tischler, and K.
- 915 Ustaszewski (2008), The Alpine-Carpathian-Dinaridic orogenic system: correlation and

916 evolution of tectonic units, *Swiss Journal of Geosciences, 101*, 139-183.

- 917 Seghedi, I., H. Downes, A. Szakacs, P. R. D. Mason, M. F. Thirlwall, E. Rosu, Z. Pecskay, E.
- 918 Márton, and C. Panaiotu (2004), Neogene-Quaternary mag- matism and geodynamics in the
- 919 Carpathian-Pannonian region: a synthesis, *Lithos 72*, 117–146.
- 920 Seghedi, I., L. Maţenco, H. Downes, P. R. Mason, A. Szakács, and Z. Pécskay (2011), Tectonic
- 921 significance of changes in post-subduction Pliocene–Quaternary magmatism in the south east
- 922 part of the Carpathian–Pannonian Region, *Tectonophysics*, *502*(1-2), 146-157.
- 923 Stoica, A. M., M. N. Ducea, R. D. Roban, and D. Jianu (2016), Origin and evolution of the South
- 924 Carpathians basement (Romania): a zircon and monazite geochronologic study of its Alpine
- 925 sedimentary cover, *International Geology Review*, *58(4)*, 510-524.
- 926 Thomas, W. A. (2011), Detrital-zircon geochronology and sedimentary provenance,
- 927 *Lithosphere 3*(4), 304-308.

- 928 Tischler, M., H. R. Gröger, B. Fügenschuh, and S. M. Schmid (2007), Miocene tectonics of the
- 929 Maramures area (Northern Romania): implications for the Mid-Hungarian fault zone,
- 930 International Journal of Earth Sciences, 96(3), 473-496.
- 931 von Raumer, J. F., F. Bussy, U. Schaltegger, B. Schulz, and G. M. Stampfli (2013), Pre-Mesozoic
- 932 Alpine basements Their place in the European Paleozoic framework, *Geological Society of*
- 933 America Bulletin, 125, 89-108.
- 934 Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical Geology 312,935 190-194.
- 936 Vermeesch, P., 2013. Multi-sample comparison of detrital age distributions. Chemical Geology937 341, 140-146.
- 938 Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., et al.,
- 939 (2004) Further characterisation of the 91500 zircon crystal. *Geostand Geoanal Res* 28:9–39.
- 200 Zimmerman, A., H. J. Stein, J. L. Hannah, D. Koželj, K. Bogdanov, and T. Berza (2008), Tectonic
- 941 configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans-South Carpathians,
- 942 constrained by high precision Re–Os molybdenite ages, *Mineralium Deposita*, 43(1), 1-21.
- 943