
RESEARCH ARTICLE

MergedTrie: Efficient textual indexing

Antonio Ferrández1, Jesús Peral2*

1 GPLSI Research Group, Department of Software and Computing Systems, University of Alicante, Alicante,

Spain, 2 Lucentia Research Group, Department of Software and Computing Systems, University of Alicante,

Alicante, Spain

* jperal@dlsi.ua.es

Abstract

The accessing and processing of textual information (i.e. the storing and querying of a set of

strings) is especially important for many current applications (e.g. information retrieval and

social networks), especially when working in the fields of Big Data or IoT, which require the

handling of very large string dictionaries. Typical data structures for textual indexing are

Hash Tables and some variants of Tries such as the Double Trie (DT). In this paper, we pro-

pose an extension of the DT that we have called MergedTrie. It improves the DT compres-

sion by merging both Tries into a single and by segmenting the indexed term into two fixed

length parts in order to balance the new Trie. Thus, a higher overlapping of both prefixes

and suffixes is obtained. Moreover, we propose a new implementation of Tries that achieves

better compression rates than the Double-Array representation usually chosen for imple-

menting Tries. Our proposal also overcomes the limitation of static implementations that

does not allow insertions and updates in their compact representations. Finally, our Merged-

Trie implementation experimentally improves the efficiency of the Hash Tables, the DTs, the

Double-Array, the Crit-bit, the Directed Acyclic Word Graphs (DAWG), and the Acyclic

Deterministic Finite Automata (ADFA) data structures, requiring less space than the original

text to be indexed.

1. Introduction and motivation

Enormous amounts of data already exist and this is still rapidly growing due to diverse data

sources such as sensors and social networks. There has been increasing interest in incorporat-

ing these huge amounts of external data, normally referred to as Big Data, into Smart Cities,

Business Intelligence or IoT applications [1]. A large percentage of this information is unstruc-

tured and textual, such as that generated by social networks, whose information is especially

critical for industrial companies nowadays, and which is extracted though Sentiment Analysis

applications [2,3]. This growth boosts the development and researching of new Natural Lan-

guage Processing (NLP) techniques in order to process efficiently textual information, which

is especially crucial in Big Data applications (e.g. the biomedical text and data mining frame-

work proposed in [4]) or auxiliary tasks such as Name Ambiguity Resolution [5], where the

data sets (especially string dictionaries) are so large and complex that they become difficult to

process using traditional data processing applications [6].

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ferrández A, Peral J (2019) MergedTrie:

Efficient textual indexing. PLoS ONE 14(4):

e0215288. https://doi.org/10.1371/journal.

pone.0215288

Editor: Balaraman Ravindran, Indian Institute of

Technology Madras, INDIA

Received: July 20, 2018

Accepted: March 30, 2019

Published: April 23, 2019

Copyright: © 2019 Ferrández, Peral. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Five English

collections, mainly about newspapers documents

(http://trec.nist.gov/data/docs_eng.html), used in

TREC-8, 9 and 10 Question Answering

competitions; a dictionary of Spanish (Santana

et al. 2007); and the dictionaries reported in the

Apertium project (https://sourceforge.net/p/

apertium/svn/HEAD/tree/trunk/).

Funding: This study has been partially funded by

the SEQUOIA-UA (TIN2015-63502-C3-3-R) and

the RESCATA (TIN2015-65100-R) projects of the

Spanish Ministry of Economy and Competitiveness

(MINECO).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/199184974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1371/journal.pone.0215288
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215288&domain=pdf&date_stamp=2019-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215288&domain=pdf&date_stamp=2019-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215288&domain=pdf&date_stamp=2019-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215288&domain=pdf&date_stamp=2019-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215288&domain=pdf&date_stamp=2019-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215288&domain=pdf&date_stamp=2019-04-23
https://doi.org/10.1371/journal.pone.0215288
https://doi.org/10.1371/journal.pone.0215288
http://creativecommons.org/licenses/by/4.0/
http://trec.nist.gov/data/docs_eng.html
https://sourceforge.net/p/apertium/svn/HEAD/tree/trunk/
https://sourceforge.net/p/apertium/svn/HEAD/tree/trunk/


Modern NLP algorithms are often based on machine learning techniques that learn through

the analysis of large corpora of real-world examples [7]. For example, statistical machine trans-

lation systems require parallel corpora formed by millions of sentence pairs, which are often

too large to fit entirely into the main memory [8].

Information Retrieval (IR), currently popularized by Web search engines such as Google, is

one of the applications that requires intensive text processing [9,10]. An IR system takes a

user’s query as input and returns a set of documents sorted by their relevance to the query. IR

systems are usually based on the segmentation of documents and queries into index terms or

words, and that is why this kind of application is categorized as term-level or word-level
indexes. The process of harvesting and indexing information to offer advanced search and dis-

covery becomes a critical bottleneck in globally distributed primary biodiversity data infra-

structures [11–13].

In contrast to term-level indexes, full-text indexes store a set of search keys that consist of all

feasible substrings of the text. This is relevant for some Eastern languages (Burmese, Chinese,

Taiwanese, Tibetan, etc.), which do not have a well-defined notion of words [14]. Full-text

indexes are also required in Bioinformatics and Genetic applications, where finding the longest

common subsequence problem (LCS) is a challenging issue [15,16]. In this field, a considerable

number of DNA sequences have to be processed efficiently, both in space and time. However,

the bottleneck is the space complexity of implementations because the structures often require

more space than the original text [17].

Regarding term-level indexes, there are many data structures to implement the string dic-

tionary, from Hash Tables to a variety of Trie representations, which try to overcome their

compression rate handicaps. One Trie variation is the Double Trie (DT) proposed in [18],

which segments the terms to index into two parts, where the left part is stored in a Trie of pre-

fixes, and the right one in a Trie of suffixes. In this paper, we propose an extension of the DT

that we have called MergedTrie, which achieves a higher compression by merging both Tries

into a single, and by segmenting the term into two fixed length parts. Moreover, we propose a

new implementation of Tries that achieves better compression rates than the double-array

representation [19,20] usually chosen for implementing Tries.

Another application of Tries is the IP lookup for scalable virtual routers for network virtuali-

zation, which means running multiple virtual router instances in parallel [21]. Virtual routers

have the scalability challenge, suffering from critical spatial efficiency issues when storing all the

forwarding tables. Here, high-speed memory becomes a decisive issue. Moreover, security issues

are especially crucial in these environments, which benefit from the Trie organization [22].

The paper is structured as follows. In section 2, we summarize the most relevant work related

to our proposal. In section 3, we introduce our proposal. In section 4, we detail the implementa-

tion of the MergedTrie. In section 5, we experimentally analyze its efficiency. We conclude the

paper with a summary of the main contributions and the directions for future work.

2.Related work

In the following subsections, we summarize: 1) the most relevant data structures for term-level

indexing; 2) some implementation issues for these structures; 3) our contributions to the state

of the art described in these subsections.

2.1. Data structures for term-level index

The Trie, also called the Digital Tree or Prefix Tree [23,24], is one of the main data structures

used for indexing text. It is a tree for storing strings in which there is one node for every com-

mon prefix and the strings are stored in additional leaf nodes. Unlike a Search Tree, the nodes

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 2 / 19

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0215288


in the Trie do not represent elements stored in the structure. Instead, the merger of the charac-

ters of the nodes that form the path from the root to the node represent the stored string [25].

The Trie is a rather compact structure because overlapping prefixes are stored only once. It

resolves a query that tests whether a given string belongs to the Trie in an amount of time

which is proportional only to its length, unlike other data structures such as Search Trees or

Hash Tables (an associative array whose keys are mapped to array positions by hash functions)

in which the search time is a function of the number of elements stored. Therefore, Trie search

operations are faster because in most dictionaries the number of words is higher than the max-

imum length of a word. Moreover, Tries do not require complex re-balancing or tree rotation

operations. Furthermore, Tries can be used to represent full-text indexes too: for example, the

Suffix Trie is a Trie that stores all the suffixes of a given string.

The main disadvantage of Tries is the high memory consumption, especially when the set

of words is heterogeneous with a low degree of prefix sharing. This drawback is partly solved

by its compact representation called Radix Tree, Patricia Trie, Compact Prefix Tree or C-Trie,
where all nodes with one child are merged with their parents. In [26], a dynamic construction

algorithm for a Compact Patricia Trie is proposed to solve the problem of the Patricia Tree

requiring many good physical storage spaces in the memory, especially when the key set is too

large to fit in its virtual memory.

In addition to the compaction operation, another operation to improve the memory con-

sumption in Tries is minimization. The resulting structure is called Directed Acyclic Word
Graph (DAWG) or Acyclic Deterministic Finite Automata (ADFA), where unlike compaction,

each edge between nodes is labelled with a character and consequently the number of nodes is

significantly reduced. Essentially, a DAWG/ADFA is a finite state machine that recognizes a

set of words [27]. When both compaction and minimization are performed, the Compact
Directed Acyclic Word Graphs (CDAWGs) are obtained [28].

Due to compaction and minimization, the O(L) temporal efficiency of Tries, where L is the

length of the string, is aggravated in insertions, updates and deletions in CDAWGs, DAWGs

and Radix Trees. It occurs when compacted or minimized segments need to be split or

merged, and a trade-off has to be made between the smaller size of the compressed Trie and

the update speed. For example, in [29], an algorithm to create DAWGs is proposed, but the

problem is that the words to insert must be arranged in alphabetical order, which introduces

the difficulty of the sorting process as well as making it difficult to use them as a dynamic struc-

ture that allows future insertions and updates. It requires an additional Hash Table to repre-

sent the right languages to compact, which increases the time complexity of the whole

algorithm to O(L log Q), where Q is the total number of states (nodes) in the (compacted) dic-

tionary. Some authors have proposed algorithms to overcome these drawbacks. For example,

in [30], a method to modify (adding and removal) a minimal finite-state automaton is pro-

posed with a time complexity in the same class as in [29]. In [31], the author experimentally

compares various methods for constructing DAWGs in an incremental, semi-incremental,

and non-incremental way, from sorted and unsorted data. In this comparison, the impact of

the intermediate structures required for the DAWG/ADFA construction is analyzed. In [32],

the author presents a linear-time algorithm O(Q) for the minimization of acyclic deterministic

finite-state automata (DAWG/ADFA). In [33], the author presents an algorithm that directly

(i.e. without deleting any state) constructs pseudo-minimal DFA, without using a Trie-like

DFA as an intermediate step, with a complexity of O(Q log(Q) + L). A taxonomy of the most

important finite state minimization algorithms and a presentation of the known algorithms

solving this problem, including some new ones, can be found in [34]. In [35], the authors

show the relationship between the two most widely used approaches for the minimization of

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0215288


deterministic finite automata: minimization by splitting partitions and minimization by dou-

ble reversal.

Another noteworthy work that highlights the necessity of both temporal and spatial effi-

ciency is the Burst Trie proposed in [36], which focuses on the reduction of memory require-

ments as well as optimizing search operations. In the Burst Trie, each leaf holds a set of strings

in a container (a container can be any data structure that is reasonably efficient for small sets

of strings, such as a list or a binary search tree), allowing dramatic space reductions with no

impact on efficiency. When the containers are full, they "burst" and are turned into branches.

The authors experimentally proved that Burst Tries are faster than compact Tries by using just

one-sixth of the space, and are close to hash tables in efficiency.

An interesting new data structure is proposed in [37]: INSTRUCT (INdexing STrings by

Re-Using Common Triplets). Its remarkable advantage over previous work is that INSTRUCT

efficiently handles both prefix and suffix search queries, as well as the exact string search oper-

ation. Moreover, it reduces the memory requirement by means of bit vectors for reusing the

storage space for common triplets. The authors proved that INSTRUCT outperforms some

existing structures by up to a factor of two in memory requirements while maintaining better

or comparable running times for searching and insertion.

In conclusion, some structures achieve higher and more efficient data storage than Tries

(e.g. Radix Tree, Patricia Trie, DAWG, ADFA and CDAWG) for term-level index, but they

increase the complexity of insertion, update and removal operations, making it proportional

to the number of nodes/states (Q), as well as requiring intermediate structures to perform the

minimization/compaction process. As a way to balance temporal and spatial efficiency, the

Double Trie (DT) was proposed in [18,38], and implemented by Watson [39] in C++ and in

Java in the toolkit known as FIRE Engine II (http://www3.cs.stonybrook.edu/~algorith/

implement/watson/implement.shtml). It compacts the Trie by segmenting the terms to index

into two parts, where the left part is stored in a Trie of prefixes, the right one in a Trie of suf-

fixes, and both Tries (and both parts of the term) are linked. Thus, a compact process is per-

formed automatically, which obtains structures almost as small as the ADFA, but which can be

constructed much faster.

2.2. Implementation of data structures for the term-level index

Other authors focus their efforts on improving space consumption by means of sequential

implementations, instead of pointer representations. For example, the CMU-Cambridge lan-

guage modelling toolkit [40,41] represents the Trie as contiguous arrays of fixed-size node rec-

ords, where each array corresponds to a certain layer of the Trie. In addition, [19,42] employ a

double-array structure for the Trie, formed by three one-dimensional arrays to represent a

reduced Trie: the array BC to represent Trie nodes through two integers, the array TAIL to

store suffix strings, and an additional array to indicate character codes. However, their com-

parative evaluation with the list representation for Tries shows that their proposal is slower for

the insertion operation, and concludes that their structure should be improved for large sets of

keys. Several authors have tried to overcome these drawbacks, such as [43] who tried to speed

up the insertions, [44] who tried to eliminate efficiently the empty elements, [45] who tried to

compact the double array structure, and [46] who tried to divide the Trie into multiple levels

and to remove the BASE array.

Given that our proposal extends Double Tries and improves on the double-array implemen-

tation, the work in [47,48] is especially interesting to analyze. They propose a new double-array

representation with string labels using multiple arrays depending on label sizes, used to imple-

ment the Double Trie and the Minimal-Prefix Trie (only the minimal prefixes of keywords are

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 4 / 19

http://www3.cs.stonybrook.edu/~algorith/implement/watson/implement.shtml
http://www3.cs.stonybrook.edu/~algorith/implement/watson/implement.shtml
https://doi.org/10.1371/journal.pone.0215288


kept as Trie nodes, and the suffixes are kept separately as strings). In our experimental evalua-

tion section, we will compare our proposal with those mentioned in the work by Kanda et al.

The work of [8] address Trie compaction through Tightly Packed Tries (TPTs), a compact

implementation of read-only, compressed Trie structures with fast on-demand paging and

short load times. They represent the Trie in a single contiguous byte array, after traversing it in

post-order. For each node, they store the byte offsets of its children, the node value, the size of

the index, and the actual index as a list of alternating token IDs and byte offsets. The main

drawback of this proposal is that it does not allow for the updating of the TPT (i.e., it is a read-

only data structure).

More variants of Tries can be listed. For example, HAT Tries [49] are a type of Radix Trie

using array nodes to collect key-value pairs under radix nodes and hash buckets into an asso-

ciative array. Other examples are theHash Trie and theHash Array Mapped Trie (HAMT)

[50]. The Hash Trie is a persistent data structure that can be used to implement sets and maps.

In its basic form, a Hash Trie stores the hashes of its keys, regarded as arrays of bits, in a Trie,

with the actual keys and (optional) values stored in the Trie’s final nodes. The HAMT is based

on the notion of hashing a key and storing it in a Trie based on this hash value.

Currently, Tries are also used in IP lookup for scalable virtual routers for network virtuali-

zation, to run multiple virtual router instances in parallel on a common physical platform [21].

Virtual routers have the scalability challenge, which requires a significant amount of memory

to store all the forwarding tables. Here, high-speed memory becomes a critical issue. As the

authors state, IP lookup solutions fall into three main categories: ternary content addressable

memory (TCAM)-based, Hash-based, and Trie-based solutions. The first suffers from the limi-

tations of excessive power consumption, high cost, and low density. The Hash-based solution

requires prohibitive amounts of high-bandwidth memory that prevents their use in practice.

The Trie-based solution improves upon the previous ones by performing the longest prefix

matching (LPM) operations. The proposal by [21] focuses on merging multiple separate Tries

into a shared data structure in order to achieve significant memory reductions for a large num-

ber of forwarding tables in virtual routers, but the complexity of insertion and modification

operations is increased. The work by [51] concludes that this kind of Trie overlay works well

when the separate forwarding tables have similar structures. Otherwise, simple overlaying can-

not lead to any memory reduction, even causing a significant increase in memory usage. Trie
braiding [52] is an alternative approach, which is designed to increase the overlap among mul-

tiple forwarding tables by using a child rotation mechanism. However, the authors conclude

that the reduction in the total number of nodes does not necessarily lead to a reduction in

overall memory usage. This is because no memory is allocated to leaf nodes, and non-leaf

nodes dominate the memory consumption of the Trie data structure.

In conclusion, previous works report the sequential implementation of these data structures

by means of one or more arrays (e.g. a double-array structure), reaching a high level of com-

paction. Moreover, some approaches use intermediate structures such as Hash Tables in order

to improve the running time, although they increase memory usage. Finally, it must be

highlighted that some of these implementations achieve high compression, but they construct

read-only static dictionaries (i.e. they do not support updates).

2.3. MergedTrie contributions to the state of the art

In this subsection, we highlight the theoretical and practical impact of our research, a data

structure for dynamic term-level index (keyword search) operations in string dictionaries,

which is necessary in applications such as Information Retrieval, social networks and IP

lookup.

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 5 / 19

https://doi.org/10.1371/journal.pone.0215288


In terms of the theoretical impact of our research, our proposal is called MergedTrie

because in a single Trie it merges the two Tries used in the Double Trie (DT) [18,38] in order

to achieve both prefix and suffix overlapping in the terms to be indexed. Moreover, the Mer-

gedTrie enhances the DT segmentation of the term in order to achieve a reduction in the

height of each Trie. We segment the term in a fixed way, at exactly half of the term’s length,

whereas the DT segments the term in a flexible way according to the insert process (when the

search in the prefix Trie fails, the remaining string is added to the suffix Trie). Therefore, the

MergedTrie improves memory consumption by significantly reducing the number of states/

nodes in DT, as DAWG/ADFA do, but overcoming the problem of the significant cost of the

update operations (e.g. when compacted or minimized segments need to be split or merged).

For that reason, the MergedTrie achieves optimal spatial efficiency as well as high temporal

efficiency, outperforming even the Hash Table (unlike the Burst Tries by [36]). Consequently,

the MergedTrie supports term-level index operations such as keyword insertion, search, modi-

fication, deletion, listing and prefix listing. Similarly to the INSTRUCT structure by [37], the

MergedTrie also supports suffix listing since the suffixes are also stored in a Trie fashion, but

we outperform more than two factors in memory requirements over some structures, as the

experimental evaluation section will show. Moreover, it does not need to perform a compres-

sion/decompression process (e.g. [6,53]), nor does it require a pre-sorting process on the set of

words to insert (e.g. [29]). The MergedTrie involves quite simple updating operations based

on Trie operations, resulting in a complexity in the insertion, search, modification and dele-

tion operations that is proportional to the length of the string (DAWG/ADFA reports an O(Q)

complexity, where Q is the number of states/nodes). Finally, the MergedTrie facilitates the

storing of auxiliary (e.g. a dictionary of geographical names with their GPS information associ-

ated) and additional information (e.g. n-grams, phrases, bitexts or biwords) about each word,

because it automatically provides word identifiers that different MergedTries can share, which

is more difficult for ADFA terminal nodes that can be reached through multiple paths.

Concerning the practical impact of our proposal, we have proposed a new implementation

of Tries and MergedTries in C++ by means of a sequential representation that also allows for

efficient storage in secondary memory. This way, the subsequent load times are optimized and

direct access to the structure is permitted when the MergedTrie does not fit in the main mem-

ory due to the number of keys to be indexed [26]. Thus, the MergedTrie becomes a completely

dynamic and persistent structure. Moreover, it has been experimentally compared with the

Hash Table, Trie, Double Trie, double array, Crit-bit and ADFA-DAWG (implemented in

order to allow unsorted term insertion, and another implementations such as a double-array

structure) to prove its theoretical benefits, achieving the aim of requiring less space than the

original text to be indexed, overcoming the space bottleneck complexity caused by structures

which often require more space than the original text [17].

3. The proposed data structure: MergedTrie

Next, the MergedTrie structure is explained in full, with the extensions to the Double Trie ana-

lyzed in the previous subsection. It consists of the linking of two Trie structures: one for stor-

ing the prefix (from now on: the Trie of prefixes or TP) and the other for storing the suffix

(from now on: the Trie of suffixes or TS) of each word. The prefix and suffix of each word are

obtained from the segmentation of the word into two parts of equal length (e.g. the term halt is
segmented into ha and lt). The TS stores each suffix in its reverse order (i.e. the suffix lt is

reversed into the string tl so the character t is stored in the root of the TS). The last node of the

prefix in the TP will link to the last node of the TS (i.e. the first character of the suffix, since the

suffix is stored in its reverse order) by means of a special type of edge called an inter-trie (IT).

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 6 / 19

https://doi.org/10.1371/journal.pone.0215288


In MergedTries, both TP and TS are merged into a single Trie (T) that supports descending

and ascending traversal. In Fig 1, an example of a MergedTrie is shown, as well as its equivalent

Double Trie (with two Tries), Trie and DAWG/ADFA. In this Figure, the IT links are depicted

as orange double-lines, which replace the “end of word” flags, represented in the Trie as dou-

ble-lined nodes. In this way, each IT link marks a term indexed in the MergedTrie, which is

also used to store the auxiliary information about each word if required (e.g. a dictionary of a

company’s staff with their personal information associated). Moreover, a prefix can have sev-

eral suffixes such asma with lt and in, for the termsmain andmalt respectively (this fact is

shown in Fig 1 with orange dots). In the case of words formed by one character (e.g. the word

h), the character is stored in T with an IT link to the root.

1. Insertion(string w; MergedTrie b) {

2. string wPrefix, wSuffix;

3. TrieNode �lastPrefixNode, �lastSuffixNode;

4. (wPrefix, wSuffix) = StringSegmentation(w);

5. lastPrefixNode = b.Trie.Insertion(wPrefix);

6. lastSuffixNode = b.Trie.Insertion(wSuffix.
ReverseOrder);

7. lastPrefixNode->CreateIT_Node(lastSuffixNode);

8. }

9. bool Search(string w; MergedTrie b) {

10. string wPrefix, wSuffix;

11. TrieNode �lastPrefixNode, �lastSuffixNode;

12. (wPrefix, wSuffix) = StringSegmentation(w);

13. lastPrefixNode = b.Trie.Search(wPrefix);

14. if(lastPrefixNode->exist()) {

15. if(lastPrefixNode->IT_exist()) {

16. if(w.length() = = 1) {

17. if(lastPrefixNode->IT_root_T-
S_exist())

18. return true;

19. else

20. return false;

21. } else {

22. lastSuffixNode = b.Trie.Search
(wSuffix.ReverseOrder);

23. if(lastSuffixNode->exist()) {

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0215288


24. if(exist_IT(lastPrefixNode,
lastSuffixNode))

25. return true;

26. else

27. return false;

28. } else

29. return false;

30. }

31. else

32. return false;

33. } else

34. return false;

35. }

Algorithm 1. Insertion and Search procedures in MergedTrie.

The insertion algorithm is presented in Algorithm 1, which shows its simplicity. It is based

on the segmentation (StringSegmentation in line 4) of the word to insert (w) into its prefix and

suffix (wPrefix, wSuffix). When the length of w is odd, the suffix is one character longer than

the prefix (e.g. hat is segmented into h and at). This excludes the words formed by one charac-

ter (e.g. the word h), where the character is stored with an IT link to the root. Afterwards,

wPrefix is stored in T (line 5), whereas wSuffix is stored in T in its reverse order (line 6). As

previously described, the IT links the lastPrefixNode to the lastSuffixNode (line 7). Therefore,

the MergedTries insertions exhibit O(L) temporal complexity (where L is the length of the

searched term), because it is reduced to prefix and reverse order suffix insertions in simple

Tries, as well as adding the IT link between their prefix and suffix.

The term search operation is presented in line 9 in Algorithm 1, which is quite similar to

the insertion procedure. It segments (line 12) the word to search (w) into its prefix and suffix

(wPrefix, wSuffix) as described for the insertions. The prefix is searched in T (line 13). If the

prefix successfully exists in T (line 14), then lastPrefixNode must have at least one IT link in

order to address the first character of wSuffix (line 15). Otherwise, w is not in the MergedTrie

(line 32 and 34). In the case of terms formed by just one character (line 16), an IT link to the

root of T must exist (line 17), in which case w is in the MergedTrie (line 18); otherwise, w is

not there (line 20).

Afterwards, wSuffix is searched in reverse order in T (line 22). If wSuffix successfully exists

(line 23), then an IT link that joins the last prefix node with the last suffix node must exist (line

24). Otherwise, the MergedTrie does not contain w (line 27 and 29).

For example,mein is not found in the MergedTrie in Fig 1 because line 15 concludes that

no IT link exists between nodes e and i. Line 24 is required for cases in which several IT links

involve the same character. For example, let us suppose that in the MergedTrie in Fig 1 the

termmeat is not stored. Whenmeat is searched, line 15 would succeed because the termmean
exits, but line 24 would not because the proper a node would not be IT linked from the e node.

The search operation in MergedTrie also shows a temporal complexity of O(L).

That is because the search operation simply requires traversing the prefix and suffix Tries.

Moreover, the MergedTrie improves the temporal efficiency of Trie searches in cases such as

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 8 / 19

https://doi.org/10.1371/journal.pone.0215288


Fig 1. Trie, Double Trie, MergedTrie, and DAWG/ADFA formed by 19 words: h, hat, halt, han, heat, het, main, malt, man, mat, met, meat,

mean, melt, min, taam, taem, tlam, tlem.

https://doi.org/10.1371/journal.pone.0215288.g001

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 9 / 19

https://doi.org/10.1371/journal.pone.0215288.g001
https://doi.org/10.1371/journal.pone.0215288


the search of heatwave in the Trie in Fig 1, in which after traversing part of the prefix (he), line

14 concludes that the term does not exist although the string heat appears in the Trie. Simi-

larly, the efficiency is improved by line 15, when the last node of a string in the Trie of prefixes

does not contain an IT link.

The deletion operation also presents O(L) temporal efficiency because it consists of a search

operation and the subsequent IT link deletion. Regarding nodes to be deleted that are not used

for other terms in the MergedTrie, they are deleted by a new operation called “compaction”,

which has been designed with the aim of improving the MergedTrie computational efficiency

in the implementation that is detailed in section 4.2.

The prefix listing is performed with a similar complexity to Tries because it consists of the

traversing of each IT link in the TP path. For each IT link found in this path, the nodes in the

TS are traversed in ascending order. That is why in Fig 1, the links between the nodes of T are

two-way arrows in order to allow for ascending traversal. For example, the ha� prefix listing in

Fig 1 is performed by traversing the IT links of the h and h+a nodes of T. The former reaches

three IT links to the words het, hat and han. The first is discarded because it does not satisfy

the prefix requirement, but the remaining terms are listed. The latter reaches the word halt
that is also listed. In case of prefix listings longer than the one stored in the TP, the operation

works in a similar way, because the maximum string length in T is traversed, and all the IT

links of the last prefix node are traversed and checked to see if they satisfy the prefix require-

ment. For example, themea� prefix listing in Fig 1 is performed by traversing the IT links of

the maximum length, them+e node, which has three IT links to the wordsmean,meat and

melt. Here, the last word is discarded.

In conclusion, the table in Fig 1 summarizes the comparison between the Trie, Double Trie,

MergedTrie and DAWG/ADFA, all indexing the same set of 19 words. As can be observed, the

Trie is quite inefficient regarding the number of nodes and edges (76 in total) in comparison

with the reduction to 56 (DAWG/ADFA), 58 (MergedTrie) and 64 (Double Trie). Thus, these

figures show the improvement of the MergedTrie over the Double Trie (58 vs. 64). The

DAWG/ADFA is slightly more efficient than the MergedTrie because the number of edges

(two-way arrows vs. one-way in DAWG) and IT (one for each term vs. zero in DAWG) is

higher, although the number of nodes is lower (13 vs. 19 in DAWG). This small increase is off-

set by the great simplicity of the insertion and updating operations, with a much better com-

plexity proportional to L, compared to Q (the total number of states/nodes), as the

experimental evaluation section will prove.

4. MergedTrie implementation

This section details the implementation and is divided into two subsections: 1) the C+

+ sequential implementation of the MergedTrie; 2) the improvement in its computational effi-

ciency by means of the compaction operation.

4.1. The sequential implementation of the MergedTrie

This section contains details of the MergedTrie implementation which will be used in the com-

parative experimental analysis in section 5. We have implemented the MergedTrie in C++, an

efficient programming language for the proper processing of memory, and frequently used in

text applications (e.g. in Information Retrieval). The MergedTrie is represented using one-

dimensional arrays, unlike the traditional pointer-linked structure of Radix Trees and Tries:

memory pointers are replaced by offsets for the links between nodes. This is especially impor-

tant on 64-bit machines, where pointers require 8 bytes. Thanks to this sequential representa-

tion, after the MergedTrie is created, when it is stored in secondary memory, the subsequent

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0215288


load times are significantly reduced because the dynamic reservation of the array memory is

performed in one single operation. Loading each array position is more efficient than the link

representation, which means creating and linking each node individually. Moreover, it allows

direct access to the structure when it is stored in secondary memory if it does not fit in the

main memory due to the number of keys to be indexed. Therefore, thanks to the one-dimen-

sion array representation, the de/serialization of the MergedTrie from/into the disk is quite

simple and efficient.

Our structure remains totally dynamic, increasing or decreasing the array dimension if this

is required. Specifically, we are using one array for the letter-nodes in the Trie (T), and another

for the inter-Trie nodes (IT), both “unsigned int” (32 bits). Moreover, two additional

“unsigned char” (8 bits) arrays are used for supplementary information. Each attribute of the

MergedTrie nodes is stored in these arrays by C++ bit fields as detailed in Table 1, where the

letter-nodes are stored in 72 bits (two sequential positions in the letter-node array plus a posi-

tion in its supplementary array), and the IT-nodes in 40 bits (one position in the IT-node

array plus a position in its supplementary array). The parent/moved/IT/BIT bit fields are used

to differentiate between different kinds of nodes in the arrays, and the remaining fields/attri-

butes are depicted in the MergedTrie with the words h, hax andmax in Fig 2. In its sequential

implementation, the root of T is stored in index 1. All letter-node descendants or IT-nodes of

a letter-node are represented as Hash Tables of sizes B and BIT respectively, and collisions

between nodes are solved by searching for an empty bucket (e.g. bucket 10 in the letter-nodes

array Fig 2) in the Hash Table. Collisions are linked by means of lists through the nh field (e.g.

bucket 4 in the letter-nodes supplementary array presents nh: 6, which means that the next col-

liding letter-node is the one in position 6). For example, the Hash Table of descendant letter-

nodes of the root of T (see index 1 in Fig 2) is of size B = 4 and starts in index dsc: 2, so it is

formed by bucket 2 (pt: 1 that means that the parent node is in index 1, in order to support the

ascending traversals of T) and buckets 4 to 10 for the Hash Table (each letter-node is stored in

two sequential positions of the array).

If a Hash Table is full, B is increased and the Table is created in a new array position, in

which the letter-nodes in the full Table are replicated in the new Table by means ofmoved
nodes, which only have the offset to the original letter-node. In this way, the previous IT

addresses are not affected by the re-dimensioning operation.

The IT links are represented in the letter-nodes when the IT field is different to ‘–‘, such as

the h letter node in bucket 4, whose IT links are stored in the Hash Table that starts in index

IT: 1. Bucket 1 contains the size of the IT hash table (BIT: 2), and the following two BIT posi-

tions compose the proper Hash Table. In this case, it is comprised of two IT links to the letter-

nodes in T: dir: 13 (letter-node a, so it marks the end of word hat) and dir: 1 (root node, so it

Table 1. C++ bit fields used in the MergedTrie implementation.

Letter-node IT-node

Field Num. bits Field Num. bits

Parent Node bit 1 IT vs. BIT node bit 1

Moved/Letter Node bit 1 BIT/offset of the following hash collision 13

Letter 8 Index to suffix letter-node/index to prefix letter-
node

26

Descendant offset 24

Moved offset/Parent offset/IT index 30

B/offset of the following hash
collision

8

TOTAL 72 TOTAL 40

https://doi.org/10.1371/journal.pone.0215288.t001

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 11 / 19

https://doi.org/10.1371/journal.pone.0215288.t001
https://doi.org/10.1371/journal.pone.0215288


marks the end of word h). Both IT links are synonyms, so the collision is solved by the link nh:
2 (see bucket 3 in the IT-nodes supplementary array).

Each term is identified unambiguously by one IT-node that will carry the data associated

with the term, which is stored separately (e.g. aMergedTrie<float> will store the set of float

values associated with each term stored, such as<computer, 1.3>). This feature provides an

additional contribution to represent relationships between different words, as it is required in

n-grams, phrases, cryptographic codes, bitexts or biwords. Other authors (e.g. [54–56]) store

these resources by assigning codes to words. The MergedTrie automatically provides these

codes or word identifiers: the array index of IT links. For example, in Fig 2 the following word

identifiers are automatically assigned to the words: h (3), hax (2) andmax (5). Therefore, we

can easily store the bi-gram frequency of the pair “hat-mat” by indexing the identifiers “2–5”

in an additional data structure.

4.2. The compaction operation

This optional operation can be run on-demand with the aim of improving the temporal and

spatial efficiency of the MergedTrie. It runs a level-order (also known as breadth-first) traversal

of the MergedTrie, and gathers the letter nodes that share sibling or descendant relations, stor-

ing them in close array positions. In this way, after the compaction operation, the descendant

offsets are fewer than those in the non-compacted MergedTrie, as well as making our imple-

mentation cache-friendly. In addition, the moved or deleted nodes are also removed.

Moreover, in the compaction operation, the size of the hash tables (B and BIT) is properly

adjusted according to the number of items that they contain in order to avoid empty buckets.

For example, in Fig 3, the MergedTrie in Fig 2 is depicted after deleting the word h and run-

ning the compaction operation. The letter-node in bucket 1 in Fig 2 with B = 4 is set to B = 3
in Fig 3 in order to clear the empty bucket number 10 in Fig 2. This adjustment of B/BIT forces

the re-hashing of the items, which reduces the length of nh lists, and eradicates collisions

between no-synonym items. For instance, in Fig 2, the x character is a synonym of h that

already occupies the bucket 4 because x MOD 4 = h MOD 4 = 0, hence x is stored in bucket 6.

However, whenm has to be stored in Fig 2 in bucket 6 (m MOD 4 = 1), it is occupied by the x
collided item that is not a synonym ofm, which forces us to search for an alternative position

and to link it properly by nh (bucket 8). The re-hashing of h, x andm with B = 3 achieves an

optimal distribution as Fig 3 shows: x MOD 3 = 0; m MOD 3 = 1; h MOD 3 = 2. Therefore, the

temporal efficiency is improved because the previous two collisions are eliminated. Moreover,

Fig 2. Sequential and graphical representations of the MergedTrie with the words h, hax, max (lt: letter; dsc: descendant index; IT: inter-trie

index; pt: index of the parent node; nh: index of the following hash collision; dir: IT index to suffix letter-node; B: size of hash table of letter-

nodes; BIT: size of hash table of IT links; root of T: 1).

https://doi.org/10.1371/journal.pone.0215288.g002

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0215288.g002
https://doi.org/10.1371/journal.pone.0215288


the deletion of word hmeans that the IT bucket 3 is removed and the BIT in bucket 1 is set to

1. As can be observed in Fig 3, the spatial efficiency is improved after compaction because

three buckets are removed.

5. Experimental evaluation

Two experiments have been performed to prove the benefits of our proposal, which are analyzed

in the following two subsections. The first experiment measures the benefits in the spatial effi-

ciency of the MergedTrie, whereas the second one focuses on the temporal efficiency analysis.

These experiments have been run on a 64-bit 8 x Intel(R) Xeon(R) CPU E5606–2.13GHz—

32 Gb RAM computer with Ubuntu14.04 LTS (Linux 3.13.0-95-generic SMP x86_64 GNU/

Linux). Our C++ implementation has been compiled with GCC version 4.8.4 with the options

“-std = gnu++0x -O3”.

Two different datasets have been used in the experiments. The first one (TREC+) is formed

by 7,184,348 different words with a size of 3.2 GB. It is the result of merging the following files:

five English collections, mainly about newspapers; documents (http://trec.nist.gov/data/docs_

eng.html) used in TREC-8, 9 and 10; Question Answering competitions; a dictionary of Span-

ish [57]; and the dictionaries reported in the Apertium project (https://sourceforge.net/p/

apertium/svn/HEAD/tree/trunk/). The second one (Google1Grams) is formed of 58,654,411

different words from the joining of the English, Chinese, French, German, Hebrew, Italian,

Russian and Spanish Google 1-grams (http://storage.googleapis.com/books/ngrams/books/

datasetsv2.html) in UTF-8 codification. In this way, we prove the benefits of our proposal in

several sized corpora.

The MergedTrie will be compared to several well-known index structures implemented in

C++: (1) our Trie implementation as a pointer-linked structure; (2) the STL Hash

Table “unordered_set<string>”; (3) the binary Crit-bit (also known as PATRICIA) tree struc-

ture (Adam Langley, https://www.imperialviolet.org/binary/critbit.pdf); two implementations

of DAWG: (4) the one by Susumu Yata by means of a double array as a base structure (dawg-

dic-0.4.5 https://code.google.com/archive/p/dawgdic/downloads), which requires insertions of

sorted text; (5) the one used in [31] in http://www.jandaciuk.pl/adfa.html, which allows inser-

tions of unsorted terms; and [47,48] implementations: (6) double-array Trie; (7) double-array

Trie with string labels; (8) double-array Minimal-Prefix (MP) Trie; (9) double-array MP Trie

with string labels; (10) Double Trie implemented as a double-array; (11) Double Trie with

string labels implemented as a double-array. These structures will show an external evaluation

and comparison to current, efficient and widely used data structures.

Fig 3. Sequential and graphical representations of the MergedTrie in Fig 2 after deleting the word h and running the compaction operation.

Words hax andmax. (lt: letter; dsc: descendant index; IT: inter-trie index; pt: index of the parent node; nh: index of the following hash collision; dir:
IT index to suffix letter-node; B: size of hash table of letter-nodes; BIT: size of hash table of IT links; root of T: 1).

https://doi.org/10.1371/journal.pone.0215288.g003

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 13 / 19

http://trec.nist.gov/data/docs_eng.html
http://trec.nist.gov/data/docs_eng.html
https://sourceforge.net/p/apertium/svn/HEAD/tree/trunk/
https://sourceforge.net/p/apertium/svn/HEAD/tree/trunk/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://www.imperialviolet.org/binary/critbit.pdf
https://code.google.com/archive/p/dawgdic/downloads
http://www.jandaciuk.pl/adfa.html
https://doi.org/10.1371/journal.pone.0215288.g003
https://doi.org/10.1371/journal.pone.0215288


5.1. Experiment 1: Spatial efficiency

The memory consumption shown in Table 2 has been measured using a C++ program (http://

dis.um.es/~ginesgm/files/doc/memory.cpp; http://dis.um.es/~ginesgm/medidas.html#mt)

that returns the maximum memory usage in kilobytes by scanning the file “/proc/process_id/

smaps” 16 times per second. The percentages (Δ %) mean the rate of variation in the maximum

memory usage with regard to the “(0) MergedTrie”.

As Table 2 shows, the MergedTrie is the structure that obtains the best spatial efficiency

results. It reaches a maximum variation from 56,876 kB (MergedTrie) to 686,680 kB (Trie),

which is the structure that requires the most memory. As expected, the Hash Table is also

quite memory inefficient (637,360 kB). The second most efficient structure is the (11) Double

Trie as a double-array with string labels proposed in [47,48], although it increases its memory

consumption by 8.2%, even when Kanda et al. structures achieve a high compression rate

given that they implement static dictionaries (i.e. that do not support updating operations as

the MergedTrie does). These results are confirmed for the Google1Grams corpora.

From these results, we can conclude that the MergedTrie clearly outperforms up-to-date

structures specialized in term-level index, showing a high reduction of memory even when the

MergedTrie supports insertions, updates and removals of terms (i.e. it is not a static

dictionary).

Regarding the comparative analysis of the number of nodes/edges, the results reported by

the structures that we have implemented are the following in the format “number of nodes

+ number of edges = total”: (0) MergedTrie (our proposal with one Trie) (1,547,419

+ 7,936,434 = 9,483,853); MergedTrie, as in Double Tries, with two Tries (1,609,816

+ 7,967,202 = 9,577,018); (1) Trie (14,643,216 + 14,643,216 = 29,286,432). From these results,

as expected, a high reduction in the number of nodes and edges is obtained by the MergedTrie

with regard to the Trie: 9,483,853 vs. 29,286,432. The improvement in comparison to the Mer-

gedTrie with two Tries is also verified: 9,483,853 vs. 9,577,018, which proves the benefits of our

proposals.

Regarding the contributions of the compaction operation (section 4.2), the number of posi-

tions occupied in the arrays is decreased from 28,212,579 to 11,589,966. Moreover, the number

of collided nodes in the Hash Tables is decreased from 6,792,968 to 2,756,650.

Table 2. Max. memory usage (kB) with both corpora: TREC+ (7,184,348 words) and Google1Grams (58,654,411 words).

Data structures for term-level index Corpus TREC+ Corpus Google1Grams

Max. memory usage(kB) Δ % Max. memory usage(kB) Δ %

(0) MergedTrie 56,876 524,234

(1) Trie 686,680 1,107.3% 12,850,236 2351.2%

(2) Hash Table 637,360 1,020.6% 6,653,784 1169.2%

(3) Crit-bit 449,344 690.0% 3,740,840 613.6%

(4) DAWG-Yata as a double array 340,196 498.1% 2,888,212 450.9%

(5) DAWG-Daciuk 185,668 226.4% 4,335,440 727.0%

(6) Double-array Trie 104,128 83.1% 1,209,780 130.8%

(7) Double-array Trie with string labels 81,851 43.9% 740,333 41.2%

(8) Double-array MP Trie 70,223 23.5% 706,482 34.8%

(9) Double-array MP Trie with string labels 67,607 18.9% 637,301 21.6%

(10) Double Trie as a double-array 62,427 9.8% 581,382 10.9%

(11) Double Trie as a double-array with string
labels

61,526 8.2% 539,039 2.8%

https://doi.org/10.1371/journal.pone.0215288.t002

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 14 / 19

http://dis.um.es/~ginesgm/files/doc/memory.cpp
http://dis.um.es/~ginesgm/files/doc/memory.cpp
http://dis.um.es/~ginesgm/medidas.html#mt
https://doi.org/10.1371/journal.pone.0215288.t002
https://doi.org/10.1371/journal.pone.0215288


5.2. Experiment 2: Temporal efficiency

The second experiment focuses on the temporal efficiency analysis. The running time shown

in Table 3 has been measured in seconds by the getrusage function that reports resource usage

totals for processes. The running time of the insertion and search for each term in the File is

measured in the first two columns. The third column shows the efficiency of the search opera-

tion when the term to be searched is not in the File. This failure search is performed for the

terms in the File when a random character is inserted in a random position in the original

term. Each column result shows the time measured in seconds (s) and the percentage variation

(Δ % where the negative values mean a percentage increase in comparison to the MergedTrie).

As can be observed in Table 3, regarding the insertion operation, the MergedTrie outperforms

the remaining structures for the insertion operation as was theoretically expected. The Merged-

Trie (5.51 s) especially outperforms the DAWG-Daciuk (141.22 s) that inserts unsorted terms,

which proves the greater complexity of its insertion algorithm. The insertion time of the double

array and the Double Trie static structures is much higher than the MergedTrie, with the addi-

tional advantage that the MergedTrie allows updates. The second fastest structure is the Hash

Table (6.14 s), although as was shown in the previous experiment, it is quite memory inefficient.

Regarding the search operations, the DAWG-Daciuk structure is not analyzed because the

software package provided by Daciuk does not accomplish these operations. With regard to

the successful search operation, the DAWG and the structures implemented by [47,48] outper-

form the MergedTrie, but the MergedTrie outperforms the Trie, Crit-bit and Hash

Table structures. However, it should be kept in mind that they require previous sorting of the

terms to index and do not allow modifications of the indexed terms. After analyzing these

results, we consider that the point of improvement in the proposed MergedTrie implementa-

tion is the number and length of the lists of collided terms, with a maximum of 7 letter-nodes

and 11 IT-nodes. These figures mean that in the experiment, the searches for all the words in

the File have to traverse each of these collided items, which results in a longer response time.

Similar results have been obtained for the Google1Grams corpora (see Table 4).

Regarding the compaction operation (section 4.2), it is run in 1.94 s. The successful and fail-

ure search time is reduced by 15.6% and 8.7% respectively, which proves the benefits of eradi-

cating the collisions between no-synonym items. Specifically, the number of collided nodes in

the Hash Table is decreased from 6,792,968 to 2,756,650; and the maximum length of the lists

of collided terms is decreased from 24 to 7 letter-nodes and from 1,227 to 11 IT-nodes.

Table 3. Times in seconds in experiment 2 with TREC+ corpora (7,184,348 words).

Insertion
(s) Δ %

Success. search
(s) Δ %

Failure search

(s) Δ%

(0) MergedTrie 5.51 2.57 1.98

(1) Trie 7.15 29.6% 8.49 229.9% 7.16 261.2%

(2) Hash Table 6.14 11.4% 2.77 7.7% 3.75 89.0%

(3) Crit-bit 9.27 68.1% 7.61 195.8% 6.28 216.6%

(4) DAWG-Yata as a double array 12.52 127.1% 1.00 -61.2% 1.35 -31.7%

(5) DAWG-Daciuk 141.22 2461.4 - - - -

(6) Double-array Trie 12.84 132.9% 0.78 -69.7% 1.11 -44.1%

(7) Double-array Trie with string labels 13.68 148.0% 1.21 -53.0% 1.35 -32.0%

(8) Double-array MP Trie 13.83 150.8% 0.88 -65.8% 1.13 -43.1%

(9) Double-array MP Trie with string labels 16.87 206.0% 1.22 -52.5% 1.34 -32.7%

(10) Double Trie as a double-array 15.60 183.0% 0.92 -64.3% 1.14 -42.8%

(11) Double Trie as a double-array with string labels 18.55 236.4% 1.31 -49.0% 1.37 -31.0%

https://doi.org/10.1371/journal.pone.0215288.t003

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 15 / 19

https://doi.org/10.1371/journal.pone.0215288.t003
https://doi.org/10.1371/journal.pone.0215288


6. Conclusions and future research

In this paper, we have proposed the MergedTrie data structure for term-level index operations,

such as keyword insertion, search, modification, deletion, listing and prefix listing, necessary

in applications that require string processing, such as Information Retrieval, social networks

and IP lookup, especially crucial for Big Data and data mining applications (e.g. the biomedical

text).

The main contributions of our proposal have been summarized according to the theoretical

impact of our research as follows:

1. The MergedTrie extends the Double Trie (DT) structure [18,38] in the following ways:

• It enhances the DT segmentation of the term in order to achieve a reduction in the height

of the Trie by segmenting the term at exactly half its length.

• It merges the two Tries in DT into a single one, in order to achieve both prefix and suffix

overlapping in the terms to be indexed. Thus, it achieves a great decrease in the number of

nodes and memory consumption.

2. It results in a great reduction in memory consumption, both in states/nodes and edges and

in the prefixes and suffixes of the indexed terms, overcoming the problem of the significant

cost of update operations as occurs when compacted or minimized segments need to be

split or merged in the DAWG, ADFA and CDAWG structures.

3. It does not require prior term sorting, compression or decompression processes, as occurs

in other “compact” structures or representations.

4. It keeps the complexity of the insertion, search, modification and deletion operations pro-

portional to the length of the string, in contrast to DAWG/ADFA structures, where this is

proportional to the number of nodes/states.

5. The efficiency is also improved because the MergedTrie updating operations are based on

simple Trie operations.

6. It facilitates the indexation of additional information (e.g. n-grams, phrases, bitexts,

biwords or additional data) related to the words stored in all the MergedTries, because it

automatically provides word identifiers that different MergedTries can share.

Table 4. Times in seconds in experiment 2 with Google1Grams corpora (58,654,411 words).

Insertion

(s) Δ %

Success. search

(s) Δ%

Failure search

(s) Δ%

(0) MergedTrie 37.15 27.36 16.16

(1) Trie 243.30 554.9% 239.51 775.5% 183.37 1034.5%

(2) Hash Table 53.00 42.7% 30.00 9.7% 39.00 141.3%

(3) Crit-bit 87.93 136.7% 66.18 141.9% 55.75 244.9%

(4) DAWG-Yata as a double array 184.67 397.1% 8.57 -68.7% 10.42 -35.5%

(5) DAWG-Daciuk 2.283.29 6046.2% - - - -

(6) Double-array Trie 126.97 241.8% 6.54 -76.1% 11.87 -26.6%

(7) Double-array Trie with string labels 133.17 258.5% 10.66 -61.0% 14.41 -10.9%

(8) Double-array MP Trie 122.95 230.9% 7.19 -73.7% 12.01 -25.7%

(9) Double-array MP Trie with string labels 164.17 341.9% 10.75 -60.7% 14.29 -11.6%

(10) Double Trie as a double-array 129.41 248.3% 7.25 -73.5% 11.88 -26.5%

(11) Double Trie as a double-array with string labels 170.71 359.5% 11.76 -57.0% 14.51 -10.2%

https://doi.org/10.1371/journal.pone.0215288.t004

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 16 / 19

https://doi.org/10.1371/journal.pone.0215288.t004
https://doi.org/10.1371/journal.pone.0215288


Regarding the practical impact of our research:

1. It has been implemented in C++ and has been comparatively analyzed with the Hash Table,

Trie, Crit-bit, ADFA-DAWG, double-array, Double Trie and Minimal-Prefix Trie (with

and without string labels), showing an important reduction in memory consumption and

number of nodes/edges.

2. Its sequential implementation allows for quite simple and efficient de/serialization of the

MergedTrie from/into the disk. It achieves an efficient storage in secondary memory, opti-

mizing the subsequent load times and allowing direct access to the structure when it is

stored in secondary memory if it does not fit in the main memory due to the number of

keys to be indexed.

3. It requires less space than the original text to be indexed.

4. Regarding temporal efficiency, it especially improves insertion operations, as well as allow-

ing new insertions and updates, in contrast to the static structures that only allow for the

search operation.

5. An additional compaction operation is provided in order to improve the computational

efficiency of the structure.

In terms of future projects, the authors plan to release the MergedTrie data structure as a

public C++ library. Moreover, we will try to improve the temporal efficiency with alternative

representations and implementations, especially the issue related to the reduction in the num-

ber of collided items. We also plan to extend the MergedTrie structure to the combination of a

parameterized n number of Tries, creating a novel structure named the nTrie. Finally, we plan

to prove the MergedTrie for representing Suffix Tries in Bioinformatics and Genetic applica-

tions, such as DNA sequence processing tasks, which could achieve high overlapping

compaction.

Author Contributions

Formal analysis: Antonio Ferrández, Jesús Peral.

Investigation: Antonio Ferrández, Jesús Peral.

Software: Antonio Ferrández, Jesús Peral.

Validation: Antonio Ferrández, Jesús Peral.

Writing – original draft: Antonio Ferrández, Jesús Peral.

References
1. Gil D.; Ferrández A.; Mora-Mora H.; Peral J. (2016). Internet of Things: A Review of Surveys Based on

Context Aware Intelligent Services. Sensors 16(7), 1069.

2. Kiritchenko S.; Zhu X.; Mohammad S. M. (2014). Sentiment Analysis of Short Informal Texts. Journal of

Artificial Intelligence Research 50, pp. 723–762.

3. Bellot P.; Moriceau V.; Mothe J.; SanJuan E.; Tannier X. (2016). INEX Tweet Contextualization task:

Evaluation, results and lesson learned, Information Processing & Management, 52(5), pp. 801–819.

4. Korhonen A.; Ó Séaghdha D.; Silins I.; Sun L.; Högberg J.; Stenius U. (2012). Text Mining for Literature

Review and Knowledge Discovery in Cancer Risk Assessment and Research. PLoS ONE 7(4):

e33427. https://doi.org/10.1371/journal.pone.0033427 PMID: 22511921

5. Kozareva, Z.; Ravi, S. (2011). Unsupervised Name Ambiguity Resolution Using a Generative Model. In

Proceedings of the First Workshop on Unsupervised Learning in NLP (EMNLP), pp. 105–112.

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 17 / 19

https://doi.org/10.1371/journal.pone.0033427
http://www.ncbi.nlm.nih.gov/pubmed/22511921
https://doi.org/10.1371/journal.pone.0215288


6. Martı́nez-Prieto M.A.; Brisaboa N.; Cánovas R.; Claude F.; Navarro G. (2016). Practical compressed

string dictionaries. Information Systems, 56, pp. 73–108.

7. Kozareva, Z.; Hovy, E. (2011). Learning Temporal Information for States and Events. In Proceedings of

the IEEE Fifth International Conference on Semantic Computing, pp. 424–429.

8. Germann, U.; Joanis, E.; Larkin, S. (2009). Tightly Packed Tries: How to Fit Large Models into Memory,

and Make them Load Fast, Too. In Proceedings of the NAACL HLT Workshop on Software Engineering,

Testing, and Quality Assurance for Natural Language Processing, pp. 31–39.

9. Baeza-Yates R. Ribeiro-Neto, B. (2011). Modern Information Retrieval. Addison Wesley.

10. Ferrández A. (2011). Lexical and Syntactic knowledge for Information Retrieval. Information Processing

& Management, 47, pp. 692–705.

11. Kelbert P.; Droege G.; Barker K.; Braak K.; Cawsey EM.; Coddington J. (2015). B-HIT—A Tool for Har-

vesting and Indexing Biodiversity Data. PLoS ONE 10(11): e0142240. https://doi.org/10.1371/journal.

pone.0142240 PMID: 26544980

12. Büttcher S., Clarke C.L.A.; Cormack G. (2010). Information Retrieval: Implementing and Evaluating

Search Engines. MIT Press.

13. Witten I.H.; Moffat A.; Bell T.C. (1999). Managing Gigabytes: Compressing and Indexing Documents

and Images. Morgan Kaufmann.

14. Grossi, R.; Vitter, J.S. (2000). Compressed suffix arrays and suffix trees with applications to text index-

ing and string matching. In Proceedings of the thirty-second annual ACM symposium on Theory of com-

puting (STOC ‘00), pp.397-406.

15. Inenaga S.; Hoshino H.; Shinohara A.; Takeda M.; Arikawa S.; Mauri G.; Pavesi G. (2005). On-line con-

struction of compact directed acyclic word graphs. Discrete Applied Mathematics, 146, pp. 156–179.

16. Navarro G.; Baeza-Yates R. (1999). Very fast and simple approximate string matching. Information Pro-

cessing Letters, 72, pp. 65–70.

17. Crochemore M. (2003). Reducing space for index implementation. Theoretical Computer Science,

292, pp.185–197.

18. Morimoto K.; Iriguchi H.; Aoe JI. (1995). A dictionary retrieval algorithm using two trie structures. Sys-

tems and Computers in Japan 26(2), pp. 85–97.

19. Aoe J. An Efficient Digital Search Algorithm by Using a Double-Array Structure. (1989). IEEE Transac-

tions on Software Engineering, 15(9), pp. 1066–1077.

20. Yoshinaga, N.; Kitsuregawa, M. (2014). A Self-adaptive Classifier for Efficient Text-stream Processing.

In Proceedings of the COLING 2014, pp. 1091–1102.

21. Huang K.; Xie G.; Li Y.; Zhang D. (2015). Memory-efficient IP lookup using trie merging for scalable vir-

tual routers, Journal of Network and Computer Applications, 51, pp. 47–58.

22. Mukhopadhyay I.; Chakraborty M.; Chakrabarti S. (2011). A Comparative Study of Related Technolo-

gies of Intrusion Detection & Prevention Systems. Journal of Information Security 2(1), pp. 28–38.

23. Fredkin E. (1960). Trie Memory. Communications of the ACM, 3(9), pp. 490–499.

24. Briandais, R. (1959). File Searching Using Variable Length Keys. In Proceedings of the AFIPS Western

Joint Computer Conference, pp. 295–298.

25. Black, P.E. (2011a). "Trie", in Dictionary of Algorithms and Data Structures [online]. Vreda Pieterse and

Paul E. Black, eds. Available from: http://www.nist.gov/dads/HTML/trie.html.

26. Jung M.; Shishibori M.; Tanaka Y.; Aoe J. (2002). A dynamic construction algorithm for the Compact

Patricia trie using the hierarchical structure, Information Processing & Management, 38(2), pp. 221–

236.

27. Black, P.E. (2011b). Directed Acyclic Word Graph, in Dictionary of Algorithms and Data Structures

[online], Vreda Pieterse and Paul E. Black, eds. 30 December. Available from: http://www.nist.gov/

dads/HTML/directedAcyclicWordGraph.html.

28. Blumer A.; Blumer J.; Haussler D.; McConnell R.; Ehrenfeucht A. (1987). Complete inverted files for effi-

cient text retrieval and analysis. Journal of the Association for Computing Machinery, 34 (3), pp. 578–

595.

29. Daciuk J.; Watson B.W.; Mihov S.; Watson R.E. (2000). Incremental Construction of Minimal Acyclic

Finite-State Automata. Computational Linguistics, 26(1), pp. 3–16.

30. Carrasco R.C.; Forcada M.L. (2002). Incremental Construction and Maintenance of Minimal Finite-

State Automata. Computational Linguistics, 28(2), pp. 207–216.

31. Daciuk J. (2002). Comparison of construction algorithms for minimal, acyclic, deterministic, finite-state

automata from sets of strings. In Proceedings of CIAA’02, LNCS, vol. 2608, pp. 255–261.

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 18 / 19

https://doi.org/10.1371/journal.pone.0142240
https://doi.org/10.1371/journal.pone.0142240
http://www.ncbi.nlm.nih.gov/pubmed/26544980
http://www.nist.gov/dads/HTML/trie.html
http://www.nist.gov/dads/HTML/directedAcyclicWordGraph.html
http://www.nist.gov/dads/HTML/directedAcyclicWordGraph.html
https://doi.org/10.1371/journal.pone.0215288


32. Bubenzer J. (2014). Cycle-aware minimization of acyclic deterministic finite-state automata, Discrete

Applied Mathematics, Volume 163(3), pp. 238–246.

33. Fredriksson K. (2010). On building minimal automaton for subset matching queries, Information Pro-

cessing Letters, 110(24), pp. 1093–1098.

34. Watson, B. W. (2010). Constructing minimal acyclic deterministic finite automata, Ph.D. Thesis, Univer-

sity of Pretoria, University of Pretoria.

35. Garcı́a P.; López D.; Vázquez de Parga M. (2015). DFA minimization: Double reversal versus split mini-

mization algorithms, Theoretical Computer Science, 583(7), pp. 78–85.

36. Heinz S.; Zobel J.; Williams H.E. (2002). Burst tries: a fast, efficient data structure for string keys. ACM

Trans. Inf. Syst., 20, pp. 192–223.

37. Dutta, S.; Bhattacharya, A. (2010). INSTRUCT—Space-Efficient Structure for Indexing and Complete

Query Management of String Databases. In Proceedings of the 16th International Conference on Man-

agement of Data (COMAD).

38. Aoe J.; Morimoto K.; Shishibori M.; Park HK. (1996). A Trie Compaction Algorithm for a Large Set of

Keys. IEEE Transactions on Knowledge & Data Engineering, 8, pp. 476–491.

39. Watson B. W. (1996). Implementing and using finite automata toolkits. Natural Language Engineering

2 (4), pp. 295–302.

40. Clarkson, P. R.; Rosenfeld, R. (1997). Statistical language modeling using the CMU-Cambridge toolkit.

In Proceedings of the EUROSPEECH 1997, pp. 2707–2710.

41. Whittaker, E. W. D.; Raj, B. (2001). Quantization-based language model compression. In Proceedings

of the EUROSPEECH 2001, pp. 33–36.

42. Aoe J.; Morimoto K.; Sato T. (1992). An Efficient Implementation of Trie Structures. Software-Practice

and Experience, 22(9), pp. 695–721.

43. Morita K.; Fuketa M.; Yamakawa Y.; Aoe J. (2001). Fast insertion methods of a double-array structure.

Software-Practice and Experience, 31, pp. 43–65.

44. Oono M.; Atlam E.; Fuketa M.; Morita K.; Aoe J. (2003). A fast and compact elimination method of

empty elements from a double-array structure. Software-Practice and Experience, 33, pp. 1229–1249.

45. Yata S.; Oono M.; Morita K.; Fuketa M.; Sumitomo T.; Aoe J. (2007). A compact static double-array

keeping character codes. Information Processing & Management, 43(1), pp. 237–247.

46. Fuketa M.; Kitagawa H.; Ogawa T.; Morita K.; Aoe J, (2014). Compression of double array structures

for fixed length keywords, Information Processing & Management, 50 (5), pp. 796–806.

47. Kanda, S.; Fuketa, M.; Morita, K.; Aoe. JI. (2015). Trie compact representation using double-array

structures with string labels. In Proceedings of the IEEE 8th International Workshop on Computational

Intelligence and Applications (IWCIA), pp. 3–8.

48. Kanda S.; Morita K.; Fuketa M. (2017). Compressed double-array tries for string dictionaries supporting

fast lookup. Knowledge and Information Systems, 51(3), pp. 1023–1042.

49. Askitis, N.; Sinha, R. (2007). HAT-trie: A Cache-conscious Trie-based Data Structure for Strings. In Pro-

ceedings of the 30th Australasian Computer Science Conference (ACSC2007), pp. 97–105.

50. Bagwell, P. (2000). Ideal Hash Trees. Technical Report. Infoscience Department, École Polytechnique

Fédérale de Lausanne.

51. Fu J.; Rexford J. (2008). Efficient IP address lookup with a shared forwarding table for multiple virtual

routers. In Proceedings of the ACM CoNEXT. Article No. 21.

52. Song H.; Kodialam, M.; Hao, F.; Lakshman, TV. (2010). Building scalable virtual routers with trie braid-

ing. In Proceedings of the IEEE INFOCOM, p. 1442–50.

53. Brisaboa N.R.; Fariña A.; Ladra S.; Navarro G. (2012). Implicit indexing of natural language text by reor-

ganizing bytecodes. Information Retrieval, 15, pp. 527–557.

54. Sánchez-Martı́nez F.; Carrasco R.C.; Martı́nez-Prieto M.A.; Adiego J. (2012). Generalized Biwords for

Bitext Compression and Translation Spotting. Journal of Artificial Intelligence Research, 43, pp. 389–

418.

55. Adiego J.; Brisaboa N. R.; Martı́nez-Prieto M. A.; Sánchez-Martı́nez F. (2009). A two-level structure for

compressing aligned bitexts. In Proceedings of the 16th String Processing and Information Retrieval

Symposium, Vol. 5721 of Lecture Notes in Computer Science, pp. 114–121.

56. Chang M.; Poon C.K. (2008). Efficient phrase querying with common phrase index. Information Pro-

cessing & Management, 44, pp. 756–769.

57. Santana O.; Carreras F. J.; Hernández Z.; Gonzalez A. (2007). Integration of an XML electronic dictio-

nary with linguistic tools for Natural Language Processing. Information Processing & Management,

43, pp. 946–957.

MergedTrie: Efficient textual indexing

PLOS ONE | https://doi.org/10.1371/journal.pone.0215288 April 23, 2019 19 / 19

https://doi.org/10.1371/journal.pone.0215288

