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PAMPs and cytokines in cultured cells, with type II IFN a particularly 

potent inducer. In rIL-4/13 pre-stimulated cells, the viral PAMPS polyI:C 

and R848 had the most pronounced effect on BATF3 expression. BATF3 

expression could also be modulated in vivo, following infection with 

Yersinia ruckeri, a bacterial pathogen causing redmouth disease in 

salmonids, or with the rhabdovirus IHNV. The results suggest that BATF3 

may be functionally conserved in regulating the differentiation and 

activation of immune cells in lower vertebrates and could be explored as 

a potential marker for comparative investigation of leucocyte lineage 

commitment across the vertebrate phyla. 

 

 

 

 



Dear Editor, 

Please find out the revised version of the manuscript. We made substantial amendment according to 

reviewers' comments. These include additional data on the expression of BATF3a and BATF3b in RTS-

11 cells treated with stimulants for 6 h and Western blotting showing the cross-activity of human 

anti-BATF3 polyclonal antibody with trout BATF3a and BATF3b expressed in bacteria. I hope you will 

find the revised manuscript suitable for publication in Molecular Immunology. Thank you for your 

consideration. I look forward to your decision. 

Yours sincerely, 

 

Jun Zou 
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Immune-modulation of two BATF3 paralogues in rainbow trout Oncorhynchus mykiss Molecular 

Immunology  

 

Dear Dr. Zou, 

 

Thank you for submitting your manuscript to Molecular Immunology. Reviewers have now 

commented on your paper. Based on these comments and their own assessment, the editors 

consider your work appropriate for publication in Molecular Immunology, but there are a number of 

significant concerns that preclude acceptance of the manuscript in its present form. If you are 

prepared to undertake the work required to address these issues I would be pleased to consider a 

revised version for evaluation and possible publication. 

 

For your guidance, reviewers' comments are appended below. 

 

If you submit a revised manuscript, please include in your resubmission a Rebuttal Note addressing 

all the comments made by the reviewers and editors. These may include "general comments" on 

novelty or writing style, and also more specific issues related to technical concerns, statistical 

analyses, presentation of the data, figure preparation, description of the experimental methods or 

interpretation of the results. It is recommended to copy all the comments of the editors and 

reviewers in the Rebuttal Note, and insert your description of changes made to address each issue 

using a different colour font. If the rebuttal Note includes results that have not been included in the 

revised manuscript, this should be clearly indicated, stating the reason for their non-inclusion. 

Likewise, if any of the reviewers' requests for additional experiments was not addressed because 

they were considered out of scope, or would require an unreasonable amount of time to be 

completed, please indicate so in your Rebuttal Note. In any case, final acceptance of the manuscript 

is subject to satisfactory assessment of the revised version by the editors, if necessary after 

consultation with the reviewers. 

 

To submit a revision, go to http://ees.elsevier.com/mimm/ and log in as an Author.  You will see a 

menu item call Submission Needing Revision. You will find your submission record there.  

 

Please note that this journal offers a new, free service called AudioSlides: brief, webcast-style 

presentations that are shown next to published articles on ScienceDirect (see also 

http://www.elsevier.com/audioslides). If your paper is accepted for publication, you will 

automatically receive an invitation to create an AudioSlides presentation. 
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Data in Brief (optional) 

 

We invite you to convert your supplementary data (or a part of it) into a Data in Brief article.  Data in 

Brief articles are descriptions of the data and associated metadata which are normally buried in 

supplementary material. They are actively reviewed, curated, formatted, indexed, given a DOI and 

freely available to all upon publication. Data in Brief should be uploaded with your revised 

manuscript directly to Molecular Immunology .  If your Molecular Immunology  research article is 

accepted, your Data in Brief article will automatically be transferred over to our new, fully Open 

Access journal, Data in Brief, where it will be editorially reviewed and published as a separate data 

article upon acceptance. The Open Access fee for Data in Brief is $500. 

 

Please just fill in the template found here: 

http://www.elsevier.com/inca/publications/misc/dib_data%20article%20template_for%20other%20

journals.docx  Then, place all Data in Brief files (whichever supplementary files you would like to 

include as well as your completed Data in Brief template) into a .zip file and upload this as a Data in 

Brief item alongside your Molecular Immunology  revised manuscript. Note that only this Data in 

Brief item will be transferred over to Data in Brief, so ensure all of your relevant Data in Brief 

documents are zipped into a single file.  Also, make sure you change references to supplementary 

material in your Molecular Immunology  manuscript to reference the Data in Brief article where 

appropriate. 

 

Questions?  Please contact the Data in Brief publisher, Paige Shaklee at dib@elsevier.com   

 

Example Data in Brief can be found here: http://www.sciencedirect.com/science/journal/23523409 

 

PLEASE NOTE: Molecular Immunology  would like to enrich its online articles by providing readers 

with access to relevant information and data. Hence, if applicable please include the following 

accession numbers and identifiers in the method section of your article: GenBank accession 

numbers, antibody identifiers, species specific nomenclatures, and software identifiers. All accession 

numbers and identifiers referenced to in your article will be converted into embedded article 

enrichments or links to corresponding data repositories, which will appear in the online version of 

the article on ScienceDirect . The complete set of recommendations with detailed instructions is 

available at: http://www.elsevier.com/about/content-innovation/minimal-data-standards 

 



Molecular Immunology  features the Interactive Plot Viewer, see: 

http://www.elsevier.com/interactiveplots. Interactive Plots provide easy access to the data behind 

plots. To include one with your article, please prepare a .csv file with your plot data and test it online 

at http://authortools.elsevier.com/interactiveplots/verification before submission as supplementary 

material. 

 

Yours sincerely, 

 

Victor Mulero, PhD 

Associate editor 

Molecular Immunology   

 

Note: While submitting the revised manuscript, please double check the author names provided in 

the submission so that authorship related changes are made in the revision stage. If your manuscript 

is accepted, any authorship change will involve approval from co-authors and respective editor 

handling the submission and this may cause a significant delay in publishing your manuscript. 

 

 

Reviewer #1: The manuscript describes the first characterization of BATF3 in fish, including 

evidences of its expression mainly in spleen of trout. The authors provide evidence on up-regulation 

of BATF3 in response to PAMPs, IFNg and, viral and bacterial challenge. The experimental results try 

to demonstrate the functional role of BETF3 in the immune response of trout. However, the 

conclusions require further experimental analyzes, or the authors could focus on a particular scope 

of the different aspects exposed. 

To affirm that BATF3 is an immunomodulator the authors must provide experimental evidence that 

includes inhibition of BATF3 expression, such as silencing of the gene by siRNA or other appropriate 

technique. Without this type of analysis the manuscript only gives evidence of coincident gene 

expression, but not of causality. 

 

Response: We agree with the reviewer that functional characterisation is needed to fully ascertain 

the roles of BATF3. This would be the focus of our future work in this area, especially as siRNA 

knock-down is not yet an established method in fish cells. In line with the reviewer’s comments 

we have revised the text so as not to exaggerate the findings, including deletion of the speculation 

on the functional roles of BATF3 in trout. 

 



The experimental results of Figures 7 and 8 require a transcriptional analysis at different times, 

which occurs before 24 hours? 

Response: We have now analysed the effects of TLR ligands in RTS-11 after 6 h stimulation. The 

results indeed show distinct induction patterns of BATF3a and BATF3b expression. These data are 

presented in Fig. 7E. 

 

The response to IFNgamma could be evaluated with better evidence, such as expression of IFNgR1 / 

R2 receptors, or STAT 1, or some gene with GAS sequence (regulated by IFNgamma).  

Response: The activities of trout recombinant IFN-γ have been previously evaluated by our group 

and others (Zou et al., 2005; Gao et al., 2009; Skjesol et al., 2010). The work published by Gao et al. 

(2009) and Skjesol et al (2010) has shown that rIFNγ induces expression of IFN-γR2 in RTG-2 cells 

and STAT1 phosphorylation in salmon head kidney cells and TO cells. We have added comments in 

the Materials and Methods and included additional references. 

 

Minor 

1. Authors must provide evidence of the purity of the all recombinant proteins used 

Response: We have added a comment on the purity of recombinant proteins in the text and 

provided the relevant information. 

 

2. In the introduction it is required to better description of  BATF3 biochemistry, what is its 

molecular weight? 

Response: The following information has been added in the Introduction: “…The genes encode a 

protein of 127 aa and 118 aa respectively, that share high homology (80% similarity), lack a signal 

peptide and bind to short nucleotide motifs in the promoter region of target genes.”. 

 

3. Introduction,  what ligands activate the expression of BATF3  in higher vertebrates? exist 

evidences at the protein level?  

Response: To answer the question about what ligands activate the expression of BATF3 in higher 

vertebrates, we performed an extensive literature search and could not find any published work.  

 

4. Mat and met, 2.6 the protocol must be better explained,  in the legend of figure 8 is better 

explained, IL4 / Il13A is a recombinant? (line 234, is rIL4 / IL13A) 

Response:  Materials and Methods 2.6 has been revised. IL-4/13A is now changed to rIL-4/13A in 

the manuscript.  



5. the immunohistochemistry protocol must be improved ... blocking conditions? details of inhibition 

of endogenous peroxidase? 

Response: In the IHC experiment, blocking was performed according to the protocol using the 

hydrogen peroxidase blocking solution supplied by Dako to inhibit the antibody cross reactivity 

with endogenous peroxidase activity.  Prior to incubation with HRP-conjugated secondary 

antibody, tissues were incubated with peroxidase blocking solution for 7 minutes at room 

temperature.  This ensures minimum staining in the negative control. Additional details are now 

added in the Materials and Methods. 

 

6. Why do the authors use a spleen cell line and a primary head kidney  (HKL) culture? (and not a 

primary spleen culture too?) 

 Response:  The rainbow trout spleen cell line RTS-11 is a well characterised monocyte/ 

macrophage like cell line. We felt it would be interesting to examine the expression of BATF3 in 

these cells. We did not use enriched primary spleen monocytes/macrophages simply due to the 

practical reason that very few attached monocyte/macrophage cells could be obtained.  

 

7. Check in the text and figures that all recombinant molecules are indicated with "r". 

Response:  Thanks for the comment. We have revised the text accordingly. 

 

8. It is necessary to indicate the exact homology percentage of the region which is recognizes the 

antibody against human BATF3 with the trout sequence. 

Response:  The peptide sequence of human BATF3 is not released by Merck, so it is not possible to 

provide the homology scores. However, the whole bZIP region of trout BATF3a and BATF3b share 

78.5% and 83.1% similarity with the human counterpart. This information is in Fig. 3C.   

 

9. The immunohistochemical picture is not clear, it also requires to include controls of the technique. 

It could also include pictures of immunocytochemistry of BATF3 in HKL or RTS11. 

Response: Further information has been included to clarify the controls used.  We feel that the 

immunocytochemical analysis of BATF3 in HKL or RTS-11 would not add any further useful 

information additional to the transcript analysis of gene expression. 

 

Reviewer #2: In the current study, the authors describe the identification of two BATF3 homologues 

in rainbow trout. Additionally, they have performed a series of transcriptional analysis to establish 

how different stimuli affected the transcription of these factors both in vitro and in vivo. However, 



the main problem is that the authors claim that this is the first identification of BATF3 genes in fish 

and this is not true. 

Granja et al. described in 2015 the identification of CD8+ DC subset in rainbow trout skin that 

constitutively expressed BATF3. This is an important fact related to the work present here that is not 

mentioned at all throughout the paper despite it constituting a previous description of BATF3 genes 

in fish and the confirmation that BATF3 is used by a subset of fish DCs. The authors should include a 

reference to this paper in both the Introduction and Discussion. Furthermore, they should compare 

the sequences they have identified to the one in Granja´s paper and should remove all sentences 

from the paper relating to the fact that it is the first description of BATF3 genes in fish. 

Thus, although this is a straightforward paper with no major issues, it is based almost exclusively on 

real time PCR analysis that provide almost no information on the role that these molecules have in 

fish DCs. Thus, in my opinion, the authors should have included additional studies at a cellular level 

to complete the paper, increasing its novelty and relevance.  

Response: We edited the text according to the reviewer’s comments. We are sorry that the work 

published by Granja et al. was missed. As suggested, we have now commented on the findings of 

this work and revised the relevant text to cite this paper. However, this study does not 

characterise the genes per se, and simply reports a pair of primers for studying expression in the 

cells analysed in their study. 

 

Minor points: 

-The fish of fish sampled in the Yersinia challenge experiment should be indicated in the Materials 

and Methods section. In the figure legend, it is indicated that the n was 3 which is quite low.  

Response: The fish number for tissue sampling in the Yersinia challenge experiment is now given 

in the Materials and Methods. 

-At some point it is stated that VHSV is mentioned instead of IHNV (point 2.8).  

Response: The error has been corrected. 

-Is the leucine-zipper region of human BATF3 against which the antibody used was constructed 

conserved in trout BATF3? Does it recognize both forms equally? If the region is not conserved 100% 

the authors should demonstrate somehow that it is really recognizing trout BATF3 and only this.  

Response: we evaluated the cross-activity of the BATF3 polyclonal antibody with bacterial-derived 

recombinant proteins of trout BATF3a and BATF3b by Western blotting. As expected, the antibody 

could detect both forms of trout BATF3.  

-Since an important part of the transcriptional studies performed in this paper have been in RTS11, 

the authors should mention what is known about the role of BATF3 in mammalian monocyte-

macrophage cells.  

Response: Comments on this are now included in Lines 76-79. – CHECK IF THIS HAS CHANGED! 



-How the authors have verified that EF1a was an adequate house-keeping gene for these studies 

should be mentioned.  

Response: The suitability of EF1a as a reference gene for qPCR has been verified in many previous 

studies with salmonid species. It is considered one of the most reliable house-keeping genes 

whose expression is hypothesised to be static in these fish. For example, Løvoll et al. (2011) 

performed comparative analysis on the transcript changes of several reference genes (EF1a, beta-

actin, 18S and RPS20) used for qPCR analysis on gene expression in Atlantic salmon after viral 

infection and concluded that EF1a was the most suitable reference gene analysed. We have now 

provided comments on this in the paper and included the reference (Løvoll et al. 2011).   

 

EDITORIAL COMMENTS 

Although both reviewers agree on the relevane of the results, they raised several concerns that need 

to be addressed. Particularly, a previous study showing that BATF3 is expressed in CD8+ DC of trout 

must be cited and appropriately discussed. In addition, if functional studies are not included, the 

conclusoon should be play down. 

 



ABSTRACT 

Basic leucine zipper transcription factor ATF-like (BATF) -3 is a member of the activator 

protein 1 (AP‑1) family of transcription factors and is known to play a vital role in regulating 

differentiation of antigen-presenting cells in mammals. In this study, two BATF3 homologues 

(termed BATF3a and BATF3b) have been identified in rainbow trout (Oncorhynchus mykiss). 

Both genes were constitutively expressed in tissues, with particularly high levels of BATF3a 

in spleen, liver, pyloric caecae and head kidney. BATF3a was also more highly induced by 

PAMPs and cytokines in cultured cells, with type II IFN a particularly potent inducer. In rIL-

4/13 pre-stimulated cells, the viral PAMPS polyI:C and R848 had the most pronounced effect 

on BATF3 expression. BATF3 expression could also be modulated in vivo, following 

infection with Yersinia ruckeri, a bacterial pathogen causing redmouth disease in salmonids, 

or with the rhabdovirus IHNV. The results suggest that BATF3 may be functionally 

conserved in regulating the differentiation and activation of immune cells in lower vertebrates 

and could be explored as a potential marker for comparative investigation of leucocyte 

lineage commitment across the vertebrate phyla.   

 

Abstract



1. The BATF3 genes were analysed in detail for the first time in fish. 

2. Trout BATF3a is highly expressed in spleen, liver and pyloric caeca. 

3. Trout BATF3a is highly up-regulated in monocytes/macrophages by IFNγ treatment. 

4. Both BATF3a and BATF3b are induced after infection with bacterial and viral diseases. 
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 33 

ABSTRACT 34 

Basic leucine zipper transcription factor ATF-like (BATF) -3 is a member of the 35 

activator protein 1 (AP‑1) family of transcription factors and is known to play a vital 36 

role in regulating differentiation of antigen-presenting cells in mammals. In this study, 37 

two BATF3 homologues (termed BATF3a and BATF3b) have been identified in 38 

rainbow trout (Oncorhynchus mykiss). Both genes were constitutively expressed in 39 

tissues, with particularly high levels of BATF3a in spleen, liver, pyloric caecae and 40 

head kidney. BATF3a was also more highly induced by PAMPs and cytokines in 41 

cultured cells, with type II IFN a particularly potent inducer. In rIL-4/13 42 

pre-stimulated cells, the viral PAMPS polyI:C and R848 had the most pronounced 43 

effect on BATF3 expression. BATF3 expression could also be modulated in vivo, 44 

following infection with Yersinia ruckeri, a bacterial pathogen causing redmouth 45 

disease in salmonids, or with the rhabdovirus IHNV. The results suggest that BATF3 46 

may be functionally conserved in regulating the differentiation and activation of 47 

immune cells in lower vertebrates and could be explored as a potential marker for 48 

comparative investigation of leucocyte lineage commitment across the vertebrate 49 

phyla.   50 

 51 

Highlights 52 

1. The BATF3 genes were analysed in detail for the first time in fish. 53 

2. Trout BATF3a is highly expressed in spleen, liver and pyloric caeca. 54 

3. Trout BATF3a is highly up-regulated in monocytes/macrophages by IFNγ 55 

treatment. 56 

4. Both BATF3a and BATF3b are induced after infection with bacterial and viral 57 

diseases.  58 

1. The BATF3 genes were identified for the first time in fish. 59 

2. Trout BATF3a is highly expressed in spleen, liver and pyloric caeca. 60 
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3. Trout BATF3a is most highly up-regulated in monocytes/macrophages by 61 

IFNγ. 62 

4. Both BATF3a and BATF3b are induced after infection withof bacterial and 63 

viral diseases.  64 

 65 

1. Introduction 66 

  Basic leucine zipper transcription factor ATF-like (BATF) proteins are a group of 67 

small transcription factors belonging to the activation protein 1 (AP-1) superfamily 68 

which consist of several basic leucine zipper (bZIP) transcription factors including 69 

FOS, JUN and ATF (Landschulz et al., 1988; Murphy et al., 2013). Three BATF 70 

proteins (BATF1-3) have been characterised and all comprise an α-helical bZIP 71 

domain which can be further divided into a DNA-binding motif and a leucine zipper 72 

motif. The leucine zipper motif is knshown to be essential for the interaction with 73 

bZIP proteins or non-bZIP transcription factors such as interferon regulatory factors 74 

(IRFs) to regulate target genes. 75 

  The BATF3 gene has been described in mice and humans. It exists as a single copy 76 

in chromosome 1 in both species, upstream of another AP-1 family member ATF3 77 

(Murphy et al., 2013). The genes, and encodes a protein of 127 aa and 118 aa 78 

respectively, that share high homology (80% similarity),. It lacks a signal peptide and 79 

binds to short nucleotide motifs in the promoter region of target genes. The primary 80 

sequences of human and mouse BATF3 proteins have share high homology, ( sharing 81 

80% similarity). It has been shown that tThe BATF3 gene is expressed only mainly in 82 

immune cells originating inof hematopoietic organs (Williams et al., 2001), and in 83 

particular. Expression of BATF3 is mainly studied in dendritic cells (DCs). For 84 

example, iIt can beis at detectedable levels in the common dendritic cell (DC) 85 

precursors such as monocytes (which also maturedevelop into macrophages) and isbut 86 

increases induced when DCs differentiate into fully developed conventional DCs 87 

(cDCs) (Hildner et al., 2008). In mice, BATF3 is found in both lymphoid-resident 88 

CD8α+ cDCs and non-lymphoid CD103+ cDCs which are speculated to share a 89 

common origin (Ginhoux et al., 2009; Edelson et al., 2010). T helper cells such as Th1 90 



and Th17 cells also express BATF3 (Hildner et al., 2008).  91 

  The central roles of BATF3 in orchestrating leucocyte lineage commitment have 92 

drawn significant attention in recent years. Emerging evidence indicates that BATF3 93 

together with other members of the BATF family play critical roles in regulating 94 

leucocyte differentiation, especially in directing the commitment of DC precursors 95 

into specific lineages. Gene-knockout studies in mice demonstrate that BATF3 is 96 

indispensable for the development of cDCs. The Batf3−/− mice do not develop 97 

CD8α+ cDCs which are required for cytotoxic T cell immunity and antiviral defence 98 

(Hildner et al., 2008; Sun et al., 2017). In adult mice, the intestinal BATF3-dependent 99 

cDCs are required for homeostasis and antiviral T-cell immunity (Edelson, KC et al., 100 

2010; Sun et al., 2017). Further, tissue-resident BATF3-dependent CD103+ DCs once 101 

activated can produce a large amounts of interleukin (IL)-12, promoting a local Th1 102 

response to combat Leishmania major infection (Martinez-Lopez et al., 2015). 103 

However, other members of the BATF3 family may also be involved in regulation of 104 

immune responses. Recent studies indicate that the roles of BATF3 in promoting 105 

expansion of functional CD8+ cDCs to control infection of intracellular pathogens 106 

may be compensated by other members of the BATF family via the interaction of the 107 

conserved LZ domain with IRF4 or IRF8 (Tussiwand et al., 2012).  108 

  A recent study has shown that in rainbow trout (Oncorhynchus mykiss) skin 109 

CD8a+MHC II+ DC-like cells constitutively express BATF3. This finding is 110 

interesting and implies that the BATF3 may have conserved roles during vertebrate 111 

evolution (Granja et al., 2015). Since no further analysis of BATF3 has been 112 

undertaken to date, Iin this study we determined initially whether other BATF3 113 

paralogues exist in teleost/salmonid fish, as a consequence of the 3
rd

 or 4
th

 whole 114 

genome duplication events seen in these species, and analysed the phylogeny of 115 

BATF3 in the context of vertebrate phyla. T, two BATF3 homologues were identified 116 

in rainbow trout (Oncorhynchus mykiss) and their the phylogeny of BATF3 was 117 

studied in the context of vertebrate phyla.   Eexpression of the trout BATF3 118 

paralogues was studied in vivo after bacterial and viral infection and in vitro in 119 

cultured monocytes/macrophages after stimulation with TLR ligands, a lectin and 120 



interferons (IFNs). The results provide a first insight into the evolution of BATF3 in 121 

lower vertebrates and will help develop potential comparative markers to study 122 

leucocyte lineage commitmentdifferentiation between fish and higher vertebrates.   123 

 124 

2. Materials and methods 125 

 126 

2.1. Fish 127 

 128 

  Rainbow trout (Oncorhynchus mykiss) weighing(approximately  ~100 g) were 129 

maintained in 1 m diameter tanks supplied with a continuous flow of recirculating 130 

freshwater at 15 ± 1°C in the aquarium facilities in the Zoology building, University 131 

of Aberdeen. Fish were fed with commercial trout pellets (EWOS) and acclimated to 132 

aquarium conditions for at least 2 weeks before use. Fish were anaesthetised using 133 

2-phenoxyethanol (0.05%, Sigma Aldrich) and killed by subsequent destruction of the 134 

brain prior to tissue harvest. All experiments at Aberdeen were carried out under the 135 

UK Home Office project license PPL 60/4013. For the IHNV (infectious 136 

hematopoietic necrosis virus (IHNV) challenge experiment, rainbow trout weighing 137 

~3 g were obtained from the cold-water fish experiment station (Mudanjiang, China) 138 

and maintained in 120 cm × 50 cm × 60 cm tanks with aeration at 16 ℃. The fish 139 

were fed daily with a dry pellet food and were also acclimated to aquariumlaboratory 140 

conditions for at least? 2 weeks before use. The experiment was undertaken according 141 

to the guidance of the local animal ethics committee.  142 

 143 

 144 

2.2. RNA extraction, cDNA synthesis and gene cloning 145 

 146 

  The trout tissues and cells were collected for extraction of total RNA using TRI 147 

Reagent® (Sigmae-Aldrich，UK) according to the manufacturer’s instructions. cDNA 148 

was synthesized using a RevertAid First Strand cDNA Synthesis Kit (Thermo 149 

Scientific, UK). The cDNA samples were kept at -20
o
C before use.  150 



The human BATF3 sequence (GenBank Acc. No., NP_061134) was used as the bait 151 

sequence to undertake the BLAST (tBLASTn) analysis of the Whole-genome shotgun 152 

(WGS) database, transcriptome shotgun assembly (TSA) database and expressed 153 

sequence tags (ESTs) database, to obtain the trout BATF3 sequences. The WGS 154 

contigs were retrieved and analyzed for prediction of coding sequences using the 155 

GenScan program (Burge and Karlin, 1997). Predicted potential coding DNA 156 

sequence (CDS) were confirmed for sequence similarity by the BLASTp analysis in 157 

the non-redundant protein sequence database. Two WGS contigs (Accession Nos., 158 

CCAF010027628.1 and CCAF010060656.1) were identified to contain homologues 159 

of BATF3 genes and contained complete coding sequences (CDS) and untranslated 160 

regions (UTRs). Primers (supplementary Table 1) located in the 5’ and 3’ UTRs were 161 

designed for amplification of full length cDNA using trout head kidney cDNA as 162 

template. The PCR reaction volume was 25 μL including 2 μL of each of the primers 163 

(10 μM), 2 μL of cDNA, 5 μL of 5 × MyFi Reaction Buffer, 13 μL of PCR water and 164 

1 μL MyFi DNA Polymerase (Bioline, UK). The PCR reaction conditions were 165 

performed using the following program: 95 ℃ for 3 min, followed by 35 cycles at 95 ℃ 166 

for 15 s, 62 ℃ for 30 s, 72 ℃ for 1-2.5 min, and a final extension at 72 ℃ for 5 min. 167 

The purified PCR products were cloned into the pGEM®-T Easy cloning vector 168 

(Promega, UK) and transformed into RapidTrans™ TAM1 competent Escherichia 169 

coli cells (Active Motif, Belgium). The transformed cells were cultured on LB agar 170 

plates (Sigma-Aldrich, UK) with ampicillin (100 µg/mL) overnight at 37 ℃ and 171 

colonies were screened by colony PCR using the vector specific primer M13F and a 172 

gene specific primer (supplementary Table 1.). Plasmid DNA was purified using a 173 

QIAprep® spin DNA miniprep kit (QIAGEN, UK) according to the manufacturer's 174 

instructions and the size of the inserts was verified by digestion with the restriction 175 

enzyme, EcoRI (New England Biolabs, UK). Plasmids were sequenced by Eurofins 176 

MWG Operon. 177 

  178 

2.3. Bioinformatics analyses 179 

 180 

  The CDS regions and deduced amino acid sequences of BATF3s were analyzed 181 

using the ExPASy Translate tool (http://web.expasy.org/translate/) and the homology 182 

was analyzed using the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast) against 183 



the proteins in the National Center for Biotechnology Information (NCBI). The gene 184 

structure was predicted using the Spidey program at NCBI 185 

(http://www.ncbi.nlm.nih.gov/spidey/). Genome synteny data were obtained from the 186 

Ensembl Genome Browser (http://www.ensembl.org/index.html) for Mammalia 187 

(human and mouse), Aves (chicken), Amphibia (Xenopus tropicalis) and Teleostei. 188 

Alignment of protein sequences between Homo sapiens, Mus musculus, Gallus_gallus, 189 

Chrysemys picta bellii, Xenopus tropicalis, Danio rerio, Oreochromis niloticus, Salmo 190 

salar and O. mykiss was conducted using the ClustalW program 191 

(http://clustalw.ddbj.nig.ac.jp/). Protein domains were predicted using the Simple 192 

Modular Architecture Research Tool (SMART) (http://smart.embl-heidelberg.de/). 193 

The tertiary structure of domains was predicted using CPHmodels 3.2 Server 194 

(http://www.cbs.dtu.dk/services/CPHmodels/). Domain identity/similarity was 195 

analyzed using Pair-wise sequence alignment 196 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Protein sequences of selected 197 

vertebrate BATF1, BATF2 and BATF3 homologues were aligned with the ClustalW 198 

program and a phylogenetic tree was constructed using the Mega 6.0 software 199 

(Tamura et al., 2013). The neighbour-joining algorithm was used as the clustering 200 

method and the distances matrix calculated using the Poisson correction method 201 

(Saitou and Nei, 1987). The bootstrap values of tree nodes were obtained by 10,000 202 

bootstrap repetitions using the Poisson model for amino acid substitution. 203 

 204 

2.4. Tissues distribution of BATF3. 205 

 206 

  Multiple tissues including brain, intestine, pyloric caeca, gill, thymus, muscle, 207 

spleen, liver and head kidney were collected from healthy rainbow trout tofor 208 

examineing the expression of BATF3 by real-time PCR. The real-time PCR was 209 

performed using IMMOLASE (Bioline, UK) and SYBR Green fluorescent tag 210 

(Invitrogen, UK) in a LightCycler® 480 System (Roche Applied Science, UK). The 211 

primers for gene expression were designed to span exons (supplementary Table 1), to 212 

exclude the amplification of potential genomic DNA contaminationed in during RNA 213 



preparation. The PCR reaction consisted of 2 μL of primers (10 pmol each), 4 mL of 214 

cDNA and 14 μL of PCR mix. The program was as follows: 10 min at 95 ℃ for 215 

enzyme activation, 40 amplification cycles (95 ℃ for 30 s, 60-63 ℃ for 30 s and 72 ℃ 216 

for 30 s), followed by 5 s at 90 ℃ to obtain the melting curve. The serially diluted 217 

purified PCR products were used as standards to serve as reference to establish 218 

standard curves for quantification in each 96-well plate. The relative expression level 219 

of the BATF3 was calculated as arbitrary units and normalised against the expression 220 

level of rainbow trout elongation factor (EF)-1α. It has been shownA previously study 221 

showed that EF-1αa iwas one of the suitable house-keeping genes for use in salmonid 222 

gene expression studies, as seen in studies of viral infection in Atlantic salmon 223 

wherewhose expression was not altered substantially during viral infection (Løvoll et 224 

al., 2011). 225 

 226 

2.5. Expression of BATF3 in RTS-11 cells treated by TLR ligands and interferons. 227 

 228 

  The expression of BATF3 was studied in the mononuclear/macrophage -like cell 229 

line, RTS-11, from rainbow trout spleen (Brubacher, Secombes et al., 2000). The cells 230 

were maintained in Leibovitz (L-15) medium (Invitrogen, UK) containing 30% fetal 231 

calf serum (FCS; Labtech International, UK) and antibiotics (100 U/mL penicillin and 232 

100 mg/mL streptomycin; P/S; Invitrogen, UK) at 20 ℃. Five mL of cells 233 

(approximately 1 × 10
6
 cells) were seeded into 25 cm

2
 flasks (Sarstedt, Germany), 234 

cultured overnight and then stimulated for 6 or 24 h with LPS (20 μg/mL; E. coli 235 

strain 055:B5; Sigma-Aldrich, UK), recombinant Yersinia ruckeri Flagellin (rFlagellin) 236 

(20 ng/mL) (Wangkahart et al., 2016), polyI:C (50 μg/mL; Sigma-Aldrich, UK), R848 237 

(10 μg/mL; Sigma-Aldrich, UK), PHA (10 μg/mL; Sigma-Aldrich, UK), recombinant 238 

interferon 2 (rIFN2) (20 ng/mL) (Zou et al., 2007), rIFNγ (20 ng/mL) (Zou, et al., 239 

2005) or phosphate buffered saline (PBS) as control. The purity and activities of 240 

recombinant cytokines were evaluated previously (Zou et al., 2005; 2007; Gao et al., 241 

2009; Skjesol et al., 2010; Wangkahart et al., 2016; Zou, et al., 2005; 2007). Real-time 242 

PCR analysis was performed as described above. 243 



 244 

2.6. Expression of BATF3 in primary head kidney monocytes/macrophages and 245 

rIL-4/13A cultured monocytes/macrophages cells treated withby TLR ligands and/or 246 

interferons 247 

 248 

  The primary head kidney (HK) monocytes/macrophages were isolated from freshly 249 

killed rainbow trout using the method described previously by Peddie et al. (Peddie et 250 

al., 2001). Briefly, fish were anaesthetised, killed, and the anterior kidney removed 251 

aseptically and passed through a 100 µm nylon mesh using L-15 medium 252 

supplemented with P/S, heparin (10 units/mL), and 2% FCS. After centrifugation at 253 

400 x g for 10 min at 4
o
C, the primary HK cells were resuspended in incomplete cell 254 

culture medium (L-15, P/S, 0.1% FCS) and washed once. The cell suspension (5 × 10
6
 255 

cells) was seeded into 25 cm
2
 flasks containing incomplete cell culture medium (L-15, 256 

P/S, 0.1% FCS) and incubated at 20 °C overnight. The unattached cells were carefully 257 

removed and complete medium (L-15, P/S, 10% FCS) was added to the flasks. The 258 

adherent cells (mostly monocytes/macrophages) were stimulated with LPS, rFlagellin, 259 

polyI:C, R848, PHA, rIFN2, rIFNγ or PBS for 24 h as described above and then 260 

harvested for real-time PCR analysis. 261 

  Archived cDNA samples from rIL-4/13A-cultured primary HK 262 

monocytes/macrophages were analysed for the expression level of BATF3 (Wang et 263 

al., 20186). Briefly, the adherent primary HK monocytes/macrophages cells  were 264 

cultured in complete medium containing 200 ng/mL of rIL-4/13A. At days 1, 3 and 5, 265 

the medium was replaced with fresh complete medium containing 200 ng/mL 266 

rIL-4/13A. At day 7, the cells were stimulated with LPS, rFlagellin, polyI:C or R848. 267 

After 24 h, the cells were harvested for gene expression analysis by real-time PCR. 268 

 269 

2.7. Expression of BATF3 in spleen, gills and intestine during Y. ruckeri infection 270 

 271 

  The expression of BATF3 was determined in archived cDNA samples of spleen, 272 

gills and intestine taken from rainbow trout after intraperitoneal injection with a 273 



pathogenic strain (MT3072) of Y. ruckeri (0.5 mL/fish, 1 × 10
6
 cfu/mL) or 0.5 mL of 274 

PBS as control (Gorgoglione Wang et al., 2018et al., 2016 – BUT THIS PAPER IS 275 

BROWN TROUT!). Tissues from three fish were taken at 24 h post-challenge and 276 

analyzed by real-time PCR. 277 

 278 

2.8. Expression of BATF3 in kidney during IHNV infection 279 

 280 

  Six groups of 10 healthy rainbow trout (weighing ~3 g, each group containing 10 281 

fish) were used for the IHNV challenge experiment. Preparation of IHNV (strain 282 

HLJ-09) was described previously (Wang et al., 2016a; Wang et al., 2016b??? ). 283 

Thirty fFish were injected intraperitoneally with 50 μL of L-15 medium containing 1 284 

x 10
5
 pfu of IHNV. Mock-infected control groups were injected with PBS only. Head 285 

kidney was collected from infected and control fish at days 1, 3 and 5 (10 fish per 286 

group) for extraction of total RNA, using an Omega Bio-Tek extraction kit I (Omega 287 

Bio-Tek, Doraville, GA, USA) following the manufacturer’s instructions. cDNA was 288 

synthesised using oligo(dT)15 (Takara, Japan) and a Superscript Reverse 289 

Transcriptase Reagent Kit (Takara, Japan). Real-time PCR was performed using 290 

SYBR Premix EX Taq Ⅱ (Takara, Japan) on the ABI 7500 real-time PCR system 291 

(Applied biosystems, Carlsbad, CA, USA) using the following conditions: 1 cycle of 292 

30 s at 95 ℃, 40 cycle of 3 s at 95 ℃, and 30 s at 60 ℃. The average cycle threshold 293 

(Ct) was calculated from triplicate measurements using the instrument’s software in 294 

“auto Ct” mode (ABI 7500 system, version 2.3). Relative Ct values of three 295 

independent tests were calculated by the 2-
ΔΔCt

 method. EF-1α was used as an internal 296 

reference for normalization of gene expression. Infection of VHSV IHNV was 297 

verified by examining expression of the IHNV N gene and Mx gene by real-time PCR. 298 

The primers for the IHNV N gene and Mx gene awere listed in supplementary Table 299 

1. 300 

 301 

2.9. Immunohistochemical staining 302 

  AThe rabbit polyclonal antibody against the conserved leucine-zipper region of 303 



human BATF3 (Merck, Cat. No. ABE1007) was used in iImmunohistochemical 304 

staining. To verify the cross-reactivity of thishuman polyclonal BATF3 antibody with 305 

trout BATF3a and BATF3b, the full length cDNA fragments were amplified and 306 

cloned into the pHISTEV vector (kindly provided by Dr Hai Deng, University of 307 

Aberdeen) at the BamHI/HindIII sites. The resultant plasmids (pHISTEV-BATF3a and 308 

pHISTEV-BATF3b) were transformed into E. coli BL21 (DE3) cells. The cells were 309 

then induced by 2 mM IPTG overnight at 37
o
C in a shaker (150 rpm) and 20 µL of 310 

cell culture collected for SDS-PAGE gel electrophoresis and Western blotting. The 311 

rabbit anti human BATF3 polyclonal antibody and the secondary goat anti-rabbit 312 

IgG-peroxidase antibody (Sigma) were diluted by 1:100 (v/v) and 1:10,000 (v/v) 313 

respectively. Since the recombinant proteins have a 6-histidine tag at the N- terminus, 314 

athe mouse monoclonal anti-polyhistidine-peroxidase antibody (Sigma, 1:2,000, v/v) 315 

was used to validate the recombinant trout BATF3a and BATF3b detected by the 316 

human BATF3 antibody.  317 

  NextThe kidney tissue (100-150 mg) fromof healthy trout was fixed using 4% 318 

paraformaldehyde (PFA) in sterile PBS for 20 h at 4C followed by 5 washes in sterile 319 

PBS. Tissue was incubated in the final PBS wash for 1 h at 4C and stored at 4C in 320 

70% ethanol prior to further tissue processing. Tissue was embedded into paraffin 321 

wax using standard histological methods 322 

(http://www.ihcworld.com/_protocols/histology/paraffin_section.htm). 323 

Immunohistochemistry was performed using a Dako autostainer E 172566 (Model: 324 

LV-1, Dako, UK) as described previously (Alnabulsi et al., 2017; Swan et al., 2016). 325 

The tissue sections were first dewaxed in xylene for a minimum of 10 min and 326 

rehydrated by immersion in decreasing ethanol concentrations. Then, antigen retrieval 327 

was performed by heating the tissue sections for 20 min in a microwave (800 W) 328 

while sections were fully immersed in 10 mM citrate buffer (pH 6.0). After cooling, 329 

the sections were incubated with or without (negative control) a rabbit polyclonal 330 

antibody against the conserved leucine-zipper region of human BATF3 (1:100, v/v, 331 

Merck, Cat. No. AB1007) for 60 min at room temperature. The sections were then 332 

washed twice with washing buffer (Dako), blocked incubated with blocking solution 333 
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supplied by DAKO to block endogenous peroxidase activity for 7 min, and 334 

subsequently washed off with two buffer washes. Peroxidase-polymer labelled goat 335 

anti-mouse/rabbit secondary antibodies (Envision, Dako) was applied for 30 min at 336 

room temperature before being washed off with two buffer washes. To reveal sites of 337 

peroxidase activity, the tissue sections were treated with diaminobenzidine substrate 338 

for 7 min, followed by one distilled water wash. Finally, the slides were immersed in 339 

Surgipath Harris haematoxylin solution (Leica Biosystems) copper sulphate (WHY?) 340 

for 2 min and Harris? haematoxylin solution for 10 s to counterstain the cell nuclei, 341 

before being dehydrated in alcohol, then xylene and mounted. An antibody diluent 342 

(Dako) was used as negative control by incubating the slides with diluent instead of 343 

the primary antibody. The cell nuclei were counterstained by immersing the slides in 344 

filtered Harris haematoxylin solution before the control slides were then treated as 345 

abovedehydrated in alcohol, then xylene and mounted. Lastly, the slides were 346 

examined by light microscopy using an Olympus BX 51 light microscope (Olympus, 347 

Southend-on-Sea, Essex, UK) equipped with an Olympus C4040 camera (Olympus). 348 

 349 

2.9. Statistical analysis 350 

 351 

  All data were analyzed using the statistical package SPSS 19.0 (SPSS Inc, Chicago, 352 

IL) software. Statistical analyses were performed using the two tailed paired Student's 353 

T-test. Data were expressed as means +± standard error (SE), with p < 0.05 considered 354 

significant. 355 

 356 

3. Results 357 

 358 

3.1. Cloning and sequence analysis of BATF3s genes 359 

 360 

  Two BATF3 paralogues (BATF3a and BATF3b) were obtained from the rainbow 361 

trout draft genome. One matched the primer sequences reported in Granja et al. (2015) 362 

and was called BATF3a, whilst the second was termed BATF3b. The cloned cDNA 363 



sequences of BATF3a (GenBank Acc. No., accession number: KX826998) and 364 

BATF3b (GenBank Acc. No., accession number: KX826999) were 691bp and 594bp 365 

in length, with putative ORFs of 372 bp and 390 bp translating into proteins of 123 aa 366 

and 129 aa, respectively (supplementary Table S2, Fig. S1 and Fig. S2). Sequence 367 

comparison of the cDNA and genome sequences (GenBank Acc. Nos., 368 

CCAF010060656.1 and CCAF010027628.1) revealed that both BATF3 genes have 3 369 

exons and 2 introns (supplementary Fig. S1 and Fig. S2).  370 

 371 

3.2. Gene synteny analysis 372 

 373 

  Gene synteny of BATF3 genes was analyzed with neighbouring genes of 374 

Mammalia (human and mouse), Aves (chicken), Amphibia (X. tropicalis) and 375 

Teleostei. The trout BATF3a and BATF3b genes are located in two separate scaffolds 376 

(scaffold_324 and scaffold_1368), but both reside next to the ATF3 gene (Fig. 1). The 377 

tandem linkage of the BATF3 and ATF3 genes in the genome is conserved from fish 378 

to humans, suggesting that the two genes could have been duplicated from a common 379 

ancestor early in vertebrate evolution. A single copy of BATF3 is found in all of the 380 

vertebrates examined in this study except for rainbow trout and Atlantic salmon, and 381 

its gene synteny is well conserved across the vertebrate spectrum. It is common that 382 

salmonids have gene paralogues due to the 4
th

extra-round of genome duplication that 383 

has occurred in this lineage in addition to the teleost-specific (3
rd

) whole genome 384 

duplication.        385 

      386 

3.3. Domain and phylogenetic tree analysis 387 

 388 

  BATF is a nuclear basic leucine zipper protein that belongs to the AP-1/ATF 389 

superfamily of transcription factors (Echlin et al., 2000). AP-1/ATF family members 390 

possess a typical basic leucine zipper (bZIP) DNA binding and oligomerization motif 391 

which is essential for them to form homo- or hetero-dimers with preferred binding to 392 

AP-1 or CRE (cyclic AMP-response element) sites in target DNA regions (Williams et 393 



al., 2001). The bZIP domain consists of a DNA binding domain (DB), a hinge (H) 394 

region and a leucine zipper (LZ). These domains are present in all the BATF3s. The 395 

amino acid sequences of these domains are highly homologous and the six leucine 396 

residues are absolutely conserved. However, the N- and C- terminal regions of BATF3 397 

share relatively low sequence homology. Further, a single α-helix is predicted for trout 398 

BATF3s, as in human BATF3 (Fig. 3B).   399 

To gain a better understanding of the evolutionary relationships of rainbow trout 400 

BATF3s with known members of the vertebrate BATF family (BATF1, BATF2 and 401 

BATF3), BATF sequences from selected vertebrates, including elasmobranch (shark), 402 

ray-finned fish (medaka, pike, salmon, spotted gar, tilapia, medaka, zebrafish), 403 

lobe-finned fish (coelacanth), amphibian (frog), reptilian (turtle), avian (chicken) and 404 

mammalian (human and mouse) species, were used to construct a phylogenetic tree 405 

using the Neighbour-joining (N-J) method. The trout BATF3s branched closely with 406 

salmon BATF3s and formed a clade with other vertebrate BATF3s (bootstrap 407 

value=78%) that was separate to the BAFT1 and BATF2 clades (Fig. 4).  408 

 409 

3.4. Constitutive expression analysis  410 

 411 

  The expression of trout BATF3a and BATF3b were examined in tissues of healthy 412 

fish including spleen, liver, pyloric caeca, head kidney, intestine, skin, brain, gills, 413 

brainhead kidney, intestine, liver, pyloric caeca, skin, spleen, and thymus (Fig. 5). The 414 

transcript level of BATF3a was much higher than BATF3b in most tissues. The 415 

highest level of BATF3a was detected in spleen, followed by liver, pyloric caeca and 416 

head kidney.  417 

Since relatively high transcript expression was seen in immune organs, such as spleen 418 

and kidney, the distribution of BATF3 expressing cells was studied in kidney tissue of 419 

healthy fish. A It must be noted that the polyclonal antibody against the conserved 420 

leucine-zipper region of human BATF3 was used, and that itused cross-reacted with 421 

both trout BATF3a and BATF3b was first confirmed by Western blotting (Fig. 6A). 422 

BATF3 expressing cells were clearly visible in the kidney inter-tubule spaces where 423 



haematopoietic cells reside and adjacent to melano-macrophages (Fig. 6B). It must be 424 

noted that the polyclonal antibody used cross-reacted with both BATF3a and BATF3b 425 

as confirmed by Western blotting (Fig. 6) 426 

 427 

3.5. Modulation of BATF3a and BATF3b expression in vitro 428 

 429 

  RTS-11 is a monocyte/macrophage like cell line derived from spleen. When 430 

stimulated with TLR ligands, PHA and type I and II rIFNs for 24 h, BATF3a was 431 

found to be induced by LPS, R848 and type II rIFNs but not by rFflagellin, polyI:C, 432 

PHA and type I rIFN (Fig. 7A and 7B). A moderate increase of BATF3b expression 433 

was also detected in cells treated with type II rIFN. The effects of TLR ligands were 434 

also examined at 6 h after stimulation and interestingly BATF3b was induced by 435 

rFflagellin, polyI:C and R848, with although weaker induction was seen for BATF3a 436 

withby rFflagellin and R848 (Fig. 7E). These results demonstrate that BATF3a and 437 

BATF3b are differently regulated differently by TLR ligands.   438 

Primary head kidney monocytes/macrophages were next used to investigate the 439 

modulation of BATF3s expression by TLR ligands and recombinant rIFNs (Fig. 7C, 440 

D). BATF3a expression was again up-regulated by LPS, R848 and rIFNγ, the latter to 441 

a very high fold increase. However, it was also induced by the other stimulants unlike 442 

the response in RTS-11 cells. In contrast, BATF3b was induced only by flagellin, 443 

polyI:C and rIFNγ.  444 

  In our previous study, recombinant trout IL-4/13A cultured cells derived from head 445 

kidney monocytes/macrophages expressed a high level of MHCII and a moderate 446 

level of putative DC markers such as CLEC4T1/DC-SIGN and CD83, and displayed a 447 

similar morphology to mammalian DCs, with dendrites on the cell surface (Wang, 448 

Wang et al., 2016;, Johansson, Wang et al., 2016; Wang et al., 2018). Archived 449 

rIL-4/13A cultured primary head kidney monocyte/macrophage cDNA samples from 450 

TLR ligand treated cells were used to investigate the expression of BATF3 (Fig. 8). 451 

Interestingly, BATF3a and BATF3b were both significantly up-regulated in rIL-4/13A 452 

cultured cells by polyI:C and R848 (viral PAMPs) stimulation. BATF3a was also 453 



up-regulated to some extent by LPS treatment. No significant changes of BATF3b 454 

were detected in cells treated with LPS and Fflagellin (bacterial PAMPs). 455 

 456 

3.6. Modulation of BATF3a and BATF3b expression during infection 457 

 458 

  Enteric redmouth disease (ERM) is a serious septicaemic bacterial disease of 459 

salmonid fish species caused by infection with Yersinia. ruckeri (Harun et al., 2011). 460 

A pathogenic strain (MT3072) of Y. ruckeri was used to infect trout by intraperitoneal 461 

injection (Wang et al., 2018). Expression of BATF3a and BATF3b was examined in 462 

systemic (spleen) and mucosal tissues (gills and intestine) tissues. A marked increase 463 

of transcripts was seen for both genes in spleen whilst they were moderately 464 

up-regulated in intestine (Fig. 9). No significant modulation of expression was 465 

detected for either gene in gills.  466 

  The expression of BATF3 genes was lastly examined in trout juveniles during 467 

infection with IHNV. IHNV is a member of the Rhabdoviridae family and infects 468 

salmonid juveniles. A recently identified IHNV stain (HLJ-09) was used to infect 469 

trout juveniles in this study. In head kidney, both BATF3a and BATF3b were 470 

up-regulated at days 3 and 5, with increases of >50- fold in the case of BATF3a at day 471 

5 (Fig. 10). Expression of IHNV N and the antiviral gene Mx1 also increased in head 472 

kidney at days 3 and 5 post-injection (Fig. 10), verifying that infection had occurred.       473 

 474 

4. Discussion 475 

 476 

  The BATF3 genes have not been described in non-mammalian vertebrates. In the 477 

present study, two BATF3 homologues (termed BATF3a and BATF3b) have been 478 

identified and characterized in rainbow trout (Oncorhynchus mykiss). BATF3a was 479 

reported previously, as constitutively expressed in CD8a+MHC II+ DC-like cells 480 

(Granja et al., 2015). We now show it isfound to be more highly expressed in tissues 481 

such as spleen, liver, pyloric caeca and head kidney, and thatbut both paralogues can 482 

bewere up-regulated (at least to some extent) in cultured cells by PAMPs and 483 



cytokines, and in vivo by infection. Their potential role in fish immune responses is 484 

discussed below.  485 

  The BATF family consists of 3 members (BATF1-3) which are structurally related 486 

(Murphy et al., 2013). They contain a canonical α-helical bZIP domain and belong to 487 

the AP1 family which includes FOS, JUN and ATF. Unlike other vertebrates which 488 

have a single copy of the BATF3 gene, trout and salmon contain two BATF3 489 

paralogues, with the predicted proteins sharing 78.3% sequence similarity. As seen in 490 

other vertebrates, both trout BATF3a and BATF3b reside next to the ATF gene in the 491 

genome (Fig. 1). Although trout BATF3b has a slightly higher sequence homology 492 

with tetrapod BATF3 than BATF3a, all the teleost fish homologues grouped in a 493 

single clade within which the salmonid BATF3 group split into the BATF3a and 494 

BATF3b subgroups. These data support the contention that duplication of BATF3 is a 495 

salmonid-specific event likely associated with the salmonid-specific whole genome 496 

duplication (Berthelot, Brunet et al., 2014).    497 

  The expression of BATF3 is limited to leucocytes in humans and mice, and 498 

increases during cDC development. The spleen is a major secondary lymphoid organ 499 

in fish, where leucocytes (e.g. antigen presenting cells, T and B cells) interact with 500 

each other. Therefore, it is not surprising that a high level of trout BATF3a transcripts 501 

was detected in this tissue (Fig. 5). Trout BATF3a was also highly expressed in 502 

pyloric caeca. Recent studies have shown that pyloric caeca is an important organ 503 

involved in mucosal immunity and harbors a high density of B and T cells amongst 504 

others (Ballesteros et al., 2013). That the BATF3 paralogues are constitutively 505 

expressed in immune tissues suggests they may be involved in maintenance of 506 

homeostasis of the immune system in fish. 507 

  Expression modulation of trout BATF3a and BATF3b was examined in primary 508 

monocytes/macrophages isolated from head kidney and a spleen 509 

monocyte/macrophage cell line (RTS-11). In the HK monocytes/macrophages, 510 

BATF3a could be induced by all the stimuli used. Notably, stimulation with rIFNγ 511 

resulted in the largest increase of BATF3a expression (55-fold increase). In contrast to 512 

the HK monocytes/macrophages, only small changes in BATF3a and BAT3b 513 



expression were seenwas largely unaltered in the RTS-11 cells, where relatively small 514 

increases were seen after stimulation with LPS, Flagellin, poly I:C, R848 and rIFNγ, 515 

with modulation of BATF3b mainly seen at the earlier time (6 h) post-stimulaiton. It 516 

should be noted that the zinc finger transcription factors ZBTB46 and 517 

DC-SCRIPT/ZNF366 known to be involved in activation of antigen presenting cells, 518 

were down-regulated in primary HK monocytes/macrophages by rIFNγ, highlighting 519 

the central roles of rIFNγ in mediating antigen presentation in fish (Zou et al., 2005; 520 

Wang et al., 20186c; Wiegertjes et al., 2016; Zou et al., 2005).  521 

  IL-4 in combination with granulocyte macrophage colony stimulating factor 522 

(GM-CSF) is commonly used for in vitro culture of dendritic cells in humans and 523 

mice (Dauer et al., 2003). Two IL-4/13 homologues (IL-4/13A and IL-4/13B) have 524 

been identified in rainbow trout but GM-CSF is absent in teleost fish (Zou and 525 

Secombes, 2011; Wang et al., 2016c; Zou and Secombes, 2011d). Trout rIL-4/13A can 526 

enhance HK monocyte/macrophage differentiation into CLEC4T+ cells (Johansson et 527 

al., 2016). These cells express a remarkably high level of MHC II molecules and 528 

moderate levels of the macrophage colony stimulating factor receptor (MCSFR) and 529 

CD83, and display a distinct morphology when stimulated with bacterial and viral 530 

PAMPs in association with inducible expression of ZBTB46 (Wang et al., 20186c). In 531 

such cells, cultured with rIL-4/13A for 7 days, the transcript levels of BATF3a and 532 

BATF3b remained largely unchanged (7-10 x 10
-4

 of BATF3a relative to EF-1α, 1-3 x 533 

10
-4

 of BATF3b relative to EF-1α) (Figs. 5 and 8), but further stimulation, in 534 

particular with viral PAMPs, enhanced expression several fold.  535 

  The in vivo studies demonstrated that the BATF3 paralogues are also modulated 536 

during infection, in this case by bacterial and viral diseases. Relatively high increases 537 

in transcript level were seen in the target organs; spleen in the case of Yersiniosis and 538 

kidney in the case of IHNV. The kinetics of induction were was also studied duringin 539 

the case of IHNV, where maximal increases were seen several days post-infection. 540 

Taken together, the present findings suggest that BATF3 genes may have both 541 

homeostatic and inducible functions within the immune system of fish, potentially in 542 

the context of DC differentiation and activation. The characterization of BATF genes 543 



in fish provides useful data for further characterization of the role(s) of BATF3 in 544 

regulating leucocyte differentiation in early vertebrates.  545 
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 553 

Figure legend 554 

Fig. 1. Comparative analysis of gene synteny of BATF3. The rainbow trout WGS 555 

scaffolds were obtained from NCBI, and the gene synteny of other vertebrates was 556 

obtained from the Ensemble Genome Browser 557 

(http://sep2015.archive.ensembl.org/index.html). The arrows indicate the 558 

transcriptional direction. The homologous genes are shown with the same colour. 559 

Fig. 2. Amino acid sequence alignment (A), and identity/similarity analysis (B) of 560 

BATF3 in Homo sapiens, Mus musculus, Gallus_gallus, Chrysemys picta bellii, 561 

Xenopus tropicalis, Danio rerio, Oreochromis niloticus, Salmo salar and 562 

Oncorhynchus mykiss. Sequences were aligned using the ClustalW server 563 

(http://clustalw.ddbj.nig.ac.jp/). Sequence identity/ similarity was analysed using the 564 

Pair-wise sequence alignment. Identity (*), strong similarity (:) and weak similarity (.) 565 

are indicated below the alignment. The structural domains of BATF3 were predicted 566 

using the Simple Modular Architecture Research Tool (SMART) 567 

(http://smart.embl-heidelberg.de/). The core domain is boxed, with DNA binding 568 

domain (DB), hinge (H) and leucine zipper (LZ) regions indicated above the 569 

alignment. The conserved leucines are highlighted. 570 

Fig. 3. Comparative analysis of BATF3 protein structure (A), tertiary structure (B) 571 

and identity/ similarity of structural domains (C) between human (hu) and rainbow 572 

trout (rt). A, the structural domains of BATF3 molecules were predicted using the 573 

http://smart.embl-heidelberg.de/


Simple Modular Architecture Research Tool (SMART) 574 

(http://smart.embl-heidelberg.de/). The bZIP domain was constituted of a DNA 575 

binding domain, hinge region and leucine zipper region. B, the tertiary structure of 576 

bZIP domains was predicted using CPHmodels 3.2 Server 577 

(http://www.cbs.dtu.dk/services/CPHmodels/). C, domain identity/ similarity was 578 

analysed using the Pair-wise sequence alignment 579 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/).  580 

Fig. 4. Phylogenetic tree analysis of BATF1-3. The phylogenetic tree was drawn using 581 

the Mega 6.0 software. The nNeighbour-joining algorithm was used as the clustering 582 

method and the distances matrix computed using the Poisson correction method. The 583 

tree was supported by 10,000 bootstrap repetitions using the Poisson model for amino 584 

acid substitution. The bootstrap values are indicated as percentages. 585 

Fig. 5. Tissue distribution of rainbow trout BATF3. The expression levels of BATF3a 586 

and BATF3b were determined by real-time PCR and normalized to the expression 587 

level of a reference gene EF-1α. The results represent the means +± SE of five fish. 588 

Fig. 6. Western blotting (A) and Iimmunohistochemical staining (B). Twenty uL of an 589 

IPTG-induced overnight culture of E. coli BL21 (DE3) cells transformed with 590 

pHISTEV-BATF3a (Lane 1) or pHISTEV-BATF3ba (Lane 2) was analysed by 591 

Western blotting using a polyclonal antibody against the conserved leucine zipper 592 

region of human BATF3 (1:100, v/v) followed by a goat anti-rabbit IgG-peroxidase 593 

antibody (1:10,000 v/v) or the mouse monoclonal anti-polyhistidine-peroxidase 594 

antibody (Sigma, 1:2000, v/v). For immunohistochemistry,The kidney tissue (100-150 595 

mg) of healthy trout was fixed using 4% paraformaldehyde (PFA) in sterile PBS and 596 

embedded into paraffin wax using standard histological methods. The slides were 597 

incubated with (rightA) or without (leftB) the rabbit polyclonal antibody against the 598 

conserved leucine-zipper region of human BATF3 (1:100, v/v), and. The cell nuclei 599 

were counterstained with Harris haematoxylin. Arrows indicate the positively-stained 600 

cells. Bar=50 µM. 601 

Fig. 7. Modulation of expression of BATF3 in trout RTS-11 cells (A, B, E) and 602 

primary HK monocytes/macrophages (C, D). The cells were stimulated for 6 h (E) or 603 



24 h (A-D, B) with LPS (20 μg/mL), rFlagellin (20 ng/mL), polyI:C (50 μg/mL), 604 

R848 (10 μg/mL), PHA (10 μg/mL), rIFN2 (type I) (20 ng/mL), rIFNγ (20 ng/mL) or 605 

PBS (control). The gene expression levels were determined by real-time PCR and 606 

normalized to that of EF-1α. The fold changes were calculated by comparing the 607 

average expression level of each treatment group with that of the respective control 608 

group. Bars indicate means +± SE of gene expression levels of cells from three flasks 609 

for RTS-11 cells (n=3) or four fish for the primary HK monocytes/macrophages (n=4). 610 

* = p ≤ 0.05, ** = p ≤ 0.01. 611 

Fig. 8. Expression modulation of BATF3 in trout HK monocytes/macrophages 612 

cultured with rIL-4/13A. The primary adherent HK leucocytes were isolated and 613 

cultured in the presence of 200 ng/mL rIL-4/13A for 7 days. The cells were then 614 

stimulated for 24 h with LPS (20 μg/mL), rFlagellin (20 ng/mL), polyI:C (50 μg/mL), 615 

R848 (10 μg/mL), or PBS (control). The gene expression levels were determined by 616 

real-time PCR and normalized to that of EF-1α. The fold changes were calculated by 617 

comparing the average expression level of each treatment group with that of the 618 

respective control group. Bars indicate means +± SE of gene expression levels of cells 619 

from four flasks. * = p ≤ 0.05, ** = p ≤ 0.01. A, expression of BATF3a and BATF3b 620 

in HK monocytes/macrophages cultured with rIL-4/13A for 7 days; B, fold changes of 621 

expression of BATF3a and BATF3b after stimulation. 622 

Fig. 9. Expression of BATF3 in rainbow trout after infection of Y. ruckeri. Fish were 623 

challenged by intraperitoneal injection with a pathogenic strain (MT3072) of Y. 624 

ruckeri (5 × 10
5
 cfu per fish) or PBS. Gills, spleen and intestine were collected at 24 h 625 

post-challenge and real-time PCR wasere performed to determine BATF3 expression. 626 

The expression levels of BATF3a and BATF3b were normalized to that of EF-1α and 627 

fold changes calculated by comparing the expression level of challenged fish with that 628 

of the respective control fish (defined as 1). Bars indicate means +± SE of tissues 629 

from three fish. * = p ≤ 0.05.  630 

Fig. 10. Expression of BATF3, Mx1 and IHNV N in rainbow trout juveniles (~3 g) 631 

after infection with IHNV. The fish were injected intraperitoneally with 50 μL of L-15 632 

medium containing 1 x 10
5
 pfu of IHNV (strain HLJ-09). At days 1, 3 and 5, head 633 



kidney was collected for analysis of gene expression. Bars represent the fold change 634 

of expression level compared to that of uninfected control fish. Data shown are the 635 

means +± SE of 10 fish. * = p < 0.01 compared to day 1, # = p < 0.01 compared to 636 

day 3. 637 
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 33 

ABSTRACT 34 

Basic leucine zipper transcription factor ATF-like (BATF) -3 is a member of the 35 

activator protein 1 (AP‑1) family of transcription factors and is known to play a vital 36 

role in regulating differentiation of antigen-presenting cells in mammals. In this study, 37 

two BATF3 homologues (termed BATF3a and BATF3b) have been identified in 38 

rainbow trout (Oncorhynchus mykiss). Both genes were constitutively expressed in 39 

tissues, with particularly high levels of BATF3a in spleen, liver, pyloric caecae and 40 

head kidney. BATF3a was also more highly induced by PAMPs and cytokines in 41 

cultured cells, with type II IFN a particularly potent inducer. In rIL-4/13 42 

pre-stimulated cells, the viral PAMPS polyI:C and R848 had the most pronounced 43 

effect on BATF3 expression. BATF3 expression could also be modulated in vivo, 44 

following infection with Yersinia ruckeri, a bacterial pathogen causing redmouth 45 

disease in salmonids, or with the rhabdovirus IHNV. The results suggest that BATF3 46 

may be functionally conserved in regulating the differentiation and activation of 47 

immune cells in lower vertebrates and could be explored as a potential marker for 48 

comparative investigation of leucocyte lineage commitment across the vertebrate 49 

phyla.   50 

 51 

Highlights 52 

1. The BATF3 genes were analysed in detail for the first time in fish. 53 

2. Trout BATF3a is highly expressed in spleen, liver and pyloric caeca. 54 

3. Trout BATF3a is highly up-regulated in monocytes/macrophages by IFNγ 55 

treatment. 56 

4. Both BATF3a and BATF3b are induced after infection with bacterial and viral 57 

diseases.  58 

1. The BATF3 genes were identified for the first time in fish. 59 

2. Trout BATF3a is highly expressed in spleen, liver and pyloric caeca. 60 
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3. Trout BATF3a is most highly up-regulated in monocytes/macrophages by 61 

IFNγ. 62 

4. Both BATF3a and BATF3b are induced after infection withof bacterial and 63 

viral diseases.  64 

 65 

1. Introduction 66 

  Basic leucine zipper transcription factor ATF-like (BATF) proteins are a group of 67 

small transcription factors belonging to the activation protein 1 (AP-1) superfamily 68 

which consist of several basic leucine zipper (bZIP) transcription factors including 69 

FOS, JUN and ATF (Landschulz et al., 1988; Murphy et al., 2013). Three BATF 70 

proteins (BATF1-3) have been characterised and all comprise an α-helical bZIP 71 

domain which can be further divided into a DNA-binding motif and a leucine zipper 72 

motif. The leucine zipper motif is knshown to be essential for the interaction with 73 

bZIP proteins or non-bZIP transcription factors such as interferon regulatory factors 74 

(IRFs) to regulate target genes. 75 

  The BATF3 gene has been described in mice and humans. It exists as a single copy 76 

in chromosome 1 in both species, upstream of another AP-1 family member ATF3 77 

(Murphy et al., 2013). The genes, and encodes a protein of 127 aa and 118 aa 78 

respectively, that share high homology (80% similarity),. It lacks a signal peptide and 79 

binds to short nucleotide motifs in the promoter region of target genes. The primary 80 

sequences of human and mouse BATF3 proteins have share high homology, ( sharing 81 

80% similarity). It has been shown that tThe BATF3 gene is expressed only mainly in 82 

immune cells originating inof hematopoietic organs (Williams et al., 2001), and in 83 

particular. Expression of BATF3 is mainly studied in dendritic cells (DCs). For 84 

example, iIt can beis at detectedable levels in the common dendritic cell (DC) 85 

precursors such as monocytes (which also maturedevelop into macrophages) and isbut 86 

increases induced when DCs differentiate into fully developed conventional DCs 87 

(cDCs) (Hildner et al., 2008). In mice, BATF3 is found in both lymphoid-resident 88 

CD8α+ cDCs and non-lymphoid CD103+ cDCs which are speculated to share a 89 

common origin (Ginhoux et al., 2009; Edelson et al., 2010). T helper cells such as Th1 90 



and Th17 cells also express BATF3 (Hildner et al., 2008).  91 

  The central roles of BATF3 in orchestrating leucocyte lineage commitment have 92 

drawn significant attention in recent years. Emerging evidence indicates that BATF3 93 

together with other members of the BATF family play critical roles in regulating 94 

leucocyte differentiation, especially in directing the commitment of DC precursors 95 

into specific lineages. Gene-knockout studies in mice demonstrate that BATF3 is 96 

indispensable for the development of cDCs. The Batf3−/− mice do not develop 97 

CD8α+ cDCs which are required for cytotoxic T cell immunity and antiviral defence 98 

(Hildner et al., 2008; Sun et al., 2017). In adult mice, the intestinal BATF3-dependent 99 

cDCs are required for homeostasis and antiviral T-cell immunity (Edelson, KC et al., 100 

2010; Sun et al., 2017). Further, tissue-resident BATF3-dependent CD103+ DCs once 101 

activated can produce a large amounts of interleukin (IL)-12, promoting a local Th1 102 

response to combat Leishmania major infection (Martinez-Lopez et al., 2015). 103 

However, other members of the BATF3 family may also be involved in regulation of 104 

immune responses. Recent studies indicate that the roles of BATF3 in promoting 105 

expansion of functional CD8+ cDCs to control infection of intracellular pathogens 106 

may be compensated by other members of the BATF family via the interaction of the 107 

conserved LZ domain with IRF4 or IRF8 (Tussiwand et al., 2012).  108 

  A recent study has shown that in rainbow trout (Oncorhynchus mykiss) skin 109 

CD8a+MHC II+ DC-like cells constitutively express BATF3. This finding is 110 

interesting and implies that the BATF3 may have conserved roles during vertebrate 111 

evolution (Granja et al., 2015). Since no further analysis of BATF3 has been 112 

undertaken to date, Iin this study we determined initially whether other BATF3 113 

paralogues exist in teleost/salmonid fish, as a consequence of the 3
rd

 or 4
th

 whole 114 

genome duplication events seen in these species, and analysed the phylogeny of 115 

BATF3 in the context of vertebrate phyla. T, two BATF3 homologues were identified 116 

in rainbow trout (Oncorhynchus mykiss) and their the phylogeny of BATF3 was 117 

studied in the context of vertebrate phyla.   Eexpression of the trout BATF3 118 

paralogues was studied in vivo after bacterial and viral infection and in vitro in 119 

cultured monocytes/macrophages after stimulation with TLR ligands, a lectin and 120 



interferons (IFNs). The results provide a first insight into the evolution of BATF3 in 121 

lower vertebrates and will help develop potential comparative markers to study 122 

leucocyte lineage commitmentdifferentiation between fish and higher vertebrates.   123 

 124 

2. Materials and methods 125 

 126 

2.1. Fish 127 

 128 

  Rainbow trout (Oncorhynchus mykiss) weighing(approximately  ~100 g) were 129 

maintained in 1 m diameter tanks supplied with a continuous flow of recirculating 130 

freshwater at 15 ± 1°C in the aquarium facilities in the Zoology building, University 131 

of Aberdeen. Fish were fed with commercial trout pellets (EWOS) and acclimated to 132 

aquarium conditions for at least 2 weeks before use. Fish were anaesthetised using 133 

2-phenoxyethanol (0.05%, Sigma Aldrich) and killed by subsequent destruction of the 134 

brain prior to tissue harvest. All experiments at Aberdeen were carried out under the 135 

UK Home Office project license PPL 60/4013. For the IHNV (infectious 136 

hematopoietic necrosis virus (IHNV) challenge experiment, rainbow trout weighing 137 

~3 g were obtained from the cold-water fish experiment station (Mudanjiang, China) 138 

and maintained in 120 cm × 50 cm × 60 cm tanks with aeration at 16 ℃. The fish 139 

were fed daily with a dry pellet food and were also acclimated to aquariumlaboratory 140 

conditions for at least? 2 weeks before use. The experiment was undertaken according 141 

to the guidance of the local animal ethics committee.  142 

 143 

 144 

2.2. RNA extraction, cDNA synthesis and gene cloning 145 

 146 

  The trout tissues and cells were collected for extraction of total RNA using TRI 147 

Reagent® (Sigmae-Aldrich，UK) according to the manufacturer’s instructions. cDNA 148 

was synthesized using a RevertAid First Strand cDNA Synthesis Kit (Thermo 149 

Scientific, UK). The cDNA samples were kept at -20
o
C before use.  150 



The human BATF3 sequence (GenBank Acc. No., NP_061134) was used as the bait 151 

sequence to undertake the BLAST (tBLASTn) analysis of the Whole-genome shotgun 152 

(WGS) database, transcriptome shotgun assembly (TSA) database and expressed 153 

sequence tags (ESTs) database, to obtain the trout BATF3 sequences. The WGS 154 

contigs were retrieved and analyzed for prediction of coding sequences using the 155 

GenScan program (Burge and Karlin, 1997). Predicted potential coding DNA 156 

sequence (CDS) were confirmed for sequence similarity by the BLASTp analysis in 157 

the non-redundant protein sequence database. Two WGS contigs (Accession Nos., 158 

CCAF010027628.1 and CCAF010060656.1) were identified to contain homologues 159 

of BATF3 genes and contained complete coding sequences (CDS) and untranslated 160 

regions (UTRs). Primers (supplementary Table 1) located in the 5’ and 3’ UTRs were 161 

designed for amplification of full length cDNA using trout head kidney cDNA as 162 

template. The PCR reaction volume was 25 μL including 2 μL of each of the primers 163 

(10 μM), 2 μL of cDNA, 5 μL of 5 × MyFi Reaction Buffer, 13 μL of PCR water and 164 

1 μL MyFi DNA Polymerase (Bioline, UK). The PCR reaction conditions were 165 

performed using the following program: 95 ℃ for 3 min, followed by 35 cycles at 95 ℃ 166 

for 15 s, 62 ℃ for 30 s, 72 ℃ for 1-2.5 min, and a final extension at 72 ℃ for 5 min. 167 

The purified PCR products were cloned into the pGEM®-T Easy cloning vector 168 

(Promega, UK) and transformed into RapidTrans™ TAM1 competent Escherichia 169 

coli cells (Active Motif, Belgium). The transformed cells were cultured on LB agar 170 

plates (Sigma-Aldrich, UK) with ampicillin (100 µg/mL) overnight at 37 ℃ and 171 

colonies were screened by colony PCR using the vector specific primer M13F and a 172 

gene specific primer (supplementary Table 1.). Plasmid DNA was purified using a 173 

QIAprep® spin DNA miniprep kit (QIAGEN, UK) according to the manufacturer's 174 

instructions and the size of the inserts was verified by digestion with the restriction 175 

enzyme, EcoRI (New England Biolabs, UK). Plasmids were sequenced by Eurofins 176 

MWG Operon. 177 

  178 

2.3. Bioinformatics analyses 179 

 180 

  The CDS regions and deduced amino acid sequences of BATF3s were analyzed 181 

using the ExPASy Translate tool (http://web.expasy.org/translate/) and the homology 182 

was analyzed using the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast) against 183 



the proteins in the National Center for Biotechnology Information (NCBI). The gene 184 

structure was predicted using the Spidey program at NCBI 185 

(http://www.ncbi.nlm.nih.gov/spidey/). Genome synteny data were obtained from the 186 

Ensembl Genome Browser (http://www.ensembl.org/index.html) for Mammalia 187 

(human and mouse), Aves (chicken), Amphibia (Xenopus tropicalis) and Teleostei. 188 

Alignment of protein sequences between Homo sapiens, Mus musculus, Gallus_gallus, 189 

Chrysemys picta bellii, Xenopus tropicalis, Danio rerio, Oreochromis niloticus, Salmo 190 

salar and O. mykiss was conducted using the ClustalW program 191 

(http://clustalw.ddbj.nig.ac.jp/). Protein domains were predicted using the Simple 192 

Modular Architecture Research Tool (SMART) (http://smart.embl-heidelberg.de/). 193 

The tertiary structure of domains was predicted using CPHmodels 3.2 Server 194 

(http://www.cbs.dtu.dk/services/CPHmodels/). Domain identity/similarity was 195 

analyzed using Pair-wise sequence alignment 196 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Protein sequences of selected 197 

vertebrate BATF1, BATF2 and BATF3 homologues were aligned with the ClustalW 198 

program and a phylogenetic tree was constructed using the Mega 6.0 software 199 

(Tamura et al., 2013). The neighbour-joining algorithm was used as the clustering 200 

method and the distances matrix calculated using the Poisson correction method 201 

(Saitou and Nei, 1987). The bootstrap values of tree nodes were obtained by 10,000 202 

bootstrap repetitions using the Poisson model for amino acid substitution. 203 

 204 

2.4. Tissues distribution of BATF3. 205 

 206 

  Multiple tissues including brain, intestine, pyloric caeca, gill, thymus, muscle, 207 

spleen, liver and head kidney were collected from healthy rainbow trout tofor 208 

examineing the expression of BATF3 by real-time PCR. The real-time PCR was 209 

performed using IMMOLASE (Bioline, UK) and SYBR Green fluorescent tag 210 

(Invitrogen, UK) in a LightCycler® 480 System (Roche Applied Science, UK). The 211 

primers for gene expression were designed to span exons (supplementary Table 1), to 212 

exclude the amplification of potential genomic DNA contaminationed in during RNA 213 



preparation. The PCR reaction consisted of 2 μL of primers (10 pmol each), 4 mL of 214 

cDNA and 14 μL of PCR mix. The program was as follows: 10 min at 95 ℃ for 215 

enzyme activation, 40 amplification cycles (95 ℃ for 30 s, 60-63 ℃ for 30 s and 72 ℃ 216 

for 30 s), followed by 5 s at 90 ℃ to obtain the melting curve. The serially diluted 217 

purified PCR products were used as standards to serve as reference to establish 218 

standard curves for quantification in each 96-well plate. The relative expression level 219 

of the BATF3 was calculated as arbitrary units and normalised against the expression 220 

level of rainbow trout elongation factor (EF)-1α. It has been shownA previously study 221 

showed that EF-1αa iwas one of the suitable house-keeping genes for use in salmonid 222 

gene expression studies, as seen in studies of viral infection in Atlantic salmon 223 

wherewhose expression was not altered substantially during viral infection (Løvoll et 224 

al., 2011). 225 

 226 

2.5. Expression of BATF3 in RTS-11 cells treated by TLR ligands and interferons. 227 

 228 

  The expression of BATF3 was studied in the mononuclear/macrophage -like cell 229 

line, RTS-11, from rainbow trout spleen (Brubacher, Secombes et al., 2000). The cells 230 

were maintained in Leibovitz (L-15) medium (Invitrogen, UK) containing 30% fetal 231 

calf serum (FCS; Labtech International, UK) and antibiotics (100 U/mL penicillin and 232 

100 mg/mL streptomycin; P/S; Invitrogen, UK) at 20 ℃. Five mL of cells 233 

(approximately 1 × 10
6
 cells) were seeded into 25 cm

2
 flasks (Sarstedt, Germany), 234 

cultured overnight and then stimulated for 6 or 24 h with LPS (20 μg/mL; E. coli 235 

strain 055:B5; Sigma-Aldrich, UK), recombinant Yersinia ruckeri Flagellin (rFlagellin) 236 

(20 ng/mL) (Wangkahart et al., 2016), polyI:C (50 μg/mL; Sigma-Aldrich, UK), R848 237 

(10 μg/mL; Sigma-Aldrich, UK), PHA (10 μg/mL; Sigma-Aldrich, UK), recombinant 238 

interferon 2 (rIFN2) (20 ng/mL) (Zou et al., 2007), rIFNγ (20 ng/mL) (Zou, et al., 239 

2005) or phosphate buffered saline (PBS) as control. The purity and activities of 240 

recombinant cytokines were evaluated previously (Zou et al., 2005; 2007; Gao et al., 241 

2009; Skjesol et al., 2010; Wangkahart et al., 2016; Zou, et al., 2005; 2007). Real-time 242 

PCR analysis was performed as described above. 243 



 244 

2.6. Expression of BATF3 in primary head kidney monocytes/macrophages and 245 

rIL-4/13A cultured monocytes/macrophages cells treated withby TLR ligands and/or 246 

interferons 247 

 248 

  The primary head kidney (HK) monocytes/macrophages were isolated from freshly 249 

killed rainbow trout using the method described previously by Peddie et al. (Peddie et 250 

al., 2001). Briefly, fish were anaesthetised, killed, and the anterior kidney removed 251 

aseptically and passed through a 100 µm nylon mesh using L-15 medium 252 

supplemented with P/S, heparin (10 units/mL), and 2% FCS. After centrifugation at 253 

400 x g for 10 min at 4
o
C, the primary HK cells were resuspended in incomplete cell 254 

culture medium (L-15, P/S, 0.1% FCS) and washed once. The cell suspension (5 × 10
6
 255 

cells) was seeded into 25 cm
2
 flasks containing incomplete cell culture medium (L-15, 256 

P/S, 0.1% FCS) and incubated at 20 °C overnight. The unattached cells were carefully 257 

removed and complete medium (L-15, P/S, 10% FCS) was added to the flasks. The 258 

adherent cells (mostly monocytes/macrophages) were stimulated with LPS, rFlagellin, 259 

polyI:C, R848, PHA, rIFN2, rIFNγ or PBS for 24 h as described above and then 260 

harvested for real-time PCR analysis. 261 

  Archived cDNA samples from rIL-4/13A-cultured primary HK 262 

monocytes/macrophages were analysed for the expression level of BATF3 (Wang et 263 

al., 20186). Briefly, the adherent primary HK monocytes/macrophages cells  were 264 

cultured in complete medium containing 200 ng/mL of rIL-4/13A. At days 1, 3 and 5, 265 

the medium was replaced with fresh complete medium containing 200 ng/mL 266 

rIL-4/13A. At day 7, the cells were stimulated with LPS, rFlagellin, polyI:C or R848. 267 

After 24 h, the cells were harvested for gene expression analysis by real-time PCR. 268 

 269 

2.7. Expression of BATF3 in spleen, gills and intestine during Y. ruckeri infection 270 

 271 

  The expression of BATF3 was determined in archived cDNA samples of spleen, 272 

gills and intestine taken from rainbow trout after intraperitoneal injection with a 273 



pathogenic strain (MT3072) of Y. ruckeri (0.5 mL/fish, 1 × 10
6
 cfu/mL) or 0.5 mL of 274 

PBS as control (Gorgoglione Wang et al., 2018et al., 2016 – BUT THIS PAPER IS 275 

BROWN TROUT!). Tissues from three fish were taken at 24 h post-challenge and 276 

analyzed by real-time PCR. 277 

 278 

2.8. Expression of BATF3 in kidney during IHNV infection 279 

 280 

  Six groups of 10 healthy rainbow trout (weighing ~3 g, each group containing 10 281 

fish) were used for the IHNV challenge experiment. Preparation of IHNV (strain 282 

HLJ-09) was described previously (Wang et al., 2016a; Wang et al., 2016b??? ). 283 

Thirty fFish were injected intraperitoneally with 50 μL of L-15 medium containing 1 284 

x 10
5
 pfu of IHNV. Mock-infected control groups were injected with PBS only. Head 285 

kidney was collected from infected and control fish at days 1, 3 and 5 (10 fish per 286 

group) for extraction of total RNA, using an Omega Bio-Tek extraction kit I (Omega 287 

Bio-Tek, Doraville, GA, USA) following the manufacturer’s instructions. cDNA was 288 

synthesised using oligo(dT)15 (Takara, Japan) and a Superscript Reverse 289 

Transcriptase Reagent Kit (Takara, Japan). Real-time PCR was performed using 290 

SYBR Premix EX Taq Ⅱ (Takara, Japan) on the ABI 7500 real-time PCR system 291 

(Applied biosystems, Carlsbad, CA, USA) using the following conditions: 1 cycle of 292 

30 s at 95 ℃, 40 cycle of 3 s at 95 ℃, and 30 s at 60 ℃. The average cycle threshold 293 

(Ct) was calculated from triplicate measurements using the instrument’s software in 294 

“auto Ct” mode (ABI 7500 system, version 2.3). Relative Ct values of three 295 

independent tests were calculated by the 2-
ΔΔCt

 method. EF-1α was used as an internal 296 

reference for normalization of gene expression. Infection of VHSV IHNV was 297 

verified by examining expression of the IHNV N gene and Mx gene by real-time PCR. 298 

The primers for the IHNV N gene and Mx gene awere listed in supplementary Table 299 

1. 300 

 301 

2.9. Immunohistochemical staining 302 

  AThe rabbit polyclonal antibody against the conserved leucine-zipper region of 303 



human BATF3 (Merck, Cat. No. ABE1007) was used in iImmunohistochemical 304 

staining. To verify the cross-reactivity of thishuman polyclonal BATF3 antibody with 305 

trout BATF3a and BATF3b, the full length cDNA fragments were amplified and 306 

cloned into the pHISTEV vector (kindly provided by Dr Hai Deng, University of 307 

Aberdeen) at the BamHI/HindIII sites. The resultant plasmids (pHISTEV-BATF3a and 308 

pHISTEV-BATF3b) were transformed into E. coli BL21 (DE3) cells. The cells were 309 

then induced by 2 mM IPTG overnight at 37
o
C in a shaker (150 rpm) and 20 µL of 310 

cell culture collected for SDS-PAGE gel electrophoresis and Western blotting. The 311 

rabbit anti human BATF3 polyclonal antibody and the secondary goat anti-rabbit 312 

IgG-peroxidase antibody (Sigma) were diluted by 1:100 (v/v) and 1:10,000 (v/v) 313 

respectively. Since the recombinant proteins have a 6-histidine tag at the N- terminus, 314 

athe mouse monoclonal anti-polyhistidine-peroxidase antibody (Sigma, 1:2,000, v/v) 315 

was used to validate the recombinant trout BATF3a and BATF3b detected by the 316 

human BATF3 antibody.  317 

  NextThe kidney tissue (100-150 mg) fromof healthy trout was fixed using 4% 318 

paraformaldehyde (PFA) in sterile PBS for 20 h at 4C followed by 5 washes in sterile 319 

PBS. Tissue was incubated in the final PBS wash for 1 h at 4C and stored at 4C in 320 

70% ethanol prior to further tissue processing. Tissue was embedded into paraffin 321 

wax using standard histological methods 322 

(http://www.ihcworld.com/_protocols/histology/paraffin_section.htm). 323 

Immunohistochemistry was performed using a Dako autostainer E 172566 (Model: 324 

LV-1, Dako, UK) as described previously (Alnabulsi et al., 2017; Swan et al., 2016). 325 

The tissue sections were first dewaxed in xylene for a minimum of 10 min and 326 

rehydrated by immersion in decreasing ethanol concentrations. Then, antigen retrieval 327 

was performed by heating the tissue sections for 20 min in a microwave (800 W) 328 

while sections were fully immersed in 10 mM citrate buffer (pH 6.0). After cooling, 329 

the sections were incubated with or without (negative control) a rabbit polyclonal 330 

antibody against the conserved leucine-zipper region of human BATF3 (1:100, v/v, 331 

Merck, Cat. No. AB1007) for 60 min at room temperature. The sections were then 332 

washed twice with washing buffer (Dako), blocked incubated with blocking solution 333 
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supplied by DAKO to block endogenous peroxidase activity for 7 min, and 334 

subsequently washed off with two buffer washes. Peroxidase-polymer labelled goat 335 

anti-mouse/rabbit secondary antibodies (Envision, Dako) was applied for 30 min at 336 

room temperature before being washed off with two buffer washes. To reveal sites of 337 

peroxidase activity, the tissue sections were treated with diaminobenzidine substrate 338 

for 7 min, followed by one distilled water wash. Finally, the slides were immersed in 339 

Surgipath Harris haematoxylin solution (Leica Biosystems) copper sulphate (WHY?) 340 

for 2 min and Harris? haematoxylin solution for 10 s to counterstain the cell nuclei, 341 

before being dehydrated in alcohol, then xylene and mounted. An antibody diluent 342 

(Dako) was used as negative control by incubating the slides with diluent instead of 343 

the primary antibody. The cell nuclei were counterstained by immersing the slides in 344 

filtered Harris haematoxylin solution before the control slides were then treated as 345 

abovedehydrated in alcohol, then xylene and mounted. Lastly, the slides were 346 

examined by light microscopy using an Olympus BX 51 light microscope (Olympus, 347 

Southend-on-Sea, Essex, UK) equipped with an Olympus C4040 camera (Olympus). 348 

 349 

2.9. Statistical analysis 350 

 351 

  All data were analyzed using the statistical package SPSS 19.0 (SPSS Inc, Chicago, 352 

IL) software. Statistical analyses were performed using the two tailed paired Student's 353 

T-test. Data were expressed as means +± standard error (SE), with p < 0.05 considered 354 

significant. 355 

 356 

3. Results 357 

 358 

3.1. Cloning and sequence analysis of BATF3s genes 359 

 360 

  Two BATF3 paralogues (BATF3a and BATF3b) were obtained from the rainbow 361 

trout draft genome. One matched the primer sequences reported in Granja et al. (2015) 362 

and was called BATF3a, whilst the second was termed BATF3b. The cloned cDNA 363 



sequences of BATF3a (GenBank Acc. No., accession number: KX826998) and 364 

BATF3b (GenBank Acc. No., accession number: KX826999) were 691bp and 594bp 365 

in length, with putative ORFs of 372 bp and 390 bp translating into proteins of 123 aa 366 

and 129 aa, respectively (supplementary Table S2, Fig. S1 and Fig. S2). Sequence 367 

comparison of the cDNA and genome sequences (GenBank Acc. Nos., 368 

CCAF010060656.1 and CCAF010027628.1) revealed that both BATF3 genes have 3 369 

exons and 2 introns (supplementary Fig. S1 and Fig. S2).  370 

 371 

3.2. Gene synteny analysis 372 

 373 

  Gene synteny of BATF3 genes was analyzed with neighbouring genes of 374 

Mammalia (human and mouse), Aves (chicken), Amphibia (X. tropicalis) and 375 

Teleostei. The trout BATF3a and BATF3b genes are located in two separate scaffolds 376 

(scaffold_324 and scaffold_1368), but both reside next to the ATF3 gene (Fig. 1). The 377 

tandem linkage of the BATF3 and ATF3 genes in the genome is conserved from fish 378 

to humans, suggesting that the two genes could have been duplicated from a common 379 

ancestor early in vertebrate evolution. A single copy of BATF3 is found in all of the 380 

vertebrates examined in this study except for rainbow trout and Atlantic salmon, and 381 

its gene synteny is well conserved across the vertebrate spectrum. It is common that 382 

salmonids have gene paralogues due to the 4
th

extra-round of genome duplication that 383 

has occurred in this lineage in addition to the teleost-specific (3
rd

) whole genome 384 

duplication.        385 

      386 

3.3. Domain and phylogenetic tree analysis 387 

 388 

  BATF is a nuclear basic leucine zipper protein that belongs to the AP-1/ATF 389 

superfamily of transcription factors (Echlin et al., 2000). AP-1/ATF family members 390 

possess a typical basic leucine zipper (bZIP) DNA binding and oligomerization motif 391 

which is essential for them to form homo- or hetero-dimers with preferred binding to 392 

AP-1 or CRE (cyclic AMP-response element) sites in target DNA regions (Williams et 393 



al., 2001). The bZIP domain consists of a DNA binding domain (DB), a hinge (H) 394 

region and a leucine zipper (LZ). These domains are present in all the BATF3s. The 395 

amino acid sequences of these domains are highly homologous and the six leucine 396 

residues are absolutely conserved. However, the N- and C- terminal regions of BATF3 397 

share relatively low sequence homology. Further, a single α-helix is predicted for trout 398 

BATF3s, as in human BATF3 (Fig. 3B).   399 

To gain a better understanding of the evolutionary relationships of rainbow trout 400 

BATF3s with known members of the vertebrate BATF family (BATF1, BATF2 and 401 

BATF3), BATF sequences from selected vertebrates, including elasmobranch (shark), 402 

ray-finned fish (medaka, pike, salmon, spotted gar, tilapia, medaka, zebrafish), 403 

lobe-finned fish (coelacanth), amphibian (frog), reptilian (turtle), avian (chicken) and 404 

mammalian (human and mouse) species, were used to construct a phylogenetic tree 405 

using the Neighbour-joining (N-J) method. The trout BATF3s branched closely with 406 

salmon BATF3s and formed a clade with other vertebrate BATF3s (bootstrap 407 

value=78%) that was separate to the BAFT1 and BATF2 clades (Fig. 4).  408 

 409 

3.4. Constitutive expression analysis  410 

 411 

  The expression of trout BATF3a and BATF3b were examined in tissues of healthy 412 

fish including spleen, liver, pyloric caeca, head kidney, intestine, skin, brain, gills, 413 

brainhead kidney, intestine, liver, pyloric caeca, skin, spleen, and thymus (Fig. 5). The 414 

transcript level of BATF3a was much higher than BATF3b in most tissues. The 415 

highest level of BATF3a was detected in spleen, followed by liver, pyloric caeca and 416 

head kidney.  417 

Since relatively high transcript expression was seen in immune organs, such as spleen 418 

and kidney, the distribution of BATF3 expressing cells was studied in kidney tissue of 419 

healthy fish. A It must be noted that the polyclonal antibody against the conserved 420 

leucine-zipper region of human BATF3 was used, and that itused cross-reacted with 421 

both trout BATF3a and BATF3b was first confirmed by Western blotting (Fig. 6A). 422 

BATF3 expressing cells were clearly visible in the kidney inter-tubule spaces where 423 



haematopoietic cells reside and adjacent to melano-macrophages (Fig. 6B). It must be 424 

noted that the polyclonal antibody used cross-reacted with both BATF3a and BATF3b 425 

as confirmed by Western blotting (Fig. 6) 426 

 427 

3.5. Modulation of BATF3a and BATF3b expression in vitro 428 

 429 

  RTS-11 is a monocyte/macrophage like cell line derived from spleen. When 430 

stimulated with TLR ligands, PHA and type I and II rIFNs for 24 h, BATF3a was 431 

found to be induced by LPS, R848 and type II rIFNs but not by rFflagellin, polyI:C, 432 

PHA and type I rIFN (Fig. 7A and 7B). A moderate increase of BATF3b expression 433 

was also detected in cells treated with type II rIFN. The effects of TLR ligands were 434 

also examined at 6 h after stimulation and interestingly BATF3b was induced by 435 

rFflagellin, polyI:C and R848, with although weaker induction was seen for BATF3a 436 

withby rFflagellin and R848 (Fig. 7E). These results demonstrate that BATF3a and 437 

BATF3b are differently regulated differently by TLR ligands.   438 

Primary head kidney monocytes/macrophages were next used to investigate the 439 

modulation of BATF3s expression by TLR ligands and recombinant rIFNs (Fig. 7C, 440 

D). BATF3a expression was again up-regulated by LPS, R848 and rIFNγ, the latter to 441 

a very high fold increase. However, it was also induced by the other stimulants unlike 442 

the response in RTS-11 cells. In contrast, BATF3b was induced only by flagellin, 443 

polyI:C and rIFNγ.  444 

  In our previous study, recombinant trout IL-4/13A cultured cells derived from head 445 

kidney monocytes/macrophages expressed a high level of MHCII and a moderate 446 

level of putative DC markers such as CLEC4T1/DC-SIGN and CD83, and displayed a 447 

similar morphology to mammalian DCs, with dendrites on the cell surface (Wang, 448 

Wang et al., 2016;, Johansson, Wang et al., 2016; Wang et al., 2018). Archived 449 

rIL-4/13A cultured primary head kidney monocyte/macrophage cDNA samples from 450 

TLR ligand treated cells were used to investigate the expression of BATF3 (Fig. 8). 451 

Interestingly, BATF3a and BATF3b were both significantly up-regulated in rIL-4/13A 452 

cultured cells by polyI:C and R848 (viral PAMPs) stimulation. BATF3a was also 453 



up-regulated to some extent by LPS treatment. No significant changes of BATF3b 454 

were detected in cells treated with LPS and Fflagellin (bacterial PAMPs). 455 

 456 

3.6. Modulation of BATF3a and BATF3b expression during infection 457 

 458 

  Enteric redmouth disease (ERM) is a serious septicaemic bacterial disease of 459 

salmonid fish species caused by infection with Yersinia. ruckeri (Harun et al., 2011). 460 

A pathogenic strain (MT3072) of Y. ruckeri was used to infect trout by intraperitoneal 461 

injection (Wang et al., 2018). Expression of BATF3a and BATF3b was examined in 462 

systemic (spleen) and mucosal tissues (gills and intestine) tissues. A marked increase 463 

of transcripts was seen for both genes in spleen whilst they were moderately 464 

up-regulated in intestine (Fig. 9). No significant modulation of expression was 465 

detected for either gene in gills.  466 

  The expression of BATF3 genes was lastly examined in trout juveniles during 467 

infection with IHNV. IHNV is a member of the Rhabdoviridae family and infects 468 

salmonid juveniles. A recently identified IHNV stain (HLJ-09) was used to infect 469 

trout juveniles in this study. In head kidney, both BATF3a and BATF3b were 470 

up-regulated at days 3 and 5, with increases of >50- fold in the case of BATF3a at day 471 

5 (Fig. 10). Expression of IHNV N and the antiviral gene Mx1 also increased in head 472 

kidney at days 3 and 5 post-injection (Fig. 10), verifying that infection had occurred.       473 

 474 

4. Discussion 475 

 476 

  The BATF3 genes have not been described in non-mammalian vertebrates. In the 477 

present study, two BATF3 homologues (termed BATF3a and BATF3b) have been 478 

identified and characterized in rainbow trout (Oncorhynchus mykiss). BATF3a was 479 

reported previously, as constitutively expressed in CD8a+MHC II+ DC-like cells 480 

(Granja et al., 2015). We now show it isfound to be more highly expressed in tissues 481 

such as spleen, liver, pyloric caeca and head kidney, and thatbut both paralogues can 482 

bewere up-regulated (at least to some extent) in cultured cells by PAMPs and 483 



cytokines, and in vivo by infection. Their potential role in fish immune responses is 484 

discussed below.  485 

  The BATF family consists of 3 members (BATF1-3) which are structurally related 486 

(Murphy et al., 2013). They contain a canonical α-helical bZIP domain and belong to 487 

the AP1 family which includes FOS, JUN and ATF. Unlike other vertebrates which 488 

have a single copy of the BATF3 gene, trout and salmon contain two BATF3 489 

paralogues, with the predicted proteins sharing 78.3% sequence similarity. As seen in 490 

other vertebrates, both trout BATF3a and BATF3b reside next to the ATF gene in the 491 

genome (Fig. 1). Although trout BATF3b has a slightly higher sequence homology 492 

with tetrapod BATF3 than BATF3a, all the teleost fish homologues grouped in a 493 

single clade within which the salmonid BATF3 group split into the BATF3a and 494 

BATF3b subgroups. These data support the contention that duplication of BATF3 is a 495 

salmonid-specific event likely associated with the salmonid-specific whole genome 496 

duplication (Berthelot, Brunet et al., 2014).    497 

  The expression of BATF3 is limited to leucocytes in humans and mice, and 498 

increases during cDC development. The spleen is a major secondary lymphoid organ 499 

in fish, where leucocytes (e.g. antigen presenting cells, T and B cells) interact with 500 

each other. Therefore, it is not surprising that a high level of trout BATF3a transcripts 501 

was detected in this tissue (Fig. 5). Trout BATF3a was also highly expressed in 502 

pyloric caeca. Recent studies have shown that pyloric caeca is an important organ 503 

involved in mucosal immunity and harbors a high density of B and T cells amongst 504 

others (Ballesteros et al., 2013). That the BATF3 paralogues are constitutively 505 

expressed in immune tissues suggests they may be involved in maintenance of 506 

homeostasis of the immune system in fish. 507 

  Expression modulation of trout BATF3a and BATF3b was examined in primary 508 

monocytes/macrophages isolated from head kidney and a spleen 509 

monocyte/macrophage cell line (RTS-11). In the HK monocytes/macrophages, 510 

BATF3a could be induced by all the stimuli used. Notably, stimulation with rIFNγ 511 

resulted in the largest increase of BATF3a expression (55-fold increase). In contrast to 512 

the HK monocytes/macrophages, only small changes in BATF3a and BAT3b 513 



expression were seenwas largely unaltered in the RTS-11 cells, where relatively small 514 

increases were seen after stimulation with LPS, Flagellin, poly I:C, R848 and rIFNγ, 515 

with modulation of BATF3b mainly seen at the earlier time (6 h) post-stimulaiton. It 516 

should be noted that the zinc finger transcription factors ZBTB46 and 517 

DC-SCRIPT/ZNF366 known to be involved in activation of antigen presenting cells, 518 

were down-regulated in primary HK monocytes/macrophages by rIFNγ, highlighting 519 

the central roles of rIFNγ in mediating antigen presentation in fish (Zou et al., 2005; 520 

Wang et al., 20186c; Wiegertjes et al., 2016; Zou et al., 2005).  521 

  IL-4 in combination with granulocyte macrophage colony stimulating factor 522 

(GM-CSF) is commonly used for in vitro culture of dendritic cells in humans and 523 

mice (Dauer et al., 2003). Two IL-4/13 homologues (IL-4/13A and IL-4/13B) have 524 

been identified in rainbow trout but GM-CSF is absent in teleost fish (Zou and 525 

Secombes, 2011; Wang et al., 2016c; Zou and Secombes, 2011d). Trout rIL-4/13A can 526 

enhance HK monocyte/macrophage differentiation into CLEC4T+ cells (Johansson et 527 

al., 2016). These cells express a remarkably high level of MHC II molecules and 528 

moderate levels of the macrophage colony stimulating factor receptor (MCSFR) and 529 

CD83, and display a distinct morphology when stimulated with bacterial and viral 530 

PAMPs in association with inducible expression of ZBTB46 (Wang et al., 20186c). In 531 

such cells, cultured with rIL-4/13A for 7 days, the transcript levels of BATF3a and 532 

BATF3b remained largely unchanged (7-10 x 10
-4

 of BATF3a relative to EF-1α, 1-3 x 533 

10
-4

 of BATF3b relative to EF-1α) (Figs. 5 and 8), but further stimulation, in 534 

particular with viral PAMPs, enhanced expression several fold.  535 

  The in vivo studies demonstrated that the BATF3 paralogues are also modulated 536 

during infection, in this case by bacterial and viral diseases. Relatively high increases 537 

in transcript level were seen in the target organs; spleen in the case of Yersiniosis and 538 

kidney in the case of IHNV. The kinetics of induction were was also studied duringin 539 

the case of IHNV, where maximal increases were seen several days post-infection. 540 

Taken together, the present findings suggest that BATF3 genes may have both 541 

homeostatic and inducible functions within the immune system of fish, potentially in 542 

the context of DC differentiation and activation. The characterization of BATF genes 543 



in fish provides useful data for further characterization of the role(s) of BATF3 in 544 

regulating leucocyte differentiation in early vertebrates.  545 
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 553 

Figure legend 554 

Fig. 1. Comparative analysis of gene synteny of BATF3. The rainbow trout WGS 555 

scaffolds were obtained from NCBI, and the gene synteny of other vertebrates was 556 

obtained from the Ensemble Genome Browser 557 

(http://sep2015.archive.ensembl.org/index.html). The arrows indicate the 558 

transcriptional direction. The homologous genes are shown with the same colour. 559 

Fig. 2. Amino acid sequence alignment (A), and identity/similarity analysis (B) of 560 

BATF3 in Homo sapiens, Mus musculus, Gallus_gallus, Chrysemys picta bellii, 561 

Xenopus tropicalis, Danio rerio, Oreochromis niloticus, Salmo salar and 562 

Oncorhynchus mykiss. Sequences were aligned using the ClustalW server 563 

(http://clustalw.ddbj.nig.ac.jp/). Sequence identity/ similarity was analysed using the 564 

Pair-wise sequence alignment. Identity (*), strong similarity (:) and weak similarity (.) 565 

are indicated below the alignment. The structural domains of BATF3 were predicted 566 

using the Simple Modular Architecture Research Tool (SMART) 567 

(http://smart.embl-heidelberg.de/). The core domain is boxed, with DNA binding 568 

domain (DB), hinge (H) and leucine zipper (LZ) regions indicated above the 569 

alignment. The conserved leucines are highlighted. 570 

Fig. 3. Comparative analysis of BATF3 protein structure (A), tertiary structure (B) 571 

and identity/ similarity of structural domains (C) between human (hu) and rainbow 572 

trout (rt). A, the structural domains of BATF3 molecules were predicted using the 573 

http://smart.embl-heidelberg.de/


Simple Modular Architecture Research Tool (SMART) 574 

(http://smart.embl-heidelberg.de/). The bZIP domain was constituted of a DNA 575 

binding domain, hinge region and leucine zipper region. B, the tertiary structure of 576 

bZIP domains was predicted using CPHmodels 3.2 Server 577 

(http://www.cbs.dtu.dk/services/CPHmodels/). C, domain identity/ similarity was 578 

analysed using the Pair-wise sequence alignment 579 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/).  580 

Fig. 4. Phylogenetic tree analysis of BATF1-3. The phylogenetic tree was drawn using 581 

the Mega 6.0 software. The nNeighbour-joining algorithm was used as the clustering 582 

method and the distances matrix computed using the Poisson correction method. The 583 

tree was supported by 10,000 bootstrap repetitions using the Poisson model for amino 584 

acid substitution. The bootstrap values are indicated as percentages. 585 

Fig. 5. Tissue distribution of rainbow trout BATF3. The expression levels of BATF3a 586 

and BATF3b were determined by real-time PCR and normalized to the expression 587 

level of a reference gene EF-1α. The results represent the means +± SE of five fish. 588 

Fig. 6. Western blotting (A) and Iimmunohistochemical staining (B). Twenty uL of an 589 

IPTG-induced overnight culture of E. coli BL21 (DE3) cells transformed with 590 

pHISTEV-BATF3a (Lane 1) or pHISTEV-BATF3ba (Lane 2) was analysed by 591 

Western blotting using a polyclonal antibody against the conserved leucine zipper 592 

region of human BATF3 (1:100, v/v) followed by a goat anti-rabbit IgG-peroxidase 593 

antibody (1:10,000 v/v) or the mouse monoclonal anti-polyhistidine-peroxidase 594 

antibody (Sigma, 1:2000, v/v). For immunohistochemistry,The kidney tissue (100-150 595 

mg) of healthy trout was fixed using 4% paraformaldehyde (PFA) in sterile PBS and 596 

embedded into paraffin wax using standard histological methods. The slides were 597 

incubated with (rightA) or without (leftB) the rabbit polyclonal antibody against the 598 

conserved leucine-zipper region of human BATF3 (1:100, v/v), and. The cell nuclei 599 

were counterstained with Harris haematoxylin. Arrows indicate the positively-stained 600 

cells. Bar=50 µM. 601 

Fig. 7. Modulation of expression of BATF3 in trout RTS-11 cells (A, B, E) and 602 

primary HK monocytes/macrophages (C, D). The cells were stimulated for 6 h (E) or 603 



24 h (A-D, B) with LPS (20 μg/mL), rFlagellin (20 ng/mL), polyI:C (50 μg/mL), 604 

R848 (10 μg/mL), PHA (10 μg/mL), rIFN2 (type I) (20 ng/mL), rIFNγ (20 ng/mL) or 605 

PBS (control). The gene expression levels were determined by real-time PCR and 606 

normalized to that of EF-1α. The fold changes were calculated by comparing the 607 

average expression level of each treatment group with that of the respective control 608 

group. Bars indicate means +± SE of gene expression levels of cells from three flasks 609 

for RTS-11 cells (n=3) or four fish for the primary HK monocytes/macrophages (n=4). 610 

* = p ≤ 0.05, ** = p ≤ 0.01. 611 

Fig. 8. Expression modulation of BATF3 in trout HK monocytes/macrophages 612 

cultured with rIL-4/13A. The primary adherent HK leucocytes were isolated and 613 

cultured in the presence of 200 ng/mL rIL-4/13A for 7 days. The cells were then 614 

stimulated for 24 h with LPS (20 μg/mL), rFlagellin (20 ng/mL), polyI:C (50 μg/mL), 615 

R848 (10 μg/mL), or PBS (control). The gene expression levels were determined by 616 

real-time PCR and normalized to that of EF-1α. The fold changes were calculated by 617 

comparing the average expression level of each treatment group with that of the 618 

respective control group. Bars indicate means +± SE of gene expression levels of cells 619 

from four flasks. * = p ≤ 0.05, ** = p ≤ 0.01. A, expression of BATF3a and BATF3b 620 

in HK monocytes/macrophages cultured with rIL-4/13A for 7 days; B, fold changes of 621 

expression of BATF3a and BATF3b after stimulation. 622 

Fig. 9. Expression of BATF3 in rainbow trout after infection of Y. ruckeri. Fish were 623 

challenged by intraperitoneal injection with a pathogenic strain (MT3072) of Y. 624 

ruckeri (5 × 10
5
 cfu per fish) or PBS. Gills, spleen and intestine were collected at 24 h 625 

post-challenge and real-time PCR wasere performed to determine BATF3 expression. 626 

The expression levels of BATF3a and BATF3b were normalized to that of EF-1α and 627 

fold changes calculated by comparing the expression level of challenged fish with that 628 

of the respective control fish (defined as 1). Bars indicate means +± SE of tissues 629 

from three fish. * = p ≤ 0.05.  630 

Fig. 10. Expression of BATF3, Mx1 and IHNV N in rainbow trout juveniles (~3 g) 631 

after infection with IHNV. The fish were injected intraperitoneally with 50 μL of L-15 632 

medium containing 1 x 10
5
 pfu of IHNV (strain HLJ-09). At days 1, 3 and 5, head 633 



kidney was collected for analysis of gene expression. Bars represent the fold change 634 

of expression level compared to that of uninfected control fish. Data shown are the 635 

means +± SE of 10 fish. * = p < 0.01 compared to day 1, # = p < 0.01 compared to 636 

day 3. 637 
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Fig. 2 

 

A 
Homo_sapiens                     -----MSQGLPAAGSVLQRSVAAPGNQPQPQPQQ---QSPEDDD--RKVRRREKNRVAAQRSRKKQTQKADKLHEEYESLEQEN 74 

Mus_musculus                     -----MSQGPPAV-SVLQRSVDAPGNQPQ---------SPKDDD--RKVRRREKNRVAAQRSRKKQTQKADKLHEEHESLEQEN 67 

Chrysemys_picta_bellii           -----MSLGVPASGSVLQRSASSDGNQPQ---------SPEEDD--RKIRRREKNRVAAQRSRKKQTQKADKLHEEYECLEQEN 68 

Gallus_gallus                    MPRPHSNEPRLALLPILRRSCRFGKPMSHVFRGQECAGSHEEDD--KKVRRREKNRVAAQRSRKKQTQKADKLHEEYESLEQEN 82 

Xenopus_tropicalis               -----MSERSPSASGTFQRSSAHNSSGSEADALS---HSSDTSD--RKVRRREKNRVAAQRSRKKQTQKADKLHEEYECLEQEN 74 

Salmo_salar_BATF3a               -----------------MRVW-HSVPLLQ--------SSGDEDD-DWRLKRRENNRVAAQKNRKRQTQRADELHKAYECLDQKN 57 

Oncorhynchus_mykiss_BATF3a       -----MSD--CDISSSFLQINDQSSFMLQRCE-----SSGDEDD-GWRHKRRENNRMAAQKSRNRQTQRADELHKAYECLDQKN 61 

Salmo_salar_BATF3b               -----MSD--SDISGSFLHSKNQNMLLLERCELQ---SSGDDGDEDKRLKRREKNRVAAKNSRKKQTQRADELHEAYECLEQKN 74 

Oncorhynchus_mykiss_BATF3b       -----MSD--SDISGSFLHSKNQNMLLLEICELQ---SSGDDGDEDRRLKRREKNRVAAKNSRKKQTQRADELHEAYECLEQKN 74 

Oreochromis_niloticus            -----MSD--SGFS---CQSQQNNISTNQLCEGW---ECSEDEG--RRMKRREKNRVAAQKSRKRQTQRADLLHEACELLEQRN 69 

Danio_rerio                      -----MSL--FSASSNFSRSDAPALRLYRQSE------SSDDDD--KRVKRREKNRVAAQRSRKRQTQRADELHEAYECLEQEN 69 

                                                   :         .         . .  .   : :***:**:**:..*::***:** **:  * *:*.*      

 

Homo_sapiens                     TMLRREIGKLTEELKHLTEALKEHEKMCPLLLCPMNFVPVPP---RPDPVAGCLPR 127 

Mus_musculus                     SVLRREISKLKEELRHLSEVLKEHEKMCPLLLCPMNFVQL-----RSDPVASCLPR 118 

Chrysemys_picta_bellii           TSLKREIGKLTDEMKHLSEVLKDHEKICPLLHCSMNFVTIP----RPDALTSCLPR 120 

Gallus_gallus                    TSLKKEIGKLTDEMKHLSEVLKDHEKICPLLHCTMNFVTIP----RPDALSSCLPR 134 

Xenopus_tropicalis               SSLKKEIGKLTDELKHLSQILKDHEQICPFLHCPVNYVTVPR---VTDAVPGCLPR 127 

Salmo_salar_BATF3a               RRLKKEVQFLSEEQRRLTEALKAHEPLCPIRHC-VPNLGS---GPRDVGVLSSLHR 109 

Oncorhynchus_mykiss_BATF3a       RLLKKEVQFLSEEQMRLTEALKAHEPLCLIRHC-VPTLGS---GPRDVGVLSSLPR 123 

Salmo_salar_BATF3b               RQLKKDVQFLSEEQRRLMEALKAHEPLCPIMHC-VANLGSGTLGPRDVGVPSCLPR 129 

Oncorhynchus_mykiss_BATF3b       RQLKKDVQFLSEEQRRLTEALKAHEPLCPIMHC-VANLGSGTLGPRDVGVPSYLPR 129 

Oreochromis_niloticus            RKLRREVDSLSEEQHLLTEALRAHEPFCPIMHCSFASSTSSTLQPENMAARSV--- 122 

Danio_rerio                      SLLREEVQLLIEEQQRLTDALKAHEPLCRILTCGMTPITRST-GTVPPEFTSR--- 121 

                                   *:.::  * :*   * : *: ** :* :  * .                .         

B 
 O. mykiss BATF3a O. mykiss BATF3b 

 Identity Similarity Identity Similarity 

H. sapiens            37.4% 51.8% 45.2% 60.7% 

M. musculus            38.2% 56.5% 40.1% 55.5% 

C. picta_bellii  39.2% 56.9% 43.8% 59.9% 

G. gallus           36.4% 50.7% 38.8% 55.1% 

X. tropicalis      38.2% 52.2% 45.0% 58.6% 

S. salar BATF3a           68.5% 70.8% 62.4% 70.7% 

O. mykiss BATF3a   --- --- 69.0% 78.3% 

S. salar BATF3b           69.0% 78.3% 96.9% 97.7% 

O. mykiss BATF3b  69.0% 78.3% --- --- 

O. niloticus 48.8% 60.5% 53.8% 66.9% 

D. rerio 53.5% 64.3% 50.8% 62.9% 
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Fig. 9 

 

 
  

* 

* 

* 

0 

5 

10 

15 

20 

25 

30 

35 

40 

Gills Spleen Intestine 

F
o
ld

 c
h

a
n

g
e 

BATF3a 

BATF3b 



 

Fig. 10 

 

 

 

 

 

 

 



  

Supplementary material for online publication only
Click here to download Supplementary material for online publication only: Supplementary data of BATF3 revised.docx

http://ees.elsevier.com/mimm/download.aspx?id=254749&guid=5d1319b6-c704-4cbc-a30f-471db6b3ab81&scheme=1

