
Blocking Independent Sets for H-Free Graphs
via Edge Contractions and Vertex Deletions

Daniël Paulusma1, Christophe Picouleau2, and Bernard Ries3(B)

1 Durham University, Durham, UK

daniel.paulusma@durham.ac.uk
2 CNAM, Laboratoire CEDRIC, Paris, France

christophe.picouleau@cnam.fr

3 University of Fribourg, Fribourg, Switzerland

bernard.ries@unifr.ch

Abstract. Let d and k be two given integers, and let G be a graph.
Can we reduce the independence number of G by at least d via at most
k graph operations from some fixed set S? This problem belongs to a
class of so-called blocker problems. It is known to be co-NP-hard even if
S consists of either an edge contraction or a vertex deletion. We further
investigate its computational complexity under these two settings:
– we give a sufficient condition on a graph class for the vertex deletion

variant to be co-NP-hard even if d = k = 1;
– in addition we prove that the vertex deletion variant is co-NP-hard

for triangle-free graphs even if d = k = 1;
– we prove that the edge contraction variant is NP-hard for bipartite

graphs but linear-time solvable for trees.

By combining our new results with known ones we are able to give full
complexity classifications for both variants restricted to H-free graphs.

1 Introduction

A graph modification problem aims to modify a graph G, via a small number of
operations, into some other graph H that has a certain desired property, which
usually describes a certain graph class to which H must belong. In this way a
variety of classical graph-theoretic problems is captured. For instance, if only k
vertex deletions are allowed and H must be an independent set or a clique, one
obtains the Independent Set or Clique problem, respectively.

Instead of specifying a graph class we can specify a graph parameter. That
is, given a graph G, a set S of one or more graph operations and an integer k, we
ask whether G can be transformed into a graph G′ by using at most k operations
from S such that π(G′) ≤ π(G) − d for some threshold d ≥ 0. Such problems are
called blocker problems. This is because the set of vertices or edges involved can
be viewed as “blocking” π. Identifying such sets may gives us some important
information on the structure of the graph.

This is a post-peer-reviewed, pre-copyedit version of an article published in Lecture
Notes in Computer Science. The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-319-55911-7 34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/199185782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Blocker problems have been well studied in the recent literature [1–3,5,7,13,
14,16,18]; in particular, in [7,14] several relations to other graph problems were
identified, such as Hadwiger Number, Club Contraction and a number of
graph transversal problems. So far, the graph parameters considered were the
chromatic number, the independence number, the clique number, the matching
number and the vertex cover number, whereas the set S consisted of a single
graph operation, which was either the vertex deletion, edge contraction, edge
deletion or the edge addition operation. In this paper we keep the restriction on
the size of S, and we let S consist of either a single vertex deletion or a single
edge contraction. We mainly consider the independence number α, but for the
deletion variant we will also take the clique number ω into account (for reasons
we explain later).

Before we can define our problems formally we first need to give some ter-
minology. The contraction of an edge uv of a graph G removes the vertices u
and v from G, and replaces them by a new vertex made adjacent to precisely
those vertices that were adjacent to u or v in G (neither introducing self-loops
nor multiple edges). We say that G can be k-contracted or k-vertex-deleted into
a graph G′ if G can be modified into G′ by a sequence of at most k edge con-
tractions or vertex deletions, respectively. We let π denote the (fixed) graph
parameter; as mentioned, in this paper π belongs to {α, ω}.

Contraction Blocker(π)

Instance: a graph G and two integers d, k ≥ 0
Question: can G be k-contracted into a graph G′ with π(G′) ≤ π(G)−d?

Deletion Blocker(π)

Instance: a graph G and two integers d, k ≥ 0
Question: can G be k-vertex-deleted in a graph G′ with π(G′) ≤ π(G)−d?

If we remove d from the input and fix it instead, we call the resulting
problems d-Contraction Blocker(π) and d-Deletion Blocker(π), respec-
tively. Note that 1-Deletion Blocker(α) is equivalent to testing whether the
input graph contains a set of S of size at most k that intersects every maximum
independent set. If k = 1, this is equivalent to testing whether the input graph
contains a vertex that is in every maximum independent set. The intersection
of all maximum independent sets is known as the core of a graph. Properties of
the core have been well studied (see for example [10–12]). In particular, Boros,
Golumbic and Levit [4] proved that computing if the core of a graph has size at
least � is co-NP-hard for every fixed � ≥ 1. Taking � = 1 gives co-NP-hardness
of 1-Deletion Blocker(α), whereas 1-Contraction Blocker(α) is known
to be NP-hard [7].

Due to the above hardness results, it is natural to restrict the input to some
special graph class. In a previous paper [7] we considered π ∈ {α, ω, χ}, where

χ denotes the chromatic number of a graph, and we restricted the input to
perfect graphs and subclasses of perfect graphs. We showed both new hardness
results (e.g., for the class of perfect graphs itself) and tractable results (e.g., for
cographs). In a follow-up paper [14] we extended the results of [7] by considering
some more subclasses of perfect graphs for π ∈ {ω, χ}. Moreover, for every
connected graph H and π ∈ {ω, χ}, we determined the computational complexity
of Contraction Blocker(π) and Deletion Blocker(π) for H-free graphs,
that is, graphs that do not contain an induced subgraph isomorphic to H.

Our Results

We settle the computational complexity of Contraction Blocker(α) and
Deletion Blocker(α)restricted to H-free graphs for all graphs H (including
those that are disconnected). We observe that Deletion Blocker(α) restricted
to H-free graphs is equivalent to Deletion Blocker(ω) for H-free graphs,
where H denotes the complement of H. Hence, as a corollary, we obtain an
extension of the aforementioned classification of [14] for Deletion Blocker(ω)
for H-free graphs from connected graphs H to all graphs H.

To prove the above results we first show that Contraction Blocker(α)
is NP-hard for bipartite graphs in Sect. 3. In the same section we complement
this result by showing that Contraction Blocker(α) can be solved in linear
time for trees. Then, in Sect. 4, we prove that Deletion Blocker(α) is co-
NP-hard for triangle-free graphs even if d = k = 1 (in contrast the problem
is polynomial-time solvable for bipartite graphs [2,5]). In Sect. 5 we extend our
result for triangle-free graphs to other graph classes for which Independent Set
is NP-complete. That is, we give a sufficient condition on such a graph class G,
such that Deletion Blocker(α) is co-NP-hard for G even if d = k = 1. This
condition is similar to a previous condition when π ∈ {χ, ω} [14]. In Sect. 6
we combine our new results from Sects. 4 and 5 with known ones to obtain the
classifications for H-free graphs. In Sect. 7 we compare our new results with the
results of our previous paper [14] and list some open problems.

Recall that the deletion variant for k = d = 1 is equivalent to asking whether
a graph has a vertex that is in every maximum independent set. As such, our
hardness results in Sects. 4 and 5 strengthen the aforementioned result of Boros,
Golumbic and Levit [4], who proved co-NP-hardness of the latter problem for
general graphs. Note that for graph classes, for which Independent Set is NP-
complete, membership of our problems in NP is unknown. Contrary to those
graph classes, for which Independent Set is polynomial-time solvable and
which are closed under the graph operation under consideration, a certificate
consisting of a sequence of edge contractions or vertex deletions no longer suffices.

2 Preliminaries

We only consider finite, undirected graphs that have no self-loops and no multiple
edges (we recall that when we contract an edge no self-loops or multiple edges
are created). See [6] for undefined terminology and notation.

Let G = (V,E) be a graph. For a family {H1, . . . ,Hp} of graphs, G is said
to be (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}; if p = 1 we may write H1-free instead of (H1)-free. The com-
plement of G is the graph G = (V,E) with vertex set V and an edge between
two vertices u and v if and only if uv /∈ E. For a subset S ⊆ V , we let G[S]
denote the subgraph of G induced by S, which has vertex set S and edge set
{uv ∈ E | u, v ∈ S}. We write H ⊆i G if a graph H is an induced subgraph
of G.

Let G be a graph. For a vertex v ∈ V , we write G − v = G[V \ {v}] and for
a subset V ′ ⊆ V we write G − V ′ = G[V \ V ′]. Recall that the contraction of an
edge uv ∈ E removes the vertices u and v from G and replaces them by a new
vertex that is made adjacent to precisely those vertices that were adjacent to u
or v in G. In that case we may also say that u is contracted onto v, and we use
v to denote the new vertex resulting from the edge contraction. The subdivision
of an edge uv ∈ E removes the edge uv from G and replaces it by a new vertex
w and two edges uw and wv.

Let G1 and G2 be two vertex-disjoint graphs. The disjoint union G1 + G2

has vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The disjoint union
of k copies of a graph G is denoted by kG. The join G1 ⊗ G2 adds an edge
between every vertex of G1 and every vertex of G2. For r ≥ 1, the path, cycle
and complete graph on r vertices are denoted by Pr, Cr and Kr respectively.
The graph C3 is also called the triangle. The claw K1,3 is the 4-vertex star (that
is, the graph with vertices u, v1, v2, v3 and edges uv1, uv2, uv3).

Let G = (V,E) be a graph. A subset K ⊆ V is called a clique of G if any two
vertices in K are adjacent to each other. The clique number ω(G) is the number
of vertices in a maximum clique of G. A subset I ⊆ V is called an independent
set of G if any two vertices in I are non-adjacent to each other. The independence
number α(G) is the number of vertices in a maximum independent set of G. A
subset of edges M ⊆ E is called a matching if no two edges of M share a common
end-vertex. The matching number μ(G) is the number of edges in a maximum
matching of a graph G. A vertex v such that M contains an edge incident with v
is saturated by M ; otherwise v is unsaturated by M . A subset S ⊆ V is a vertex
cover of G if every edge of G is incident with at least one vertex of S.

The problems Clique and Independent Set are those of testing if a graph
has a clique or independent set, respectively, of size at least k. The Vertex
Cover problem is that of testing if a graph has a vertex cover of size at most k.

A graph is cobipartite if it is the complement of a bipartite graph, that is, a
graph whose vertex set can be partitioned into two sets that each form a (possibly
empty) independent set. A graph is a split graph if it has a split partition, which
is a partition of its vertex set into a clique K and an independent set I. Split
graphs coincide with (2P2, C4, C5)-free graphs [8]. A P4-free graph is also called
a cograph.

3 Bipartite Graphs and Trees

Our first lemma below follows directly from a result of Golovach, Heggernes,
van’t Hof and Paul [9] on the so-called s- Club Contraction problem; see [7]
for further details.

Lemma 1 ([7]). 1-Contraction Blocker(α) is NP-complete for cobipartite
graphs.

If π ∈ {χ, ω}, Contraction Blocker(π) is trivial in bipartite graphs.
To the contrary, for π = α, we will show that Contraction Blocker(π) is
NP-hard for bipartite graphs. The complexity of d-Contraction Blocker(α)
remains open for bipartite graphs. Bipartite graphs are not closed under edge
contraction. Therefore membership to NP cannot be established by taking a
sequence of edge contractions as the certificate, even though due to König’s
Theorem (see, for example, [6]), Independent Set is polynomial-time solvable
for bipartite graphs.

Theorem 1. Contraction Blocker(α) is NP-hard on bipartite graphs.

Proof. We know from Lemma 1 that 1-Contraction Blocker(α) is NP-
complete on cobipartite graphs, which have independence number 2. Consider
a cobipartite graph G with m edges and an integer k, which together form an
instance of 1-Contraction Blocker(α). Subdivide each of the m edges of G
in order to obtain a bipartite graph G′. We claim that (G, k) is a yes-instance
of 1-Contraction Blocker(α) if and only if (G′, α(G′) − 1, k + m) is a yes-
instance of Contraction Blocker(α).

First suppose that (G, k) is a yes-instance of 1-Contraction Blocker(α).
In G′ we first perform m edge contractions to get G back. We then perform k edge
contractions to get independence number α(G) − 1 = 1 = α(G′) − (α(G′) − 1).
Hence, (G′, α(G′) − 1, k + m) is a yes-instance of Contraction Blocker(α).

Now suppose that (G′, α(G′) − 1, k + m) is a yes-instance of Contraction
Blocker(α). Then there exists a sequence of k + m edge contractions that
transform G′ into a complete graph K. We may assume that K has size at
least 4 (as we could have added without loss of generality three dominating
vertices to G without increasing k). As K has size at least 4, each subdivided
edge must be contracted back to the original edge again. This operation costs
m edge contractions, so we contract G to K using at most k edge operations.
Hence, (G, k) is a yes-instance of 1-Contraction Blocker(α). This proves
the claim and hence the theorem. �	

We complement Theorem 1 by showing that Contraction Blocker(α) is
linear-time solvable on trees. In order to prove this result we make a connection
to the matching number μ.

Theorem 2. Contraction Blocker(α) is linear-time solvable on trees.

Proof. Let (T, d, k) be an instance of Contraction Blocker(α), where T is
a tree on n vertices. We first describe our algorithm and prove its correctness.
Afterwards, we analyze its running time. Throughout the proof let M denote a
maximum matching of T .

As α(T) + μ(T) = n by König’s Theorem (see, for example, [6]), we find
that (T, d, k) is a no-instance if d > n − μ(T). Assume that d ≤ n − μ(T).
We observe that trees are closed under edge contraction. Hence, contracting an
edge of T results in a new tree T ′. Moreover, T ′ has n − 1 vertices and the
edge contraction neither increased the independence number nor the matching
number. As α(T) + μ(T) = n and similarly α(T ′) + μ(T ′) = n − 1, this means
that either α(T ′) = α(T) − 1 or μ(T ′) = μ(T) − 1.

First suppose that d ≤ n−2μ(T). There are exactly σ(T) = n−2μ(T) vertices
that are unsaturated by M . Let uv be an edge, such that u is unsaturated. As
M is maximum, v must be saturated. Then, by contracting uv, we obtain a tree
T ′ such that μ(T ′) = μ(T). It follows from the above that α(T ′) = α(T) − 1.
Say that we contracted u onto v. Then in T ′ we have that v is saturated by M ,
which is a maximum matching of T ′ as well. Thus, if d ≤ n− 2μ(T), contracting
d edges, one of the end-vertices of which is unsaturated by M , yields a tree T ′

with μ(T ′) = μ(T) and α(T ′) = α(T) − d. Since an edge contraction reduces
the independence number by at most 1, it follows that this is optimal. Hence, as
d ≤ n−2μ(T), we find that (G,T, k) is a yes-instance if k ≥ d and a no-instance
if k < d.

Now suppose that d > n−2μ(T). Suppose that we first contract the n−2μ(T)
edges that have exactly one end-vertex that is unsaturated by M . It follows
from the above that this yields a tree T ′ with μ(T ′) = μ(T) and α(T ′) =
α(T) − (n − 2μ(T)). Since T ′ does not contain any unsaturated vertex, M is a
perfect matching of T ′. Then, contracting any edge in T ′ results in a tree T ′′ with
μ(T ′′) = μ(T ′)−1 and thus, α(T ′′) = α(T ′). If we contract an edge uv ∈ M , the
resulting vertex uv is unsaturated by M ′ = M \{uv} in T ′′. Hence, as explained
above, if in addition we contract now an edge (uv)w, we obtain a tree T ′′′ with
α(T ′′′) = α(T ′′) − 1 and μ(T ′′′) = μ(T ′′). Repeating this procedure, we may
reduce the independence number of T by d with n− 2μ(T)+2(d−n+2μ(T)) =
2(d + μ(T)) − n edge contractions. Below we show that this is optimal.

Suppose that we contract p edges in T . Let T ′ be the resulting tree. We have
α(T ′) + μ(T ′) = n − p. As μ(T ′) ≤ 1

2 (n − p), this means that α(T ′) ≥ 1
2 (n − p).

If p < 2(d + μ(T)) − n we have −p
2 > −(d + μ(T)) + n

2 , and thus

α(T ′) ≥ 1
2 (n − p)

> n
2 − d − μ(T) + n

2

= α(T) − d.

So at least 2(d + μ(T)) − n edge contractions are necessary to decrease the
independence number by d. It remains to check if k is sufficiently high for us to
allow this number of edge contractions.

As we can find a maximum matching of tree T (and thus compute μ(T)) in
O(n) time by using the algorithm of Savage [17], our algorithm runs in O(n)
time. �

Remark 1. By König’s Theorem, we have that α(G) + μ(G) = |V (G)| for any
bipartite graph G, but we can only use the proof of Theorem2 to obtain a result
for trees for the following reason: trees form the largest subclass of (connected)
bipartite graphs that are closed under edge contraction, and this property plays
a crucial role in our proof.

4 Triangle-Free Graphs

In this section we show that Deletion Blocker(α) is co-NP-hard for triangle-
free graphs even if d = k = 1. We call a vertex forced if it is in every maximum
independent set of a graph [5]. Recall that the set of all forced vertices is called
the core of a graph and that Boros, Golumbic and Levit [4] proved that comput-
ing whether the core of a graph has size at least k is co-NP-hard for every fixed
k ≥ 1. As a special case of their result, the problem of testing the existence of
a forced vertex is co-NP-hard. In this section we prove that the latter problem,
or equivalently, Deletion Blocker(α) with d = k = 1, stays co-NP-hard even
for triangle-free graphs.

We need some terminology and a well-known observation that follows from
a construction of Poljak [15]. We say that we 2-subdivide an edge e of a graph G
if we apply two consecutive edge subdivisions on e. It is readily seen that a
graph G with m edges has an independent set of size k if and only if the graph
obtained by 2-subdividing each edge of G has an independent set of size k + m
(see also [15]). Let G be a graph class. Then we let G2 be the graph class obtained
from G after 2-subdividing each edge in every graph in G.

Lemma 2. ([15]). If Independent Set is NP-complete for a graph class G,
then it is also NP-complete for G2.

Two vertices in a graph G are true twins if they are adjacent to each other
and apart from this have the same neighbours in G. The graph G∗ obtained
from a graph G by adding a new vertex u′ for each vertex u of G that is a true
twin of u is called the twin graph of G; see Fig. 1 for an example. We call u′ the
copy of u. Let G∗ be the graph class obtained from a graph class G by replacing
each graph in G by its twin graph. Note that α(G∗) = α(G) for every graph G.
Hence the following lemma holds.

Lemma 3. If Independent Set is NP-complete for a graph class G, then it is
also NP-complete for G∗.

Theorem 3. Deletion Blocker(α) is co-NP-hard for triangle-free graphs
even if d = k = 1.

w

v

u

v v'

u u' w w'

u u' w'

v v'

w

uv
u

uvv

Fig. 1. An example of a graph G′ constructed from a graph G via the graph G∗.

Proof. We prove that the equivalent problem of testing whether a triangle-free
graph has a forced vertex is co-NP-hard via a reduction from Independent
Set. Let G be a graph with at least two vertices. From G we construct its
twin graph G∗. We now subdivide each edge of G∗ twice. We call the resulting
graph G′. For an edge e = uv in G∗ (where v = u′ is possible), we call the two
newly introduced vertices ue and ve, where ue is the vertex adjacent to u and ve
the one adjacent to v. See Fig. 1 for an example of a graph G′.

We now show the following claim.
Claim. G′ has no forced vertices.
We prove this claim as follows. For contradiction, suppose x is a forced vertex

of G′, that is, x belongs to every maximum independent set of G′. First suppose
x = u or x = u′ for some vertex u of G, say x = u. Then, by symmetry, its
copy u′ is also a forced vertex of G′. Let I be a maximum independent set of G′.
Since u, u′ are forced, we have u, u′ ∈ I and therefore uuu′ , u′

uu′
∈ I. But then
(I \ {u}) ∪ {uuu′} is another maximum independent set of G′ not containing u,
a contradiction.

Now suppose x = uuu′ for some vertex u of G. Then, by symmetry, u′
uu′ is a

forced vertex as well. This is a contradiction, since uuu′ and u′
uu′ are adjacent.

Finally suppose x = uuv for some vertices u, v of G∗ with v
= u′. Let I be a
maximum independent set of G′. Since uuv is a forced vertex, we have uuv ∈ I

and therefore vuv
∈ I. From the above we know that v cannot be forced. Hence,
we may assume without loss of generality that I is chosen in such a way that
v
∈ I. But then (I \ {uuv}) ∪ {vuv} is another maximum independent set of G′

not containing uuv, a contradiction. This completes the proof of the claim.
We continue as follows. By Lemmas 2 and 3, Independent Set is NP-

complete even for the class of graphs G′ constructed above. Let � be an integer
that together with G′ forms an instance of Independent Set. In particular
note that G′ is triangle-free. Let m be the number of edges of G∗. Then we may
assume without loss of generality that � ≥ m (as a trivial lower bound for the
size of a maximum independent set in G′ is m: we can construct an independent
set of size m by taking for each edge uv of G∗, one of the two vertices uuv, vuv).

We construct a graph F from G′ by taking an independent set J on �+1−m
vertices and by making each vertex of J adjacent to every vertex u of G and to
its copy u′. Note that we do not make vertices of J adjacent to any vertices in
G′ obtained from 2-subdividing the edges of G∗. Hence, as G′ is triangle-free, J
is independent, and no vertex u of G is adjacent to its copy u′ in G′, we find
that F is triangle-free.

In order to complete our proof we are left to show that α(G′) ≤ � if and only
if F contains a forced vertex y, or equivalently, α(F − y) ≤ α(F) − 1.

First suppose that α(G′) ≤ �. We claim that every vertex in J is forced. In
order to see this let y ∈ J . First note that α(F) ≥ � + 1, as the set of vertices
that consists of all vertices of J and, for each edge uv in G∗, exactly one of the
two vertices uuv, vuv is an independent set of size � + 1 − m + m = � + 1. Now
let I be a maximum independent set of F −y. If I contains a vertex y′ of J , then
I must have size � (since I cannot contain a vertex u of G or its copy u′, as y′ is
adjacent to such vertices). If I does not contain a vertex of J , then I must be an
independent set of G′. Then I has size at most α(G′) ≤ � by our assumption on
α(G′). In fact, as � is a lower bound on the size of I (recall that α(F) ≥ � + 1),
we have that I has size � in this case as well. Hence, in both cases we find that
α(F − y) = � ≤ α(F) − 1 implying that y is a forced vertex of F .

Now suppose that F contains a forced vertex y, so α(F − y) ≤ α(F) − 1. In
fact we must have α(F − y) = α(F) − 1. We distinguish three cases.

First assume that y belongs to J . Let I be a maximum independent set of F .
Then y must be in I, as y is forced. This means that I must have size � + 1,
thus α(F) = � + 1, as I cannot contain a vertex u of G or its copy u′ (because
y ∈ I) and I can contain, besides all vertices of J , exactly one of uuv, vuv for
every edge uv of G∗. As y is forced, this implies that α(F − y) = �. As G′ is an
induced subgraph of F − y, this means that α(G′) ≤ �.

Now assume that y = u or y = u′ for some u in G. Let I be a maximum
independent set of F . As y is forced, y belongs to I. As y is adjacent to every
vertex in J , we find that no vertex of J belongs to I. Then I is a maximum
independent set of G′. However, in that case we can replace I by another max-
imum independent set of G′, and thus of F , that does not contain y (by the
above Claim). So we conclude that y is not a forced vertex of F , which is a
contradiction.

Finally assume that y = uuv for some edge uv of G∗ (where v = u′ is
possible). If I shares no vertices with J , then we repeat the arguments of the
previous case. Suppose I intersects with J . Then I does not contain v. Hence
we may replace y by vuv to get a maximum independent set of F that does not
contain y. This implies that y is not forced, a contradiction. This completes the
proof of Theorem3. �	

5 A Sufficient Condition for Hardness

In this section we give a sufficient condition for computational hardness of Dele-
tion Blocker(α). Let G be a graph class with the following property: if G ∈ G,
then so are G ⊗ G and G ⊗ sP1 for any integer s ≥ 1. We call such a graph
class stable-proof. We show that determining the existence of a forced vertex
is co-NP-hard on any stable-proof graph class, for which Independent Set is
NP-complete (note that we can only show co-NP-hardness for reasons discussed
before).

Theorem 4. If Independent Set is NP-complete for a stable-proof graph
class G, then Deletion Blocker(α) is co-NP-hard for G, even if d = k = 1.

Proof. Let G be a graph class that is stable-proof. From a given graph G ∈ G and
integer � ≥ 1 we construct the graph G′ = G ⊗ G ⊗ (� + 1)P1. Note that G′ ∈ G
by definition and that α(G′) = max{α(G), �+1}. We claim that α(G) ≤ � if and
only if G′ can be 1-vertex-deleted into a graph G∗ with α(G∗) ≤ α(G′) − 1.

First suppose that α(G) ≤ �. Then α(G′) = � + 1. In G′ we delete a vertex v
of the (�+1)P1. This yields the graph G∗ = G⊗G⊗ �P1. We have that α(G∗) =
max{α(G), �} = �. As α(G′) = � + 1, this means that α(G∗) ≤ α(G′) − 1.

Now suppose that G′ can be 1-vertex-deleted into a graph G∗ with α(G∗) ≤
α(G′) − 1. As deleting a vertex in one of the two copies of G does not lower the
independence number of G′, the deleted vertex must belong to the (� + 1)P1.
This means that G∗ = G ⊗ G ⊗ �P1. As α(G∗) = max{α(G), �} ≤ α(G′) − 1 =
max{α(G), � + 1} − 1, we conclude that α(G) ≤ �.�	
Remark 2. We cannot apply Theorem 4 on triangle-free graphs, as the class of
triangle-free graphs is not stable-proof.

6 The Two Classifications

In this section we combine Theorems 3 and 4 with a number of known results for
obtaining dichotomy results for our two blocker problems restricted to H-free
graphs. Before we present these dichotomies we first state some known results
that we need for their proofs.

Lemma 4. ([15]). Independent Set is NP-complete for C5-free graphs.

Lemma 5. ([15]). Vertex Cover is NP-complete for C3-free graphs.

We also need two of our previous results.

Lemma 6. ([14]). Let G be a triangle-free graph containing at least one edge
and let k ≥ 1 be an integer. Then (G, k) is a yes-instance of 1-Deletion
Blocker(ω) if and only if (G, k) is a yes-instance of Vertex Cover.

Lemma 7. ([7]). The problems Contraction Blocker(α) and Deletion
Blocker(α) are polynomial-time solvable for cographs but NP-complete on split
graphs.

We also use the following observation.

Lemma 8. If H is a (3P1, 2P2)-free forest, then H ⊆i P4.

Proof. As H is 3P1-free, H contains at most two connected components. Suppose
H contains exactly two connected components. Then, as H is 2P2-free, at least
one of these components must be a P1. As H is 3P1-free, this means that H is
an induced subgraph of P2 + P1, so H ⊆i P4. Suppose H is connected. As H
is 3P1-free, H contains no claw and no path on more than five vertices. Hence,
H ⊆i P4. �	

We are now ready to present our first classification.

Theorem 5. Let H be a graph. If H ⊆i P4, then Contraction Blocker(α)
is polynomial-time solvable for H-free graphs, otherwise it is NP-hard for H-free
graphs.

Proof. Let H be a graph. Recall that a cograph is a P4-free graph. Hence, if H
is an induced subgraph of P4, then we use Lemma 7 to obtain polynomial-time
solvability.

Now suppose that H is not an induced subgraph of P4. If H contains an
induced cycle that is odd, then we use Theorem 1 to obtain NP-hardness. If H
contains an induced cycle that is even, then H either contains an induced C4

or, if the even cycle has at least six vertices, an induced 2P2. This means that
we can use Lemma 7 to obtain NP-hardness after recalling that split graphs are
(2P2, C4)-free. Assume H contains no cycle. Then H is a forest. If H contains
an induced 3P1, then we use Lemma 1 to obtain NP-hardness, after observing
that cobipartite graphs are 3P1-free. Assume H is 3P1-free. Then 2P2 ⊆i H by
Lemma 8, which means we can use Lemma 7 again to obtain NP-hardness. �	
Remark 3. In some cases of Theorem 5, such as when H = C5, we could have
applied Theorem 4 to obtain co-NP-hardness even if d = k = 1.

We now consider the vertex deletion variant and present our second classifi-
cation.

Theorem 6. Let H be a graph. If H ⊆i P4, then Deletion Blocker(α) is
polynomial-time solvable for H-free graphs, otherwise it is NP-hard or co-NP-
hard for H-free graphs.

Proof. Let H be a graph. If H ⊆i P4, then we use Lemma 7 to obtain polynomial-
time solvability. Suppose H is not an induced subgraph of P4. First suppose H
contains an induced cycle Cr. If r = 3, then we use Theorem 3 to find that the
problem is co-NP-hard even if d = k = 1. If r = 4, then we use Lemma 7 (after
recalling that split graphs are C4-free) to find that the problem is NP-hard. If
r = 5, then we combine Lemma 4 with Theorem 4 after observing that the class
of C5-free graphs is stable-proof. We then find that the problem is co-NP-hard
even if d = k = 1. Note that we could have applied Lemma 7 to obtain NP-
hardness, as split graphs are C5-free, If r ≥ 6, then H contains an induced 2P2

and we apply Lemma 7 (as split graphs are 2P2-free) to find that the problem is
NP-hard.

Now assume that H is forest. By Lemma 8, either 2P2 ⊆i H or 3P1 ⊆i H. If
2P2 ⊆i H, then we apply Lemma 7 again to obtain NP-hardness. If 3P1 ⊆i H,
then we apply Lemmas 5 and 6 to obtain NP-hardness after observing that a
graph is a yes-instance for 1-Deletion Blocker(α) if and only if its comple-
ment is a yes-instance for 1-Deletion Blocker(ω). �	

We are left to state our result for Deletion Blocker(ω), which follows
immediately from Theorem 6 after making two observations. First, Deletion
Blocker(ω) for H-free graphs is equivalent to Deletion Blocker(α) for H-
free graphs. Second, the graph P4 is self-complementary, that is, P4 = P4.

Theorem 7. Let H be a graph. If H ⊆i P4, then Deletion Blocker(ω) is
polynomial-time solvable for H-free graphs; otherwise it is co-NP-hard or NP-
hard for H-free graphs.

7 Conclusions

For every graph H we determined the computational complexities of Contrac-
tion Blocker(α) and Deletion Blocker(π) (π ∈ {α, ω}) restricted to H-
free graphs, and it would be interesting to generalize these results to families
of more than one forbidden induced subgraph. In our previous paper [14] we
obtained dichotomies for π ∈ {ω, χ} but for three of the four classifications we
needed to assume that H is connected. For comparing our new results with pre-
vious results we therefore need to restrict ourselves to connected graphs H. This
leads to the following summary:
For a connected graph H, the following holds:

(i) If H ⊆i P4 or H ⊆i P1 + P3 then Contraction Blocker(ω) is polyno-
mial time solvable for H-free graphs; otherwise it is co-NP-hard for H-free
graphs.

(ii) For π ∈ {α, χ}, if H ⊆i P4 then Contraction Blocker(π) is polynomial
time solvable for H-free graphs; otherwise it is co-NP-hard for H-free graphs.

(iii) For π ∈ {α, ω, χ}, if H ⊆i P4then Deletion Blocker(π) is polynomial
time solvable for H-free graphs; otherwise it is co-NP-hard for H-free graphs.

It is an open problem to generalize the results of the above summary from
connected graphs H to arbitrary graphs H. For part (i) we need to settle one
remaining case, namely H = C3 + P1 [14]. Part (ii) has been generalized to
arbitrary graphs already; see [14] for the case when π = χ and see Sect. 6 for the
case when π ∈ {α, ω}. Part (iii) has been settled for all graphs H already for
π ∈ {α, ω} (Sect. 6), whereas the situation for π = χ is less clear with a number
of cases still being open; in particular polynomial-time results for disconnected
graphs H exist incomparable to the case when H ⊆i P4, e.g., if H = 3P1 [14].

It is possible to construct graph classes for which a blocker problem is
tractable, but the original problem is NP-complete. Take for instance the class
of graphs G′ from the proof of Theorem3. The Independent Set problem is
NP-complete for this graph class, but its members are all no-instances of Con-
traction Blocker(α) when d = k = 1. However, this class is not a hereditary
graph class, that is, it is not closed under vertex deletion. In fact we do not know
of such examples of hereditary graph classes. Hence, it would be interesting to
prove for π ∈ {α, ω, χ} whether Contraction Blocker(π) and Deletion
Blocker(π) are computationally hard on every hereditary graph class G, for
which Independent Set, Clique or Coloring, respectively, is NP-complete.

Finally, we have shown that Contraction Blocker(α) is NP-hard for
bipartite graphs. We pose the question of determining the computational com-
plexity of d-Contraction Blocker(α) (d ≥ 1) restricted to bipartite graphs
as an open problem.

References

1. Bazgan, C., Bentz, C., Picouleau, C., Ries, B.: Blockers for the stability number
and the chromatic number. Graphs Comb. 31, 73–90 (2015)

2. Bazgan, C., Toubaline, S., Tuza, Z.: The most vital nodes with respect to indepen-
dent set and vertex cover. Discrete Appl. Math. 159, 1933–1946 (2011)

3. Bentz, C., Costa, M.-C., de Werra, D., Picouleau, C., Ries, B.: Weighted transver-
sals and blockers for some optimization problems in graphs. In: Progress in Com-
binatorial Optimization, Wiley-ISTE (2012)

4. Boros, E., Golumbic, M.C., Levit, V.E.: On the number of vertices belonging to
all maximum stable sets of a graph. Discrete Appl. Math. 124, 17–25 (2002)

5. Costa, M.-C., de Werra, D., Picouleau, C.: Minimum d-blockers and d-transversals
in graphs. J. Comb. Optim. 22, 857–872 (2011)

6. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)
7. Diner, Ö.Y., Paulusma, D., Picouleau, C., Ries, B.: Contraction blockers for

graphs with forbidden induced paths. In: Paschos, V.T., Widmayer, P. (eds.)
CIAC 2015. LNCS, vol. 9079, pp. 194–207. Springer, Cham (2015). doi:10.1007/
978-3-319-18173-8 14

8. Földes, S., Hammer, P.L.: Split graphs. In: 8th South-Eastern Conference on Com-
binatorics, Graph Theory and Computing, Congressus Numerantium, vol. 19, pp.
311–315 (1977)

9. Golovach, P.A., Heggernes, P., Hof, P.V., Paul, C.: Hadwiger number of graphs
with small chordality. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol.
8747, pp. 201–213. Springer, Cham (2014). doi:10.1007/978-3-319-12340-0 17

http://dx.doi.org/10.1007/978-3-319-18173-8_14
http://dx.doi.org/10.1007/978-3-319-18173-8_14
http://dx.doi.org/10.1007/978-3-319-12340-0_17

10. Hammer, P.L., Hansen, P., Simeone, B.: Vertices belonging to all or to no maximum
stable sets of a graph. SIAM J. Algebraic Discrete Methods 3, 511–522 (1982)

11. Levit, V.E., Mandrescu, E.: Combinatorial properties of the family of maximum
stable sets of a graph. Discrete Appl. Math. 117, 149–161 (2002)

12. Levit, V.E., Mandrescu, E.: Vertices belonging to all critical sets of a graph. SIAM
J. Discrete Math. 26, 399–403 (2012)

13. Pajouh, F.M., Boginski, V., Pasiliao, E.L.: Minimum vertex blocker clique problem.
Networks 64, 48–64 (2014)

14. Paulusma, D., Picouleau, C., Ries, B.: Reducing the clique and chromatic number
via edge contractions and vertex deletions. In: Cerulli, R., Fujishige, S., Mahjoub,
A.R. (eds.) ISCO 2016. LNCS, vol. 9849, pp. 38–49. Springer, Cham (2016). doi:10.
1007/978-3-319-45587-7 4

15. Poljak, S.: A note on the stable sets and coloring of graphs. Comment. Math. Univ.
Carol. 15, 307–309 (1974)

16. Ries, B., Bentz, C., Picouleau, C., de Werra, D., Costa, M.-C., Zenklusen, R.:
Blockers and transversals in some subclasses of bipartite graphs: when caterpillars
are dancing on a grid. Discrete Math. 310, 132–146 (2010)

17. Savage, C.: Maximum matchings and trees. Inf. Process. Lett. 10, 202–205 (1980)
18. Toubaline, S.: Détermination des éléments les plus vitaux pour des problèmes de

graphes, Ph. D thesis, Université Paris-Dauphine (2010)

http://dx.doi.org/10.1007/978-3-319-45587-7_4
http://dx.doi.org/10.1007/978-3-319-45587-7_4

	Blocking Independent Sets for H-Free Graphs via Edge Contractions and Vertex Deletions
	1 Introduction
	2 Preliminaries
	3 Bipartite Graphs and Trees
	4 Triangle-Free Graphs
	5 A Sufficient Condition for Hardness
	6 The Two Classifications
	7 Conclusions
	References

