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If we count backwards this 

multiplication of individuals in 

each species, in the same way as 

we have multiplied forward, the 

series ends up in one single 

parent” 

Carolus Linnaeus, 1758 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 

“All evolutionary changes 

start with changes within 

populations.” 

Wen-Hsiung Li 
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Objectives and structure of the present work 
The main goal of this thesis has been to study the population structure of a 

marine sponge species  (Crambe crambe) at different geographic levels using 

different molecular markers. 

In many organisms, particularly terrestrials, molecular markers have been 

used to answer questions about the structure and connectivity of populations, the 

potential of dispersal or the history of species, and these data were of crucial help in 

conservation and management of species. Most of these studies used allozymes 

and, more recently, mitochondrial or nuclear sequences with success. Also, 

microsatellite markers are being developed and applied with terrific success in many 

species. Unfortunately, application of molecular markers in marine environments lags 

much behind, especially for invertebrate organisms, where population genetic studies 

are still scarce and most of them involve only allozymes. Thus, this study attempts to 

contribute to the development and application of molecular markers for ecological 

and population genetic studies in marine invertebrates. 

 Most marine invertebrate organisms are benthic, and many of them sessile, 

with larvae as the main form of dispersal. Because of the intrinsic difficulty on 

following larval movements in natural environments, molecular markers appear as 

the perfect tool to track and characterize populations, and even individuals.   

Hence, in this thesis several molecular markers have been applied in a 

sponge species, and with the complementary help of previous ecological and 

biological knowledge of the species, the present-day population structure of this 

sponge has been studied, trying to uncover which factors are affecting and might 

have affected in the past the structure found, while comparing the resolution and the 

“snapshot” information recovered with each of the markers used. 

The first chapter corresponds to the introduction to the “molecular ecology 

philosophy” with especial emphasis on the history and facts of the markers used, a 

quick look at the works published in this field for marine invertebrate organisms as 

well as to what we do know about the biology and ecology of the sponge studied.  

The second chapter includes the use of mtDNA sequences of the gene 

Cytochrome Oxidase subunit I to characterize 7 populations from the western 
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Mediterranean and one population from the Canaries Islands, 86 individuals in total. 

This study represents the first survey of sequence variation of mtDNA genes among 

populations of any sponge species and has been accepted for publication in Marine 

Biology. 

In the third chapter the ribosomal Internal Transcribed Spacer-1 (ITS-1), 5.8S 

rRNA, and the Internal Transcribed Spacer-2 (ITS-2) have been analyzed for the 

same populations and individuals used in the mtDNA study plus a few other 

populations, reaching a total of 11 populations and 121 individuals. This study has 

been submitted for publication. 

 The fourth chapter describes the development and characterization of 

polymorphic microsatellite loci from a partial genomic DNA enriched library; allelic 

variation of the loci described is assessed and compared for two distant populations 

in order to weigh up the utility of microsatellites as high-resolution genetic markers for 

this species. These are the first microsatellite loci reported from any species in the 

phylum. This study has been published in Molecular Ecology Notes (2002, 2:478-

480). 

In the fifth chapter, the formerly developed microsatellite loci are genotyped for 

the same 11 populations as in chapter 3, the number of individuals analyzed has 

been increased to 286. This is the first study to use microsatellites in ascertaining 

population structure of a sponge. This study has been submitted for publication.  

The sixth and last chapter corresponds to the general conclusions of the 

thesis. 
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CHAPTER 1: General introduction 
 
 
“I will take a shot of Genes with Ecology … and mix it well please!” 

 

1-1. Generalities 

1-1-1. Molecular ecology and phylogeography 
 

Molecular ecology is the interface between molecular biology, ecology, and 

population biology. As such it includes genetic studies on population structure, 

effective population size, gene flow, population history, and demography. In addition 

to population genetic approaches using molecular markers, molecular ecology also 

uses gene and species phylogenies to study processes with effects at the population 

level.  
Phylogeography seeks to interpret the mode by which historical processes in 

population demography may have left evolutionary footprints on the contemporary 

geographic distributions of gene-based organismal traits. This analysis and 

interpretation of lineage distributions usually requires extensive input from molecular 

genetics, population genetics, ethology, demography, evolutive biology, 

paleontology, geology, and historical geography (Avise 2000).  

Understanding the molecular basis of genes has transformed biological 

research since 1953, and ecologists have participated of the fruits of this revolution. 

The use of molecular markers, beginning with restriction fragment length 

polymorphisms (RFLPs) to today’s single nucleotide polymorphisms (SNPs), has had 

a significant impact on our ability to trace parentage and kinship, to measure gene 

flow and migration patterns and to reconstruct the demographic histories of 

populations and species. The advent of modern genetic technology has provided an 

unparalleled ability to examine evolutionary and ecological forces in nature 

(Purugganan & Gibson 2003). 
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1-1-2. Population structure  
 

The populations of most, if not all, species show some level of genetic 

structuring, which may be due to a variety of non-mutually exclusive causes. Even 

the European eel (Anguilla anguilla), often considered as the classical example of a 

random mating population because all individuals are thought to migrate to the 

Sargasso Sea for reproduction, has been shown to be geographically structured 

(Wirth & Bernatchez 2001). Environmental barriers, historical processes and life 

histories (e.g. mating system) may all, to some extent, shape the genetic structure of 

populations (e.g. Gerlach & Musolf 2000; Kyle & Boulding 2000; Tiedemann et al. 

2000; Goldson et al. 2001). In addition, as the geographical distribution of a species 

is typically more extended than an individual’s dispersal capability, populations are 

often genetically differentiated through isolation by distance (i.e. populations in close 

proximity are genetically more similar than more distant populations). 

The number of alleles exchanged between populations is indicative of the 

genetic structure of a species, so understanding gene flow and its effects is central to 

many fields of research including population genetics, population ecology, and 

conservation biology… Migration homogenizes allele frequencies between 

populations and determines the relative effects of selection and genetic drift. High 

gene flow precludes local adaptation (i.e. fixation of alleles, which are favoured under 

local conditions), and will therefore impede also the process of speciation (Barton & 

Hewitt 1985). On the other hand, gene flow introduces new polymorphisms in the 

populations, and increases local effective population size (the ability to resist random 

changes in allele frequencies), thereby opposing random genetic drift, generating 

new gene combinations on which selection can potentially act. Reliable estimates of 

population differentiation are also crucial in conservation biology, where it is often 

necessary to understand whether populations are genetically isolated from each 

other, and if so, to what extent. The knowledge of population structuring may 

therefore provide valuable guidelines for conservation strategies and management 

(e.g. Avise 1992; Avise 1998; Grant & Bowen 1998; Holland 2000; Sweijd et al. 2000; 

Eding & Meuwissen 2001; Lockwood et al. 2002; Ruggiero et al. 2002). 
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We can measure genetic structure at different levels, that is: 

-The individual level: heterozygosity/homozygosity 

-The local population: allelic and genotypic diversity (Fis) 

-Among populations: distribution of allele frequencies across the local 

subpopulations (Fst) 

All these F-statistics collectively describe the population structure. We can 

explain this population structure as rising from recurrent forces that occur in each 

generation (gene flow, mating system, drift, potential of dispersal…). However, there 

are occasional processes that have very important consequences for evolution: 

historical events. For instance, habitat fragmentation may decrease gene flow and 

increase drift and inbreeding, while a range expansion may increase gene flow and 

decrease drift and inbreeding. Other important non-recurrent changes in population 

size include bottlenecks, founder events, and population growth. 

 

1-1-3. Population structure vs. population history 
 

When measuring a pattern of genetic variation, the main concern is to interpret 

the causes that drew the pattern found: Is the pattern due to recurrent evolutionary 

forces? Or it is due to historical factors? Unfortunately, these two forces are 

completely confounded in many measures we make. The reason is that historical 

events change the recurrent evolutionary forces (such as gene flow), but the 

response is not immediate. Equilibrium   takes a long time to achieve, in fact, it is 

probably rarely/never achieved in benthic invertebrates due to their reproductive 

strategies (mating structure, dispersal abilities). Population genetic equations are 

generally written to describe what the conditions will be at this equilibrium state, at 

the ideal state.  

What we measure on real populations is the result of both recurrent processes 

and historical processes that are not necessarily in equilibrium. Hence, one must 

take great care in interpreting what genetic survey data mean, especially parameters 

such as F-Statistics that are unable to distinguish between both sources of genetic 

structure. For instance, suppose a population has been fragmented into two or more 

subpopulations that experience no gene flow at all. If they had a recent shared 



Chapter 1. Generalities 

 6

ancestry, the populations could still display some genetic similarity that would yield a 

estimate of Fst<1, erroneously implying non-zero gene flow. The same may occur if a 

population expands its range over a large area from some smaller ancestral range. 

The new populations may keep for some time a genetic similarity with the original 

ones as a result of recent shared ancestry, not actual gene flow. Particular care 

should be exercised when Fst values are used to infer number of migrants (Nm) 

between populations and, hence, actual gene flow values. This inference is based on 

stringent assumptions, such as that the island model applies to the populations 

studied and that they are at equilibrium. These assumptions are rarely met in benthic 

invertebrate populations. 

Starting with Wahlund (1928), population geneticists have realized that genetic 

survey data can reveal information about population subdivision. Wright (1931, 1943) 

introduced F-Statistics as a way of utilizing allele frequency data gathered in different 

geographical locations to quantify population subdivision and estimate amount of 

gene flow. However, modern genetic surveys using restriction site or DNA sequence 

data also provide information on the evolutionary relationships of the genetic 

variation being scored, which is often presented as an allele or haplotype tree. 

Consequently, information is now available about the allele changes through 

evolutionary time as well as geographic space. This new temporal information can be 

used to understand the spatial distribution of current allelic variation. The relationship 

of population structure with population history can be investigated by using the gene 

trees. 

 

1-1-4. Gene trees and gene networks (coalescent theory) 
 

Given a sample of genes, the relationships among them can be traced back in 

time to a common ancestral gene. The genealogical pathways interconnecting the 

current sample to the common ancestor constitute a gene tree or gene genealogy 

(Posada & Crandall 2001). Gene genealogies are approximated by the estimated 

haplotype or allele trees.  

Phylogeny sensu stricto studies the hierarchical relationships between genes 

from different species. By contrast, relationships between genes sampled from 
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individuals within a species are tokogenic and not hierarchical (Hennig 1966) 

because they are the result of sexual reproduction. (Fig.1).  

  
 

There are a lot of different methods to analyse sequences for phylogenetic 

estimation; traditional methods were developed to estimate interspecific 

relationships, such as maximum likelihood, maximum parsimony and minimum 

evolution. These methods may not take into account properly the fact that, at an 

intraspecific and population level, several phenomena violate some of their 

assumptions leading to poor resolution or inadequate portraits of genealogical 

relationships (Posada & Crandall 2001).  

 It is obvious that individuals within a species diverged later than individuals 

from different species. Then, within species data sets have fewer characters for 

phylogenetic analysis, diminishing the statistical power of traditional phylogenetic 

methods. Typically intraspecific studies involve many individuals for comparison, 

whereas interspecific phylogenetic studies tend to be based on one representative 

individual per species. Because of the density of sampling, intraspecific data sets 

Figure 1. Tokogeny versus 
phylogeny. (a) Processes 
occurring among sexual 
species (phylogenetic 
processes) are hierarchical. 
That is, an ancestral species 
gives rise to two descendant 
species. (b) Processes 
occurring within sexual species 
(tokogenetic processes) are 
nonhierarchical. That is, two 
parentals combine their genes 
to give rise to the offspring. (c) 
The split of two species defines 
a phylogenetic relationship 
among species (thick lines) but, 
at the same time, relationships 
among individuals within the 
ancestral species (species 1) 
and within the descendant 
species (species 2 and 3) are 
tokogenetic (arrows). From 
Posada & Crandall (2001). 
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reach considerable sample sizes, regularly more than 100 individuals. This would 

require excessive computational time for most methods that have been developed for 

interspecific comparisons. So, new phylogenetic methods taking into account 

population evolutionary patterns are needed. Network methods appear as an answer 

to these needs. Networks can account effectively for processes acting at the species 

and population level and they are able to incorporate predictions from population 

genetics theory (Posada & Crandall 2001). These are the main advantages of 

networks over strictly bifurcating trees for estimating within-species relationships. 

Most network methods are distance methods, with the common idea of minimizing 

(with some specific restrictions) the distances (number of mutations) among 

haplotypes. 

 

1-1-5. Findings in marine invertebrate species 
 

Most marine invertebrates spend at least part of their life cycle in open water 

as free-moving gametes, larvae, or adults. Thus, even in sessile species, 

opportunities for moderate to high gene flow would seem to be the norm except 

where strong ecological or biogeographic impediments to dispersal exists. 

Nevertheless, a wide variety of phylogeographic outcomes have been observed. The 

expected pattern would be that species with high dispersal potential (i.e. with 

planktotrophic larvae) will have smooth genetic structure and high gene flow (see 

examples in Palumbi & Wilson 1990; Lacson 1992; Ovenden et al. 1992; Russo et al. 

1994) and species with low dispersal potential (i.e. with lecitotrophic larvae) will have 

stronger genetic structure (see examples in (Janson & Ward 1984; Day & Bayne 

1988; McMillan et al. 1992; Duffy 1993; Hunt 1993), but there are examples showing 

that expectations are sometimes surprisingly wrong (see examples in Solé-Cava et 

al. 1994; Grant & da Silva-Tatley 1997; Uthicke & Benzie 2000; Lazoski et al. 2001), 

and a big bunch of factors (biological, physical, ecological….) might act together and 

contributing to shape the population structure of marine invertebrate species through 

time. 

In the last decade, population genetic and phylogeographic studies in marine 

invertebrates have grown considerably, beginning with allozyme studies, continuing   
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through sequence data and in the last years incorporating microsatellites as one of 

the “star” tools. The questions investigated in these studies have been wide-ranging; 

the major topics are numbered below:  

 
1-Contrasting patterns of dispersal and reproduction 

2-Examining population genetic structure and gene flow 

3- Studying speciation and hybridisation 

4- Scanning colonisations/invasions 

5-Uncovering the phylogeography of species 

6-Investigating clonal structure 

7-Distinguishing cryptic species  

 

Although most of the studies can be considered “basic science” the knowledge 

acquired can be applied, especially in conservation matters, a field expanding more 

and more in the present days (Avise 1998; Sweijd et al. 2000).  An ecological trouble 

developed mostly in this century is the anthropogenic transport of marine organisms, 

often worldwide, via ballast waters and ship hulls (Carlton & Geller 1993; Lodge 

1993). Some of the invasions involve sibling species and, thus may go undetected by 

morphological appraisals alone. Molecular phylogeographic studies can also help 

document invasion events and pinpoint sources of the introductions (i.e. Holland 

2000; Tarjuelo et al. 2001; Turon et al. 2003). 

A sample of molecular ecological and phylogeographic works published up to 

now for marine invertebrates is presented in Table 1, indicating the central topic 

studied and the organism studied. Note that a single study may cover more than one 

topic. The list does not pretend to be exhaustive, but representative of the taxonomic 

and conceptual extent of the main lines of research undertaken in this field. 
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Table 1. Summary of some molecular, ecological and phylogeographic works published by 
now for marine invertebrates.  1- Dispersal and reproduction, 2-Genetic structure, 3-Speciation 
and hibridisation, 4-Colonisations/invasions, 5-Phylogeography, 6- Clonal structure, 7-Cryptic 
species/morphotypes. 

 
Topics (numbered as above) Organism 

1 2 3 4 5 6 7 

Sponges  Benzie et al. 

1994; Duran 

et al. 2002; 

Wörheide et 

al. 2002; 

Duran et al. in 

press; 

Wörheide et 

al. in press 

  Wörheide et 

al. 2002; 

Wörheide et 

al. in press 

 Solé-Cava & 

Thorpe 1986; 

Solé-Cava et 

al. 1991; 

Boury-Esnault 
et al. 1992; 

Muricy et al. 

1996; Klautau 

et al. 1999; 

Lazoski et al. 

2001 

Anemones  Billingham & 

Ayre 1996 

   Bronson et 

al. 1997 

 

Corals Russo et 

al. 1994; 

Hellberg 

1996 

Hellberg 

1994; Benzie 

et al. 1995; 

Bastidas et al. 

2001; 

Rodrigiez-

Lanetty & 

Hoegh-

Guldberg 

2002 

Diekmann et 

al. 2001; 

Vollmer & 

Palumbi 

2002 

 King et al. 

1999; 

Rodrigiez-

Lanetty & 

Hoegh-

Guldberg 

2002 

Coffroth et 

al. 1992; 

McFadden 

1997; 

Adjeroud & 

Tsuchiya 

1999 

 

Clams  Benzie & 

Williams 
1992; King et 

al. 1999 

     

Periwinkles  De Wolf et al. 

2000 
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Table 1. Continued 

 
Topics numbered as above Organism 

1 2 3 4 5 6 7 

Gastropods Kyle & 

Boulding 

2000; 

Wilke & 

Davis 

2000 

Grant & da 

Silva-Tatley 

1997; Quattro 

et al. 2001 

     

Oysters  Reeb & Avise 

1989; Launey 

et al. 2002 

     

Abalones  Huang et al. 

2000 

     

Nudibranchs Todd et al. 

1998 

      

Cuttlefishes  Pérez-Losada 

et al. 2002 
     

Squids  Shaw et al. 

1999 

     

Holothurias  Uthicke & 

Benzie 2000 

     

Starfishes Hunt 1993 Waters & Roy 

2003 

  Waters & 

Roy 2003 

  

Ophiuras       Baric & 

Sturmbauer 

1999 

Sea Urchins  Palumbi & 

Wilson 1990; 

McMillan et 

al. 1992; 

Palumbi et al. 

1997 

Palumbi et 

al. 1997 
    

Ascidians Ayre et al. 

1997 

  Tarjuelo et 

al. 2001; 

Stoner et al. 

2002; Turon 

et al. 2003 

  Tarjuelo et al. 

2001 

Polychaetes 

 

 

   Patti & 

Gambi 2001 

Patti & 

Gambi 2001 
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Table 1. Continued 
Topics numbered as above Organism 

1 2 3 4 5 6 7 

Bryozoans 

 

Goldson 

et al. 2001 

      

Mudcarbs    Gopurenko 

et al. 1999 
   

Shrimps Duffy 

1993 

Bohonak 

1998; Aubert 

& Lightner 

2000 

    Gusmao et al. 

2000 

Prawns  Brooker et al. 

2000 

     

Brachiopods  Endo et al. 

2001 

     

 

 

1-2. The species choice 

In order to choose the organism of study, we sought a sessile marine invertebrate 

with lecitotrophic/philopatric larvae. That was because the limited dispersal potential 

of the philopatric larvae would theoretically lead to a strong population structure (at 

least at a large geographic scale) that would help to check out the resolution of each 

marker used. To choose an organism ecologically well known was also a key factor 

in order to facilitate interpretation of the data obtained. For all these reasons, and 

because the Benthic Ecology group of the Department of Animal Biology at UB has a 

powerful inescapable fascination towards “the red sponge”, the common 

Mediterranean sponge Crambe crambe was selected for the study. At that moment, 

the biological studies performed on the species (mainly by the group at UB and the 

people of the Center of Advanced Studies at Blanes) had led to ideas about how the 

species should disperse and how populations should be established and structured. 

These ideas were untestable without the help of molecular tools.  An extra motivation 

was that at that moment no molecular markers (except allozymes) had been applied 

for genetic population studies in any sponges. 
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1-2-1. The genus Crambe and its distribution 
 

The genus Crambe (Vosmaer) contains five living species distributed mostly 

along the Mediterranean and East Atlantic coasts. In addition, a fossil species from 

New Zealand originally described under the name of Vetulina oamaruensi (Hinde & 

Holmes 1892) has recently been claimed as belonging to the genus Crambe (Uriz & 

Maldonado 1995). Living species and their distribution are listed below.  

• Crambe tuberosa (Maldonado & Benito 1991) 

Species only known by a unique, small encrusting specimen collected from 

the coralligenous facies of Alboran Island (western Mediterranean).  

• Crambe tailliezi (Vacelet & Boury-Esnault 1982) 

Species formerly discovered off the Mediterranean coasts of France and 

subsequently found in other western Mediterranean locations (Uriz et al. 1992; 

Maldonado 1993). 

• Crambe acuata (Lévi 1958) 

Species known from the Atlantic and East coasts of Africa, the coasts of 

Madagascar, and the Red sea. 

• Crambe crambe (Schmidt 1868) 

It is one of the most abundant sponges in the infralittoral western 

Mediterranean assemblages. Its geographic distribution covers the whole western 

Mediterranean from the Gibraltar strait to the Adriatic Sea (Schmidt 1862), even 

reaching Atlantic zones such as the Canary and Madeira Islands and the Saint 

Vincent Cape (Portugal). It has also been cited twice in the eastern Mediterranean 

coast in Egypt and Turkey (Burton 1936; Saritas 1972), although these specimens 

seem to be valid reports of C.crambe (Uriz, pers. com.) we believe that its 

abundance must be much lower than in the western area as it has not been reported 

again. 

• Crambe erecta (Pulitzer-Finali 1992) 

Species known from just one specimen collected from North Kenya Banks 

(east African coast). 
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Finally, it should be kept in mind that there are potential confusions between Crambe 

crambe and other sponge taxa, such as Batzella inops, Stylinus brevicuspis or 

Hymeniacidon sanguinea  (M.J. Uriz, pers. com.). 
 

1-2-2. The target species: Crambe crambe 
 

Crambe crambe (Schmidt 1862) is a Poecilosclerid red encrusting sponge 

(Fig. 2). It reaches a maximum surface area of 0.5 m2 and it is always found free of 

macro-epibionts. This species has been reported to have strong bioactivity that 

appears to perform multiple ecological roles such as space competition or predator 

avoidance (Becerro et al. 1997). Furthermore, it is practically free of symbionts 

(Galera et al. 2000), a very convenient characteristic taking into account the 

important potential problems that DNA contaminations from prokaryote symbionts 

pose to molecular studies on sponges (Lopez et al. 2002).  Regarding its ecological 

distribution, C. crambe is one of the most abundant species in the Mediterranean 

littoral waters. It inhabits both well-illuminated and dark habitats at depths ranging 

from 1 to 60 meters and from hard substrata to Posidonia oceanica sea grass beds; it 

is one of the few species able to grow even among the invasive algae Caulerpa 

taxifolia in the western Mediterranean. 

 

 

Figure 2. Crambe crambe 
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The distribution range of the sponge goes from the east Atlantic Ocean 

(Canary and Madeira Islands) to the western Mediterranean reaching the Adriatic 

Sea (Thiele 1889) and the coasts of Egypt and Turkey (Burton 1936; Saritas 1972). 

The sponge attains its maximum abundance in the western Mediterranean Sea 

(Fig.3) where it can reach a abundances of ca. 67±2.7 individuals per m2 and 

47%±1.9% cover (Uriz et al. 1998) The species grows on a seasonal basis, being the 

warm season the period of active growth. However, growth rates were remarkably 

low in C. crambe (Turon et al. 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Studies on C. crambe growth dynamics (Turon et al. 1998) show that this 

sponge is able to reproduce asexually by means of fission and that fusion of sponges 

also occur, although, the importance of these asexual processes was not as relevant 

to its demography as in other encrusting invertebrates.  

C.crambe is hermaphrodite and reproduces sexually by releasing sperm to the 

water via the oscula. Sperms are captured by other individuals via the inhalant pores 

and fertilize the mature oocytes. Embryos are incubated and larvae are released 

through oscula when ready for dispersal (from the end of July to the end of August in 

Figure 3. Crambe crambe distribution area. In red are areas where it has been
found in abundance. In blue, areas where its abundance is unknown or
supposed to be scarce. In blue+red are areas where it is known to be at low
abundance. 
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north western Mediterranean). Embryos are found in high numbers from April 

onwards, the density of embryos is 76.2±12.5 embryos cm-2, although some 

specimens can brood an extremely high density of embryos (more than 200 embryos 

cm-2) (Uriz et al. 1998).  Once released, larvae swim in a corkscrew motion in a wavy, 

irregular way and are dispersed several meters away from the parental sponge 

immediately after release. Larvae have a 24-72h free-living stage (laboratory 

assays), after that, they settle down with a tendency to settle within spaces 

surrounded by conspecifics (Uriz et al. 1998).  

Predation on C.crambe larvae and settlers has been documented by small fish 

(Uriz et al. 1996), a cnidarian (Eudendrium ramosum L.) (Uriz et al. 1998) and 

copepods feeding on young sponges (rhagons) (Mariani & Uriz 2001). Predation on 

C.crambe adults has not been reported.  

In summary, we can say that C.crambe is one of the ecologically best-known 

sponge species in the Mediterranean Sea. Its symbiont free nature together with its 

high abundance and its distribution makes this sponge the best choice for a 

population genetics survey. Given the phylopatric behaviour of its larvae due to its 

short life-span, we expect that Crambe crambe populations will be closed enough to 

show high levels of differentiation even at a medium scale (tens of kilometres) and 

that this sponge will follow an Isolation by Distance pattern of dispersal.   

 

1-3. The marker choice  

Due to the remarkable developments in the field of molecular genetics, a 

variety of different techniques to analyse genetic variation have emerged during the 

last few decades. These genetic markers may differ with respect to important 

features, such as genomic abundance, levels of polymorphism detected, locus 

specificity, reproducibility, technical requirements and financial investment. 

Therefore, none of the available techniques is superior to all others for a wide range 

of applications; rather, the key-question is which marker to use in which situation. 

The choice of the most appropriate genetic marker will depend on the specific 

application, the presumed level of polymorphism, the presence of sufficient technical 
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facilities and know-how, time constraints, and financial limitations (Brown 1996; 

Parker et al. 1998; Ross et al. 1999). 

 

1-3-1. PCR-Sequencing 
 

PCR-sequencing involves determination of the nucleotide sequence within a 

DNA fragment amplified by the Polymerase Chain Reaction (PCR) using specific 

primers (15-35 bp) for a particular genomic site. The method most commonly used to 

determine nucleotide sequences is based on PCR reactions with labelled dideoxy 

terminators. PCR-sequencing provides the ultimate measurement of genetic 

variation. Universal primer pairs to target specific sequences in a wide range of 

species are currently available for mitochondrial and nuclear genomes. Because 

sequencing is costly and time-consuming, most studies have focused on only one or 

a few loci. Due to this restricted genome coverage and the fact that different genes 

may evolve at different rates, the extent to which the gene diversity estimated reflects 

overall genetic diversity is questionable. Because it is in general difficult to target a 

gene or area with enough nucleotide variation below the species level, PCR-

sequencing is particularly useful to address questions at higher taxonomic levels, e.g. 

phylogeny reconstruction (Sanger et al. 1977). Nevertheless, some mitochondrial 

DNA (mtDNA) and ribosomal DNA (rDNA) genes/areas are known to be high-

resolution markers for intraspecific studies in most of the phyla. 

 
 

1-3-1-1. MtDNA sequences  
 

Approximately 70 percent of phylogeographic studies conducted to date 

involved analyses of animal mitochondrial (mt) DNA either primarily or exclusively 

(Fig. 4).  

In 1975, Brown & Wright published the first significant analysis of mtDNA 

variation in nature in a brief paper on parthenogenetic lizards. This paper pioneered a 

series of studies spanning two decades that documented the power of mtDNA 

analysis in deciphering the evolutionary origins and ages of numerous vertebrate 

taxa, reviewed in Avise (1992).  
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Figure 4. Breakdown of the phylogeographic articles according to the 
molecular assay procedure employed (from 1987 to 1998). From Avise 
(2000) 

 

 

Several early studies used Random Fragment Length Polymorphism (RFLP) 

markers to document at the molecular level what had been suspected from 

cytological and genetic investigations early in the century: mtDNA is transmitted 

maternally in higher animals (for an exception see Zouros et al. 1994). Because of 

the uniparental transmission of mtDNA in the majority of animals, recombination was 

thought not to be occurring, but recent studies have found examples not only in 

animals with doubly uniparental inheritance of mtDNA (i.e. Mytilus galloprovincialis) 

but also in a few animals with standard maternal mtDNA inheritance: an amphibian, a 

crustacean, a mammal and a fish (Ladoukakis & Zouros 2001; Hoarau et al. 2002). 

In 1979, Brown et al. published another influential article announcing an 

unexpected fast pace of mtDNA sequence evolution as gauged by interspecies 

comparisons of higher primates. This led to a widely used “clock” calibration for 

animal mtDNA: about 2 percent sequence divergence between pairs of lineages per 

million years (or 1 percent sequence evolution per lineage per 106 years) (Avise 

2000). The finding of a high evolutionary rate for mtDNA came as a complete 

surprise. At face value, it appeared to violate a fundamental principle of molecular 

evolution: that constraint on function implies constraint on macromolecular structure. 
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Several hypotheses have been put forward to account for the rapid evolution 

of animal mtDNA (Wilson et al. 1985; Gillespie 1986; Richter 1992; Li 1997; Nebdal & 

Flynn 1998):  

 

• Relaxation of functional constraint, because mtDNA does not code for 

proteins involved directly in its own replication or transcription, and 

because a molecule that produces only 13 kinds of polypeptides might 

tolerate less accuracy in translation. 

• A high mutation rate, due to an inefficiency of DNA repair systems, high 

exposure to mutagenic free radicals in the oxidative mitochondrial 

environment, or fast replicative turnover within cell lineages.  

• The nakedness of mtDNA. This molecule is not complexed with histone 

proteins that are evolutionarily conserved and might constrain rates of 

nuclear DNA evolution.  

 

Regardless of the cause, rapid sequence evolution is a prerequisite for a 

marker to be used as a microevolutionary phylogenetic tool, thus, high mutation rates 

in mtDNA (for exceptions see (Gillespie 1986; Shearer et al. 2002; Duran et al. in 

press) assure a good resolution of this marker for this kind of studies. 

A very important aspect of the early mtDNA studies was the introduction of 

explicit phylogenetic concepts to intraspecific evolution. Before these studies, a fixed 

idea was that phylogeny had no meaning at the intraspecific level because, for 

sexually reproducing organisms, conspecific lineages are anastomosing rather than 

hierarchically branched (Fig.1). Hennig (1966) characterized biological speciation as 

the demarcation between the realms of tokogenetic associations (genetic 

relationships among individuals, where phylogenetic concepts supposedly did not 

apply) and phylogenetic associations among species. However, due to the 

uniparental mode of DNA transmission and general lack of recombination, mtDNA 

gene trees are non-anastomosing and hierarchically branched even within sexually 

reproducing species. Thus, the extended matrilineal component of organismal history 

can be assessed using the algorithms and perspectives of phylogenetic biology.  
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Regarding mtDNA, we have to keep in mind that we inherit our mtDNA from 

just one of our sixteen great-great grandparents, yet this maternal ancestor has only 

contributed one-sixteenth of our nuclear DNA (Wainscoat 1987). Thus, although the 

information recorded in mtDNA represents only one of many molecular tracings in the 

evolutionary histories of organisms, it is nonetheless a specified genealogical history, 

that of the females (Avise et al. 1987). 

Table 2 summarizes the major empirical findings on animal mtDNA and two of 

the unorthodox perspectives (Avise 1991) they entail for phylogenetic appraisals at 

microevolutionary scales. 

 

Table 2. Molecular and transmission genetics of animal mtDNA: unanticipated 
discoveries and unorthodox conceptual orientations for microevolutionary 
analysis. From Avise (2000) 

 
Observations 
1) Animal mtDNA displays extensive intraspecific polymorphism and often evolves 

faster than typical single-copy nuclear DNA. 

2) Most mtDNA variants involve nucleotide substitutions or small length changes; gene 

order is highly stable over short evolutionary time. 

3) Populations of mtDNA molecules inhabit somatic-cell and germ-cell lineages. 
4) Most individuals typically are nearly homoplasmic for a single prevalent mtDNA 

sequence; genetic sorting from heteroplasmy is relatively rapid. 

5) MtDNA inheritance is asexual, maternal (almost exclusively), and normally 

apparently without intermolecular genetic recombination. 

Immediate phylogeographic outcomes: 

1) Individual animals can be viewed as OTUs in phylogenetic appraisals. 

2) MtDNA genotypes record matrilineal relationships within and among species. 
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1-3-1-2. rDNA sequences: The Internal Transcribed Spacers 
 

rDNA codes for the RNA component of the ribosome. The rDNA is a multigene 

family with nuclear copies in eukaryotes arranged in tandem arrays (Figure 5). They 

are organised in nucleolus organiser regions (NORs), potentially at more than one 

chromosomal location. Each unit within a single array consists of the genes coding 

for the small and large rRNA subunits (18S and 28S). The 5.8S nuclear rDNA gene 

lies embedded between these genes but separated by two internal transcribed 

spacers: ITS1 and ITS2. The external transcribed spacer (ETS) and the intergenic 

spacer (IGS) separate the large and small subunit rDNAs (Fig.5). 

 

 
 

Different selective forces are acting on the rDNA region with the consequence 

of varying degrees of sequence conservation across single repeat units. Therefore, 

each part can be employed for specific phylogenetic questions across a broad 

taxonomic spectrum (Hillis & Dixon 1991). The small subunit is highly conserved and 

has been used to shed light on deep evolutionary branches, e.g. for relationships 

between Archaebacteria and Eubacteria, and to uncover evolution within Metazoans, 

while the more conserved domains within the 28S region have been used to cover 

evolutionary time through the Palaeozoic and Mesozoic eras. The faster evolving ITS 

regions, however, have been employed for populations and congeneric phylogenies 

(Wörheide et al. 2002). The smallest rDNA gene of the cluster, the 5.8S, is too short 

to provide a robust phylogenetic signal.  

PCR amplification of the ITS region has become a popular choice for 

phylogenetic analysis of closely related species and phylogeography studies within 

species, some recent examples of their use in marine invertebrates are: van Oppen 

Figure 5. Organisation of one rDNA array. 
Single repeat units (black dots) are 
tandemly organised. Each of them 
consists of the rRNA genes: 18S, 5.8S 
and 28S. Spacers separate these genes, 
namely the external transcribed spacer 
(ETS), the internal transcribed spacers 
(ITS 1 and ITS 2) and the intergenic 
spacer (IGS).

 

ETS IGS
18s 

ITS1 ITS2 

5.8s 28s 
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et al. (2000); McCormack et al. (2002) or Thacker & Starnes (2003). This popularity 

stems from the derivation of universal primers located in the coding regions flanking 

the ITS. Both direct sequencing and cloning of PCR products can be used for ITS 

analysis. Their deployment depends on the hierarchical scale of the question. Direct 

sequencing generates a consensus sequence for phylogenetic analysis. For 

population questions, if within individual polymorphism is found, additional profit is 

gained from information on variation at the level of single repeat units. Hence, PCR 

products need to be cloned and sequenced.  

Ribosomal DNA genes evolve cohesively within a single species and exhibit 

only limited sequence divergence between rDNA copies within single individuals 

(Arnheim et al. 1980). In contrast, comparisons between species show normal levels 

of sequence divergence. The combination of these two observations is referred to as 

concerted evolution (Dover 1982). The mechanisms driving concerted evolution are 

unequal crossing over and gene conversion. Irrespective of the precise mechanism, 

the degree of within-individual homogenisation is a result of the interplay between 

homogenisation mechanisms and mutation processes (Schlötterer & Tautz 1994) 

Since rDNA clusters are frequently distributed on several chromosomes, a potential 

problem relates to what extent concerted evolution is hindered by the different 

chromosomal location of the arrays. 
 

1-3-3. The Microsatellites 
 

Within the past decade microsatellites (Variable number of tandem repeats: 

VNTR, Simple sequence length polymorphism: SSLP, or Single sequence repeats: 

SSR) have become one of the most popular genetic markers for molecular ecologic 

studies. 

Microsatellites consist of tandem repeats of sequence units, each generally 

less than 5 base pairs in length, such as (TG)n or (CGA)n. They are widely dispersed 

in eukaryotic genomes and in the chloroplast genome of plants, and are often highly 

polymorphic due to variation in the number of repeat units (Bruford & Wayne 1993), 

furthermore they are generally considered neutral because they are generally in non-

coding regions, so that selection and environmental pressure do not influence their 
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expression directly. However, microsatellites might be linked to selected genes and 

thus may not be strictly neutral (Estoup & Angers 1998).  

The mean density of microsatellites within species varies widely among 

taxonomic groups and sometimes among species within a taxonomic group (Estoup 

& Angers 1998). Regarding the nature of the motif array sequence, microsatellites 

can be classified as perfect, imperfect or compound sequences (Weber 1990). 

Perfect microsatellites are composed of uninterrupted stretches of repeat units, while 

in imperfect microsatellites; one to several bases interrupts the perfect array.  

Compound microsatellites consists of neighbouring repeated sequences composed 

of different repeat types. 

In 1989, three papers independently reported the isolation and 

characterisation of allelic variability at microsatellite loci using PCR (Litt & Luty 1989; 

Tautz 1989; Weber & May 1989). In these studies, microsatellites in several species 

were either cloned and sequenced, or identified in sequence databases. PCR 

primers were designed from sequences flanking the tandem repeat, and the 

polymorphic amplified products were separated on polyacrylamide gels allowing the 

resolution of alleles differing by as little as 1 base pair. Nowadays automated 

sequencers allow the sizing of alleles in a faster and more reliable way. 

Since those initial studies, microsatellite loci have been widely used and have 

proved to be highly polymorphic. Furthermore, their abundance and ubiquitous 

distributions have rendered them very popular and valuable markers. Microsatellites 

have been established as a marker of choice for the identification of individuals and 

paternity testing, and even more, the high sensitivity of PCR-based microsatellite 

analysis opened completely new research areas, such as the analysis of samples 

with limited DNA amounts, or degraded DNA such as faeces or museum material 

(Schlötterer 2000). Microsatellite analysis has also been employed in population 

genetics, molecular systematics and ecology (Estoup & Angers 1998; Goldstein & 

Schlötterer 1999). However, the great potential of microsatellite markers is actually 

limited by the time consuming and technically demanding development step, the poor 

knowledge of their mutational processes and, consequently the lack of specific 

methods for analysing the data. 
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One of the major drawbacks of PCR-based microsatellites is that when no 

single locus sequence is available in the literature they must be first isolated from the 

genome of the species in question. For isolation of microsatellite loci, there are highly 

detailed protocols available at the World Wide Web (see for instance 

http://www.inapg.inra.fr/dsa/microsat/microsat.htm). Another strategy consists in 

testing primers described for microsatellite loci in close species (cross-priming 

strategy), but rates of success vary greatly depending on taxa and loci. Generally, 

when cross-priming strategy works and PCR amplifications are obtained with non-

specific primers, the result tend to be lower levels of polymorphism and lower PCR 

pattern quality with an increase on the frequency of null alleles (alleles with no PCR 

amplification) (Estoup & Angers 1998).  

Intra-allelic processes, such as replication slippage and unequal crossing 

over, can explain mutational events in microsatellite loci. Although several mutation 

models have been proposed for microsatellites (i.e. Estoup et al. 2002; Li et al. 

2002), two main models will be considered here: the infinite alleles model (IAM, 

Kimura & Crow 1964) and the stepwise mutation model (SMM, Kimura & Ohta 1978). 

The SMM describes the gain or loss of a single tandem repeat and hence mutation 

can drive to allelic states already present in the population. Under IAM model, a 

mutation involves any number of tandem repeats and always results in an allelic 

state not previously encountered in the species. Nevertheless, it seems that none of 

the models are strictly followed by microsatellite loci, and therefore more complex 

models might be involved in the polymorphism in length observed within loci. For a 

detailed review of the factors affecting microsatellite evolution see Estoup & Cornuet 

(1998). 

The high polymorphism of microsatellites allows studying population structure 

at different levels, from a biogeographic range to a local or intrapopulation level. 

Microsatellites may allow the detection of genetic differences that less polymorphic 

markers could not reveal (Estoup et al. 1998). Their variability is so large that, even 

with a small number of loci and a large number of individuals, all individuals may 

have unique multilocus genotypes permitting analyses at the individual level. Most of 

their applications in ecology had been in uncovering population differentiation, 

effective population size; establishing mating structures, estimating genetic 
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relatedness between groups or pairs of individuals, parentage assignment, and 

detecting clone sizes. However its application in phylogenetic relationships among 

populations has not yet been substantial (Estoup & Angers 1998).  
 



 

 26



Chapter 2. Abstract 

 27

CHAPTER 2: Low levels of genetic variation in 
mtDNA sequences over the western Mediterranean 
and Atlantic range of the sponge Crambe crambe 
(Poecilosclerida) 
 

 

 

 

 

 

 

 

 

 

 

2-1. Abstract 

  Crambe crambe is a common encrusting sponge found in the Mediterranean 

and Atlantic littoral. An analysis of a partial sequence (535 bp) of the mitochondrial 

DNA (mtDNA) gene cytochrome oxidase subunit I (COI) was conducted in an attempt 

to determine population structure in this species. This is the first study of population 

genetics using this kind of marker in the phylum. Samples (N=86) were taken in eight 

populations separated by distances from 20 to 3000 Km spanning from the western 

Mediterranean to the Atlantic. Low variability of this gene was found as only two 

haplotypes were identified along with low nucleotide diversity (π=0.0006). However, 

the different frequencies found among populations revealed genetic structure and low 

gene flow between close populations as expected from the dispersal biology of the 

species. The low variability found in sponges is in agreement with reports on 

cnidarians and points to a high conservation of mtDNA in diploblastic phyla. 
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2-2. Introduction 

In the last years, molecular techniques have allowed the study of population 

structure and dynamics in benthic invertebrates. These techniques provide powerful 

tools for analysing dispersal, colonisation patterns and gene flow between 

populations over varying geographic scales (Palumbi 1995). 

Sponges are a group whose larvae probably disperse over short distances 

(Borojevic 1970; Sarà & Vacelet 1973; Maldonado & Uriz 1999; for an exception see 

Vacelet 1999). They are one of the dominating benthic groups in terms of biomass 

and species diversity, yet studies on the population structure and gene flow among 

conspecific populations are still scarce. Up to now, allozymes have been the most 

commonly applied markers in those studies (reviewed in Solé-Cava & Boury-Esnault 

1999; Borchiellini et al. 2000). Results showed a prevalence of cryptic species that 

had gone undetected with previous morphological studies (Solé-Cava & Thorpe 

1986; Boury-Esnault et al. 1992; Benzie et al. 1994; Klautau et al. 1994; Muricy et al. 

1996; Boury-Esnault et al. 1999; Klautau et al. 1999) and that can potentially 

confound studies of genetic connectedness among populations. Once valid units 

(species) have been detected and investigated, the results tend to show high levels 

of genetic variation and population structure (even over small geographic scale), 

correlated with the allegedly low dispersal capability of sponge larvae or/and its high 

philopatry (Benzie et al. 1994; Klautau et al. 1999; Solé-Cava & Boury-Esnault 1999; 

Lazoski et al. 2001).  

There is a need for expanding the panoply of molecular tools available in the 

context of population genetics of sponges, especially considering that; in general, 

allozymes evolve at a slower rate than mtDNA and nuclear DNA such as 

microsatellites (Bossart & Prowell 1998). Recently Wörheide et al. (2002), have 

shown the utility of Internal Transcribed Spacers rDNA sequences in sponge 

phylogeography. On the other hand, analysis of mtDNA sequence data has proved to 

be a powerful tool for tracing recent evolutionary history, such as founder events, 

populations bottlenecks and population range fluctuation in marine invertebrates 

(Gopurenko et al. 1999; King et al. 1999; Wilke & Davis 2000; Tarjuelo et al. 2001). 

This is mainly because of its maternal inheritance without recombination, higher 
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mutational rate, shorter coalescence times and more sensitiveness than nuclear 

genes in reflecting the genetic impact of population subdivision over large 

geographical scales (Avise et al. 1987; Palumbi et al. 2001). MtDNA has become a 

method of choice for intraspecific phylogeographic studies (Avise 2000). 

The objective of this study was to use mtDNA sequence variation for detecting 

intraspecific genetic structure among populations of a sponge species and to assess 

the utility of this marker. Erpenbeck et al. (2002) and Schröder et al. (2003), have 

explored the usefulness of COI sequence data in unravelling interspecies 

relationships in sponges but, to our knowledge, this study represents the first survey 

of sequence variation of this gene among populations of any sponge species. 

 Crambe crambe (Schmidt 1862) is a common encrusting sponge 

widespread along the western Mediterranean sub-littoral (Boury-Esnault 1971; 

Pulitzer-Finali 1983; Uriz et al. 1992) and recently found in the Canary and Madeira 

Islands in the Atlantic ocean (pers. obs.). It was also cited once in the Adriatic sea 

(Schmidt 1862), and in the eastern Mediterranean coast in Egypt and Turkey (Burton 

1936; Saritas 1972) respectively. The scarcity of reports from the eastern 

Mediterranean (even acknowledging that there are much less studies in this area) 

suggests that the species is far less abundant than in the western Mediterranean 

basin. C. crambe is one of the best-known sponge species from the point of view of 

its biology and ecology (Becerro et al. 1997; Turon et al. 1998; Uriz et al. 1998). In 

addition, Crambe crambe is virtually free of microsymbionts (Becerro 1994; Galera et 

al. 2000), which avoids one of the most problematic aspects of sponge population 

studies, that of determining whether symbiont-derived markers or true sponge 

markers are being investigated (Lopez et al. 2002). 

Field and laboratory studies on the swimming behaviour and dispersal abilities 

of its larvae (Uriz et al. 1998) indicate that C. crambe populations are likely to show 

restricted gene flow at scales of tens of Km (hundreds at most). Moreover 

microsatellite analysis of one Mediterranean and one Atlantic populations of C. 

crambe indicated a marked genetic structure between these populations (Duran et al. 

2002). Considering this previous biological and genetic knowledge, we will 

investigate which kind of population structure can be recovered from comparisons of 

mtDNA sequences in this species.  
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2-3. Materials and methods 

2-3-1. Sampling 
 

86 individuals of Crambe crambe were collected from six locations along the 

western Mediterranean coast and from two locations on the Atlantic Ocean, spanning 

about 3000 Km (Fig.6). Sampling was undertaken by scuba diving. In order to avoid 

sampling the same clone, sponges were collected at least five meters apart from 

each other.  

 

 

 

Figure 6. Map showing the localities sampled. MAD: Madeira, CAN: 
Gran Canaria, GAT: Cabo de Gata, BAL: Eivissa, TOS: Tossa de 
Mar, CRE: Cap de Creus, BNY: Banyuls Sur Mer, COR: Corsica 

 

 

2-3-2. DNA extraction and amplification 
 

We extracted total DNA from sponge tissue using the 'QUIamp Mini Kit' 

(Quiagen). We used the Universal Primers HCO2198 and LCO1490, described in 
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Folmer et al. (1994), for the amplification of a 710 bp fragment of the cytochrome 

oxidase subunit I gene (COI).  

PCR amplification was performed in a 20µl total reaction volume with 0.4µl of 

each primer (25µM), 0.5µl dNTP's (10 mM), 2µl 10X buffer containing 15mM MgCl2 

(Promega), 1 U Taq Polymerase (Promega) and 0.5µl template DNA. An initial 

denaturation at 94ºC for 2 min was followed by 35 cycles (94ºC for 50 s, 40ºC for 55 

s, and 72ºC for 1 min) and a final extension at 72ºC for 7 min.  

 

2-3-3. DNA sequencing 
 

The sequencing reaction was carried out with the 'ABI Prism dRhodamine 

Terminator Cycle Sequencing Ready Reaction Kit' (Perkin Elmer) on an ABI Prism 

377XL automated sequencer using the same primers used for the amplification step. 

Two sequences per individual (forward and reverse) were obtained. In 6 individuals 

of the minoritary haplotype (see below), we performed a second independent PCR to 

ensure that the result obtained was not an artefact. 

The nucleotide sequence data reported in this paper have been deposited in 

the GenBank nucleotide sequence database with accession numbers AF526297 and 

AF526298. 

 

2-3-4. Data analysis 
 

Sequences were aligned in a multiple alignment with the Clustalx program 

(Thompson et al. 1997). After alignment and trimming, the final sequence length 

used was 535 bp. Nucleotide diversity and haplotype diversity (Nei 1987) were 

calculated for each location. We calculated pairwise FST values and their significance 

for all populations. We used the exact test of population differentiation (Raymond & 

Rousset 1995a) to test the null hypothesis that observed haplotype distribution is 

random with respect to sampling location. We also run the Ewens-Watterson 

neutrality test with 10000 permutations. Analysis of molecular variance (AMOVA) 

was conducted to estimate the fraction of variability attributable to differences among 

and within populations. These analyses where performed using ARLEQUIN version 
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2000 (Schneider et al. 2000) and DnaSP version 3 (Rozas & Rozas 1999). To test for 

isolation by distance (Rousset 1997) we used the Mantel test implemented in 

Genepop (version 3.3) (Raymond & Rousset 1995b)  

 

2-4. Results 

Nucleotide sequences 535 bp in length were obtained from the COI gene of 

the 86 Crambe crambe specimens, revealing one polymorphic position resulting in 

two haplotypes (H1 and H2) and low nucleotide diversity (π=0.0006). The observed 

change was a transition (T-C) resulting in a synonymous substitution. Although there 

are virtually no prokaryote symbionts in this species, there is always a slight 

possibility to amplify contaminations from small DNA-templates of water column 

(bacteria, algae, etc.).  To confirm the Metazoan nature of our sequences we 

performed a BLAST search in GenBank. The best match we obtained was with 

another sponge (Placospongia), followed by cnidarians (Montastrea, Agaricina) and 

molluscs (Diodora, Tryonia). This result, as well as the constancy obtained in the 

sequences (only two haplotypes), makes us confident that our sequences were not of 

symbiont origin or contamination. 

Both haplotypes were found throughout the geographical range sampled along 

the Mediterranean coast although different populations exhibited distinct haplotype 

frequencies (Table 3). Only haplotype I (H1), the most frequent in the Mediterranean 

region, was found in the Atlantic populations (Fig.6, Table 3). H1 had a frequency 

greater than 60% in all Mediterranean populations except for Banyuls-sur-Mer, where 

H2 was the most frequent, with a frequency of 90%. Estimates of haplotype diversity 

(h), a measure of within-population haplotype variation (Nei 1987), ranged from 0 to 

0.533 (Table 3).  
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Table 3. Populations studied (Code as in Figure 6), geographical location, 
haplotype frequencies, total sample size (N), haplotype diversity (h) and its 
standard error (SE) are listed. 

 

Population Location H1 H2 N 
h 

(SE) 

MAD  
32°45’N 

17°00’W 
1.00 0.00 8 0.00 

CAN 
27°48’N 

15°47’W 
1.00 0.00 11 0.00 

GAT 
36°48’N 2°14’W 

0.82 0.18 11 
0.327 

(0.153) 

TOS 41°43’N 2°56’E 1.00 0.00 15 0.00 

CRE 
42°19’N 3°19’E 

0.60 0.40 10 
0.533 

(0.094) 

BNY 
42°29’N 3°08’E 

0.09 0.91 11 
0.182 

(0.143) 

BAL 
38°54’N 1°26’E 

0.89 0.11 9 
0.222 

(0.166) 

COR 42°41’N 9°26’E 1.00 0.00 11 0.00 

 

 

The results of the exact test for population differentiation based on haplotype 

frequencies revealed significant heterogeneity in the distribution of haplotypes across 

the samples (P<0.05). Pairwise tests for genetic differentiation among populations 

revealed significant values in comparisons involving Banyuls-sur-Mer with the rest of 

populations sampled (Table 4). There was no evidence for isolation by distance 

(Mantel test, P=0.802). The AMOVA showed that there was a significant genetic 

variance among populations (φST=0.565). The allele distribution was found to be non-

neutral by the Ewens-Watterson test for either Banyuls-sur-Mer or Eivissa, whereas 

the Cabo de Gata and Cap de Creus populations were found to have neutral 

distributions. In the remaining populations this test could not be run, as only one 

haplotype was present. 
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Table 4.  Pairwise Fst values between populations (Codes as in Figure 6). Significant 
values at P<0.05 are indicated with an asterisk. 

 
 MAD CAN GAT TOS CRE BNY BAL

CAN 0.000       

GAT 0.059 0.100      

TOS 0.000 0.000 0.140     

CRE 0.296 0.349* 0.016 0.405*    

BNY 0.883* 0.900* 0.665* 0.915* 0.393*   

BAL -0.014 0.023 -0.091 0.060 0.099 0.755*  

COR 0.000 0.000 0.100 0.000 0.349* 0.900* 0.023

 

 

2-4. Discussion 

Our results revealed high genetic similarity among the western Mediterranean 

and Atlantic populations of C.crambe separated by distances up to 3000 km, as a 

result of low levels of genetic diversity (π=0.0006) found in the COI gene studied. 

This degree of diversity is much lower than that found among populations of other 

invertebrates with lecitotrophic larvae (e.g. ascidians, π=0.0018-0.0032, Tarjuelo et 

al. 2001). High genetic similarity over long distances (8000 km) was already reported 

for another sponge species (Chondrosia sp., Lazoski et al. 2001), although using 

allozymes.  

It is hard to believe that a species whose larvae live from 24 to 72 hours (Uriz 

et al. 1998) is able to actively disperse more than a few hundreds of kilometers, so 

the genetic similarity found in C. crambe is unlikely to result from natural gene flow 

between localities. Yet, larvae may be transported in ballast water and released 

several hundred km away (Carlton & Geller 1993). Considering the low levels of 

variability found in our study, we have no resolution to ascertain whether or not there 

is an influence of anthropogenic dispersal in C.crambe.  
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The single change found between the two haplotypes allowed us to detect low 

levels of gene flow (based on frequency of both haplotypes) at distances of tens of 

kilometres in the North of Spain. The ecological hypothesis of low dispersal leading 

to strong genetic structure is, therefore, tenable in spite of the homogeneity found 

with this molecular marker. 

A recent origin of the species or genetic drift associated to historical events 

such as a population bottleneck due to selective sweep or to a founder event from a 

source population might explain the lack of variability found. A recent bottleneck 

effect seems rather dubious, as we have sampled an important part of the 

distributional range of the species. On the other hand, a founder event in the 

Mediterranean is plausible, as colonisation of this sea should have been posterior to 

the Messinian desiccation crisis ca. five million years ago (Maldonado 1985). 

However, Atlantic populations (presumptive source) did not show a higher genetic 

variability than the Mediterranean ones. Since C.crambe distribution range spans to 

the east, analyzing specimens from the eastern Mediterranean would be interesting 

to elucidate possible colonization patterns. Unless one considers a very recent origin 

of this species, the most likely explanation for the pattern found is that the 

mitochondrial gene studied is unusually conserved in this species. Preliminary results 

with the genes Cytochrome oxidase subunit II and Cytochrome b in a subset of the 

specimens here analysed also showed a lack of variability in mtDNA (authors, 

unpubl. res.). Also, the genetic similarity found with COI gene between Tossa de Mar 

and Gran Canaria populations (FST=0) contrasts with the differentiation found in a 

microsatellite study in the same populations (FST=0.29, (Duran et al. 2002), which 

strongly suggests that mtDNA is very conserved at least in this species.  

In a study of a partial sequence of a sponge mitochondrial genome (not 

including the COI gene), Watkins & Beckenbach (1999) found high aminoacid identity 

with cnidarians. These authors took this as indicative of an unusual level of 

conservation of mtDNA in diploblastic phyla, much higher than that found in other 

Metazoans. McFadden et al. (2000) and France & Hoover (2002) also found slow 

rates of evolution in COI in cnidarians.  

Whether mtDNA conservation is a common feature of diploblastic phyla with 

respect to triploblastic ones and the evolutionary implications of the contrasting 
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degrees of variation in nuclear and mitochondrial DNA in these groups is 

undoubtedly an exciting field that deserves further investigation. Biogeographical 

studies with COI and other mtDNA genes in several sponge species could allow 

more consistent generalizations about the evolutionary traits of this kind of genes in 

sponges. More variable DNA markers (e.g., Internal Transcribed Spacers or 

microsatellites) should be used to assess phylogeographic patterns and population 

structure in this and possibly other sponge species. 
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CHAPTER 3: Phylogeographic history of the sponge 
Crambe crambe (Porifera, Poecilosclerida): range 
expansion and recent invasion of the Macaronesian 
islands from the Mediterranean Sea 
 

 

 

 

 

3-1. Abstract 

We studied sequence variation in the nuclear ribosomal internal transcribed 

spacers (ITS-1 and ITS-2) in 114 individuals from 11 populations/localities of the 

sponge Crambe crambe across the core species range in the western Mediterranean 

Sea and Atlantic Ocean, reporting intragenomic variability for the first time in 

sponges. Phylogeographic, nested clade and population genetic analyses were used 

to elucidate the species evolutionary history. The study revealed highly structured 

populations affected by restricted gene flow and isolation by distance. A contiguous 

range expansion in the whole distribution area of the sponge was inferred. 

Phylogenetic analyses indicate a recent origin of most sequence types that could be 

explained by a recent origin of the species or a by recent bottleneck event in the 

studied area. A recent expansion of the distribution range to the Macaronesian region 

from the Mediterranean Sea was also detected, suggesting that C. crambe was 

recently introduced from the Mediterranean Sea to the Atlantic Ocean via human 

mediated transport, and that the pattern observed is not the result of a natural 

biogeographic relationship between these zones 
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3-2. Introduction 

Understanding the distribution of alleles throughout a species range is 

fundamental to molecular ecologists, allowing inferences about how history 

influenced the spatial distribution of these particular genes. Phylogeography is seen 

as the bridge between population genetics and phylogenetic systematics (Avise et al. 

1987; Avise 2000). Phylogenetic methods can be used to infer haplotype trees and 

estimate patterns of relatedness among haplotypes focusing on the historical 

relationships of gene lineages. By comparing the phylogenetic tree to the geographic 

structure of the data, we can infer historical patterns of population subdivision and 

understand current distribution patterns of the studied species.  

Population genetic parameters, analyses of population structure, as well as 

analysis of demographic history (reviewed in Emerson et al. 2001), can provide 

information about processes driving observed patterns of genetic variation. For 

instance, comparisons of haplotype and nucleotide diversity provide insights into the 

historical demography of a population (Grant & Bowen 1998). Analyses partitioning 

molecular variation among populations and groups of populations are useful to 

examine patterns of geographic structure. The challenge then is to determine which 

is the best method to answer the questions at hand. The use of multiple approaches 

including phylogenetic inference, nested clade analysis, and genetic diversity 

measures seems to be the most appropriate way for elucidating not only geographic 

structure but also the evolutionary history that produced such structure (i.e. 

Bernatchez 2001; Tarjuelo et al. 2001; Althoff & Pellmyr 2002). 

Sponges constitute a group of marine invertebrates whose larvae disperse 

over short distances (Borojevic 1970; Vacelet 1999); for an exception see (Vacelet 

1999). They are one of the dominating benthic groups in terms of biomass and 

species diversity, yet studies on the structure and gene flow among conspecific 

populations are scarce. Until now, allozymes have been the most commonly applied 

markers in those studies (reviewed in Solé-Cava & Boury-Esnault 1999). Molecular 

data have shown a prevalence of cryptic species that had gone undetected with 

previous morphological studies (Borchiellini et al. 2000), with the risk of potentially 

confounding studies of genetic connectedness among populations.  A few recent 
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phylogeographic studies have used sequence data from the nuclear ribosomal 

internal transcribed spacers ITS-1 and ITS-2 (van Oppen et al. 2000; Lopez et al. 

2002; Wörheide et al. 2002; Wörheide et al. in press) demonstrating the utility of ITS 

to resolve phylogeographic relationships at large spatial scales in sponges.  

Crambe crambe (Schmidt 1862) is a common encrusting sponge widespread 

along the sub-littoral of the Western Mediterranean Sea (Boury-Esnault 1971; 

Pulitzer-Finali 1983; Uriz et al. 1992), and recently found in the Canaries (Maldonado 

& Uriz 1996) and Madeira (P. Wirtz, pers. comm. 2002) archipelagos in the Eastern 

Atlantic Ocean (these archipelagos are often referred to as Macaronesian islands). It 

was also cited once in the Adriatic Sea (Schmidt 1862), and in the Eastern 

Mediterranean coast of Egypt and Turkey (Burton 1936; Saritas 1972). Its low 

abundance in the Central Mediterranean (i.e. Sicily, E. Ballesteros, pers. comm. 

2002) and the scarcity of reports from the Eastern Mediterranean suggest that the 

species is less abundant in those regions than in the Western Mediterranean.  

Crambe crambe is one of the best-known sponges from a biological and 

ecological viewpoints (Becerro et al. 1997; Turon et al. 1998; Uriz et al. 1998) and a 

promising organism for producing numerous bioactive metabolites important from a 

pharmacological standpoint (Jares-Erijman et al. 1991; Berlinck et al. 1992). In 

addition, C. crambe is virtually free of microsymbionts (Becerro 1994; Galera et al. 

2000), minimizing the effect of exogenous DNA in genetic studies (Lopez et al. 

2002). 

Field and laboratory studies on the swimming behaviour and dispersal abilities 

of its larvae (Uriz et al. 1998) indicate that the pelagic phase before settlement is 

short (ca. 48-72 hours). This suggests a small dispersal potential for this species, at 

least between areas separated by open sea without a continuum of rocky littoral 

habitats. A study based on DNA sequence data of the mitochondrial gene 

cytochrome c oxidase subunit I showed homogeneity across sponge populations 

(Duran et al. in press) and no geographic resolution, while a microsatellite study of 

one Atlantic and one Mediterranean populations showed significant differentiation 

between them (Duran et al. 2002). In the present study we expanded our genetic 

sampling to include nuclear markers of the region comprising the ribosomal Internal 

Transcribed Spacer-1 (ITS-1 hereafter), 5.8S rRNA, and the Internal Transcribed 
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Spacer-2 (ITS-2 hereafter) for the same individuals analyzed in our previous studies, 

with the addition of individuals from other populations.  In all, we included populations 

covering most of the species range, allowing us to investigate the role of evolutionary 

and ecological processes, such as restricted gene flow, and population history in 

shaping the distribution of alleles from this locus throughout the species range. 

In this article we provide evidence that C. crambe has experienced a relatively 

recent demographic expansion of its distribution area and it has recently invaded the 

Canaries and Madeira archipelagos in the Atlantic Ocean, a colonization most 

probably mediated by human-related activities. 
 

3-3. Materials and methods 

3-3-1. Study area and sample collections 
 

Individuals of Crambe crambe were sampled from 9 populations from the 

Western Mediterranean and 2 populations from the Macaronesian archipelagos in 

the Atlantic Ocean (Fig.7, Table 5). Asexual fissiparous reproduction is known to 

occur in this sponge but both fission rates and individual growth rates have been 

found to be very low (Turon et al. 1998). Although the real size of clones is not known 

we sampled individuals at least five meters apart to minimize the chance of sampling 

the same clone. We collected a minimum sample of 10 individuals per population to 

increase the probability of finding low frequency variants. Sponge tissue was 

collected by SCUBA, and kept in absolute ethanol at -20 °C until processed. 

3-3-2. DNA extraction 
 

Fragments of the sponge individuals were meticulously cleaned of exogenous 

tissues with the aid of sterile forceps under a stereo-microscope to avoid 

contaminating the DNA extractions. Total genomic DNA was extracted using the 

DNeasy® Tissue Kit (QIAGEN). 
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3-3-3. PCR amplification and sequencing 
 

The full ITS region, including the 5.8S rRNA gene, was amplified using the 

primers 9F: 5’-GTA GGT GAA CCT GCG GAA GG-3’ (Carranza 1997) and 28SRev: 

5’-GTT AGT TTC TTT TCC TCC GCT T-3’ (Lobo Hajdu, pers comm. 2002). 

Amplifications were carried out in a 50 µL volume reaction, with 1.25 units of 

AmpliTaq® DNA Polymerase (Perkin Elmer), 200 µM of dNTP’s and 1 µM of each 

primer. The PCR program consisted of an initial denaturing step at 94 ºC for 60 

seconds, 35 amplification cycles (94 ºC for 15 sec, 45 ºC for 15 sec, 72 ºC for 15 

sec), and a final step at 72 ºC for 6 minutes. Amplifications were carried out in a 

GeneAmp® PCR System 9700 (Perkin Elmer). 

PCR amplified samples were purified with the GENECLEAN® III kit (BIO 101 

Inc.). Cycle-sequencing with AmpliTaq® DNA Polymerase, FS (Perkin-Elmer) using 

dye-labeled terminators (ABI PRISMTM BigDyeTM v. 3.0 Terminator Cycle Sequencing 

Ready Reaction Kit) was performed in a GeneAmp® PCR System 9700 (Perkin 

Elmer). The sequencing reaction was carried out in a 10 µL volume reaction: 2 µL of 

Terminator Ready Reaction Mix, 2 µL of HalfTerm, 10-30 ng/mL of PCR product, 5 

pmoles of primer and dH20 to 10 µL. The cycle-sequencing program consisted of an 

initial step at 94 ºC for 3 minutes, 25 sequencing cycles (94 ºC for 10 sec, 50 ºC for 5 

sec, 60 ºC for 4 min) and a rapid thermal ramp to 4 ºC. The BigDye-labeled PCR 

products were cleaned with AGTC® Gel Filtration Cartridges (Edge BioSystems) and 

directly sequenced using an automated ABI PRISM® 3100 Genetic Analyzer. 
 

3-3-4. DNA editing 
 

Chromatograms obtained from the automated sequencer were read and 

contigs assembled using the sequence editing software SequencherTM 4.0. Complete 

sequences were then edited in GDE (Smith et al. 1994), and trivial alignments (no 

indel events needed to be postulated) generated. 
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3-3-5. Cloning 
 

The ITS-1 and ITS-2 regions form part of the ribosomal nuclear array, and 

therefore several copies of each exist per nuclear genome (Long & Dawid 1980). The 

multiple copies of this cluster appear to be nearly identical within a given organism 

due to the process of concerted evolution (Hillis & Dixon 1991). Exceptions to this 

rule exist among metazoans (see Carranza et al. 1996 for a review), but Porifera 

seem to feature intragenomic homogeneity for these genes (Wörheide et al. 2002). 

Our DNA amplifications resulted always in a single discrete band, but a few 

intraindividual polymorphisms were detected by direct sequencing of the amplified 

products. These polymorphisms were detected by the presence of two base calls of 

similar intensity for certain positions, although no length variation was detected.  

Given the presence of polymorphisms, PCR products from individuals with 

more than one polymorphic site (18 individuals in total) were cloned into pCR2.1-

TOPO (InvitrogenTM) following the manufacturer’s protocol. Positive clones were 

grown overnight in LB media; minipreps were prepared with FastPlasmid Mini 

(Eppendorf) and were sequenced with M13 primers. A total of 116 clones were 

sequenced. 

In order to avoid the term ‘haplotype’ which represents an haploid component 

of a given sequence, we will use the term ‘sequence type’ to refer to every distinct 

type of ITS detected in the individuals studied, as proposed by (Wörheide et al. 

2002).  
 

3-3-6. Phylogenetic analysis 
 

We estimated the maximum likelihood model that best fits the data under the 

hierarchical likelihood ratio test (hLRT) criterion as implemented in Modeltest v. 3.06 

(Posada & Crandall 1998). Once the model was selected, the number of sequences 

was reduced to represent unique sequence types. Using the model estimated under 

the hLRT, we performed a heuristic search consisting of 1,000 random addition 

replicates (RAS) followed by tree bisection and reconnection (TBR) branch swapping 
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in PAUP* (Swofford 1998). Nodal support was estimated using the bootstrap 

approach (Felsenstein 1985) with 1,000 replicates of simple addition and TBR. 
 

3-3-7. Network estimation and nested analysis 
 

The null hypotheses of no genetic differentiation among populations of the 

whole area studied, and between populations within the Mediterranean Sea and the 

Atlantic Ocean, respectively, were tested by permutation tests (10,000 replicates) on 

χ2 contingency tables (Hudson et al. 1992) using Chiperm v.1.2  (D. Posada, 

unpublished software available at 

http://inbio.byu.edu/Faculty/kac/crandall_lab/programs.htm). A sequence type 

cladogram was estimated with the program TCS 1.12 (Clement et al. 2000) using the 

statistical parsimony procedure (Templeton et al. 1992; Crandall et al. 1994). This 

method estimates the unrooted tree and provides a 95% plausible set for all 

sequence type linkages within the unrooted tree. The resulting network was then 

used to construct the nested clade design following the inference procedure given in 

Templeton et al. (1987); Templeton & Sing (1993); and Templeton et al. (1995). 

Once the nested design was determined, an exact permutation contingency analysis 

of categorical variation was implemented (a) for each step level, (b) for the 

associations between clades and (c) for geographic locations. The contingency test 

was performed using the software GEODIS v. 2.0 (Posada et al. 2000) on the clades 

with more than one sequence type and more than one sample location, following the 

algorithm given by Templeton & Sing (1993). This software detects significant genetic 

and geographic associations within the sequence type cladogram and incorporates 

the geographic distances as clade distance (Dc) and nested clade distance (Dn). Dc 

measures how geographically widespread are the individuals that bear sequence 

types from a specific given clade. Dn measures how far the individuals bearing 

sequence types from a given clade are from all other individuals that bear sequence 

types included in the immediate higher step clade. The statistical significance of 

these two measures was estimated by recalculating them in 10,000 random 

permutations. This randomization procedure allowed testing the null hypotheses of 

no geographic association within the nested clade design (Templeton et al. 1995). 
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Phylogeographic interpretations of significant values for Dc and Dn were inferred 

using the inference key available at 

http://bioag.byu.edu/zoology/crandall_lab/geodis.htm  
 

3-3-8. Solving cladogram ambiguities 
 

To solve any ambiguities before constructing the nesting, we used the 

empirical predictions derived from coalescent theory (Crandall & Templeton 1993; 

Templeton & Sing 1993; Crandall et al. 1994; Posada & Crandall 2001). These 

predictions can be summarized in three criteria (Pfenninger & Posada 2002): (1) 

Frequency criterion, as high frequency sequence types might have been present in 

the population for a long time, they had more chances of originating new sequence 

types than did younger sequence types; so low frequency sequence types are more 

likely to be connected to sequence types with high frequency; (2) Topological 

criterion, sequence types are more likely to be connected to interior sequence types 

than to tip sequence types; and (3) Geographic criterion, sequence types are more 

likely to be connected to sequence types from the same population or region than to 

sequence types occurring in distant populations.  
 

3-3-9. Population genetics parameters and analyses of population 
structure 
 

The population genetics analyses were performed using Arlequin 2.0 

(Schneider et al. 2000). We calculated sequence type and nucleotide diversity for all 

populations. Sequence type frequencies per population were calculated and 

represented in frequency plots. We used analysis of molecular variance (AMOVA) to 

examine hierarchical population structure, performing 16,000 permutations to 

guarantee having less than 1% difference with the exact probability in 99% of cases 

(Guo & Thompson 1992). We used our a priori expectation of a genetic division 

between the Mediterranean Sea and the Atlantic Ocean to group populations into 

regions. 
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3-4. Results 

In total 647 bp comprising the complete ITS-1, 5.8S rRNA, and ITS-2 regions 

were sequenced for 114 individuals (plus 116 clones), detecting 16 different rRNA 

types (accession numbers AY319369-AY319411) defined by eight variable sites, 

including two sites in the ITS-1 and six in the ITS-2 (Table 6).  

 

Table 5. Population code, sample size (N), number of 
sequence types (Ns) nucleotide (π) and sequence type (h) 
diversity for each population studied. 

 
Population code N Ns π 

(SD) 
h 
(SD) 

Madeira 1 10 3 0.000726 
(0.000764) 

0.4394 
(0.1581) 

Canaries 2 12 2 0.000778 
(0.000774) 

0.5033 
(0.0639) 

Cabo de Gata 3 11 6 0.002089 
(0.001493) 

0.8007 
(0.0497) 

Balearic Is. 4 10 6 0.002473 
(0.001740) 

0.8190 
(0.0636) 

Tossa de Mar 5 10 9 0.002664 
(0.001805) 

0.8952 
(0.0376) 

Cap de Creus 6 11 6 0.001682 
(0.001300) 

0.6912 
(0.1025) 

Banyuls 7 10 6 0.002310 
(0.001662) 

0.7912 
(0.0894) 

Marseille 8 10 4 0.001823 
(0.001404) 

0.6154 
(0.1358) 

Corsica 9 8 5 0.002219 
(0.001622) 

0.8205 
(0.0769) 

Naples 10 12 9 0.002251 
(0.001578) 

0.8333 
(0.0600) 

Sicily 11 10 7 0.002364 
(0.001662) 

0.8889 
(0.0361) 
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Table 6. Sequence types (SeqT) and their frequencies per population. 
                        ITS1                    ITS2                                                        POPULATIONS                                  

 
 SeqT 2  81 384 440 482 492 516 569 1 2 3 4 5 6 7 8 9 10 11 

A T C A T C T G T     0,08   0,14 0,06 0,07 0,15 0,15 0,04 0,22

C A C A T C T G T 0,17 0,61 0,29 0,20 0,19 0,53 0,43 0,62 0,39 0,38 0,17

D T T A C C T G T     0,13 0,33 0,24 0,06 0,21 0,15 0,15 0,04 0,17

E T T A T C T G T     0,08 0,27 0,10 0,06 0,07   0,15 0,04 0,11

F A T A T C T G T 0,75 0,39 0,33 0,07 0,10 0,24 0,14     0,13 0,11

G A T G T C T G A 0,08                     

J A C A T T T G T       0,07               

K A T A T C T G A                   0,08   

L A C A T C T G A                   0,13   

M A C A T C T A T                   0,13   

O T C A C C T G T     0,08 0,07 0,10 0,06 0,07 0,08 0,15   0,17

Q T T A T C C G T                     0,06

R A T A T C T A A                   0,04   

S T T A C C T A T         0,05             

T T C A C C T A T         0,05             

W T T A T C T A T         0,05             

1

3

4

5
6

7 8 9

10 

2

11 
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Figure 7. Map showing the localities sampled (see Table 5 for details) with the geographic 
distribution of the sequence types and sequence type frequencies per population. 



Chapter 3. Results 

 47

The 5.8S region appeared invariable in all sequenced individuals. The length 

of the individual spacers was 219 bp for ITS-1, and 275 for ITS-2. Uncorrected p-

distances ranged from 0.46% to 1.7% (average 1.2%).  We found intragenomic 

variation attributable to lack of homogenization in the variable sites of some 

individuals, a fact that has been neglected or not observed in other ITS studies. In 

these individuals, the number of sequence types per individual ranged from one to 

seven (average 1.6). The number of sequence types per sampling site ranged from 

two to nine, with a tendency to decrease towards the western and northern range of 

the distribution (Fig.7, Table 5). Total nucleotide composition was A = 0.12, C = 0.30, 

G = 0.30, T = 0.28 for ITS-1; A=0.24, C=0.28, G=0.26, T=0.22 for 5.8S; and A=0.11, 

C=0.30, G=0.31, T=0.28 for ITS-2. The greatest number of differences among 

sequence types was six.  
 

3-4-1. Patterns of phylogenetic relatedness of the sequence types 
 

For the phylogenetic estimation of the sequence data, under the hLRT 

criterion, the best fit model of nucleotide substitution corresponds to a Hasegawa-

Kishino-Yano (1985) model of nucleotide substitution with a proportion of invariable 

sites (%I) and a gamma distribution (Γ) of among-site rate variation (HKY85 + θ + Γ 

hereafter) (Hasegawa et al. 1985) (Ti/Tv ratio = 6.8435; θ = 0.9715; α = 0.5804). For 

the Maximum-likelihood analysis under the best-fit model, the search strategy yielded 

optimal trees at –ln L = 968.39652 in 79.5 % of replicates, and resulted on two 

islands of one tree each. These two trees and the unrooted strict consensus are 

shown in Figure 8, and they differ in the branching pattern of several alleles. Due to 

the low level of variation among sequences, bootstrap values were low, only two 

nodes being supported slightly above the 50% threshold (Fig. 8 c).  
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a)    b)   c) 

    

 

Figure 8. Maximum likelihood estimates of sequence type phylogeny. (a), (b) The two 
equally likely trees generated under model of sequence evolution HKY85 + θ + Γ (–ln L 
= 968.39652) unrooted and with branch length information. (c) Strict consensus of the 
two maximum likelihood trees. The tree is shown unrooted, and no branch length 
information is provided. Bootstrap values above 50% are shown. 

 

 

In the statistical parsimony analysis (Fig.9), the network revealed a central, 

interior position for the most frequent sequence type C. Five sequence types out of 

the 16 are one mutational step from sequence type C. The most parsimonious 

cladogram also revealed five closed loops among sequence types, three of them 

exterior and two interior. To resolve the ambiguous loops in the cladogram, we 

suggest to break the connections indicated by dotted lines in Figure 3.  
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In the loop formed by connecting sequence types C—L—K—F, the connection 

between sequence types L and K seems less likely according to the topology and 

frequency criteria, even though they are found in the same population. The 

ambiguous loop connecting sequence types S—T—O—D can be solved in a similar 

way, and the same two criteria easily solve the loop connecting D—E—S—W. For 

the remaining two interior loops, the A—C—E—F can be solved breaking the 

connection between E and A appealing to the frequency criterion because sequence 

type A is more likely linked to sequence type C than to sequence type E. But the 

remaining interior loop (D—E—F—C—A—O) could be broken at three different 

places (I, II, III, see Fig.9) with similar probabilities according to the different criteria. 

So we decided to explore the three alternative ways and proceeded with the 

analyses.  The three resulting cladograms led to different nesting designs and, thus, 

A C

D E F
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L

M
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T 

W 

III

II

I

Figure 9. Statistical-parsimony cladogram and proposed loop solutions. Lines in the 
statistical-parsimony cladogram represent one mutational step between sequence 
types; dashed lines represent connections removed to resolve loops. Arrows 
indicate the three favoured possibilities to solve the interior loop. The area of the 
circles is proportional to the frequency of sequence types; the square denotes the 
inferred ancestral sequence type. 
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potentially to different inferences about population history. We explored the 

inferences drawn from all possible solutions of the loop, and despite the differences 

in the resulting nesting designs, the interpretation of the population history was 

essentially identical for options I and III and slightly different for option II. Therefore 

the two nesting solutions corresponding to the removal of connection I and II are 

presented (Fig. 10).  
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Figure 10. Two options of 
the clade nesting of the 
parsimony network, 
depending on the resolution 
of the interior loop. 
Sequence type names as in 
Table X. Lines represent 
one mutational step 
connecting two sequence 
types. Boxes show the 
sequence types nested 
together into one-, two- and 
three- step clades. All 
sequence types are nested 
into clade 3-1. 
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3-4-2. Population history 
 

The results of the nested clade analysis (NCA) for options I and II (Fig. 10) 

can be followed in tables 7 and 8.  
 

Table 7. Above, nested contingency analysis for the sequence type-geography association for 
the nested design given in Fig 10-I. Below, the same for the nested design given in Figure 10-II. 
Columns show increasing nesting levels, from sequence types to 3-step clades. Dc and Dn 
distances are given for each clade. Detection of significant differences between the observed 
and expected distances under a situation of random geographic distribution of sequence types 
is indicated with a superscript capital S (significantly small) or L (significantly large). I-T are the 
interior-tip distances. Tip clades are shown in bold. 

 
Option I 
 
Sequence 
types Dc Dn  1-step 

clades Dc Dn  2-step 
clades Dc Dn 3-step 

clades
S 0 376          
D 588 579  1-1 575S 763S      
I-T 588 202          
            
O 676 630          
T 0 473  1-2 655S 801S      
A 674 637      2-1 975S 1045S  
I-T 675 161          
            
C 1213 1208          
J 0 883          
L 0S 1139  1-3 1213L 1080L      
M 0S 1139  I-T 476L 236L      
I-T 1213L 105         3-1 
            
F 1415 1410          
G 0 1254  1-4 1415 1415L      
I-T 1415 156          
            
K    1-5 0S 1509      
R        2-2 1358L 1242L  
            
E 659 653          
W 0 479  1-6 660S 1132S      
Q 0 777  I-T 854L 226L      
I-T 659 25          
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Table 7. Option II 
 
sequencetypes Dc Dn  1-step 

clades Dc Dn  2-step 
clades Dc Dn 3-step 

clades 
O 676 630          
T 0 473  1-2 655S 858S      
A 674 637          
I-T 675 161          
        2-1 1066 1080  
C 1213 1208          
J 0 883  1-3 1213L 1128L      
L 0S 1139  I-T 557L 270L      
M 0S 1139          
I-T 1213L 105          
            
F 1415 1410          
G 0 1254  1-4 1415S 1449S      
I-T 1415 156         3-1 
        2-2 1483L 1349L  
K    1-5 0S 1798L      
R    I-T 1415L 348S      
            
E 659 653          
W 0 479  1-6 660 600      
Q 0 777          
I-T 659 25      2-3 604S 878S  
        I-T 552L 358L  
S 0 376  1-1 575 571      
D 588 579  I-T -84 -28      
I-T 588 202          
 
 
 
 

The two options analyzed yielded significant associations between sequence 

type clades and geographic distribution at all levels (Table 7). In both options the 

inference at the 1-step clade level was the same. Within the clade 1-3 a restricted 

gene flow (RGF) with isolation by distance (IbD) was found. For the two-step clades 

different inferences were found between the two alternative nestings. In option I, 

restricted gene flow with isolation by distance was found for both clades 2-1 and 2-2, 

and the overall inference was a continuous range expansion of the species. For 

option II, restricted gene flow with isolation by distance was also inferred for the clade 

2-2, while for the clade 2-1, restricted gene flow with some long distance colonisation 

was detected. The overall inference for option II was restricted gene flow with 

isolation by distance. 
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Table 8. χ2 test of geographic association of clades and biological inference from the NCA 
analysis of the two nested clade options favoured (I and II). Probability P is the probability of 
obtaining a χ2-statistic larger or equal to the observed statistic based on 10,000 re-samples. 
Abbreviations for the inferences are: CRE, contiguous range expansion; IbD, isolation by 
distance; LDC, long distance colonization; RGF, restricted gene flow. 

 
Option I 

Clades nested 

with 
χ2-statistic P 

Chain of 

inference 
Inference 

1-1 3.4667 1 
No significant 

clade distances 
- 

1-2 6.6037 0.9924 
No significant 

clade distances 
- 

1-3 43.2955 0.0972 1-2-3-4 NO RGF with IbD 

1-4 2.9763 1 
No significant 

clade distances 
- 

1-6 9.8222 0.7770 
No significant 

clade distances 
- 

2-1 40.9016 0.0021 1-2-3-4 NO RGF with IbD- 

2-2 47.4882 0.0014 1-2-3-4 NO RGF with IbD 

Entire 

Cladogram 
25.6757 0.0037 

1-2-11 YES-12 

NO 
CRE 
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Table 8. Option II 

Clades nested 

with 
χ2-statistic P 

Chain of 

inference 
Inference 

1-1 3.4667 1 
No significant 

clade distances 
- 

1-2 6.6037 0.9925 
No significant 

clade distances 
- 

1-3 43.2955 0.0965 1-2-3-4 NO RGF with IbD 

1-4 2.9763 1 
No significant 

clade distances 
- 

1-6 9.8222  0.7812 
No significant 

clade distances 
- 

2-1 24.4714 0.0039 1-2-3-4 NO RGF with IbD 

2-2 19.3846 0.0412 1-2-3-5-6-7 YES RGF with LDC 

2-3 2.5386 0.9681 
No significant 

clade distances 
- 

Entire 

Cladogram 
67.4164 0.0000 1-2-3-4 NO RGF with IbD 

 

3-4-3. Patterns of recent population structure 
 

We found large sequence type diversity (Mean 0.736191 ± 0.154313) and low 

values of nucleotide diversity (Mean 0.001944 ± 0.00065) per population (Table 5). A 

significant genetic differentiation between localities, based on a χ2 test, (Hudson et al. 

1992) was found between Mediterranean and Atlantic populations (P<0.005), among 

Mediterranean populations (P<0.05), and among Atlantic populations (P<0.05). 

Pooling all the populations together the significance was also high (P<0.0001). 

Incorporating both sequence divergence and sequence type frequencies per 

populations, the AMOVA detected significant structure between Mediterranean and 

Atlantic groups, among populations within groups, and within populations, the latter 

with the highest percentage of the differentiation found (Table 9). 
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Table 9. Analysis of molecular variance (AMOVA) among populations of Crambe crambe. 
Groups correspond to Mediterranean Sea and Atlantic Ocean. The significance tests were 
based on 16,000 permutations. An asterisk indicates significant values at P<0.05. 

 
Source of                   Sum of        Variance               Percentage 

variation       d.f.       squares      components          of variation 

Among 

Groups      1          2.744        0.04235 Va     *       9.78 

 
Among 

Populations       9           5.596        0.01426 Vb     *      3.29 

within 

groups            

 

Within           178        67.015    0.37649Vc      *     86.93 

populations     

Total              188         75.354       0.43311 

 

3-5. Discussion 

The level of intraspecific variation (1.2%) detected in the ITS’s of Crambe 

crambe is six times higher than that found in the mitochondrial gene cytochrome c 

oxidase subunit I (COI), as determined by a study at a similar geographic scale with 

the same sponge individuals (Duran et al. in press). Other sponge COI data included 

in (Shearer et al. 2002) also reveal a low variability in this gene.  The amount of 

variation in the ITS region of C. crambe is in the range of that found in the sponge 

Leucetta chagonensis from the Pacific Ocean (0.1-1.6%, Wörheide et al. 2002), and 

it clearly differs from that of Astrosclera willeyana from the Indo-Pacific Ocean, which 

shows length variation in the ITS region (Wörheide et al. in press). The GC content 

found in C. crambe (59%) is slightly higher than that from others sponge species 

(Wörheide et al. 2002; Wörheide et al. in press). When the intraspecific variation of 

ITS in this sponge is compared with the range of variation found in other marine 

species it is found to be relatively low. Examples can be found in the algae (1.7%, 

Connell 2000), corallimorpharians (2.5%, Chen et al. 1996), and scleractinian corals 

(3-29%, Odorico & Miller 1997; Diekmann et al. 2001; Rodriguez-Lanetty & Hoegh-

Guldberg 2002). Due to the multicopy nature of the ribosomal array, we have found 
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intraindividual polymorphism in the ITS regions, which had not been previously 

reported in sponges. 

Inspection of sequence type frequencies and their distribution among 

populations (Fig.7) suggest a population differentiation that can be explained by 

different phylogeographic patterns. First, following coalescent theory predictions 

(Crandall 1996), sequence type C is likely to be the most ancestral type because it is 

present in all populations studied, is the most frequent, and has the highest number 

of mutational connections. Second, the Atlantic populations have only three 

sequence types, one of them unique (G), suggesting a potential invasion from the 

Mediterranean Sea with a founder effect event. To our knowledge, no other Atlantic 

populations of C. crambe have been reported, and the limited Atlantic distribution of 

the species may also be partially responsible for the pattern found in the 

phylogeographic study. Finally, the distribution of sequence types in the 

Mediterranean suggests a subdivision with at least three different zones, the first one 

in the Western part of the range (Cabo de Gata, Balears, Tossa de Mar, Cap de 

Creus, and Banyuls sur Mer), the second one in the central area (Marseille, and 

Corsica) and the third one in the eastern part of the range (Naples), this later 

population being the most diverse genetically, with 9 sequence types present. 

Although Sicily is also rich in sequence types and geographically located in the 

central part of the range, its sequence type composition and frequency fit better with 

the western group, as it has more sequence types in common with this group than 

with Naples. All these patterns might have been caused by large or medium-scale 

hydrodynamic processes that strongly influence larval dispersal and constitute 

potential barriers to gene flow among populations. Water circulation within the 

different basins in the Western Mediterranean (Hopkins 1985) could limit larval 

transport and favour genetic differentiation among populations in agreement with the 

patterns found. A similar result suggesting a strong influence of Mediterranean 

currents in larval dispersal has been found in a phylogeographic study of the 

polychaete Sabella spallanzanii (Patti & Gambi 2001). 
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3-5-1. Inferring intraspecific sequence evolution 
 

The Maximum likelihood (ML) estimate of sequence type phylogeny and the 

statistical parsimony (SP) cladograms exhibited somewhat compatible topologies. 

However, ML failed to resolve most of the relationships among sequences and 

among higher-level clades due to the low sequence divergence observed. This low 

degree of nucleotide variation between sequence types results in a poorly resolved 

consensus tree with low support for almost all branches. Intraspecific phylogenies 

generally resolve lineages that have been separated for long periods of time, where 

accumulation of genetic divergence translates into a signal that may correspond well 

with geographic separation. In our case, we find little phylogenetic signal even 

among geographically structured sequence types. This can be taken as suggestive of 

a recent origin of most sequence types. The SP cladogram, although it includes five 

loops, is better resolved. This result highlights how network approaches may be more 

effective than phylogenetic approaches at detecting intraspecific evolution, as 

previously suggested by Posada & Crandall (2001). 

Three hypotheses might explain the shallow divergence among sequence 

types. First, C. crambe might be a relatively young species that has recently spread 

across its range and, accordingly, it has had no time to generate high ITS sequence 

divergence. An alternative hypothesis regarding the high levels of sequence type 

diversity relative to nucleotide diversity is that C. crambe is an old species that has 

experienced changes in its population demography, i.e. a strong recent bottleneck 

that has reduced its former genetic diversity followed by a new expansion and 

accumulation of new mutations. Lastly, these results could be the consequence of 

low mutation rates at the locus studied, or even at the genomic level. 
 

3-5-2. Inferring Population history 
 

The population history of C. crambe, as inferred by the NCA, involved 

historical events as well as recurrent gene flow. For the one step level clades, both 

nesting designs gave the same results. Restricted gene flow with isolation by 

distance was inferred for the clade 1-3, which includes the most frequent and 
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widespread sequence type (sequence type C) and the unique sequence types M and 

L from Naples and J from the Balearic Islands. Because restricted gene flow implies 

only limited movement by individuals during any given generation, it takes time for a 

newly arisen sequence type to spread geographically. Keeping in mind that the 

ancestral sequence type (probably C) is expected to be frequent near its site of 

geographic origin and that most mutational derivates of the ancestral sequence type 

will also occur near the ancestral site of origin (Templeton 1998), it seems that the 

Western Mediterranean is the region where the oldest populations of the sponge are 

found nowadays. This area has thus acted as the centre of radiation to other zones, 

specifically to the Macaronesian archipelagos.  

On the two-step clade level, two different inferences were made depending on 

the nested clade design. For the nesting option I restricted gene flow with isolation by 

distance was inferred for all the clades. Isolation by distance with some long distance 

colonization was found in nesting option II for clade 2-2 (Sequence types F, G and K, 

R) suggesting the potential recent invasion of the Atlantic Ocean, possibly linked to 

one or more sporadic long dispersal events. It is also evident that for sequence type 

F there is a break in its distribution in Corsica and Marseille but it appears again in 

Naples. Atlantic populations have high frequencies of the two most frequent 

sequence types (C and F) suggesting a founder effect. Only one new sequence type 

(G) unique to Madeira is found in the Atlantic, indicating that the colonization may 

have been recent and that there has not been enough time to accumulate more 

changes. The fact that the abundance of this sponge in the Atlantic populations 

studied is high (S. Duran pers. obs. 2003) suggests that the sponge has found 

conditions for spreading in this new area. Even if Atlantic waters are different from 

the Mediterranean ones in both physical and biological conditions, it is known that the 

Macaronesian region (Canaries, Madeira and Azores Archipelagos) has a strong 

Mediterranean component in its faunal composition (Wirtz & Martins 1993; Wirtz 

1998), of which our results provide further evidence.  

Crambe crambe is a sponge with high levels of bioactive metabolites; these 

substances avoid both predation and competition and have powerful antimicrobial 

and antiviral properties (Becerro et al. 1994). In the Mediterranean, it is one of the 

most efficient sponges in terms of space competition and lacks known predators. 
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These characteristics may confer to this sponge invasive capabilities and high 

potential for colonizing new areas where physical conditions are within its tolerated 

range.  

A colonization of the Canaries and Madeira by larvae arriving via oceanic 

currents seems unlikely if we take into account that larvae of C. crambe stay in the 

water column for just a few hours or a couple of days at most (Uriz et al. 1998). The 

Canary Current, that runs southwards from the Iberian Peninsula, reaches maximal 

velocity in the order or 30 cm/s (Batten et al. 2000; Zhou et al. 2000), which would 

imply a dispersal of only 50 Km for a larva passively drifting during 2 days. This 

dispersal range is far too short to cover about 1,300 Km that separate the 

Macaronesian archipelagos from the Mediterranean Sea. Besides, C. crambe 

apparently has not been able to enter the Atlantic Iberian waters further away than 

Cape San Vicente (M.J. Uriz, pers. comm. 2002) and has not been reported from the 

Atlantic shores of North Africa, neither is it present in the Azores (J. Xavier, pers. 

comm. 2002). This discontinuous distribution, together with the low genetic diversity 

of ITS’s, indicates that a human-mediated invasion is likely in this case (although 

rafting on natural debris cannot be completely discarded). The high differentiation 

between sequence type frequencies in the two Atlantic populations is indicative of 

low gene flow between them, and strongly suggests two independent colonisations of 

these archipelagos. The introduction of C. crambe to the Atlantic might have 

happened by the transport of larvae in ballast water, or via fouling on ship hulls or 

rafting in debris. Transport of marine invertebrates via ballast water has been 

documented for many species with a planktonic phase in their life cycle, in many 

marine habitats as well as trophic groups (Carlton & Geller 1993).  

Other biogeograhic studies of sponge communities have reported Western 

Mediterranean sponge assemblages originating from Atlantic assemblages 

(Maldonado & Uriz 1996; Carballo et al. 1997). Our results, however, suggest that 

this particular species has a colonisation history from the Mediterranean to the 

Atlantic. While this is consistent with other observations of a similarity between the 

Mediterranean and the Macaronesian faunas, the influence of Mediterranean fauna 

has never been evaluated from a historical perspective. In this respect, the 

Macaronesian archipelagos have undergone intense maritime trading with Spain and 
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Portugal for historical reasons. The case of C. crambe may hence constitute the first 

evidence of recent introduction of Mediterranean fauna in the Macaronesia 

archipelagos due to human transport, and not due to a biogeographic relationship of 

both zones.  

Despite the high sequence type diversity in some populations, the amount of 

sequence divergence remains low between all sequence types, so populations of C. 

crambe might be relatively young. If we take into account that the genus Crambe is 

represented by five species, three of them found in the Mediterranean Sea 

(Maldonado & Uriz 1996), it seems plausible that an origin and radiation of the genus 

occurred in the Mediterranean Sea after the Messinian crisis 5-6 Mya (Duggen et al. 

2003) from an unknown phylogenetic lineage (Maldonado 1985).  

Regarding the entire cladogram, Option I showed a contiguous range 

expansion. This expansion in the whole area of distribution of the sponge is 

consistent with the loss of sequence type variation to the North, and to the West of 

the geographic area of the distribution. Also, those sequence types found in the 

ancestral population(s) that were the source of the range expansion (C and F) 

became geographically widespread. Some of the sequence types found in the 

expanding populations (D in the Mediterranean) became more frequent than some of 

the older sequence types from which they have originated (E or O). The inference for 

the Option II of the NCA for the entire cladogram is isolation by distance with 

restricted gene flow. This option would be in agreement with the dispersal features of 

the species.  

Even though the two inferences are slightly different, both options detect an 

invasion of this sponge from the Mediterranean to the Atlantic. Thus, even if our 

results contrast with other previous studies that describe the colonization history of 

marine invertebrates species between the Mediterranean Sea and the Atlantic 

Ocean, we strongly believe that the colonization pattern suggested by our data could 

be more general in marine invertebrates than previously recognized.  
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CHAPTER 4: Polymorphic microsatellite loci in the 
sponge Crambe crambe (Porifera: Poecilosclerida) 
and their variation in two distant populations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-1. Abstract 

Seven polymorphic microsatellite loci were characterized in the marine 

encrusting sponge Crambe crambe from a partial genomic DNA enriched library. 

Preliminary data on allelic variation of these loci in two distant populations of C. 

crambe are presented to assess their potential utility as high-resolution genetic 

markers for this species. The number of alleles per locus ranged between 3 and 16 

and the distributions of allele frequencies differed considerably between the two 

populations, indicating a marked genetic differentiation between them. These are the 

first microsatellite loci reported from any species in the phylum. 
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4-2. Introduction 

Sponges are one of the most important marine invertebrate groups both 

ecologically, because of their widespread presence in marine benthic communities, 

and phylogenetically, because of their basal position among Metazoa. Furthermore, 

sponges are also a source of pharmacologically interesting molecules (Faulkner 

2002) whose production shows high intraspecies variability (Becerro et al. 1997). 

Sponges combine dispersal through short-lived lecitotrophic larvae with asexual 

reproduction in many species (Maldonado & Bergquist 2002). They are therefore a 

suitable model for the study of dispersal and genetic differentiation. Most studies on 

population genetics of this group have been performed with allozyme markers 

(reviewed in (Borchiellini et al. 2000). In this study, we assessed the potential utility of 

microsatellite loci as high-resolution genetic markers for this group. 

The sponge Crambe crambe (Schmidt 1862) is a common encrusting species 

widespread along sublittoral rocky bottoms in Western Mediterranean, Canary 

Islands, and Madeira Islands (Uriz et al. 1992 and pers. obs.). Crambe crambe 

reproduces mainly sexually releasing short life-span larvae (Uriz et al. 1998) and 

asexually by fission of individuals (Turon et al. 1998). It produces highly active 

secondary metabolites and it is possibly one of the best known sponge species from 

the point of view of its biology and chemical ecology (Becerro et al. 1997). However, 

we lack data on its population structure and dynamics. 

We have started a population genetic study of Crambe crambe in both the 

Mediterranean sea and Atlantic ocean in order to assess the genetic structure of this 

species associated with dispersal features, and the relative importance of sexual 

versus asexual reproduction at a fine spatial scale. Here we report the first 

microsatellites isolated from any species in the phylum. 

 

4-3. Materials and methods 

Genomic DNA obtained with QIAamp® DNA minikit columns (Quiagen) from a 

single specimen of C. crambe collected from Blanes (41°40.4’N, 2°48.2’E) was used 

for the construction of a partial genomic library, following the enrichment protocol 

from (Kijas et al. 1994) based on streptavidin-coated magnetic particles 
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(Magnesphere, Promega, Madison, WI). Two 5’-biotinylated, 3’-aminated (CT)10 and 

(GT)10 oligonucleotides were used as probes. The detection step of the clones 

including microsatellites followed the protocol described in (Estoup et al. 1993). 

(Detailed protocol available at http://www.inapg.inra.fr/dsa/microsat/microsat.htm ). 

Approximately 1800 bacterial colonies were isolated from the library and 

screened with (CT)10 and (GT)10 oligonucleotide repeats biotine-labelled. We 

sequenced 35 out of 65 clones with the strongest positive screening signal and 

longest insert size (>400 bp). Thirteen out of these 35 clones with sufficiently long 

flanking sequence were used for primer design and tested for allele size variation.  

This was done by analysing 60 sponge specimens, 30 from Tossa de Mar 

(Northwestern Mediterranean, 41°43.2’N, 2°56.0’E) and 30 from Gran Canaria 

(Eastern Atlantic, Canary Islands, 27º48’N, 15º47’W). 

PCR reactions were performed with a Perkin Elmer 480 thermocycler in 20µl 

reactions containing 2µl Buffer B (20mM Tris-HCl (pH 8.0), 100mM KCl, 0.1Mm 

EDTA, 1Mm DTT, 50% glycerol, 0.5% Tween®20 and 0.5% Nonidet®-P40) 1.6µl 

MgCl2 (25mM), 0.5µl dNTP (10mM), 0.5µl of each primer (10mM), 1U Taq and 

approximately 10-50ng of template DNA. Cycle parameters were 2 min at 95ºC, 

followed by 40 cycles of 1 min at 95ºC, 30 sec at the appropriate annealing 

temperature (see Table 1), and 30 sec at 72ºC, followed by an extension cycle of 5 

min at 72ºC. The forward primer for each locus was fluorescently labeled with 6-Fam, 

Hex or Ned to estimate the allele sizes with an automated sequencer (ABI 3700). 

Alleles were sized relative to an internal standard (EcoGen 70-500). 

 

4-4. Results and discussion 

We obtained a total of seven functional primer pairs (Table 4) since the other 

six loci were either monomorphic or failed to amplify. Analyses of Hardy-Weinberg 

equilibrium, linkage disequilibrium, Fst and Fisher’s exact test of population 

differentiation were conducted using GENEPOP version 3.3 (Raymond & Rousset 

1995b). 

Allele number, heterozygosity and Fst between the two populations studied are 

summarized in Table 4. The number of alleles per locus ranged from 3 to 16 (mean 
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8). No significant linkage disequilibrium was detected between loci in either 

population. Most loci were at Hardy-Weinberg equilibrium except for A-CR1 and E-

CR43 in both populations and J-CR91 in Gran Canaria, which showed a 

heterozygote deficiency (P<0.005). It is not clear with the present data set whether 

this deficiency results from the presence of null alleles and/or particular population 

structure such as metapopulation or isolation by distance within sampling unit. At the 

C-CR28 locus, 13% of individuals failed to amplify favouring the null allele hypothesis 

for this locus. The distributions of allele frequencies in the two populations (Fig.11) 

differed significantly at every locus (P<0.001), and the Fst between these populations 

for our seven loci was 0.29, indicating a high degree of genetic isolation. 

Interestingly, three individuals from Canary Islands had identical multilocus 

genotypes (7 loci). It is unexpected that they are issued from clonal reproduction as 

they were sampled in locations separated by a few kilometers. Those individuals are 

more likely to have identical genotypes by chance as most alleles scored for those 

individuals were found at high frequency in this population.  

Our data suggest that the described microsatellite loci may serve as a 

sensitive tool for estimating population differentiation both in studies at large and fine-

scale in Crambe crambe as they were able to detect appreciable structure within and 

between the two populations studied.  
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CHAPTER 5: Strong between and within population 
structure in the sponge Crambe crambe 
(Poecilosclerida) as revealed by microsatellite 
markers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5-1. Abstract 

Microsatellite markers were used for the first time in a sponge species to study the 

population genetic structure of the encrusting sponge Crambe crambe. Specimens 

were collected in eleven locations representing most of the entire Atlanto-

Mediterranean range of the species and analysed at six loci. As expected for a 

sessile invertebrate with lecitotrophic larvae, high levels of between population 

structure were found (FST=0.18) and a significant isolation-by-distance pattern was 

observed. More surprisingly, a strong genetic structure was found within sampled 

sites (FIS=0.21) that may be explained by several factors including inbreeding, selfing 

and Wahlund effect. In spite of a sampling design planned to avoid the sampling of 

clones, genotypically identical individuals for the six loci were found in some 

locations. The significance of these potential clones is discussed and their effect on 

the observed pattern of population structure was assessed. Patterns of allelic 

distribution within population suggests the possibility of a recent colonisation of the 

Atlantic range from the Mediterranean Sea. 
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5-2. Introduction 

In comparison to terrestrial environments, marine environments seem to lack 

obvious barriers to gene flow; hence, populations of marine species are expected to 

reach panmixia at a larger geographical scale than terrestrial or freshwater species. 

However, several studies of population structure on marine invertebrates have shown 

that population differentiation exists even in species with supposedly high dispersal 

capabilities, as found in corals (Hellberg 1994; Hellberg 1996), sea urchins (Palumbi 

et al. 1997), cuttlefish (Pérez-Losada et al. 2002) or squid (Shaw et al. 1999). This 

suggests that long-distance movements of larvae may be hindered by the existence 

of hydrological and ecological barriers, such as currents, temperature, salinity, and 

by behavioural responses of larvae favouring philopatry and, consequently, local 

differentiation.  

Sponges are one of the most important benthic groups in terms of both 

biodiversity and biomass. Their biological characteristics, such as low dispersal 

potential via lecitotrophic larvae (Borojevic 1970; Sarà & Vacelet 1973) and their 

variable reproductive strategies including sexual and asexual reproduction (Wulff 

1991; Turon et al. 1998; Maldonado & Bergquist 2002), as well as combinations of 

both (Maldonado & Uriz 1999; Vacelet 1999), make this phylum an interesting group 

of study for molecular and marine ecologists. How these biological features (together 

with species history) interact to shape the present day geographic structure of 

sponge populations remains unknown.  

Advances in molecular technologies and the increase in the number and type 

of molecular markers, especially at the DNA level (Ward 1989; Palumbi 1995) make 

studies on structuring processes at the population level in sponges feasible. 

Microsatellites have proven to be one of the most informative category of DNA 

marker, as reduced gene flow and subtle population structure have been 

demonstrated when other genetic markers, e.g. mitochondrial DNA and/or protein 

polymorphisms, failed to detect genetic heterogeneity among geographical samples 

of both marine and terrestrial species (e.g. Hughes & Queller 1993; Jarne et al. 1994, 

reviewed in Estoup & Angers 1998). Although microsatellites have been developed 

for many marine invertebrates, there are only a few examples of population structure 
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studies using these markers in this group (e.g. Shaw et al. 1999; Brooker et al. 2000; 

Huang et al. 2000; Launey et al. 2002; Pérez-Losada et al. 2002; Stoner et al. 2002). 

The present study reports the first application of polymorphic microsatellite loci to 

study population structure in a sponge, the Atlanto-Mediterranean poecilosclerid 

Crambe crambe. 

C. crambe is a very common encrusting sponge in the Western Mediterranean 

Sea (Uriz et al. 1992 and references therein) and in the Canaries (Maldonado & Uriz 

1996) and Madeira (P. Wirtz pers. comm. 2002) archipelagos in the Eastern Atlantic 

Ocean. A few reports signal its presence in the Eastern Mediterranean, where it 

doesn’t seem to be abundant (Schmidt 1862; Burton 1936; Saritas 1972).  

Ecologically, C. crambe is one of the best-known sponges (Turon et al. 1996; 

Becerro et al. 1997; Turon et al. 1998), and it is free of symbionts (Galera et al. 

2000). Many sponge species are simultaneous hermaphrodites, while in many others 

the sexes appear to be delayed in time (Fell 1983). There are no studies on the type 

of hermaphroditism in C. crambe. Although asexual reproduction has been described 

for this sponge by means of fission in adult individuals (Turon et al. 1998), this 

process appears to be not as common as in other sponges (e.g. Wulff 1991)). Sexual 

reproduction with internal fertilization may be the main mechanism for reproduction in 

C. crambe. The sponge releases lecitotrophic larvae of the parenchymella type once 

they are ready to disperse. These larvae then swim in a slow corkscrew motion for 

about 24-72 hours in the plankton before settlement (Uriz et al. 1998). 

In the present study, we genotyped microsatellite markers in C. crambe 

population samples collected over most of the entire range of the species to assess 

the level and pattern of differentiation between sampled sites. Because larval 

dispersal seems to be limited in invertebrates with lecitotrophic larvae and in sponges 

in particular (Jackson 1986; Uriz et al. 1998), we were also particularly keen in 

detecting the existence of a genetic structure at a short geographic scale, that is, 

within collection sites. Finally, the occurrence of asexual reproduction events (i.e. 

reproduction by fission of adult sponges, Turon et al. 1998) was tested and the effect 

of such reproduction events on the population structure of C. crambe was assessed. 

To our knowledge, this is the first study to use microsatellites in ascertaining 

population structure of a sponge. 
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5-3. Materials and methods 

5-3-1. Sampling design 
 

In total, 286 specimens were sampled from 11 locations covering most of the 

entire known distribution area of C. crambe (Fig 12). Fragments from about 30 

individuals per location were collected by scuba diving and preserved in absolute 

ethanol until processed. Because asexual reproduction by fission of adult sponges 

has been described for C.crambe (Turon et al. 1998), individuals were taken at least 

five meters apart from each other to reduce the probability of sampling the same 

clone. Once in the laboratory, tissue samples were meticulously cleaned under the 

stereomicroscope of foreign organisms to avoid contaminating the extraction.  

 

 

Figure 12. Map showing the locations of C.crambe sampling sites.  Number of 
individuals sampled per location in parenthesis. MAD:Madeira (28), CAN:Canaries 
Islands (30), GAT: Cabo de Gata (18), BAL:Balearic Islands (30), TOS:Tossa de Mar 
(30), CRE: Cap de Creus (30), BNY:Banyuls sur Mer (30), MAR:Marseille (26), 
COR:Corsica (30), NAP:Naples (21), SIC: Sicily (13). 
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5-3-2. DNA extraction, amplification and genotyping 
 

Total DNA was extracted using a protocol described in (Pascual et al. 1997). 

All samples were screened for variation at each of six polymorphic microsatellite loci 

(A-CR1, E-CR43, J-CR91, I-CR83, H-CR59, K-CR54) previously isolated and 

described for C.crambe by (Duran et al. 2002). Forward primers were 5’ labelled with 

a fluorescent dye and PCR reactions were performed under conditions set out in 

(Duran et al. 2002). Allele sizes were estimated on an automated sequencer ABI 

Prism-3700 (Applied Biosystems) relative to an internal standard (EcoGen 70-500). 

Alleles were visualized and determined with GENESCANTM and GENOTYPER TM 

software. 

 

5-3-3. Data analysis 
 

All computations were performed using the package GENEPOP version 3.3 

(Raymond & Rousset 1995b) and F-STAT version 2.9.3 (Goudet 1995). Allele 

frequencies were calculated for each locus and location (see Table 11). Observed 

and expected heterozygosity (Nei 1978) and number of alleles were calculated for 

each locus individually and as a multilocus estimate for each of the 11 locations. For 

each locus the corrected number of alleles based on the largest sample size was 

determined following (Ewens 1972) and using a personal program. Single and 

multilocus Fis were estimated as in (Weir & Cockerham 1984). Linkage disequilibria 

were tested among all pairs of loci and for all locations. Genotype distributions within 

samples were tested for conformity to Hardy-Weinberg expectations using Fisher’s 

exact test.  

Differentiation between pairs of samples was tested using Fisher’s exact test 

(Raymond & Rousset 1995a). The most suitable statistic for quantifying 

differentiation between samples at microsatellite loci is still a matter of debate, 

depending upon the mutational model one chooses to apply (Estoup et al. 1995; e.g. 

Estoup & Angers 1998; Pascual et al. 2000; Pascual et al. 2001; Balloux & Lugon-

Moulin 2002). Methods assuming an infinite allele model [IAM, (Kimura & Crow 1964) 

using FST] or a stepwise mutation model [SMM, (Kimura & Ohta 1978) using RST] 
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have been proposed. In view of the continuing debate, and for comparative 

purposes, we have quantified genetic differentiation among samples using both RST 

(estimated by ρST; Michalakis & Excoffier 1996) and FST (estimated by θ; Weir & 

Cockerham 1984). Isolation by distance was tested through the correlation between 

matrices of pairwise FST /(1− FST ) values and logarithm of the geographic distances 

between populations (Mantel test, 10000 permutations; Rousset 1997). Geographic 

distances were calculated as the shortest distance connecting the populations by 

sea.  

Several individuals showed identical genotypes at the six loci. We were keen 

in testing whether such genetic identity was more likely to reflect clonal reproduction 

events than to be obtained by chance within a sexually reproducing population. To do 

this we have to estimate the probability of obtaining identical genotypes by chance 

alone. Although both analytical solutions (Waits et al. 2001) and simulation 

approaches (Stenberg et al. 2003) have been proposed to estimate such 

probabilities, they usually rely on the assumption of random mating, a condition rarely 

met in sessile invertebrates with low dispersal capabilities. An excess of 

homozygosity, for instance, would result in an underestimation of the true 

probabilities. Therefore, we used a simulation approach to estimate the probability of 

finding, by chance, individuals with the same multilocus genotype given the sample 

size, the observed allele frequencies, and the observed heterozygosity for each 

locus.  

The program generates samples by randomly selecting alleles using the 

observed frequencies, but maintaining the observed heterozygosities at each locus 

through an iterative algorithm. In this way, we end up with samples of exactly the 

same size, allele frequency and heterozygosity as the observed ones for each 

population. This effectively mimics the effect of the factor(s) that result in the 

observed FIS of the samples. 

After generating a large number of samples (100,000), the program records 

the proportion of samples that have at least one group of 2, 3, and so on 

genotypically identical individuals. These proportions can be used to test the 

likelihood of the observed number of identical individuals being obtained by chance if 

the population is reproducing only sexually. If the proportion of generated samples 
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that feature groups (of a given size) of identical genotypes is below a given threshold 

(say, 0.05) then we can conclude that, if we find groups of that size of identical 

individuals in our sample, they have most likely been generated by asexual 

reproduction events. The only assumption in this case is that there is no linkage 

disequilibrium between loci. The routines were written in Turbo Pascal and the 

computer program used in this study is available under request from the authors. 

 

5-4. Results 

The total number of alleles per locus ranged from 5 to 26 (Table 11). There 

were private alleles in all populations studied but Tossa de Mar and Corsica (see 

Table 11). Regarding the number of alleles (Table 12) there is a trend of decrease in 

number towards the Western and the Eastern edges of the distribution range studied. 

Mean expected heterozygosities (He) over all populations were considerably high 

(0.605±0.05) and nine out of the 11 populations showed a significant heterozygote 

deficiency (p<0.001). The multilocus estimator values of FIS ranged from 0 to 0.339 

and were significantly different from zero in the nine populations that showed 

heterozygote deficiency (Table 12) 

 

Table 11. Allele frequency of alleles at six microsatellite loci for eleven C.crambe 
populations. Private alleles in bold. Sample site designation in Figure 12 

Locus Allele LOCATION 
A-CR1  CAN MAD GAT BAL TOS CRE BNY MAR COR SIC NAP 
 160 - - - - - - 0,017 - - - - 
 162 - - - - - - 0,017 - - - - 
 176 - - - - 0,067 0,133 0,190 0,020 - - - 
 182 0,317 0,018 - - - - - - - - - 
 184 0,050 - - - - - - - - - 0,075 
 188 0,017 - - - - - - - - - - 
 190 - - - - - - - 0,120 - - - 
 192 - 0,018 - 0,067 0,017 0,017 - 0,020 - - - 
 194 - 0,089 0,028 - - - 0,069 - - 0,077 - 
 196 - 0,071 0,194 - 0,033 - 0,034 - - 0,038 - 
 198 - 0,107 0,056 0,083 0,067 0,133 0,034 - - - 0,100 
 200 - 0,196 0,028 0,033 - 0,033 0,034 0,020 0,250 0,192 0,025 
 202 0,067 0,161 0,250 0,150 0,150 0,167 0,017 0,420 0,050 0,231 - 
 204 0,100 0,071 0,111 0,017 0,067 0,083 0,017 0,160 - 0,192 0,025 
 206 0,100 0,143 0,028 0,117 0,150 0,017 0,017 - 0,117 0,077 - 
 208 0,133 0,089 0,111 0,150 0,067 0,033 0,034 - 0,117 0,038 0,625 
 210 0,100 0,018 0,083 0,167 0,233 0,200 0,328 0,040 0,050 0,077 0,150 
 212 0,017 0,018 0,056 0,167 0,100 0,133 0,121 - 0,150 - - 
 214 0,050 - 0,056 0,050 0,05 - 0,052 - 0,083 0,077 - 
 216 0,017 - - - - 0,050 0,017 0,020 0,017 - - 
 218 0,033 - - - - - - 0,080 0,033 - - 
 220 - - - - - - - - 0,133 - - 
 222 - - - - - - - 0,040 - - - 
 224 - - - - - - - 0,060 - - - 
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Table 11. Continued 

 
CR -e  CAN MAD GAT BAL TOS CRE BNY MAR COR SIC NAP 
 96 - 0,071 - - - - - - 0,033 - - 
 98 - - - - - - 0,050 - - - - 
 100 - - - - 0,017 0,033 0,083 - 0,017 - - 
 106 0,150 0,054 - - - - - - - - - 
 110 - 0,071 - - - - - - - - - 
 114 0,767 0,768 0,389 0,217 0,533 0,183 0,517 0,019 0,500 - 0,095 
 116 - 0,036 0,417 0,433 0,267 0,550 0,117 0,846 0,383 0,538 0,595 
 118 - - 0,056 0,033 - 0,050 0,017 - - 0,077 0,119 
 122 - - - - - - 0,017 - - - - 
 124 - - - - - - - - - 0,115 - 
 126 - - - - 0,083 0,067 0,033 - - - 0,095 
 128 0,017 - 0,139 0,083 - - - - - - - 
 130 - - - - - - 0,017 0,038 - 0,115 - 
 132 - - - - - - - 0,019 0,033 - - 
 134 - - - - - - - - - - 0,095 
 136 - - - - - - - 0,019 - - - 
 138 - - - - - 0,033 - - - 0,038 - 
 140 - - - - 0,017 - - 0,019 0,033 0,038 - 
 142 - - - - 0,050 0,050 0,067 0,038 - - - 
 144 0,017 - - 0,150 0,033 - 0,050 - - - - 
 146 0,017 - - 0,033 - - 0,033 - - 0,077 - 
 148 - - - - - 0,017 - - - - - 
 150 - - - 0,033 - - - - - - - 
 152 - - - 0,017 - - - - - - - 
 160 - - - - - 0,017 - - - - - 
 168 0,033 - - - - - - - - - - 
CR - j  CAN MAD GAT BAL TOS CRE BNY MAR COR SIC NAP 
 246 - - - 0,033 0,250 0,150 0,200 0,327 - 0,154 0,071 
 248 0,400 0,071 0,235 0,300 0,183 0,217 0,167 0,096 0,100 0,231 - 
 250 - 0,089 - 0,017 - - - - - - 0,190 
 252 - 0,071 0,029 0,083 - 0,017 0,017 - 0,100 0,115 0,048 
 254 0,367 0,714 0,294 0,333 0,283 0,467 0,450 0,231 0,333 0,231 0,167 
 256 0,183 0,054 0,235 0,183 0,267 0,117 0,083 0,327 0,317 0,115 0,310 
 258 0,017 - - - - - - - - - - 
 260 - - - - - - - 0,019 0,067 0,077 - 
 262 - - - 0,017 - - - - - - - 
 266 - - 0,088 0,033 0,017 0,033 0,083 - - 0,077 0,071 
 270 0,033 - - - - - - - 0,083 - 0,143 
 296 - - 0,118 - - - - - - - - 
CR -h  CAN MAD GAT BAL TOS CRE BNY MAR COR SIC NAP 
 157 - - - - - 0,017 - - - - - 
 159 0,917 0,411 0,361 0,117 0,267 0,333 0,417 0,712 0,850 0,538 0,571 
 161 - 0,589 0,639 0,867 0,733 0,650 0,567 0,288 0,150 0,423 0,429 
 163 - - - 0,017 - - 0,017 - - 0,038 - 
 165 0,083 - - - - - - - - - - 
CR -k  CAN MAD GAT BAL TOS CRE BNY MAR COR SIC NAP 
 209 - - - 0,017 - - - - - - - 
 210 0,083 - 0,611 0,317 0,167 0,183 0,167 0,038 0,083 0,385 0,368 
 213 0,083 0,482 0,250 0,400 0,500 0,450 0,283 - 0,017 0,231 - 
 217 - - - - 0,033 0,050 0,117 - - - - 
 219 - - - - 0,083 - 0,067 - - - - 
 220 - 0,214 - 0,017 - - - - - - 0,053 
 221 0,817 0,214 0,056 0,067 - 0,167 0,033 0,442 0,050 0,154 0,579 
 223 0,017 - - - 0,067 0,050 0,233 - 0,550 - - 
 225 - 0,089 0,083 0,050 0,017 0,033 0,067 - 0,017 0,115 - 
 229 - - - 0,133 0,133 0,067 0,033 0,519 0,283 0,115 - 
CR -i             
 270 0,033 0,232 0,353 0,267 0,133 0,217 0,100 0,192 0,117 0,231 0,350 
 276 - 0,054 0,206 0,217 0,267 0,317 0,300 0,288 0,167 0,231 0,225 
 277 - - - - 0,167 0,017 0,017 0,019 0,033 - - 
 278 0,933 0,714 0,176 0,283 0,350 0,400 0,550 0,462 0,550 0,423 0,200 
 280 0,033 - 0,265 0,233 0,083 0,050 0,033 0,038 0,133 0,115 0,175 
 282 - - - - - - - - - - 0,025 
 284 - - - - - - - - - - 0,025 
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Table 12. Summary of genetic variation at six microsatellite loci at 11 locations for C.crambe 
(Fig 1). Na= number of alleles, He=expected heterozygosity (Nei 1978), Ho= observed 
heterozygosity, FIS= inbreeding coefficient, HWE= departure from Hardy-Weinberg equilibrium, 
§= corrected for the sample size (Ewens 1972). Significant values (bold) after sequential 
Bonferroni corrections  (*P<0.05, **P<0.01, ***P<0.001, ns=nonsignificant). 

 
 

Locus  LOCATION Mean 

  CAN MAD GAT BAL TOS CRE BNY MAR COR SIC NAP Na/ 
Loc 

A-CR1 Na 12 12 11 10 11 11 15 11 10 9 6 10.7 
 He 0.853 0.889 0.880 0.883 0.883 0.880 0.827 0.784 0.871 0.877 0.585  
 Ho 0.633 0.892 0.777 0.900 0.533 0.433 0.310 0.680 0.400 0.690 0.100  
 Fis 0.262*** -0.001 0.120 -0.017 0.401*** 0.513*** 0.636*** 0.136 0.545*** 0.220 0.833***  
              

E-CR43 Na 6 5 4 8 7 9 11 7 6 7 5 6.8 
 He 0.393 0.400 0.666 0.733 0.643 0.663 0.710 0.284 0.609 0.692 0.618  
 Ho 0.200 0.250 0.111 0.100 0.233 0.166 0.300 0.192 0.200 0.154 0.381  
 Fis 0.497*** 0.384** 0.838*** 0.868*** 0.642*** 0.752*** 0.583*** 0.330* 0.676*** 0.786*** 0.390**  
              

J-CR91 Na 5 5 6 8 5 6 6 5 6 7 7 6.0 
 He 0.680 0.475 0.800 0.766 0.763 0.709 0.726 0.737 0.770 0.864 0.827  
 Ho 0.366 0.535 0.529 0.700 0.733 0.666 0.566 0.731 0.600 0.769 0.904  
 Fis 0.467*** -0.125 0.348** 0.090 0.042 0.061 0.224* 0.009 0.224* 0.114 -0.097  
              

H-CR59 Na 2 2 2 3 2 3 3 2 2 3 2 2.4 
 He 0.155 0.493 0.472 0.238 0.397 0.474 0.513 0.675 0.259 0.551 0.501  
 Ho 0.100 0.464 0.388 0.133 0.400 0.500 0.333 0.576 0.300 0.307 0.666  
 Fis 0.360 0.059 0.185 0.446* -0.006 -0.056 0.355* -0.390 -0.160 0.451 -0.34  
              

K-CR54 Na 4 4 4 7 7 7 8 3 6 5 3 5.3 
 He 0.323 0.678 0.569 0.726 0.703 0.737 0.826 0.543 0.616 0.778 0.540  
 Ho 0.266 0.571 0.611 0.533 0.633 0.666 0.866 0.614 0.666 0.692 0.315  
 Fis 0.180 0.162 -0.075 0.269* 0.101 0.098 -0.049 -0.135 -0.081 0.115 0.422*  
              

I-CR83 Na 3 3 4 4 5 5 5 5 5 4 6 4.4 
 He 0.128 0.439 0.752 0.760 0.766 0.702 0.606 0.677 0.648 0.729 0.770  
 Ho 0.133 0.428 0.765 0.733 0.766 0.733 0.433 0.653 0.666 0.769 1.000  
 Fis -0.036 0.028 -0.015 0.036 0 -0.046 0.289* 0.036 -0.029 -0.057 -0.301  
              

Mean Na/ 
Locat  5.3 5.2 5.2 6.7 6.2 6.8 8.0 5.5 5.8 5.8 4.8  

Mean Na/ 
Locat§  5.3 5.2 5.9 6.7 6.2 6.8 8.0 5.7 5.8 7.4 5.2  

Mean He  0.422 0.562 0.690 0.684 0.693 0.694 0.702 0.575 0.629 0.748 0.640  
Mean Ho  0.283 0.523 0.530 0.516 0.550 0.527 0.468 0.575 0.472 0.564 0.561  

Multiloc Fis  0.334*** 0.073 0.239*** 0.251*** 0.210*** 0.243*** 0.339*** 0.000 0.255*** 0.127* 0.253***  
HWE  *** ns *** *** *** *** *** ns *** *** ***  

 

 

For the locus J-CR91 one individual out of 286 (0.3%) failed to amplify, for I-

CR83 and K-CR54 two individuals (0.7%), and for A-CR1 three individuals (1%). In 

all cases, re-amplifications under less stringent reaction conditions of failed 

amplifications did not produce any readable genotype. 

Exact tests for homogeneity of allele frequencies among all samples indicated 

highly significant differences between all population pairs (P<0.001), both at the 

individual loci and over all loci combined. Single locus as well as multi-locus 

estimates of FST and RST computed over all samples are given in Table 13. Global 
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FST and RST were high and equal to 0.18. This indicates a high level of differentiation 

between collected samples over the distribution range of C. Crambe. The different 

loci did not contribute equally to the interpopulation differentiation, with monolocus 

FST values ranging from 0.07 to 0.26 (Table 13). 

 

Table 13. Global single locus and multilocus FST  and RST values 
for C.crambe populations.   
(*P<0.05,**P<0.01,***P<0.001) 

Locus 
 A-CR1 E-CR J-CR H-CR K-CR I-CR Multi-locus 

FST 0.08 0.19 0.07 0.26 0.23 0.10 0.18*** 
RST 0.07 0.07 0.09 0.15 0.28 0.03 0.18*** 

 

 

Pairwise comparisons of multilocus FST ranged from 0.0217 to 0.3286 (Table 

14). Regression of FST /(1− FST ) values against the logarithm of the geographic 

distances in kilometers showed a positive correlation between genetic and 

geographic distances (Fig. 13). A Mantel test on the two matrices showed that this 

correlation was significant (P<0.02). 

 

Table 14. Matrix of pairwise multilocus FST.  For all pairwise comparisons, genetic 
differentiation is highly significant (Fisher’s exact test, P<0.001) 

 
 CAN MAD GAT BAL TOS CRE BNY MAR COR NAP 
CAN           
MAD  

0.2156          

GAT  
0.3085 

 
0.1576          

BAL  
0.3286 

 
0.1461 

 
0.0243        

TOS  
0.2782 

 
0.0987 

 
0.0541 

 
0.0309       

CRE  
0.2761 

 
0.1164 

 
0.0475 

 
0.0217 

 
0.0272      

BNY  
0.2158 

 
0.0755 

 
0.0815 

 
0.0754 

 
0.0242 

 
0.0395      

MAR  
0.3037 

 
0.2779 

 
0.1815 

 
0.1879 

 
0.1837 

 
0.1230 

 
0.1941     

COR  
0.2049 

 
0.1752 

 
0.1581 

 
0.1864 

 
0.1464 

 
0.1448 

 
0.1018 

 
0.1557   

NAP  
0.2912 

 
0.2490 

 
0.1067 

 
0.1345 

 
0.1663 

 
0.1200 

 
0.1695 

 
0.1495 

 
0.1763  

SIC  
0.2662 

 
0.1634 

 
0.0290 

 
0.0512 

 
0.0734 

 
0.0223 

 
0.0745 

 
0.0747 

 
0.1078 

 
0.0842 
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In three out of the 11 populations some individuals sharing the same genotype 

for all the six loci were found. These identical individuals (potential clones) were only 

found within populations and are listed in Table 15. These putative clones comprised 

groups of only 2 or 3 individuals. 

 

Table 15. Number of individuals per population with identical 
genotype (potential clones) 

 
GENOTYPE POPULATION 

A-CR1 E-CR43 J-CR91 H-CR59 K-CR54 I-CR83 CAN COR NAP 

182/182 114/114 254/254 159/159 221/221 278/278 3   

200/200 114/114 252/256 159/161 223/223 276/278  2  

200/200 114/114 254/270 159/159 223/229 278/278  3  

202/206 114/114 254/254 159/159 210/223 278/278  3  

208/212 116/116 248/248 159/159 223/229 277/278  2  

212/212 114/132 248/256 159/159 223/223 278/280  2  

214/220 116/116 254/260 159/159 223/229 276/278  2  

220/220 116/116 256/256 159/159 223/229 270/280  2  

208/208 114/116 250/270 159/161 210/221 270/278   2 

208/208 116/116 250/270 159/161 210/221 270/278   2 

208/208 116/126 254/256 159/161 221/221 270/280   3 

210/210 116/116 256/266 159/159 210/221 270/276   2 

208/208 118/118 246/256 159/161 210/210 276/278   2 

 

 

The proportion of samples generated by the simulation program (100,000 

replicates, keeping sample size, allele frequencies and heterozygosities as observed) 

with at least one group of 2 individuals with the same genotype is listed in Table 16. 

The same figure is given for groups of 3 equal genotypes. The actual number of 

identical specimens found in the populations is also indicated.  

The proportion of generated samples featuring one or more groups of 2 

identical individuals ranges from 0.003 to 0.446. It is higher than 0.05 in the 

populations of Madeira, Canaries, Marseille, Corsica and Naples. The proportion of 
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generated samples with groups of identical multilocus genotypes of size 3 ranged 

from 0 to 0.052 (in Canaries). Groups of more than 3 individuals with the same 

genotype were not found or, if so, at very low frequencies in the generated series.  

 

Table 16. Proportion of samples generated by the simulation featuring at least one group of 2 
or one group of 3 identical individuals (Gen(2) and Gen(3), respectively), and number of clones 
of these sizes observed in our experimental samples (Obs(2) and Obs(3), respectively). 

 
Clone size CAN MAD GAT BAL TOS CRE BNY MAR COR SIC NAP 

Gen (2) 0.446 0.293 0.007 0.016 0.008 0.030 0.018 0.251 0.052 0.003 0.087 

Gen (3) 0.052 0.022 0 5*10-5 4*10-5 2.3*10-4 1.3*10-4 0.015 5.5*10-4 0 0.002 

Obs (2) 0 0 0 0 0 0 0 0 5 0 4 

Obs (3) 1 0 0 0 0 0 0 0 2 0 1 

 

 

One group of 3 identical individuals was observed in the sample from 

Canaries, where the probability of finding the same multilocus genotypes is the 

highest. In contrast, several groups of 2 and even 3 identical individuals appeared in 

the samples of Corsica and Naples, where the probability of finding such groups as a 

result of sexual reproduction is low. For instance, there were 5 groups of 2 identical 

individuals in Corsica, while in the generated series only 5% of the samples had one 

group of 2 individuals with the same genotype, only 0.2 % of the samples had two 

such groups, and none had more than 2 pairs of identical individuals. 

Tests for linkage disequilibria between loci revealed, after a sequential 

Bonferroni correction, 13 significant p-values out of 165 comparisons, these linkage 

disequilibria were not uniformly distributed across populations, and were 

concentrated in Naples and Corsica locations. As these two populations were also 

the ones with more genotypically identical individuals (Table 15), we thought that this 

could be the cause of the linkage found, so we repeated the comparisons without the 

identical individuals. In this second analysis only two P-values remained significant 

(P<10-5), one in Corsica and one in Naples not involving the same loci, suggesting 

that the observed linkage disequilibria were largely due to the presence of 

genotypically identical individuals. 
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In order to test the effect of these potential clones on the population structure 

of C. crambe, all analyses were repeated after removing identical individuals 

(keeping one individual per group). In contrast to the above results concerning 

linkage disequilibrium, the inter- and intra-population statistics remained very similar 

to the original ones (global FST =0.17; global FIS=0.21; isolation by distance, P<0.02). 

The conclusions regarding population structure, therefore, remained regardless of 

the inclusion or exclusion of the potential clones, indicating that clonality is not an 

important structuring factor at least at the studied geographical scale. 
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Figure 13. Relationship between genetic differentiation 
(computed as FST /(1- FST)) and the logarithm of geographic 
distance between C.crambe populations. Regression line 
included. 

 

5-5. Discussion 

5-5-1. Within population structure 
 

Microsatellite loci display high levels of polymorphism in C.crambe, providing 

information at both the inter and intra-population levels. This is in sharp contrast with 
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other genetic markers assayed on this species, such as mtDNA sequence data, 

which revealed a high degree of conservativeness, rendering them almost useless 

for population structure studies (Duran et al. in press). 

Microsatellite markers showed heterozygote deficiency within populations, 

which is translated into high positive FIS values. Such heterozygote deficiency could 

be the result of several non exclusive factors:  technical factors such as the presence 

of non amplifying alleles (i.e. null alleles; e.g.Callen et al. 1993), and  biological 

factors such as inbreeding , selfing and  Wahlund effects. 

Regarding the possible presence of non-amplifying alleles, it is worth 

mentioning that a low percentage of failed amplifications was observed. Specifically, 

only 8 individuals failed to amplify at a single locus, and these failures were 

distributed across three different loci. It is unlikely, therefore, that putative null alleles 

would be present at high frequency within populations, and hence influence 

considerably the outcomes of our analyses. Incorrect scoring of bands is also 

unlikely, as the use of an automated sequencer with an internal standard allowed for 

a high resolution for reading allele sizes.  

Mating among relatives and hence inbreeding could explain heterozygote 

deficiency within populations. This hypothesis is even more plausible in C. crambe 

where larvae and sperm both have low dispersal capability (Uriz et al. 1998). 

Sponges are hermaphrodites, so that self-fertilization could be another explanation 

for the heterozygote deficiency we observed. Testing for selfing in sponges remains 

difficult as aquarium rearing is hardly feasible.   

Although our samplings were done over only ca. 100m2 at each locality the 

existence of a Wahlund effect due to the presence of breeding subunits within each 

collected area could also explain the high observed FIS values. A temporal Wahlund 

effect could also occur. Each population could represent several subunits of 

individuals reproducing at different times over the years leading to different breeding 

subunits. C. crambe embryos are found in some colonies from April onwards, and 

larvae become very abundant in August on the Catalan coast (Turon et al. 1996; Uriz 

et al. 1998). It seems that reproduction occurs in a continuum during spring, and 

therefore a reproductive lag between subpopulations may originate a Wahlund effect. 

More studies are needed to test this possibility.   
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Hence, the exact causes of the high FIS values observed within sampling sites 

remain an open question. Addressing this issue in a precise way would require 

additional studies of microsatellite genotype distribution at a local geographical scale 

on precisely located individuals. Comparisons of population structure at different time 

periods would be also useful in detecting temporal structure within populations. 

 

5-5-2. Between population structure 
 

Highly significant levels of population differentiation were found for C crambe 

populations across its distribution range (FST and RST= 0.18). Even geographically 

close populations are highly differentiated (e.g. Cap de Creus and Banyuls sur Mer 

which are about 30 Km apart). The high number of population private alleles found 

provides further evidence of this high degree of structure and isolation among 

populations.  The significant correlation between geographic and genetic distance 

indicates that isolation by distance is a major mechanism of differentiation in C. 

crambe. Both low dispersal potential and physical factors such as hydrological 

conditions are surely playing a major role in shaping the genetic structure of the 

species. Interestingly, Canaries and Madeira archipelagos tend to have lower 

number of alleles (mean of 5.25 per population) than in the Mediterranean 

populations (mean of 6.41 per population); moreover, for most loci, a single allele 

was particularly frequent (often > 0.7) in the Canaries and Madeira archipelagos. 

These differences in allelic patterns suggest that the Atlantic populations may have 

endured a more or less recent bottleneck that could reflect colonization with founder 

event(s) of the Canaries and Madeira archipelagos by individuals originating from the 

Mediterranean Sea. Note that, specific tests for bottleneck detection such as the one 

of Cornuet & Luikart (1996) are not adapted to our biological model, as the later test 

assumes Hardy-Weinberg equilibrium in the tested populations.  

Because of their mutational modalities, microsatellites were found to be hardly 

useful at providing robust tree based evolutionary history (Estoup & Angers 1998; but 

see Goldstein & Pollock 1997). Hence, it would be worth using some other category 

of molecular markers (e.g. sequence data) that have a better memory of past 

evolutionary events to unravel the phylogeography of the species and to ascertain its 
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source of radiation. While mitochondrial DNA has a too low variability (Duran et al. in 

press), nuclear markers such as ITS sequences, coupled with nested clade analyses 

(Templeton 1998) have been successfully applied to phylogeographic studies in 

sponges (Wörheide et al. 2002), and may be a judicious choice to study the 

phylogeography of Mediterranean and Atlantic populations for C. crambe. 

 

5-5-3. Asexual contribution to reproduction 
 

As mentioned earlier, individuals were collected at least five meters apart from 

each other to decrease the chance of sampling the same individuals produced by 

fission (Turon et al. 1998). Some of the locations, however, showed identical 

individuals for the six loci genotyped (Table 15).  Even if different persons were 

involved in sample collection, the same clear instructions were given in order to use 

the same protocol at all locations. Therefore, a sampling error is unlikely to explain 

the identical individuals found. 

The probabilities of finding identical individuals by chance in sexually 

reproducing populations, as estimated by the simulation program, are in general low 

(Table 16), and only in the case of the population of the Canaries do they suggest a 

high chance of picking up individuals with the same genotype in samples of size 30, 

followed by Madeira and Marseille. The Atlantic populations behaved differently than 

the Mediterranean ones regarding the allelic frequencies, having for each locus one 

allele very frequent relative to the others, which increases the probability of identity 

by chance. In agreement with this, a group of three individuals with the same 

genotype was found in the sample from the Canaries, and they were homozygous for 

the most frequent alleles at each of the six loci (Table 15). The Canaries is also the 

only population where the probability of finding at least one group of 3 identical 

individuals is higher than 0.05 in the simulations performed (Table 16). All these 

reasons suggest that, although asexual reproduction cannot be discarded at all, the 

identical individuals found in Canaries may plausibly be a result of chance events in a 

sexually reproducing population.  

The conclusion is different for the samples collected in Corsica and Naples, 

where the proportion of simulated samples with groups of 2 identical individuals were 
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5.2 and 8.7 %, respectively, and of these ca. 96% had only one pair, so the number 

of potential clones observed (7 and 5 respectively, and some of them of size 3) is 

highly unlikely to result from chance alone. In Madeira or Marseille, for instance, no 

identical individuals were found in spite of a much higher probability of identity in the 

latter populations (Table 16). It can be noted that our approach for detecting clones is 

a conservative one, as we record all identical genotypes found in the simulations, but 

clearly some genotypes are more probable than others, and in particular in Corsica 

and Naples some of the clones did not feature the most frequent alleles at each locus 

(Table 15). We therefore believe that some form of asexual reproduction may be 

acting in Corsica and Naples populations. 

It can be noted that, if we run the simulations considering the expected 

heterozygosities under H-W equilibrium (instead of the observed ones), then the 

possibility of identity among individuals diminishes by one order of magnitude in most 

cases (results not shown), indicating a profound effect of the homozygosity excess of 

our samples in the probability of getting identical individuals by chance as a result of 

sexual reproduction. Hence, if random mating does not occur in a population sample, 

calculating probabilities of identity with methods based on this assumption would be 

highly misleading. 

Given the slow growth of C.crambe and the low rates of fission observed 

(Turon et al. 1998), the presence of clonal individuals separated by at least 5 m is 

unlikely to be the result of fission events. Other mechanisms of asexual multiplication 

have to be invoked, as, for instance, accidental fragmentation with subsequent 

dispersal of the fragments or rafting on algal thalli. Another interesting possibility, 

which has not been examinated so far, is that mechanisms of asexual reproduction 

exist at the level of the embryos or larvae, prior to dispersal.  What Corsica and 

Naples have in common that makes clonal reproduction more frequent than in the 

other locations studied remains to be explained, as well as which factors are 

contributing to the relative importance of asexual reproduction.  

In summary, the present study reveals significant genetic structure between 

and within the populations of an Atlanto-Mediterranean sponge in its distribution 

range. Microsatellite markers also showed a marked intrapopulation differentiation in 

this species, revealing the existence of heterozygote deficiency. This study also 
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suggests the potential importance of the asexual reproduction, as clones appear to 

be more frequent than expected. Which mechanisms are implicated in asexual 

reproduction and the sizes of clones remains to be definitively explained. Capturing 

the intrapopulation structure and the importance of reproduction strategies in sponge 

populations, however, will require a specific use of these powerful molecular markers 

at a microgeographic level with more accurate sampling designs. 
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CHAPTER 6: General conclusions 
The main conclusions obtained in this study are presented in different 

sections; each one represents a different methodological approach on the study of 

Crambe crambe population structure. The last section summarizes the overall 

conclusions drawn from a comparison of the different methods.  

 

6-1. mtDNA (COI) 

6-1-1. Levels of genetic variation detected were much lower than those 

reported for other marine invertebrates with lecitotrophic larvae. Due to these low 

levels of genetic diversity, the COI gene showed high genetic similarity among some 

distant C. crambe populations. 

 

6-1-2. The lack of variability found in the mtDNA is in agreement with other 

studies on diploblastic phyla, raising questions about the evolution of mtDNA in 

Metazoa and the presence of repair mechanisms in basal groups. 

 

6-1-3. In spite of the genetic similarity found, low levels of gene flow were 

detected between close populations, indicating low dispersal of larvae. 

 

6-1-4. mtDNA has not enough resolution to attempt studies at the intraspecific 

level in sponges, but it can be a good marker at the interspecific level. 

 

6-2. Internal transcribed Spacers 

6-2-1. Levels of genetic variation detected in C. crambe are in the range of 

those found in other sponge species, and lower than those detected in other marine 

organisms. 

 

6-2-2. Intragenomic variability is reported in sponges for the first time. 
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6-2-3. Sequence type frequencies and distribution showed strong genetic 

structure along C. crambe populations. 

 

6-2-4. Sequence type distribution suggested a strong effect of the regional 

hydrodynamic processes in the larval dispersal in the Mediterranean Sea. 

 

6-2-5. Both Maximum Likelihood estimates of sequence type phylogeny and 

the Statistical Parsimony cladograms indicated a recent origin of the sequence types 

due to the relatively low amount of genetic divergence found. 

 

6-2-6. Population history inferred by the Nested Clade Analysis involved 

historical events such as colonization and expansion, as well as recurrent restricted 

gene flow with Isolation by Distance. 

 

6-2-7. C. crambe has recently invaded the Canaries and Madeira 

archipelagos, probably via ship transport of larvae through ballast water or fouling. 

 

6-2-8. The Internal Transcribed Spacers are good-resolving markers for 

phylogeographic studies in sponges in spite of the difficulties found due to the 

intragenomic variability. Cloning should be routinely performed in studies using ITS to 

assess this variability. 

 

6-3. Microsatellites 

6-3-1. Enriched genomic libraries are a good methodology to look for 

polymorphic microsatellites in sponges. 

 

6-3-2. Six polymorphic microsatellites were described and used in population 

genetics studies for the first time in sponges. 

 

6-3-3. High levels of between population structure and Isolation by Distance 

pattern were detected. 
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6-3-4. Heterozygote deficiency and strong genetic structure within sampled 

sites was found. 

 

6-3-5. Genotypically identical individuals for the six loci were found in some 

locations probably due to asexual reproduction events. 

 

6-3-6. Differences in within population diversity and between population 

differentiation suggested the possibility of colonization with founder effect of the 

Atlantic area of distribution from the Mediterranean Sea. 

 

6-3-7. Microsatellite markers have a good resolution for intraspecific studies 

and are especially powerful at the intrapopulation level. Their high variability opens 

the field for the study of clonality in sponges 

 

6-4. Overall Conclusions 

 6-4-1. This work provides guidelines for the choice of a suitable marker for 

genetic studies in sponges depending on the level of resolution needed. 

 

 6-4-2. mtDNA sequences have not enough resolution to attempt studies at the 

intraspecific level. However, they may prove useful at the interespecific level and 

contribute to uncover cryptic species or to clarify the taxonomy of ill-defined species-

groups. Thus, phylogenetic information can be gleaned from the analysis of mtDNA 

sequences. 

 

6-4-3. ITS data performed best in intraspecific phylogeographic studies, 

allowing identification of patterns of diversification between populations. However, 

cloning should be routinely performed to overcome problems related to intragenomic 

variability. 

 

6-4-4. Microsatellite markers featured the highest level of variability and were 

therefore suitable for intraspecific and, particularly, intrapopulation studies. As they 
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allow individual genotyping, they open the field for the study of clonal structure in 

sponge populations. 

 

 6-4-5. All markers analyzed showed a strong genetic structure in C. crambe, 

indicating small-range dispersal, philopatry and restricted gene flow with Isolation by 

distance. The most sensitive markers also showed intrapopulation genetic structure 

and heterozygote deficiency that suggests levels of inbreeding and/or population 

substructure at small scales, as well as the existence of clonality in some cases. The 

results are also consistent in pointing to the Western Mediterranean as the center of 

radiation of the species, which has subsequently spread into the Atlantic. 
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RESUM 

FILOGEOGRAFIA, FLUX GÈNIC I ESTRUCTURA 
POBLACIONAL DE Crambe crambe 
(PORIFERA:POECILOSCLERIDA) 

 

Introducció 

L’objectiu principal d’aquesta tesi ha estat l’estudi de l’estructura poblacional 

d’una esponja marina (Crambe crambe) a diferents nivells geogràfics i mitjançant 

diferents marcadors moleculars. 

En molts organismes, sobretot d’ambients terrestres, s’han utilitzat marcadors 

moleculars com a eina per a estudiar l’estructura i connectivitat de poblacions, el 

potencial de dispersió o la història evolutiva de les espècies. Aquest tipus de dades 

són avui dia molt importants per a la gestió i conservació de les espècies i els 

ecosistemes. La majoria dels estudis que s’han dut a terme han utilitzat com a eina 

els al.lozims (proteïnes), i més recentment s’han incorporat les seqüències d’ADN 

mitocondrial o nuclear amb força èxit. Uns dels marcadors moleculars més 

novedosos han estat els microsatèl.lits, els quals estan essent desenvolupats i 

aplicats a més espècies cada dia amb un èxit molt elevat. Tot i l’avenç que s’ha 

produït en la darrera dècada pel que fa a l’ús d’eines moleculars per a l’estudi de les 

relacions evolutives entre espècies o entre poblacions d’una mateixa espècie, 

l’aplicació d’aquestes eines en organismes que habiten medis marins ha estat 

mínima, sobretot pel que fa als organismes invertebrats, on els estudis de genètica 

de poblacions són ben escassos i la major part només inclouen els al.lozims com a 

tècnica per a detectar l’estructura de les poblacions.  

Aquesta tesi és una contribució a l’aplicació de tècniques moleculars en 

l’estudi de l’estructura poblacional en invertebrats marins. Per a això s’han utilitzat 

diferents tipus de marcadors moleculars en l’esponja Crambe crambe i juntament 

amb els coneixements ecològics i biològics que es tenen de l’espècie s’ha estudiat 
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l’estructura actual de les seves poblacions, i s’ha intentat esbrinar quins factors han 

afectat i estan afectant a aquesta estructura.  

La gran majoria d’invertebrats marins són organismes bentònics, molts d’ells 

sèssils, on la fase de dispersió es limita a la larva. Seguir els moviments de les 

larves en el seu medi natural és una tasca que podríem definir com a molt difícil (per 

no dir gairebé impossible), així, els marcadors moleculars apareixen com a una eina 

perfecta per a poder seguir i caracteritzar poblacions i fins i tot individus, tant al llarg 

de l’espai com del temps.  

El patró que s’esperaria trobar seria que els organismes amb un potencial 

elevat de dispersió (p.ex. els que tenen larves planctotròfiques) tindrien una baixa 

diferenciació poblacional, ja que s’esperaria un elevat intercanvi d’individus entre les 

poblacions (elevat flux gènic). Aquest exemple el podem trobar en alguns estudis 

com a Palumbi & Wilson (1990); Lacson (1992); Ovenden et al. (1992) i Russo et al. 

(1994). Per altra banda, esperaríem que les espècies amb poca capacitat dispersiva 

(p.ex. les que tenen larves lecitotròfiques) tinguin una estructura poblacional més 

marcada amb poc flux gènic i poblacions tancades. Exemples d’aquest tipus 

d’espècies els podem trobar a Janson & Ward (1984); Day & Bayne (1988); McMillan 

et al. (1992); Duffy (1993) i Hunt (1993). Sorprenentment també es troben uns 

quants casos on no es segueixen aquests patrons esperats,  alguns exemples els 

trobem a Solé-Cava et al. (1994); Grant & da Silva-Tatley (1997); Uthicke & Benzie 

(2000) i Lazoski et al. (2001). Així doncs, a part del potencial de dispersió de les 

larves, molts altres factors (biològic, físics, ecològics...) estan actuant plegats i 

contribueixen a esculpir l’estructura poblacional dels invertebrats marins. 

Al llarg de la darrera dècada, el nombre de treballs publicats de filogeografia i 

genètica de poblacions en invertebrats marins ha crescut considerablement, 

començant amb al.lozims, seguint amb dades de seqüencies d’ADN, i darrerament 

utilitzant els microsatèl.lits com una de les eines estrella. Les qüestions tractades en 

aquests estudis han estat variades, els temes que es tracten majoritàriament són: 

1-Contrast de patrons de dispersió i reproducció 

2-Estudis de l’estructura genètica i flux gènic entre les poblacions 

3-Especiació i hibridació entre espècies 

4-Detecció de colonitzacions i invasions 
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5-Estudis de filogeografia 

6-Estudis d’estructura clonal en organismes amb reproducció asexual 

7-Estudi d’espècies críptiques 

Tot i que la majoria d’aquests estudis es poden considerar ciència bàsica, el 

coneixement que s’adquireix a través d’ells pot ser aplicat en temes de conservació i 

gestió d’espècies i ecosistemes marins, un camp que cada dia està tenint més 

importància, i que pot arribar a salvar moltes espècies i ecosistemes que es troben 

en perill degut a la “globalització” que s’està donant al planeta on vivim. Un problema 

ecològicament greu que s’ha desenvolupat durant aquest darrer segle és el transport 

antropogènic d’organismes marins, moltes vegades a escala mundial, a través de les 

aigües que emmagatzemen els vaixells de transport de mercaderies per tal de 

compensar el pes de la càrrega o a través dels bucs dels vaixells. Aquests vaixells 

omplen uns grans dipòsits amb aigua de mar d’una zona i no la deixen anar fins que 

no són al lloc on carreguen la mercaderia, on alliberen l’aigua juntament amb un 

munt d’organismes que poden ser de l’altra banda del món. Aquest fet pot donar lloc 

a invasions amb desplaçament d’espècies autòctones. Algunes de les invasions 

poden incloure espècies críptiques, que poden passar desapercebudes als nostres 

ulls i només ser detectades amb l’ús d’eines moleculars que no només poden 

detectar la invasió sinó també l’origen d’aquesta. 

Una mostra representativa dels treballs d’ecologia molecular i filogeografia 

publicats fins ara en invertebrats marins es presenta a la Taula 1 del Capítol 1, on 

s’indica l’organisme i el tema central d’estudi. 

 

L’espècie d’estudi: Crambe crambe 
 

S’ha triat una espècie sèssil amb larva lecitotròfica degut a que el baix 

potencial de dispersió teòricament hauria de donar lloc a una elevada estructuració 

poblacional (com a mínim a gran escala geogràfica), i aquest fet ajudaria a testar la 

resolució dels diferents marcadors moleculars utilitzats. Un punt important era triar 

un organisme ben conegut des del punt de vista ecològic i biològic per tal de facilitar 

la interpretació de les dades moleculars. Per aquestes raons i degut a una misteriosa 

fascinació del grup d’Ecologia Bentònica del Departament de Biologia Animal de la 
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UB cap a “l’esponja vermella”, es va triar Crambe crambe per a aquest estudi, una 

de les esponges més comunes al Mediterrani. 

El gènere Crambe (Vosmaer), que pertany a la familia de les Poecilosclèrides, 

inclou cinc espècies vives distribuïdes majoritàriament al Mediterrani i a la costa Est 

de l’Atlàntic. Una espècie fòssil de Nova Zelanda descrita sota el nom de Vetulina 

oamaruensi (Hinde & Holmes 1892) ha estat recentment proposada com a part del 

gènere Crambe (Uriz & Maldonado 1995). 

L’espècie Crambe crambe (Schmidt 1862) és una esponja vermella incrustant 

(veure Figura 2, Capítol 1). Pot arribar a assolir superfícies de fins a mig metre 

quadrat i sempre es troba lliure de macrosimbionts. És coneguda com una esponja 

altament bioactiva, per aquesta raó no se li coneixen depredadors i és altament 

competitiva per l’espai enfront als altres invertebrats que ocupen el mateix nínxol.  A 

més, és pràcticament lliure de microsimbionts (al contrari de la majoria d’esponges), 

una característica molt important si tenim en compte el risc de contaminació d’ADN 

de bacteris i cianobacteris que pot comportar el fet d’extreure l’ADN d’esponges que 

tenen el seu mesohil ple d’aquests simbionts. Pel que fa a la seva distribució, és una 

de les espècies més abundants del litoral Mediterrani, es troba tant a parets 

il·luminades com ombrívoles, des de 1 fins a 60 metres de fondària, i fins i tot pot 

viure a les praderies formades per la fanerògama Posidonia oceanica. És una de les 

poques espècies que pot conviure amb l’alga invasiva Caulerpa taxifolia a l’Oest del 

Mediterrani. El seu rang de distribució va des de l’Est de l’Oceà Atlàntic (Illes 

Canàries i Madeira) cap a l’Oest del Mediterrani, fins al Mar Adriàtic, i les costes 

d’Egipte i Turquia on ha estat citada una vegada (veure Figura 3, Capítol 1). 

L’esponja assoleix el màxim d’abundància a la zona Oest del Mediterrani on pot 

arribar a densitats d’uns 67 individus per metre quadrat i a una cobertura del 47% de 

la superfície (Turon et al. 1998) 

Estudis de la dinàmica de creixement de l’esponja han mostrat que es pot 

arribar a reproduir asexualment per fissió d’adults i que la fusió d’adults també es pot 

arribar a donar, tot i això aquests processos no semblen donar-se amb suficient 

freqüència com per a ser rellevants a la demografia de l’esponja. En altres esponges 

i altres espècies d’invertebrats incrustants aquests fenòmens es donen més 

freqüentment (Wulff 1991).  
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Crambe crambe és hermafrodita i es reprodueix sexualment alliberant 

esperma a través dels òsculs, els espermatozous són capturats per altres esponges 

a través dels porus inhalants per fertilitzar els òvuls. Els embrions s’incuben i les 

larves són alliberades a través dels òsculs des de principis de Juny fins a finals 

d’Agost (al Nord Oest del Mediterrani). Les larves alliberades es belluguen fent petits 

cercles de manera irregular i es dispersen uns quants metres de l’esponja mare. Les 

larves tenen un període de vida lliure que va des de 24 a 72h (al laboratori) després 

del qual s’assenten amb una tendència a instal·lar-se a prop d’esponges de la 

mateixa espècie (Uriz et al. 1998). 

Donat el comportament filopàtric de les larves i el seu curt temps de vida 

lliure, s’espera que les poblacions de C.crambe siguin força tancades, fins al punt de 

poder detectar diferenciació entre poblacions relativament properes (desenes de 

kilòmetres) i seguint el model d’aïllament per distància. 

 

Marcadors moleculars utilitzats: Seqüenciació d’ADN 
 

La seqüenciació de l’ADN, és una tècnica que s’ha expandit en ús a partir del 

descobriment de la Reacció en Cadena de la Polimerasa (PCR) i que permet 

mesurar la variabilitat genètica a partir dels canvis nucleotídics que trobem entre 

seqüències d’ADN de diferents espècies o individus. Per a treballar a nivell 

intraespecífic calen regions de l’ADN que siguin altament polimòrfiques o variables 

per tal de poder detectar diferències entre poblacions de la mateixa espècie. 

Aquestes regions es poden trobar sobretot a l’ADN mitocondrial (ADNmt) i a l’ADN 

ribosòmic (ADNr) els quals destaquen per ser marcadors moleculars de bona 

resolució per a estudis intraespecifics a la majoria de Tipus zoològics. 
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Seqüències d’ADN mitocondrial 
 

El 70% dels estudis de filogeografia s’han fet utilitzant l’ADNmt (veure Figura 

4, Capítol 1) degut a la seva elevada variabilitat.  

Hi ha diverses hipòtesis que intenten explicar les causes de la ràpida evolució 

del ADNmt: 

• Relaxació de la funció de les proteïnes 

• Elevada taxa de mutació 

• Falta d’histones 

Sigui quina sigui la raó, el fet és que compleix el requisit d’elevada variabilitat 

necessari per a ser un bon marcador a nivell intraespecífic. A més, el seu 

mecanisme característic de transmissió uniparental de generació en generació (per 

part de la mare, amb molt poques excepcions) i generalment sense recombinació, fa 

que tots els canvis nucleotídics detectats siguin deguts a processos de mutació i no 

deguts a recombinació com podria passar al treballar amb gens nuclears. Això fa 

que les metodologies d’anàlisi desenvolupades per a estudis filogenètics siguin útils 

en el cas de treballar amb dades de gens mitocondrials.  

 

Seqüències d’ADN ribosòmic 
 

L’ADNr forma part d’un complex multigènic amb còpies d’unes unitats 

disposades en tàndem al llarg de l’ADN nuclear (veure Figura 5, Capítol 1). Cada 

unitat està formada pels gens ribosòmics: 18S, 5.8S i 28S. Uns “Espaiadors” 

separen cadascun d’aquests gens: els Espaiadors Interns Transcrits 1 i 2 (ITS 1 i 2), 

l’Espaiador Extern Transcrit (ETS) i l’Espaiador Intergènic (IGS). D’aquests 

espaiadors, els ITS1 i ITS2 són les regions de més ràpida evolució i conseqüentment 

han estat utilitzats per a estudis a nivell intraespecífic. El fet que estiguin envoltats de 

gens funcionals força conservats, fa que s’hagin aprofitat aquests gens per a 

amplificar fàcilment els ITS mitjançant “primers” universals. 

Un problema associat a l’ús dels ITS és la seva naturalesa de còpia múltiple, 

ja que sovint les diverses còpies no estan homogeneitzades. Això fa que treballar 

amb ells sigui més costos que només seqüenciar gens de còpia única, ja que per a 
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fer un estudi acurat haurem de clonar i seqüenciar un nombre elevat de còpies per 

individu per a trobar els veritables al.lels o variants. 

Els microsatèl.lits 
 

En els darrers temps els microsatèl.lits (microsats) han esdevingut un dels 

marcadors moleculars més populars per a estudis intraespecífics. Consisteixen en 

diverses repeticions en tàndem de fins a 5 nucleòtids (p.ex. (TG)n o (CGA)n) que es 

troben àmpliament disperses al llarg del genoma d’eucariotes i en cloroplasts dels 

vegetals. Sovint són molt polimòrfics degut a la variació en el nombre de repeticions 

de cada unitat, a més es consideren neutres ja que no se’ls coneix cap mena de 

funció i generalment es troben en regions no codificants, així doncs no hi hauria 

pressió selectiva ni ambiental que els influeixi directament. 

Degut a l’elevat polimorfisme, els microsats han esdevingut una eina molt útil 

per a la identificació d’individus i per a tests de paternitat. També permeten fer 

estudis d’estructura genètica de poblacions a diferents nivells, des del biogeogràfic 

fins al local o intrapoblacional, arribant fins i tot a diferenciar individus. El fet que per 

a treballar amb microsats s’utilitze la tècnica de la PCR també ha obert la possibilitat 

de poder treballar amb quantitats molt menudes d’ADN que de vegades poden no 

estar en perfecte estat i així permeten analitzar mostres fecals o especímens de 

museus. Malauradament aquest gran potencial es veu limitat per factors tècnics i de 

temps que requereixen l’ús d’aquests marcadors, sobretot en l’estadi de 

desenvolupament i posada a punt del mètode per a cada espècie en estudi. Si a 

l’espècie d’interès no hi ha cap microsat descrit, aquests s’han de buscar i aïllar del 

genoma de l’espècie en qüestió, una tasca molt costosa tant des del punt de vista 

econòmic com de la quantitat de feina que comporta. Un altre punt negre d’aquests 

marcadors és el poc coneixement que es té del seu model mutacional que du a la 

falta de mètodes apropiats d’anàlisi de dades. 

En ecologia, s’han utilitzat entre d’altres coses per a estudiar estructures 

poblacionals, grandàries poblacionals efectives, relacions genètiques entre 

poblacions,  graus de parentiu entre individus, i mides de clons. 
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Resultats i conclusions 

Poca variació genètica en seqüències d’ADNmt al llarg de l’ àrea de 
distribució de Crambe crambe  
 

És el primer treball on s’utilitza ADNmt per a l’estudi de l’estructura 

poblacional en esponges. S’ha analitzat un fragment de 535 parells de bases de la 

Subunitat I del gen mitocondrial Citocrom Oxidasa per a un total de 86 individus 

mostrejats a una distància mínima de 5m entre ells per a minimitzar les possibilitats 

de mostrejar un mateix clon. El mostreig s’ha dut a terme a 8 localitats separades 

entre elles des de 20 Km fins a 3000 Km al llarg del rang de distribució de l’espècie 

(veure Figura 6, Capítol 2).  

S’ha trobat una única posició polimòrfica, que defineix dos únics haplotips. La 

diversitat nucleotídica és molt baixa comparada amb la d’altres invertebrats marins 

amb larves filopàtriques. Els dos haplotips es troben en diferents freqüències a les 

poblacions (Taula 3 Capítol 2) i ens permet detectar nivells baixos de flux gènic entre 

algunes de les poblacions properes (p.ex. Cap de Creus i Banyuls).  

La hipòtesi ecològica de que la curta vida lliure de la larva duria a una gran 

estructura genètica de les poblacions no pot ser descartada tot i la homogeneïtat 

trobada amb aquest marcador molecular. De fet, en un estudi amb cnidaris on 

s’analitzava un gen mitocondrial es va veure que hi havia una gran similitud genètica 

amb les esponges (Watkins & Beckenbach 1999), aquests autors van proposar que 

hi deuria haver una elevada conservació de l’ADN mitocondrial en organismes 

diblàstics. 

Altres estudis de nivell biogeogràfic en esponges amb ADN mitocondrial són 

necessaris abans de generalitzar, però aquests resultats semblen indicar que l’ADN 

mitocondrial, en el cas concret de Crambe crambe i possiblement en el cas de les 

esponges en general, és una molècula massa conservada com per a utilitzar-la com 

a marcador molecular en estudis a nivell intraespecífic. Per contra sembla prou 

variable entre espècies com per utilitzar-la per a estudis filogenètics. 
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Història evolutiva de l’esponja Crambe crambe: expansió demogràfica i 
invasió recent de les illes de la Macaronèsia des del Mediterrani. 
Inferència a partir de seqüències ITS de l’ADNr 
 

S’ha analitzat la variació trobada en 114 individus d’onze localitats del rang de 

distribució de l’esponja, en un fragment de DNA ribosòmic de 647 parells de bases 

que inclou als ITS-1 i ITS-2. En el cas de trobar polimorfismes intraindividuals, al 

tractar-se d’un marcador de múltiples còpies per genoma, s’ha procedit a clonar el 

producte de la PCR per tal de poder detectar el màxim de seqüències diferents 

(s’han seqüenciat un total de 116 clons de 16 individus polimòrfics). Per primera 

vegada en esponges s’ha detectat variabilitat intragenòmica.  En total s’han detectat 

16 tipus diferents de seqüències, deguts a 8 parells de bases variables (veure Taula 

6 i Figura 7, Capítol 3). La variabilitat trobada està en el rang de la detectada en 

altres esponges, tot i que mai abans se n’havia trobat a nivell intraindividual. En 

aquests individus polimòrfics, el nombre de variants trobades varia de dos  a set. 

L’anàlisi de les seqüències ens mostra que les poblacions de C.crambe estan 

molt diferenciades i afectades per una restricció de flux gènic degut a un fenòmen 

d’aïllament per distància. També suggereix que tant la curta vida larvària com 

l’efecte de l’hidrodinamisme de les diverses zones estan limitant la dispersió i 

l’intercanvi d’individus entre poblacions.  

L’estudi filogeogràfic s’ha dut a terme aplicant la tècnica de l’anàlisi aniuada 

de clades (“nested clade analysis” o NCA). S’ha inferit una expansió continuada del 

rang de distribució de l’espècie (Taula 8, Capítol 3). Les anàlisis filogenètiques 

mostren un origen recent de les diferents seqüències trobades, aquest fet podria ser 

explicat per un origen recent de l’espècie o per un coll d’ampolla recent a la zona 

d’estudi. També s’ha detectat la invasió recent de la zona Macaronèsica (Illes 

Canàries i Madeira) a l’est de l’oceà Atlàntic. Aquesta zona de l’Atlàntic es 

caracteritza per ser una àrea amb unes comunitats afins a les del Mediterrani. El fet 

que C. crambe es trobi de forma abundant en aquests arxipèlags i que no la trobem 

en altres zones Atlàntiques ens du a suggerir que l’arribada de l’esponja a aquestes 

illes ha estat molt probablement mitjançant el transport humà, és a dir, que les larves 

deuen haver viatjat en vaixells. Probablement amb les aigues de llastre, haurien 

arribat a les illes Atlàntiques una petita quantitat de larves, donant lloc a una o més 



Resum 

 122

colonitzacions amb efecte fundador, el que explicaria la reducció en nombre d’al.lels 

detectada respecte a les poblacions mediterrànies.  

L’esponja s’hauria adaptat en aquest nou ambient on s’ha expandit fins al 

punt de ser una de les esponges més abundants (observació personal). En aquest 

cas tindríem una situació contrària a les teories biogeogràfiques que fins ara s’havien 

postulat pel que fa a la relació entre les comunitats bentòniques del Mediterrani i de 

l’Est de l’Atlàntic: sempre s’ha pensat que després de la darrera crisi de dessecació 

del Mar Mediterrani, hi va haver una recolonització per part de les comunitats 

Atlàntiques. Aquest exemple concret d’una esponja, suggereix que la colonització en 

el sentit contrari, degut a l’efecte del transport humà, podria ser un cas no aïllat sinó 

més comú del que en principi es podria haver pensat en altres invertebrats 

bentònics.  

 

Descripció de microsatèl.lits polimòrfics a l’esponja Crambe crambe i la 
seva variació en dues poblacions llunyanes 
 

Mitjançant la construcció d’una llibreria genòmica enriquida s’han caracteritzat 

set loci microsatèl.lit (Taula 10, Capítol 4) i s’han descrit els primers específics per a 

ells. Aquests set loci han estat testats en dues poblacions llunyanes, 30 individus de 

Tossa de Mar i 30 individus de Gran Canària van ser genotipats per als set loci per 

tal d’avaluar el grau de polimorfisme i el potencial d’aquests marcadors per a estudis 

de genètica de poblacions en aquesta espècie. El nombre d’al.lels per locus varia de 

3 a 16 i les distribucions de les freqüències al.lèliques difereixen considerablement 

entre les dues poblacions (Figura 11, Capítol 4). Son els primers microsatèl.lits 

descrits en una esponja. 
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Marcadors microsatèl.lits detecten una forta estructura inter i 
intrapoblacional a l’esponja Crambe crambe 
 

S’ha analitzat la variació trobada en 286 individus d’onze poblacions del rang 

de distribució de l’esponja Crambe crambe (Figura 12, Capítol 5) amb l’ús de sis loci 

microsatèl.lits específics previament descrits.  Es tracta del primer estudi on 

s’utilitzen aquests marcadors per a l’estudi de l’estructura poblacional en esponges. 

Tal i com s’esperava, per tractar-se d’un invertebrat sèssil amb larva 

lecitotròfica, s’han trobat nivells alts de diferenciació entre les poblacions amb un 

valor de FST de 0.18. La diferenciació trobada entre les poblacions Atlàntiques i 

Mediterrànies ens indica una colonització recent de la zona Atlàntica, probablement 

mitjançant aigua de llastre dels vaixells de càrrega. També s’ha detectat que la 

variabilitat genètica de les poblacions de l’esponja segueix un patró d’aïllament per 

distància (Figura 13, Capítol 5). A nivell intrapoblacional s’ha detectat un alt grau 

d’estructuració (FIS=0.21) que podria ser causat per diferents factors com ara: nivells 

alts de consanguinitat deguts a la poca dispersió de les larves, un efecte Wahlund 

degut a una subestructuració espaial, i/o la possibilitat que es produeixi 

autofecundació, un fet que encara no s’ha pogut demostrar però que no es pot 

descartar degut a l’hermafroditisme de l’espècie.  

Tot i el disseny experimental, on es va intentar evitar mostrejar clons agafant 

sempre esponges que estiguèssin separades més de 5 m, s’han detectat alguns 

individus  idèntics per als sis loci en les poblacions de Canàries, Còrsega i Nàpols. 

S’ha elaborat un programa de simulació per estimar les probabilitats de trobar 

individus genotípicament iguals en una població amb reproducció només sexual 

tenint en compte el nombre d’al.lels per locus, la seva freqüència a les diferents 

poblacions i els nivells d’heterozigositat detectats. Només en el cas de la localitat de 

Canàries és força probable l’aparició per atzar d’individus idèntics, degut a l’elevada 

freqüència d’un determinat al.lel a la majoria dels loci. Aquest fet també reforça la 

conclusió de que hi ha hagut una colonització recent de l’Atlàntic des del Mar 

Mediterrani. Per a les altres localitats amb individus idèntics (Còrsega i Nàpols), la 

probabilitat que ho siguin degut a l’atzar és tant petita i el nombre de “clons” trobats 

(7 i 5, respectivament) tan alta que  l’explicació més plausible és que es tracti 
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d’autèntics clons fruit de la reproducció asexual. Així doncs, la reproducció asexual 

seria molt més important del que s’hauria imaginat en un principi, i a més es donaria 

en diferents proporcions depenent de la localitat estudiada. Si el procés de 

reproducció asexual es veu limitat a processos de fissió d’individus adults o aquest 

increment inesperat en la freqüència de clons es degut a altres processos a nivell 

larvari o embrionari quedaria pendent d’esbrinar. Per tal d’aprofondir en l’importància 

de la reproducció asexual en relació a la reproducció sexual i en relació a l’estructura 

de les poblacions a petita escala s’hauria de dissenyar un mostreig intensiu a nivell 

intrapoblacional.  

Amb aquest estudi queda palesa l’elevada resolució d’aquests marcadors 

moleculars, que destaquen especialment pel gran potencial que tenen per respondre 

qüestions a nivells microgeogràfics (p.ex. intrapoblacionals), cosa que de moment, 

cap altre marcador no ha permès. En particular, permetrien abordar per primera 

vegada de manera formal l’estudi de l’estructura clonal de les esponges. 
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