
Ontology-Based Data Access: A Survey

Guohui Xiao1, Diego Calvanese1, Roman Kontchakov2, Domenico Lembo3,
Antonella Poggi3, Riccardo Rosati3 and Michael Zakharyaschev2

1 KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, Italy
2 Department of Computer Science and Information Systems, Birkbeck, University of London, UK

3 Dip. di Ing. Informatica Automatica e Gestionale, Sapienza Università di Roma, Italy

Abstract
We present the framework of ontology-based data
access, a semantic paradigm for providing a con-
venient and user-friendly access to data reposito-
ries, which has been actively developed and stud-
ied in the past decade. Focusing on relational
data sources, we discuss the main ingredients of
ontology-based data access, key theoretical results,
techniques, applications and future challenges.

1 Introduction
Ontology-based data access (OBDA, for short) is a seman-
tic technology that has been developed since the mid 2000s
[Poggi et al., 2008] with the aim of facilitating access to vari-
ous types of data sources. It originates in real-world scenarios
such as the one outlined below (see http://purl.org/slegge).
Example 1 Statoil (Equinor), a Norwegian multinational
oil&gas company, stores data in a large relational database
(DB) Slegge with about 1500 tables (and 1700 views). Prior
to making decisions on drilling wellbores, geologists at Sta-
toil need to gather relevant information. For instance, geolo-
gists’ information needs may include the following question:
(009) In my area of interest, return all pressure data tagged

with key stratigraphy information with understandable
QC attributes (and suitable for further filtering).

Translating such an information need into the standard
database query language SQL is usually a big challenge for
geologists, who are not supposed to know how Slegge is or-
ganised. In fact, the main table for wellbores has 38 columns;
a four-table join with two additional filters is needed to ob-
tain formation pressure for a wellbore, and stratigraphic in-
formation requires a join with 5 more tables. Using existing
SQL templates and manipulating the answers is error prone,
and calling an IT expert is time-consuming (it can take days
or even weeks). OBDA offers a different approach to for-
malising and answering (009). Domain experts at Statoil
designed a Subsurface Exploration ontology (SE) that cap-
tures terms of the user information needs such as Wellbore,
hasFormationPressure, etc. IT experts wrote a mapping that
declaratively connects (through SQL queries) the ontology

predicates to the Slegge DB. The task of the geologist now is
to reformulate (009) in the vocabulary of SE—possibly using
a visual query interface such as OptiqueVQS1 —as a query in
the W3C standard SPARQL 2, which could look as follows:
SELECT ?w ?depth ?strat_unit WHERE {
?w a :Wellbore . ?w :hasMeasurement ?p .
?p a :Pressure . ?p :hasDepth ?depth
OPTIONAL { ?depth :inWellboreInterval ?strat_zone .

?strat_zone :hasUnit ?strat_unit } }.

This query retrieves all assignments to the variables ?w,
?depth, ?strat_unit in the SELECT clause that satisfy the con-
ditions of the WHERE clause. The latter consists of triple pat-
terns ‘subject-predicate-object’ (separated by dots) required
to match the data. The first four triple patterns say that ?w is an
instance of class Wellbore and has measurements, ?p, which
are instances of Pressure and have their ?depth recorded
by property hasDepth. The two triple patterns in OPTIONAL
return additional information, if available, about the strati-
graphic units ?strat_unit of the wellbore intervals for the
depth measurements. It is optional in the sense that the vari-
able ?strat_unit is assigned no value if the stratigraphic in-
formation is absent for the depth measurement.

An OBDA system would automatically rewrite this
SPARQL query using the ontology and mapping to a SQL
query over the DB, optimise it, and evaluate it by Slegge. q

In general, gathering information even from a company’s
DB is a hard task for non-IT-expert users. One of the main
reasons is that DBs are usually designed to serve applica-
tions: their structure and meaning are obscure for most of
the users; and the stored data is often redundant, mixed with
information only needed to support company processes, and
incomplete with respect to the business domain. Collecting,
integrating, reconciling and efficiently extracting information
from heterogeneous and autonomous data sources is regarded
as a major challenge, with ‘most companies [. . .] capturing
only a fraction of the potential value from data and analytics’.3

The OBDA paradigm addresses this issue by providing ac-

1http://optique-project.eu/training-programme/module-vqs
2http://www.w3.org/TR/sparql11-query
3“The age of analytics: competing in a data-driven world”, McK-

insey Global Institute, December 2016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/199196916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cess to the data layer, consisting of autonomous data sources
(e.g., DBs), through the mediation of a conceptual domain
view, given in terms of an ontology, and the use of a declara-
tive mapping between the data layer and the ontology. OBDA
users do not have to know details of the data sources and can
express their information needs as queries over the concep-
tual domain model. By applying knowledge representation
and automated reasoning techniques, an OBDA system uses
the ontology and mapping to reformulate the user queries into
standard DB queries that are executed directly by the database
management systems (DBMSs) of the sources. Thus, OBDA
relies upon both KR&R and DB technologies.

OBDA systems implementing this paradigm include Mas-
tro [Calvanese et al., 2011], Morph [Priyatna et al., 2014],
Ontop [Calvanese et al., 2017], Stardog4 and Ultrawrap [Se-
queda and Miranker, 2013]. They were adopted in many in-
dustrial projects and use cases, e.g., at Statoil and Siemens5,
the Italian Ministry of Economy and Finance [Antonioli et
al., 2014], in projects on Smart Cities [López et al., 2015],
Electronic Health Records [Rahimi et al., 2014], and Manu-
facturing [Petersen et al., 2017].

Over the past decade, the theory and practice of OBDA
have become a hot topic in the areas of Knowledge Repre-
sentation (Description Logics), Semantic Technologies and
Databases, with numerous papers published in top CS jour-
nals (including AIJ, JACM, JAIR, TODS) and conferences,
and deep connections with such prominent disciplines as
Constraint Satisfaction and Circuit Complexity established.

In this brief survey, we introduce the framework of OBDA
and discuss main results, techniques and challenges. We first
describe the classical OBDA framework in Section 2. Then,
in Section 3, we consider the process of query answering in
OBDA. In Section 4, we focus on mapping management and
analysis. In Section 5, we outline extensions of the classical
OBDA framework. Finally, Section 6 discusses some of the
most important research directions.

We assume the reader is familiar with the basics of
databases (at a standard undergraduate DB course level).

2 OBDA Framework
We begin by presenting a formal framework for OBDA,
distinguishing between the extensional (instance) and inten-
sional (schema) levels. The former is given by a source DBD
conforming to the data source schema S (which typically in-
cludes integrity constraints), and the latter by an OBDA spec-
ification P = (O,M,S), where O is an ontology, S a data
source schema and M a mapping from S to O (signatures
of the ontology and schema are disjoint). The role of O is
to provide the users with a high-level conceptual view of the
data and a convenient vocabulary for their queries; it can also
enrich incomplete data with background knowledge.

Example 2 The Subsurface Exploration ontology (SE) in
Example 1 contains, among others, the following axioms,
given in description logic (DL) syntax [Baader et al., 2017]:

4http://www.stardog.com
5http://optique-project.eu/results-downloads

FormationPressurev Pressure,
FormationPressure u HydrostaticPressure v ⊥,
hasFormationPressurev hasMeasurement,

∃hasFormationPressure−.>v FormationPressure,
FormationPressurev ∃hasDepth.Depth.

The first three are inclusions between, respectively, unary
predicates (concepts in DL or classes in Semantic Web
parlance) and binary predicates (roles or properties); their
first-order (FO) equivalents look as follows:
∀x (FormationPressure(x)→ Pressure(x)),
∀x (FormationPressure(x)∧HydrostaticPressure(x)→ ⊥),
∀xy (hasFormationPressure(x, y)→ hasMeasurement(x, y)).
The fourth axiom restricts the range of hasFormationPres-
sure, while the fifth involves existential quantification:
∀xy (hasFormationPressure(y, x)→FormationPressure(x)),
∀x (FormationPressure(x)→∃y(hasDepth(x, y)∧Depth(y))).

q

The mapping M in P specifies how the ontology pred-
icates are populated by data from the source DB. In
the SE example, each wellbore, which is identified by
the column IDENTIFIER in the WELLBORE table, is given
an IRI (Internationalised Resource Identifier) of the form
http://slegger.gitlab.io/data#Wellbore-n to represent the
wellbore in the ontology; in the sequel, we omit the prefixes
and shorten such IRIs to Wellbore-n. Then the mapping con-
necting SE to the Slegge database contains the assertion
SELECT IDENTIFIER FROM WELLBORE

WHERE REF_EXISTENCE_KIND = ’actual’

; Wellbore(iri("Wellbore-", IDENTIFIER))

populating the class Wellbore with the answers to the SQL
query to the left of ;. In general, mapping assertions are
of the form ϕ(x) ; ψ(x), where ϕ(x) and ψ(x) are FO-
formulas in the signatures of S and O, respectively. In our
examples, we use SQL queries to conveniently represent the
formulas ϕ(x) (recall that WELLBORE has 38 columns). A spe-
cial function iri (of variable arity) is used in ψ(x) to con-
struct IRIs for ontology objects: the parameters of iri are
strings and DB columns (variables in x), and the value of an
iri term is the concatenation of its parameter values.

The pair (P,D) of an OBDA specification P and a source
DBD is called an OBDA instance. To define its semantics, let
M(D) be the minimal set of atoms in the signature of O that
satisfies ψ(a), for all ϕ(x) ; ψ(x) in M and all tuples a
of constants in D such that ϕ(a) holds in D. For example, in
the SE setting, if the table WELLBORE contains

IDENTIFIER REF_EXISTENCE_KIND . . .
16/1-29_S actual . . .
30/8-5 actual . . .

33/10-12 planned . . .

then the mapping will produce the following two ground
atoms (corresponding to ABox assertions or RDF triples):
Wellbore(Wellbore-16/1-29_S), Wellbore(Wellbore-30/8-5).

We call an FO-structure I over the signature of O a model of
(P,D) and write I |= (P,D), if I |= O and I |= M(D).
Thus, the two ground atoms above form an FO-structure that

is a model of our example OBDA instance. The additional
mapping assertion
SELECT WELLBORE.IDENTIFIER, PRESSURE.PRESSURE_S

FROM WELLBORE, PRESSURE

WHERE WELLBORE.REF_EXISTENCE_KIND = ’actual’ AND

WELLBORE.WELLBORE_S = PRESSURE.FACILITY_S

; hasFormationPressure(iri("Wellbore-", IDENTIFIER),
iri("FP-", PRESSURE_S)),

which, for brevity, represents a join of three tables as a single
‘table’ PRESSURE, can produce the ABox assertion
hasFormationPressure(Wellbore-16/1-29_S, FP-1249).

The ontology will then imply the ground atoms
hasMeasurement(Wellbore-16/1-29_S, FP-1249),
FormationPressure(FP-1249), Pressure(FP-1249),

which will hold in every model of our OBDA instance. Every
model will also have to satisfy atoms hasDepth(FP-1249, a)
and Depth(a), for some (possibly unknown) a.

The most important inference task in OBDA is query an-
swering. Given a query q(x) in the signature of O with
answer variables x, a tuple a of constants in D is called a
certain answer to q(x) over (P,D) if I |= q(a), for every
model I of (P,D). In our running example, FP-1249 is a cer-
tain answer to the conjunctive query (cf. Example 1)
∃x [Wellbore(x)∧hasMeasurement(x, y)∧Pressure(y)]. (1)

Conjunctive queries (CQs) are essentially SELECT-PROJECT-
JOIN SQL queries. We discuss the main inference task next.

3 OBDA Query Answering
To make query answering viable in practice, the OBDA
paradigm relies on reducing the problem of finding certain
answers to answering FO queries directly over the data. More
precisely, given an OBDA specification P = (O,M,S), we
say that a query q(x) is FO-rewritable if there is an FO query
q′(x) such that, for every source DB D for P , a tuple a is a
certain answer to q(x) over (P,D) iffD |= q′(a). The query
q′(x) is called an FO-rewriting of q(x) (with respect to P).
Thus, in the context of the example in Section 2, the follow-
ing SQL query is an FO-rewriting of (1):
SELECT "FP-" || PRESSURE_S FROM WELLBORE, PRESSURE

WHERE WELLBORE.REF_EXISTENCE_KIND = ’actual’ AND

WELLBORE.WELLBORE_S = PRESSURE.FACILITY_S,
where || is the string concatenation operation. Since the FO-
rewriting of a query does not depend on the data, computing
the certain answers to an FO-rewritable query has the same
data complexity, viz. AC0, as classical DB query evaluation.
Recall that, under data complexity, the data instance is the
only input to the query answering problem, while the OBDA
specification and query are fixed [Vardi, 1982].

The traditional approach [Poggi et al., 2008] to comput-
ing FO-rewritings of a query q(x) with respect to an OBDA
specification P = (O,M,S) proceeds in two stages. In
Stage 1, the ontology-mediated query (OMQ) (O, q(x)) is
rewritten into an ‘equivalent’ FO-query q′(x) in the signature
of O. In Stage 2, q′(x) is unfolded using the mapping M
into an FO-query in the signature of S, which gives the re-
quired FO-rewriting of q(x) with respect to P . To ensure

FO-rewritability, the ontology and mapping languages need
to be chosen with care.

3.1 Ontology-Mediated Query Rewriting
OWL 2 QL is a profile6 of the ontology language OWL 2 ,
standardised by the W3C, that has been specifically designed
for OBDA. It is based on the DL-Lite family [Calvanese et
al., 2007; Artale et al., 2009], a suite of DLs closely related to
conceptual modelling formalisms for DB design and software
engineering. The DL-Lite constructs are illustrated by Exam-
ple 2. OWL 2 QL was tailored to ensure FO-rewritability of
OMQs: if O is an OWL 2 QL ontology, then any CQ q(x)
is FO-rewritable with respect to the OBDA specification PO
with ontologyO and schema containing a unary table for each
class and a binary table for each property, whose mapping is
an isomorphism. An FO-rewriting of q(x) with respect toPO
is called an FO-rewriting of the OMQ (O, q(x)), which is
also said to be FO-rewritable.

The first OMQ rewriting algorithm PerfectRef [Calvanese
et al., 2007] was essentially based on backward chaining. To
illustrate, consider the fragment O of the SE ontology in Ex-
ample 2 and the CQ q(y) given by (1). PerfectRef rewrites
OMQ (O, q(y)) into the union of the following CQs (UCQ):
∃x [Wellbore(x) ∧ hasMeasurement(x, y) ∧ Pressure(y)],
∃x [Wellbore(x) ∧ hasMeasurement(x, y) ∧

FormationPressure(y)],
∃x [Wellbore(x) ∧ hasFormationPressure(x, y) ∧

Pressure(y)],
∃x [Wellbore(x) ∧ hasFormationPressure(x, y) ∧

FormationPressure(y)],
∃x [Wellbore(x) ∧ hasFormationPressure(x, y)].

First experiments with Mastro [Calvanese et al., 2011] re-
vealed that rewritings produced by PerfectRef were often
prohibitively large for execution by DBMSs, which spurred
the investigation of various OMQ rewriting techniques and
optimisations. For example, optimisations based on CQ con-
tainment can significantly reduce the size of rewritings (the
last CQ above subsumes the two preceding CQs); see, e.g.,
the work by Mora and Corcho [2013] and references therein
for advances in this direction. Also, the UCQ above can be
represented succinctly as a positive existential formula:
∃x

(
Wellbore(x, y) ∧ [hasFormationPressure(x, y) ∨

(hasMeasurement(x, y) ∧
(Pressure(y) ∨ FormationPressure(y)))]

)
.

It turns out, however, that in the worst case, rewritings can
be of exponential size even if represented more succinctly
as positive existential formulas or non-recursive Datalog pro-
grams; rewritings in the form of arbitrary FO-formulas can be
of superpolynomial size unless NP ⊆ P/poly. For a compre-
hensive study of the succinctness problem and the combined
complexity of OMQ answering (depending on the shape of
CQs and the existential depth of ontologies), consult [Bien-
venu et al., 2018], which also provides further references to
various types of OMQ rewritings developed so far.

Ontology languages for which not all OMQs are uniformly
FO-rewritable (because of LOGSPACE-hardness) were first

6http://www.w3.org/TR/owl2-profiles

studied in 2006 [Calvanese et al., 2013], recasting also early
results by Schaerf [1993] on DLs with CONP-hard query an-
swering. Typical examples of non-FO-rewritable OMQs are

({∀xy (R(x, y) ∧A(y)→ A(x))}, A(x)) and
({∀x (A(x)→ B(x) ∨ C(x))}, ∃xϕ(x)),

where ϕ(x1, x2, x3, x4) is
B

x1

B

x2

C

x3

C

x4R R R

The former OMQ, expressible in the DL EL, encodes NL-
hard digraph reachability, while the latter, expressible in
ALU , is CONP-complete [Gerasimova et al., 2017].

3.2 Unfolding Rewritings with Mappings
The FO-rewriting q′(x) of an OMQ can be made executable
over the source DB by means of unfolding. Consider first
GAV (global-as-view) mappings, in which the assertions are
of the form ϕ(y) ; S(y) for a predicate S (without iri-
terms). In this case, unfolding boils down to replacing each
atom S(z) in q′(x) by the query ϕ(z) from the mapping
[Lenzerini, 2002] (which is similar to expanding a query with
views in DBs or partial evaluation of Datalog programs).

The W3C standardised R2RML 7 as a language for map-
ping relational DBs to RDF graphs (sets of RDF triples),
where mapping assertions are of the form ϕ(x) ; ψ(x),
for a conjunction ψ(x) of atoms over variables x and iri-
terms (expressed by means of IRI templates). Interestingly,
De Giacomo et al. [2018] show that iri-terms can be used
to encode more general GLAV mappings, where the right-
hand side query is a full-fledged CQ [Lenzerini, 2002]. This
result heavily depends on the lack of functional properties
and the unique name assumption (UNA) in OWL 2 QL [Cal-
vanese et al., 2008]. In spite of this expressive power, all CQs
are FO-rewritable with respect to OBDA specifications with
OWL 2 QL ontologies and R2RML mappings [Poggi et al.,
2008]: indeed, any OMQ rewriting can be unfolded with an
R2RML (or, equivalently, GLAV) mapping by using careful
unification for query fragments [Calvanese et al., 2012].

Unfolding an FO-rewriting of an OMQ can result in an ex-
ponential blowup. For example, the class FormationPressure
with the (simplified) mapping assertion
SELECT PRESSURE_S FROM PRESSURE

; FormationPressure(iri("FP-", PRESSURE_S))

includes (as a subset) the range of hasFormationPressure;
cf. Example 2. Thus, the rewriting of a CQ with
an atom FormationPressure(y) will have to ‘expand’ it
both with itself and with hasFormationPressure(z, y) for
some z. Unfolding will then introduce a redundant SQL
subquery for hasFormationPressure(z, y). Indeed, this sub-
query gives no new answers compared to the subquery for
FormationPressure(y) because the latter subsumes the for-
mer, which selects only those tuples in PRESSURE that have
matches in WELLBORE. The problem is exacerbated in the real
SE because PRESSURE is a join of three tables. Kontchakov et
al. [2014] and Sequeda et al. [2014] observed that optimi-
sations removing such redundancies in rewritings of OMQs
need to be made only once (as offline preprocessing) by com-

7http://www.w3.org/TR/r2rml

bining mapping and ontology. Indeed, the system can pro-
duce a mapping assertion for FormationPressure that gives all
certain answers to FormationPressure(y), so that its rewriting
does not have to include predicates for redundant subqueries.
Such mappings are called saturated or T-mappings.

Even with optimised saturated mappings, the SQL queries
produced by unfolding may contain many redundant self-
joins and unions. Indeed, in the SE setting, data property name
and object property hasDepth for the class FormationPressure
are populated from columns IDENTIFIER and PRESSURE_S of
the same table PRESSURE. Hence, the CQ
FormationPressure(x) ∧ name(x, y) ∧ hasDepth(x, z)

is naturally unfolded into a join of 3 copies of table PRESSURE:
SELECT "FP-" || P1.PRESSURE_S, P2.IDENTIFIER

"PressureMeasuredDepth-" || P3.PRESSURE_S,

FROM PRESSURE P1, PRESSURE P2, PRESSURE P3

WHERE ("FP-" || P1.PRESSURE_S) = ("FP-" || P2.PRESSURE_S)

AND ("FP-" || P1.PRESSURE_S) = ("FP-" || P3.PRESSURE_S).
Such redundancies can be detected and removed using in-
tegrity constraints of the DB schema (e.g., the primary key
PRESSURE_S of PRESSURE above [Kontchakov et al., 2014]),
or using additional constraints in the OBDA specification
[Di Pinto et al., 2013; Hovland et al., 2016] (industrial DBs
often contain few integrity constraints because they may im-
pact system performance). We note that most of such se-
mantic optimisations are well-known in DB theory; however,
they are either not implemented in the state-of-the-art RDMSs
(partly because naively unfolded SQL queries often contain
obvious redundancies, such as the self-join above, not ex-
pected in human-written SQL queries) or use assumptions
specific to OBDA (e.g., SPARQL joins are translated into
joins of concatenated strings for the IRIs rather than standard
database joins over columns as in the example above).

A promising direction in OBDA query optimisation is esti-
mation of the evaluation cost for alternative equivalent forms
of unfolded and rewritten queries in order to choose the best
candidate; this can be done for OMQ answering [Bursztyn et
al., 2015] or OBDA [Lanti et al., 2017].

4 Mapping Management and Analysis
Besides efficient query answering algorithms, design-time
support is also crucial in OBDA, since the construction, de-
bugging and maintenance of an OBDA specification are par-
ticularly demanding. Mapping creation and management is
probably the most complicated OBDA design-time task, as
the mapping specifies the semantics of the data sources in
terms of the ontology, and so bridges the typically large con-
ceptual gap between the source schema and the ontology. On
the other hand, the form of the mapping and its interaction
with the ontology affect query answering performance, and
so should be taken into account by OMQ rewriting algorithms
(cf., e.g., mapping saturation by Kontchakov et al. [2014]).

The first approach to formal analysis of OBDA mappings
was proposed by Lembo et al. [2015], who focused on iden-
tifying inconsistencies and redundancies. A mapping M is
called inconsistent with an ontology O if simultaneously ac-
tivating all of its assertions leads to a contradiction in O.

Example 3 The axioms Well v Asset, Well v Facility, and
Well u ∃isOutsourcedTo.> v ⊥ state that a well is both an
asset and a company’s facility, and it is not outsourced to an
external operator. Consider the following mappingM:
SELECT IDENTIFIER I FROM FACILITY WHERE KIND_S = ’WELL’

; Well(iri("Facility-", I)),
SELECT IDENTIFIER I, SUPPLIER S FROM FACILITY

; isOutsourcedTo(iri("Facility-",I), iri("Op-",S)).
It is easy to see that M is inconsistent since every time the
second assertion produces facts instantiating the ontology
(i.e., it is activated), the first one is also activated, causing a
violation of disjointness of Well and ∃isOutsourcedTo.>. q

A mapping M′ is redundant for an OBDA specification
P = (O,M,S) if adding the assertions inM′ to P does not
change its semantics, i.e., (P,D) and ((O,M∪M′,S),D)
have the same models for every source DB D. Besides
the global notions of consistency and redundancy, Lembo et
al. [2015] also consider their local counterparts, where the
focus is on individual mapping assertions. They study the
computational complexity of deciding both local and global
consistency and redundancy for ontologies in OWL 2 and its
tractable profiles, and different forms of mappings (GLAV or
GAV). It turns out that mapping analysis can be carried out by
composing standard reasoning tasks for the ontology and data
sources, and is indeed not harder than these standard tasks.

The form of mapping analysis presented by Bienvenu and
Rosati [2016] consists of a query-based notion of entailment
and equivalence between OBDA specifications. In particular,
two OBDA specifications are regarded as equivalent if they
give the same answers to the same queries (in a certain class),
for all possible source DBs. The paper studies the complexity
of deciding entailment and equivalence between OBDA spec-
ifications with respect to different classes of queries (CQs or
instance queries), ontology languages (of the DL-Lite family)
and forms of mappings.

Lembo et al. [2017] focus on the evolution of OBDA
specifications and consider the scenario where the ontology
and/or the source schema change. This is a typical situation
since, in applications, new data sources (or new portions of
data sources) are usually incrementally added to an existing
OBDA installation; moreover, the ontology often needs to be
updated in the light of a deeper understanding of the domain
of interest. In these cases, the mapping may have to be modi-
fied to restore consistency. Two notions of mapping repair are
proposed. The first, called DM-Repair, considers as mapping
repairs all maximal subsets of the original mapping that are
consistent with the updated ontology and source schema. In
Example 3,M is inconsistent with O, and its repairs are the
two mappings containing a single assertion each. The second
notion, called EM-Repair, aims at maximising preservation
of the information inferred by the original OBDA specifica-
tion that is still consistent after the update. In Example 3,
EM-Repairs are the DM-Repairs augmented with the follow-
ing inferred mapping assertion:
SELECT IDENTIFIER I FROM FACILITY WHERE KIND_S = ’WELL’

; Asset(iri("Facility-", I)).
Lembo et al. [2017] study the data and combined complexity
of CQ entailment under the aforementioned notions of repair

for OWL 2 QL ontologies and various forms of mappings.
We note that the works on mapping management discussed

above do not make any assumptions on the way the map-
ping is originally designed. In order to support this activ-
ity, some approaches have recently been proposed, whose
purpose is to automatically bootstrap the ontology and the
mapping from a DB [Sequeda et al., 2011]. Typically, the
bootstrapped ontology strongly depends on the abstraction
level of the DB schema, which is rather low in real scenar-
ios due to the fact that the database in practice plays the role
of a (persistent) data structure for the enterprise applications.
Consequently, the ontology needs to be manually refined to
obtain a better conceptualisation of the domain of interest.
BOOTOX [Jiménez-Ruiz et al., 2015] provides some func-
tionalities to help the designer improve the bootstrapped on-
tology by, e.g., aligning it to an existing domain ontology.

5 Extensions
We now survey extensions to the components of the OBDA
framework that have been proposed in order to increase its
expressive power and the scope of applications.
SPARQL, which has been adopted as the de facto standard
query language in OBDA, was designed to deal with incom-
plete information (as exemplified by OPTIONAL in Example 1,
where the variable ?strat_unit is not necessarily assigned a
value). Its standard semantics is based on graph matching:
the basic graph patterns (BGPs) of the query are matched
to the data (which corresponds to CQ evaluation in classi-
cal DBs), and then the resulting sets of answers are combined
using SPARQL operators such as OPTIONAL and UNION. Xiao
et al. [2018b] develop an efficient translation of a large part of
SPARQL into SQL, which uses column nullability in optimi-
sations. In SPARQL 1.1 , the entailment regimes were defined
to account for reasoning in the ontological layer [Glimm and
Krötzsch, 2010], a crucial aspect in OBDA. For example, the
OWL 2 Direct Semantics entailment regime replaces graph
matching for BGPs with entailment by a given OWL 2 on-
tology. This approach leads to a modular implementation of
reasoning in existing SPARQL engines. However, it also re-
sults in some counter-intuitive behaviour due to the lack of in-
teraction between the certain answer semantics of BGPs and
the OPTIONAL operator. Kostylev and Cuenca Grau [2015] and
Ahmetaj et al. [2016] propose more intuitive semantics for
the well-designed fragment of SPARQL .
Bag semantics. According to the W3C specifications, every
RDF graph M(D) is a set of triples, but SPARQL queries
are evaluated under the bag semantics. However, the current
OBDA research mostly adopts the set semantics for answer-
ing SPARQL queries. On the other hand, the bag seman-
tics is important, in particular, for DB-style aggregate queries.
Nikolaou et al. [2017] propose an alternative bag semantics
for OBDA, where duplicate triples in M(D) are retained.
They show that although such semantics makes answering
CQs CONP-hard in general (and so not FO-rewritable), there
is a large class of CQs rewritable to BALG, a generalisation
of the relational algebra to bags.
Expressive Ontologies. The original OBDA paradigm relies
on FO-rewritability of all OMQs with an OWL 2 QL ontol-

ogy. There are different approaches to extending the expres-
sive power of this DL-Lite-based ontology language. One
was suggested by the DB community, which aimed at over-
coming the restriction of DLs to unary and binary predicates
only and designed various FO-rewritable fragments of the
language of tuple-generating dependencies (aka Datalog± or
existential rules)—that is, the standard language for DB con-
straints [Krötzsch and Rudolph, 2011; Gottlob et al., 2014;
König et al., 2015]. Another type of limitation, pointed out
by the DL community, is that real-world ontologies often
use constructs that are not available in DL-Lite , for example,
∃R.C on the left-hand side of concept inclusions or C t C ′
on the right-hand side. Adding such constructs to DL-Lite
would ruin the uniform FO-rewritablity of all OMQs; cf. Sec-
tion 3.1. However, some useful OMQs with ontologies in an
expressive language may still be FO-rewritable. A systematic
investigation of the data complexity of answering individual
OMQs in this non-uniform approach was launched by Lutz
and Wolter [2017] and Bienvenu et al. [2014], who show, in
particular, that FO- and Datalog-rewritability of expressive
OMQs can be decided in exponential time. For recent results
and further references, see the work by Hernich et al. [2017]
and Lutz and Sabellek [2017]. The latter, for example, es-
tablish an AC0/NL/P data complexity trichotomy for OMQs
with EL ontologies and atomic queries.

The approach of Botoeva et al. [2016] aims at extend-
ing OBDA to more expressive ontology languages while still
leveraging the underlying relational technology for query an-
swering. It does so by encoding part of the domain semantics
of rich ontology languages in the mapping layer. More pre-
cisely, by replacing ontology axioms by additional mapping
assertions, an OBDA specification with an expressive ontol-
ogy is rewritten to an equivalent one with an OWL 2 QL on-
tology, if possible, and approximated otherwise.

A more radical way of increasing expressiveness is to al-
low OMQ rewritings into query languages with polynomial
(as opposed to AC0) data complexity, e.g., Datalog; a recent
survey is provided by Bienvenu and Ortiz [2015].

Rules. An alternative approach to encoding more domain se-
mantics in the ontology is to extend the OBDA paradigm with
Datalog-style rules. For example, in the context of the SE on-
tology, the rule
intervalPerm(i, v)← extractedFrom(c, i),
hasCoreSample(c, s), hasPerm(s, p), valueInStdUnit(p, v)

says that permeability of a wellbore interval can be obtained
by chaining four roles (binary predicates), while the two rules
ancestorUnitOf(x, y)← parentUnitOf(x, y),
ancestorUnitOf(x, y)← parentUnitOf(x, z),

ancestorUnitOf(z, y)

define ancestorUnitOf by means of linear recursion on the
binary relation parentUnitOf. Xiao et al. [2014] extend the
classical query rewriting algorithm for SPARQL queries to
deal with such rules by exploiting recursive common table
expressions introduced in SQL:1999.

Spatial OBDA. The OGC standard GeoSPARQL query lan-
guage8 is an extension of SPARQL with geospatial features.
It defines, in particular, a set of rules for transforming qual-
itative spatial queries into equivalent quantitative ones. For
example, the qualitative RDF triple o1 geo:sfContains o2 is
true iff the geometry of object o1 contains the geometry of o2.
So, given the GeoSPARQL query
SELECT ?fa ?wp WHERE {
?fa a :FieldArea . ?wp a :WellborePoint .
?fa geo:sfContains ?wp },

we obtain a SPARQL query with a union that contains,
among others, the quantitative query that explicitly ex-
tracts geometries and relates them by the built-in function
geo:contains:
SELECT ?fa ?wp WHERE {
?fa a :FieldArea . ?fa geo:hasGeometry ?gfa .
?wp a :WellborePoint . ?wp geo:hasGeometry ?gwp .
?gfa geo:asWKT ?wktfa . ?gwp geo:asWKT ?wktwp .

FILTER geo:contains(?wktfa,?wktwp) }.

GeoSPARQL is supported by the approach proposed by
Bereta and Koubarakis [2016], which relies on OBDA to ac-
cess geospatial relational DBs (e.g., PostGIS, Oracle).

Temporal OBDA. Facilitating access to temporal (in par-
ticular, streaming) data has recently become a hot topic in
the OBDA community. A typical example where tempo-
ral OBDA can be of great practical help is monitoring and
analysing complex events based on timestamped sensor mea-
surements stored in DBs. For instance, engineers at Siemens
Remote Diagnostic Centres could be interested in active
power trips of gas turbines, that is, events when the active
power of a turbine was above 1.5MW for 10 seconds, and
within 3 seconds after that there was a one-minute period
when the active power was below 0.15MW.

Two approaches to extending the classical OBDA lan-
guages with temporal constructs capable of capturing such
events have been proposed. One approach suggested by Klar-
man and Meyer [2014], Borgwardt et al. [2015] and Khar-
lamov et al. [2017] is to retain OWL 2 QL as the ontology
language under the assumption that the ontology axioms hold
at all times, but enrich the query language with constructs
from a standard temporal logic such as the linear temporal
logic LTL , Halpern-Shoham’s interval logic HS or the met-
ric temporal logic MTL . For example, using MTL , one can
encode the active power trip of a turbine v as the query
q(v) = Turbine(v) ∧2−[0,60]AP_Below0.15(v) ∧

3−[60,63]2
−
[0,10]AP_Above1.5(v),

where 2−[t1,t2]A (respectively, 3−[t1,t2]A) holds at moment of
time t iff A holds everywhere (respectively, somewhere) in
the interval [t − t2, t − t1]. Although this approach usually
preserves the data complexity and FO-rewritability of OMQs
(see, e.g., [Baader et al., 2015]), it presupposes that users are
capable of capturing complex events in temporal logic.

Alternatively and in the spirit of OBDA, one can shift the
burden of representing complex temporal events to domain
experts by adding temporal operators to ontology languages

8http://www.opengeospatial.org/standards/geosparql

and keeping queries simple. For example, the ontology rule

AP_Trip(v)← 2−[0,60]AP_Below0.15(v) ∧
3−[60,63]2

−
[0,10]AP_Above1.5(v),

(2)

which holds at all times, would reduce q(v) to a simple query
Turbine(v) ∧ AP_Trip(v). Unfortunately, temporal operators
often increase the complexity of OMQ answering and ruin
FO-rewritability. Finding a trade-off between complexity and
practically useful expressive power of temporal ontology lan-
guages remains a challenge; Artale et al. [2017] provide a re-
cent survey. Brandt et al. [2017] and Kontchakov et al. [2016]
demonstrate on a few real-world use cases sufficient expres-
siveness of non-recursive Datalog queries with MTL and HS
rules such as (2) and reasonable scalability of their SQL
rewritings (with window functions and aggregation).
Identifier Management for Data Integration. When the un-
derlying data in OBDA is actually stored in a collection of
DBs that need to be queried in an integrated way, we speak
of ontology-based data integration. An important aspect that
differentiates it from OBDA is the fact that the same con-
ceptual entity (object) may be represented in different DBs
by different identifiers. In order to express equivalence be-
tween entity identifiers, Calvanese et al. [2015] exploit the
owl:sameAs construct in mappings. In addition, entities can
be assigned canonical identifiers to avoid redundant query
answers caused by owl:sameAs [Xiao et al., 2018a].
Materialisation and the Combined Approach. We de-
scribed the classical approach to OBDA above, where no ad-
ditional data is stored and used for query answering. This is
also called virtual OBDA because M(D) is virtual and not
materialised. When the data may actually be extended, the
DB engine can, for efficiency reasons, e.g., materialise some
of the queries in the saturated mapping. Indeed, such materi-
alised views can lead to drastically simpler SQL queries [Se-
queda et al., 2014]. In the extreme, an OBDA system could
attempt to materialise all logical consequences of the data,
ontology and mapping, or, in DB parlance, to chase the data
under the tuple-generating dependencies of the mapping and
ontology [Abiteboul et al., 1995, Sections 8.4 and 10.2]. For
most of the DL-based ontology languages, however, this is
not possible as the chase is infinite. Still, even then the chase
can be represented as a finite structure provided that queries
are appropriately modified and/or their answers are filtered
[Lutz et al., 2013].

6 Perspectives
We conclude by identifying a few important directions for
future research, both in theory and practice.
Data Quality. The problem of assessing the overall quality of
data requires measuring various data quality dimensions such
as consistency (i.e., coherency with business rules), complete-
ness (i.e., data contains the information needed for the task at
hand) and currency (or freshness). When data comes from
multiple independent data sources, OBDA provides a formal
means to base data quality dimensions on a common ground,
i.e., the domain ontology. Console and Lenzerini [2014] de-
fine a framework for data consistency in OBDA, consider-
ing coherence with the ontology axioms of both the content

of the sources (extensional level) and their schema (inten-
sional level). Algorithms and a complexity analysis are pre-
sented for checking different aspects of consistency for vari-
ous classes of OBDA specifications. This investigation lays
the foundations of a formal approach to data quality, focusing
on the semantics of data sources. It remains to be broadened
to other data quality dimensions beyond consistency.
Updates. With the exception of some preliminary efforts
[De Giacomo et al., 2017], the OBDA framework has been
mostly considered as read-only up to now. Obviously, the
capability of the framework to react to insertion, removal or
change of logically implied facts or axioms is a problem that
deserves a systematic investigation.
Benchmarking. In order to assess the performance of OBDA
query answering and understand the effectiveness of optimi-
sation techniques, some benchmarks have been developed:
e.g., [Lanti et al., 2015; Hovland et al., 2017] and the collec-
tion at obda-benchmark.org. Still, more challenging bench-
marks, with complex ontologies, mappings and large data in-
stances are needed, as well as benchmarks with tuneable com-
ponents, which would allow one to study the impact of each
of the components.
Non-Uniform OBDA. An ideal solution to the perennial ex-
pressiveness vs. complexity and rewritability problem would
be an OBDA system that, for any query and OBDA spec-
ification given in expressive languages, could check the
data complexity of query answering, identify a suitable type
of rewriting and compute it. However, it still remains to
be seen whether such algorithms are feasible in practice
and whether simpler (syntactic) sufficient conditions of FO-
rewritability exist even for practically interesting classes of
OMQs [Kaminski et al., 2016; Hansen and Lutz, 2017]. An-
other challenge is utilising mappings and DB integrity con-
straints, which restrict the class of possible data instances and
thereby can drastically simplify rewritings.
Streaming Data. Recent years have witnessed a huge in-
crease in the amount of streaming data that needs to be pro-
cessed in real-time, also in connection to the growth of the
Internet of Things. This affects data management technolo-
gies in general, but also Semantic Web technologies, which
need to be extended so as to deal with streaming data ef-
ficiently; cf. the W3C RDF Stream Processing Community
Group9. OBDA can provide the currently missing link be-
tween streams of raw (generally non-RDF) data and its high-
level view in terms of RDF triples, which would allow in-
teroperability with the Semantic Web infrastructure. Calbi-
monte et al. [2010] describe an early proposal in this direc-
tion; Kharlamov et al. [2017] make first steps in developing
analytics-aware temporal OBDA over streaming data.
Data Analytics. OBDA can be used to provide access to nu-
merical data, representing, e.g., time, temperature or speed,
using standard ontologies for these specific domains. Such
structures are useful in formulating typical analytical tasks
at a higher level of abstraction. This calls for extending the
OBDA paradigm to the different types of numerical data, so
as to support not only data access but also data analytics.

9http://www.w3.org/community/rsp

Acknowledgements
We thank the reviewers for their suggestions. This work was
supported by the OBATS project at the Free Univ. of Bozen-
Bolzano and by the Euregio (EGTC) IPN12 project KAOS.

References
[Abiteboul et al., 1995] S. Abiteboul, R. Hull, V. Vianu.

Foundations of Databases. Addison Wesley, 1995.
[Ahmetaj et al., 2016] S. Ahmetaj, W. Fischl, M. Kröll, R.

Pichler, M. Simkus, S. Skritek. The challenge of optional
matching in SPARQL. In FoIKS, vol. 9616 of LNCS, 2016.

[Antonioli et al., 2014] N. Antonioli et al. Ontology-based
data management for the Italian public debt. In FOIS,
vol. 267 of FAIA, IOS Press, 2014.

[Artale et al., 2009] A. Artale, D. Calvanese, R. Kontchakov,
M. Zakharyaschev. The DL-Lite family and relations.
JAIR, 36, 2009.

[Artale et al., 2017] A. Artale, R. Kontchakov, A. Kov-
tunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev.
Ontology-mediated query answering over temporal data:
A survey (invited talk). In TIME, vol. 90 of LIPIcs, 2017.

[Baader et al., 2015] F. Baader, S. Borgwardt, M. Lippmann.
Temporal query entailment in the description logic SHQ.
J. Web Semantics, 33, 2015.

[Baader et al., 2017] F. Baader, I. Horrocks, C. Lutz, U. Sat-
tler. An Introduction to Description Logic. CUP, 2017.

[Bereta and Koubarakis, 2016] K. Bereta, M. Koubarakis.
Ontop of geospatial databases. In ISWC, vol. 9981 of
LNCS, 2016.

[Bienvenu and Ortiz, 2015] M. Bienvenu, M. Ortiz. Ontol-
ogy-mediated query answering with data-tractable de-
scription logics. In RW, vol. 9203 of LNCS, 2015.

[Bienvenu and Rosati, 2016] M. Bienvenu, R. Rosati.
Query-based comparison of mappings in ontology-based
data access. In KR, 2016.

[Bienvenu et al., 2014] M. Bienvenu, B. ten Cate, C. Lutz,
F. Wolter. Ontology-based data access: A study through
Disjunctive Datalog, CSP, and MMSNP. ACM TODS,
39(4), 2014.

[Bienvenu et al., 2018] M. Bienvenu, S. Kikot, R. Kont-
chakov, V. Podolskii, M. Zakharyaschev. Ontology-
mediated queries: Combined complexity and succinctness
of rewritings via circuit complexity. JACM, 2018.

[Borgwardt et al., 2015] S. Borgwardt, M. Lippmann,
V. Thost. Temporalizing rewritable query languages over
knowledge bases. J. Web Semantics, 33, 2015.

[Botoeva et al., 2016] E. Botoeva, D. Calvanese, V. Santa-
relli, D. F. Savo, A. Solimando, G. Xiao. Beyond
OWL 2 QL in OBDA: Rewritings and approximations. In
AAAI, 2016.

[Brandt et al., 2017] S. Brandt, E. G. Kalaycı, R. Kont-
chakov, V. Ryzhikov, G. Xiao, M. Zakharyaschev.
Ontology-based data access with a Horn fragment of Met-
ric Temporal Logic. In AAAI, 2017.

[Bursztyn et al., 2015] D. Bursztyn, F. Goasdoué, I. Mano-
lescu. Reformulation-based query answering in RDF: Al-
ternatives and performance. PVLDB, 8(12), 2015.

[Calbimonte et al., 2010] J.-P. Calbimonte, Ó. Corcho, A. J.
Gray. Enabling ontology-based access to streaming data
sources. In ISWC, vol. 6496 of LNCS, 2010.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, R. Rosati. Tractable reasoning
and efficient query answering in description logics: The
DL-Lite family. JAR, 39(3), 2007.

[Calvanese et al., 2008] D. Calvanese, G. De Giacomo, D.
Lembo, M. Lenzerini, A. Poggi, R. Rosati, M. Ruzzi.
Data integration through DL-LiteA ontologies. In SDKB,
vol. 4925 of LNCS, 2008.

[Calvanese et al., 2011] D. Calvanese et al. The Mastro sys-
tem for ontology-based data access. Semantic Web, 2(1),
2011.

[Calvanese et al., 2012] D. Calvanese, G. De Giacomo,
M. Lenzerini, M. Y. Vardi. Query processing under GLAV
mappings for relational and graph databases. PVLDB, 6,
2012.

[Calvanese et al., 2013] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, R. Rosati. Data complexity of
query answering in description logics. AIJ, 195, 2013.

[Calvanese et al., 2015] D. Calvanese, M. Giese, D. Hov-
land, M. Rezk. Ontology-based integration of cross-linked
datasets. In ISWC, vol. 9366 of LNCS, 2015.

[Calvanese et al., 2017] D. Calvanese et al. Ontop: Answer-
ing SPARQL queries over relational databases. Semantic
Web, 8(3), 2017.

[Console and Lenzerini, 2014] M. Console, M. Lenzerini.
Data quality in ontology-based data access: The case of
consistency. In AAAI, 2014.

[De Giacomo et al., 2017] G. De Giacomo, D. Lembo,
X. Oriol, D. F. Savo, E. Teniente. Practical update man-
agement in ontology-based data access. In ISWC, 2017.

[De Giacomo et al., 2018] G. De Giacomo et al. Using on-
tologies for semantic data integration. In A Comprehensive
Guide through the Italian Database Research over the Last
25 Years, vol. 31 of Studies in Big Data. Springer, 2018.

[Di Pinto et al., 2013] F. Di Pinto et al. Optimizing query
rewriting in ontology-based data access. In EDBT, 2013.

[Gerasimova et al., 2017] O. Gerasimova, S. Kikot,
V. Podolskii, M. Zakharyaschev. On the data com-
plexity of ontology-mediated queries with a covering
axiom. In DL, vol. 1879 of CEUR, 2017.

[Glimm and Krötzsch, 2010] B. Glimm, M. Krötzsch.
SPARQL beyond subgraph matching. In ISWC, 2010.

[Gottlob et al., 2014] G. Gottlob, G. Orsi, A. Pieris. Query
rewriting and optimization for ontological databases. ACM
TODS, 39(3), 2014.

[Hansen and Lutz, 2017] P. Hansen, C. Lutz. Computing
FO-rewritings in EL in practice: From atomic to conjunc-
tive queries. In ISWC, vol. 10587 of LNCS, 2017.

[Hernich et al., 2017] A. Hernich, C. Lutz, F. Papacchini,
F. Wolter. Dichotomies in ontology-mediated querying
with the guarded fragment. In PODS, 2017.

[Hovland et al., 2016] D. Hovland, D. Lanti, M. Rezk,
G. Xiao. OBDA constraints for effective query answering.
In RuleML, vol. 9718 of LNCS, 2016.

[Hovland et al., 2017] D. Hovland, R. Kontchakov, M. G.
Skjæveland, A. Waaler, M. Zakharyaschev. Ontology-
based data access to Slegge. In ISWC, vol. 10588 of LNCS,
2017.

[Jiménez-Ruiz et al., 2015] E. Jiménez-Ruiz et al. BootOX:
Practical mapping of RDBs to OWL 2. In ISWC, vol. 9367
of LNCS, 2015.

[Kaminski et al., 2016] M. Kaminski, Y. Nenov, B. Cuenca
Grau. Datalog rewritability of Disjunctive Datalog pro-
grams and non-Horn ontologies. AIJ, 236, 2016.

[Kharlamov et al., 2017] E. Kharlamov et al. Semantic ac-
cess to streaming and static data at Siemens. J. Web Se-
mantics, 44, 2017.

[Klarman and Meyer, 2014] S. Klarman, T. Meyer. Querying
temporal databases via OWL 2 QL. In RR, vol. 8741 of
LNCS, 2014.

[König et al., 2015] M. König, M. Leclère, M.-L. Mugnier,
M. Thomazo. Sound, complete and minimal UCQ-
rewriting for existential rules. Semantic Web, 6(5), 2015.

[Kontchakov et al., 2014] R. Kontchakov, M. Rezk, M.
Rodriguez-Muro, G. Xiao, M. Zakharyaschev. Answering
SPARQL queries over databases under OWL 2 QL entail-
ment regime. In ISWC, vol. 8796 of LNCS, 2014.

[Kontchakov et al., 2016] R. Kontchakov, L. Pandolfo,
L. Pulina, V. Ryzhikov, M. Zakharyaschev. Temporal and
spatial OBDA with many-dimensional Halpern-Shoham
logic. In IJCAI, 2016.

[Kostylev and Cuenca Grau, 2015] E. V. Kostylev, B.
Cuenca Grau. Semantics of SPARQL under OWL 2
entailment regimes. In DL, vol. 1350 of CEUR, 2015.

[Krötzsch and Rudolph, 2011] M. Krötzsch, S. Rudolph.
Extending decidable existential rules by joining acyclicity
and guardedness. In IJCAI, 2011.

[Lanti et al., 2015] D. Lanti, M. Rezk, G. Xiao, D. Cal-
vanese. The NPD benchmark: Reality check for OBDA
systems. In EDBT, 2015.

[Lanti et al., 2017] D. Lanti, G. Xiao, D. Calvanese. Cost-
driven ontology-based data access. In ISWC, vol. 10587
of LNCS, 2017.

[Lembo et al., 2015] D. Lembo, J. Mora, R. Rosati, D. F.
Savo, E. Thorstensen. Mapping analysis in ontology-
based data access: Algorithms and complexity. In ISWC,
vol. 9366 of LNCS, 2015.

[Lembo et al., 2017] D. Lembo, R. Rosati, V. Santarelli,
D. F. Savo, E. Thorstensen. Mapping repair in ontology-
based data access evolving systems. In IJCAI, 2017.

[Lenzerini, 2002] M. Lenzerini. Data integration: A theoret-
ical perspective. In PODS, 2002.

[López et al., 2015] V. López, M. Stephenson, S. Kotoulas,
P. Tommasi. Data access linking and integration with
DALI: Building a safety net for an ocean of city data. In
ISWC, vol. 9367 of LNCS, 2015.

[Lutz and Sabellek, 2017] C. Lutz, L. Sabellek. Ontology-
mediated querying with the description logic EL: Tri-
chotomy and Linear Datalog rewritability. In IJCAI, 2017.

[Lutz and Wolter, 2017] C. Lutz, F. Wolter. The data com-
plexity of description logic ontologies. LMCS, 13, 2017.

[Lutz et al., 2013] C. Lutz, I. Seylan, D. Toman, F. Wolter.
The combined approach to OBDA: Taming role hierar-
chies using filters. In ISWC, vol. 8218 of LNCS, 2013.

[Mora and Corcho, 2013] J. Mora, O. Corcho. Engineer-
ing optimisations in query rewriting for OBDA. In I-
SEMANTICS. ACM, 2013.

[Nikolaou et al., 2017] C. Nikolaou, E. Kostylev, G. Kon-
stantinidis, M. Kaminski, B. Cuenca Grau, I. Horrocks.
The bag semantics of ontology-based data access. In IJ-
CAI, 2017.

[Petersen et al., 2017] N. Petersen et al. Realizing an RDF-
based information model for a manufacturing company —
A case study. In ISWC, vol. 10588 of LNCS, 2017.

[Poggi et al., 2008] A. Poggi, D. Lembo, D. Calvanese,
G. De Giacomo, M. Lenzerini, R. Rosati. Linking data
to ontologies. J. Data Semantics, 10, 2008.

[Priyatna et al., 2014] F. Priyatna, O. Corcho, J. F. Sequeda.
Formalisation and experiences of R2RML-based SPARQL
to SQL query translation using morph. In WWW, 2014.

[Rahimi et al., 2014] A. Rahimi, S.-T. Liaw, J. Taggart,
P. Ray, H. Yu. Validating an ontology-based algorithm to
identify patients with Type 2 Diabetes Mellitus in elec-
tronic health records. Int. J. Med. Inf., 83(10), 2014.

[Schaerf, 1993] A. Schaerf. On the complexity of the in-
stance checking problem in concept languages with exis-
tential quantification. J. Intelligent Inf. Syst., 2, 1993.

[Sequeda and Miranker, 2013] J. F. Sequeda, D. P. Miranker.
Ultrawrap: SPARQL execution on relational data. J. Web
Semantics, 22, 2013.

[Sequeda et al., 2011] J. F. Sequeda, S. H. Tirmizi, O. Cor-
cho, D. P. Miranker. Survey of directly mapping SQL da-
tabases to the Semantic Web. Knowl. Eng. Rev., 26, 2011.

[Sequeda et al., 2014] J. F. Sequeda, M. Arenas, D. P. Mi-
ranker. OBDA: Query rewriting or materialization? In
practice, both! In ISWC, vol. 8796 of LNCS, 2014.

[Vardi, 1982] M. Vardi. The complexity of relational query
languages (extended abstract). In STOC, 1982.

[Xiao et al., 2014] G. Xiao, M. Rezk, M. Rodriguez-Muro,
D. Calvanese. Rules and ontology based data access. In
RR, vol. 8741 of LNCS, 2014.

[Xiao et al., 2018a] G. Xiao et al. Efficient ontology-based
data integration with canonical IRIs. In ESWC, 2018.

[Xiao et al., 2018b] G. Xiao, R. Kontchakov, B. Cogrel,
D. Calvanese, E. Botoeva. Efficient Handling of SPARQL
optional for OBDA. In ISWC, 2018.

