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ABSTRACT
We aim to improve the accuracy of path selectivity estimation

in graph databases by intelligently ordering the domain of a his-

togram used for estimation. This problem has not, to our know-

ledge, received adequate attention in the research community.

We present a novel framework for the systematic study of path

ordering strategies in histogram construction and use. In this

framework, we introduce new ordering strategies which we ex-

perimentally demonstrate lead to significant improvement of the

accuracy of path selectivity estimation over current strategies.

These positive results highlight the fundamental role that domain

ordering plays in the design of effective histograms for efficient

and scalable graph query processing.

1 INTRODUCTION
Analytics on graph-structured data is increasingly important in a

variety of domains, e.g., role discovery in social networks, impact

analysis in citation networks, functional analysis of biological

networks, and querying knowledge graphs. Querying in graph

query languages such as openCypher and PGQL is at the heart of

these analytics tasks [1, 3, 11]. However, current graph database

systems have difficulty in scaling query processing as the size

and complexity of graph data collections continue to grow [4, 9].

Towards addressing this challenge, a crucial step in scalability

of graph databases is the generation of effective query execution

plans. Query optimizers rely on accurate data statistics for cardin-

ality estimation during plan generation. Histograms are among

the most widely used data structure for maintaining statistics

for cardinality estimation, in particular for relational database

systems [5]. However, there has been relatively little work on

histograms for graph queries, even for the most basic graph query

building block, namely, path queries [6–8, 10].

Our contributions. In this paper, we give an overview of find-

ings in our ongoing investigations into histograms for path se-

lectivity estimation [12]. We focus in particular on ordering

strategies for path queries, i.e., how to order the domain over

which histograms are built, with the goal of minimizing the vari-

ance within histogram buckets (and thereby improving estima-

tion accuracy). We present a novel framework for systematically

introducing ordering strategies, showing experimentally that

the choice of domain ordering is a fundamental aspect of effect-

ive histograms. We introduce new ordering strategies which we

demonstrate lead to significant improvement on the accuracy of

obtained estimates, over current ordering approaches.

State of the art. The study and efficacy of histogram-based

cardinality estimation are well-established [5], e.g., for path and

twig query optimization in XML databases [2, 13]. Several studies

have also considered path selectivity estimation on graph data
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Figure 1: Visualization of a data distribution (black) and
an equi-width histogram (red) of Moreno Health dataset
with k = 3.

with cycles (i.e., beyond trees and DAGs) [6–8, 10]. These works,

however, have not investigated histograms or the impact of path

ordering on estimation quality. To the best of our knowledge,

we present here the first systematic study of this basic aspect of

histogram construction and use in graph data management.

2 HISTOGRAMS ON LABEL-PATHS
We investigate selectivity estimation of path queries on graphs.

A graph G is composed of a finite set of vertices V, a set of edge
labels L, and a set of directed labeled edges E ⊆ V × L × V .
A k-label path is a sequence ℓ = l1/. . . /lk , where li ∈ L, for
all 1 ≤ i ≤ k . We say k = |ℓ | is the length of ℓ. Viewing ℓ

as a path query, the evaluation of ℓ on G returns the set ℓ(G)
consisting of all pairs of vertices (vs ,vt ) in G such that there

exist vertices v0,v1, ...,vk ∈ V where vs = v0, vt = vk , and for

0 < i ≤ k , (vi−1, li ,vi ) ∈ E. The total number of such pairs, i.e.,

the cardinality of ℓ(G), is called the selectivity of ℓ on G, which
we denote by f (ℓ).

Let Lk be the set of all label paths over L with length up to k.1

An ordering of Lk is a bijection from Lk to integer set [0, |Lk |).

Once we establish an ordering on a label path set, a label path can

be represented by its positional index in the ordering. For each

label path ℓ, let index(ℓ) denote the index of ℓ in the ordering.

A histogram is a mechanism used to provide the approximation

of frequency for a given value (point query) or value range (range

query) without storing or accessing the complete original data

distribution. More precisely, given an attribute X, a histogram on

this attribute is constructed by partitioning the data distribution

of X into β ≥ 1 mutually disjoint subsets called buckets and
storing the statistics information and bucket boundaries for each

bucket. In this work, attribute X, also called the domain of the

1
We will let L denote a label path set regardless of k when this does not cause

ambiguity.
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histogram, is an ordered label path sequence produced by an

ordering of Lk . Then, given label path ℓ and its index index(ℓ),
such a label-path histogram is used to compute an estimate e(ℓ)
of the selectivity f (ℓ). An example of a label-path histogram is

shown in Figure 1.

3 ORDERING FRAMEWORK
The purpose of histogram domain reordering is to ensure that

label paths with similar cardinality are located close to each other,

such that they can be allocated in the same bucket. This leads to

lower variance, lower error rates, and overall better quality.

An intuitive and ideal way is to arrange the data distribution

such that when index(ℓ) increases, f (ℓ) monotonically increases

or decreases. Themost straightforward, yet not feasible, approach

is to sort the label paths by their selectivity and assign the index
of each label path as its position in this sequence. This idea is not

practical, however, as it requires extra memory to store |L| index
values. The exact amount of memory can also be used to store

the cardinality for each label path, such that instead of returning

an estimation of selectivity, we can obtain the precise selectivity.

We call such ordering an ideal ordering. Despite an ideal ordering

being prohibitive, we can still construct an approximately mono-

tonic sequence based on the awareness of precise cardinalities of

a subset of L.

For example, by looking at Figure 1, one can observe that the

label 1 has the highest cardinality among all length-1 label paths

while label 5 has the lowest. Similar trend repeats in the other

6-member groups with the same prefix {1/1, 1/2, . . . , 1/6}, {2/1,

2/2, ..., 2/6}, and so on. Hence, we can assume that the label path

that is composed of label paths with high cardinalities should

also have high cardinality.

3.1 Concepts
We define a base label set as a B ⊆ L such that every label path

in L can be decomposed into pieces which are all in B.2 Then, a
splitting rule defines how to decompose a label path. For example,

L6
onMorenoHealth dataset is {1, 2, 3, 4, 5, 6, 1/1, . . . , 6/6/6/6/6/6},

if we choose B to be L2
, with a greedy splitting rule which at

each split step always cuts a piece in B as long as possible. For

example, label path “4/4/3/3/6” is decomposed into “4/4”, “3/3”

and “6”.

An ordering method can be described by the following three

components. First, we need a base label set B. Second, we define
(un)ranking function over the base label set that gives a rank

for each base label and vice-versa. It is a bijection which maps

between edge label set B and integer set [1, |B |]. Finally, we con-
struct an ordering rule which is combined with a ranking rule to

eventually determine the index of a label path (sequence of base

labels) in Lk . It is a bijection that maps between label path set L

and integer set [0, |Lk |). A complete ordering method, therefore,

is seen as the combination of a ranking rule and an ordering

rule on a given dataset. We refer to an ordering method that is

composed of ranking rule A and ordering rule B as B-A ordering.

We define two ranking rules in our study. Alphabetical ranking
assigns ranks based on the alphabetical order of base labels. Car-
dinality ranking is ranking based on the cardinality of base labels,

which places a base label with lower cardinality in front of the

label with higher cardinality, i.e., l1 <
card l2 ⇐⇒ f (l1) < f (l2)

2
Naturally, L ⊆ B , otherwise there might exist label paths which cannot be

decomposed into label paths in B .

In this work, we focus on the approach that takes the edge

label set as the base label set, i.e., B = L. We define two bijections:

alph and card. Let alph(l) and card(l) denote the index of edge
label l , which will be referred to as the rank of l , in the set L totally
ordered by alphabetical order and cardinality, respectively.

3.2 Numerical and Lexicographical Orderings
In numerical ordering, each rank is an integer, and a composition

of ranks produces a number in |B |-based numeral system. For

example, to compare two label paths ℓ1 = l1
1
/l1
2
/. . . /l1m and

ℓ2 = l2
1
/l2
2
/. . . /l2n , if one is shorter than the other then it has a

lower ranking (rule (1) below), otherwise the two paths’ labels

are compared pairwise until a pair of different values is found at

position i (rule (2) below):

ℓ1 < ℓ2 ⇐⇒

{
|ℓ1 | < |ℓ2 | |ℓ1 | , |ℓ2 | (1)

∧i−1j=1(l
1

j = l
2

j ) ∧ (l
1

i < l2i ) |ℓ1 | = |ℓ2 | (2)

Lexicographical ordering is the same as the ordering rule used

in dictionaries; it is similar to numerical ordering with the fol-

lowing difference. Instead of comparing lengths of two label

paths first, we append k − |ℓ | blank symbols (i.e., special symbols

for which ∀l ∈ L, rank(blank) > rank(l)) to every ℓ to form a

length-k sequence. We can then apply Formula 2 to compare the

resulting label paths. The time complexity of both ranking and

unranking functions for numerical and lexicographical orderings

is O(k).

3.3 Sum-based Ordering
Given label path ℓ, the idea of sum-based ordering is to use the

sum of ranks of all base labels in ℓ to approximate the cardinality

of ℓ. While being conceptually simple, the implementation of this

ordering method is not trivial. First, given a path label ℓ of length

k , ℓ is split into base labels and an integer rank is computed for

each of the base labels to obtain a k-length integer permutation.
Then, the integer permutation of ℓ is mapped to index(ℓ) by
performing a three-stage partitioning of a histogram domain as

follows.

The first stage partitions the histogram domain according to

the length of the integer permutations, with shorter lengths being

assigned partitions with lower indexes in the domain. Then, the

size of each of the stage-one partitions can be computed by the

following formula (where n is the length of the permutation):

sumn = |L|
n

The second stage performs further division of stage-one par-

titions by grouping allm-length permutations by their summed
ranks. Those permutations with lower summed rank will have a

lower index within a stage-one partition:

srm =
m−1∑
i=0

rank(li )

To compute the boundaries of each of the stage-two partitions,

we need to determine how many label paths are in the group

with a certainm and srm . This question is the same as how many

ways there are to distribute srm indistinguishable balls overm
distinguishable bins of finite capacity |L| with at least one ball in

each bin. From combinatorics’ inclusion−exclusion principle we
have:

dist(srm ,m,L) =
∑
j≥0
(−1)j

(
m

j

) (
srm − j · |L| − 1

m − 1

)
(3)



The third stage explores combinations inside each of the stage-

two partitions marked by lengthm and summed rank srm . These

combinations are all integer partitions of srm into exactlym parts,

where each part is less than |L|. Let integersv,b represent srm and

|L| respectively. A general formula for integer partition ip(v,b,m)
is as follows:

ip(v,m,b) =

⌊v/b ⌋⋃
i=0

ip(v − i · b,m − 1,b − 1),b, · · · ,b︸   ︷︷   ︸
i bs

(4)

Based on Formula 4, we present a partitioning algorithm which

outputs all combinations in the desired cardinality-based order

and has time complexity is O(loд(|L|)k ) [12].
Finally, to compute the boundaries of each of the stage-three

partitions, we need to determine how many permutations we

skip when we skip a stage-three partition. This is equivalent

to identifying how many permutations can be generated by a

certain combination in which there might be duplicates. Let C
denote the combination,di denote the number of times an integer

i occurs in C , then the number of permutations is given by the

following formula:

nop(C) =
|C |!∏

i ∈{0, ..., |L |−1}
di !

(5)

Algorithm 1 finds the combination to which the target per-

mutation belongs and has time complexity of O(k2).

Algorithm 1 Unranking permutation of combination

1: procedure unranking_permutation(index ,C)
2: if i < 0 ∨ i ≥ nop(C) then
3: return null
4: end if
5: if |C | = 1 then
6: return [C[0]]
7: end if
8: i ← 0

9: while i < |C | do
10: S ← C \ [C[i]] ▷ subset of C
11: if index ≥ nop(S) then
12: index ← index − nop(S)
13: i ← i + count(C,C[i])
14: continue
15: else
16: sub ← unrankinд_permutation(index , S)
17: sub .add(0,C[i])
18: return sub
19: end if
20: end while
21: end procedure

Algorithm 2 illustrates the complete version of unranking

permutation in sum-based order and has time complexity of

O(loд(|L|)k ).

3.4 Ordering Example
We illustrate the proposed ordering methods with examples on an

artificial dataset which has 3 unique edge labels and its label paths

set with k up to 2. Consider the cardinalities 20, 100, and 80 for

edge labels “1”, “2”, and “3”, respectively. Then, for the summed

ranks shown in Table 1, label paths arranged in the corresponding

Algorithm 2 Unranking in sum-based order

1: procedure unranking_in_sumbased(index ,L,k) ▷ index,
edge label set, k

2: if index < 0 ∨ index > |Lk | then
3: return null
4: end if
5: for len ∈ 1, ...,k do
6: if index ≥ |L|len then
7: index ← index − |L|len

8: continue
9: end if
10: for sum ∈ len, ..., len ∗ |L| do
11: if index ≥ dist(sum, len, |L|) then
12: index ← index − dist(sum, len, |L|)
13: continue
14: end if
15: P ← ip(sum, len, |L|)
16: for p ∈ P do
17: if index ≥ nop(p) then
18: index ← index − nop(p)
19: continue
20: end if
21: p′ ← {i − 1|i ∈ p}
22: sort(p′)
23: return unrankinд_permutation(index ,p′)
24: end for
25: end for
26: end for
27: end procedure

Label Path 1 2 3 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

Summed Ranks 1 3 2 2 4 3 4 6 5 3 5 4

Table 1: Summed ranks

O
Index

0 1 2 3 4 5 6 7 8 9 10 11

num-alph 1 2 3 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

num-card 1 3 2 1,1 1,3 1,2 3,1 3,3 3,2 2,1 2,3 2,2

lex-alph 1 1,1 1,2 1,3 2 2,1 2,2 2,3 3 3,1 3,2 3,3

lex-card 1 1,1 1,3 1,2 3 3,1 3,3 3,2 2 2,1 2,3 2,2

sum-based 1 3 2 1,1 1,3 3,1 3,3 1,2 2,1 3,2 2,3 2,2

Table 2: Ordered label paths according to different order-
ing methods O

orderings are shown in Table 2. Respectively, numerical ordering

associated with alphabetical ranking, numerical ordering with

cardinality ranking, lexicographical ordering with alphabetical

ranking, lexicographical ordering with cardinality ranking, sum-

based ordering with cardinality ranking are referred to as num-
alph, num-card, lex-alph, lex-card and sum-based.

4 EXPERIMENTAL STUDY
We implemented a k-path histogram construction and path se-

lectivity estimation in Java. All experiments are conducted on an

Ubuntu 16.04 machine equipped with an Intel i5 CPU with 4GB

of RAM. We use the datasets shown in Table 3. The goal of our

experiments is two-fold. First, we verify the impact of different

domain ordering techniques on the estimation time. Second, we

showcase the gains in estimation accuracy which can be obtained

by using sum-based histogram domain ordering.



Figure 2: Mean error rate of estimation for different domain ordering techniques on V-Optimal k-path histogram

Dataset #Edge Labels #Vertices #Edges Real world data
Moreno health

3
6 2539 12969 yes

DBpedia (subgraph)
4

8 37374 209068 yes

SNAP-ER
5

6 12333 147996 no

SNAP-FF 8 50000 132673 no

Table 3: Datasets

β
Average Estimation Running Time (in ms)

num-alph num-card lex-alph lex-card sum-based
27993 9.98 8.62 9.65 8.7 11.02

13996 7.69 7.23 7.79 7.3 9.39

6998 7.36 6.8 7.07 6.93 8.55

3499 6.4 6.52 5.97 6.31 7.42

1749 5.71 5.76 5.76 5.21 6.64

874 5.8 5.06 5.78 5.18 6.1

437 5.19 4.58 4.52 4.29 6.13

Table 4: Average estimation execution time in V-optimal
histogram with different ordering methods (in ms)

Performance. We study the execution time of estimation asso-

ciated with different ordering methods as follows. For k = 6, five

V-optimal histograms are built, each of which is associated with

an ordering method: num-alph, num-card, lex-alph, lex-card, and
sum-based. The total number of label paths is 55996. We run 7

experiments by varying the number of buckets (β) in each histo-

gram. All experiments are executed 100 times and the average

estimation time is taken. The results (Table 4) demonstrate that

sum-based ordering is approximately 20% slower in estimation

than native ordering methods. This is explained by the higher

complexity of the sum-based (un)ranking function.

Accuracy. We measure the average estimation accuracy by con-

structing a V-optimal histogram for each ordering method for

varying k and β (Figure 2). We use the following err (ℓ) metric to

measure the error of an estimation:

err (ℓ) =

{
0 if e(ℓ) = f (ℓ)

e(ℓ)−f (ℓ)
max (e(ℓ),f (ℓ)) else

(6)

3
http://konect.uni-koblenz.de/networks/moreno_health

4
http://wiki.dbpedia.org

5
https://snap.stanford.edu/snappy/

We observe that, for the synthetic datasets, sum-based order-

ing provides accuracy which is far superior to other ordering

methods, especially, for histograms with a low number of buck-

ets. For the real-life datasets, the performance difference is not

as significant, but still observable. This can be explained by the

presence of edge-label cardinality correlations in real-life data.

5 CONCLUDING REMARKS
We have reported on initial findings in our ongoing study of

domain ordering for improving histogram-based path selectivity

estimation. Experimental study has demonstrated the promise of

our framework, which facilitates the further systematic study of

effective histogram design for graph databases. A primary future

research direction is to expand the framework with additional

ordering strategies, e.g., those built over richer base sets such as

L2
, towards capturing correlations between label paths.
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