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Identification of genes under dynamic
post-transcriptional regulation from
time-series epigenomic data
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Aim: Prediction of genes under dynamic post-transcriptional regulation from epigenomic data. Materials
& methods: We used time-series profiles of chromatin immunoprecipitation-seq data of histone modifica-
tions from differentiation of mesenchymal progenitor cells toward adipocytes and osteoblasts to predict
gene expression levels at five time points in both lineages and estimated the deviation of those predic-
tions from the RNA-seq measured expression levels using linear regression. Results & conclusion: The genes
with biggest changes in their estimated stability across the time series are enriched for noncoding RNAs
and lineage-specific biological processes. Clustering mRNAs according to their stability dynamics allows
identification of post-transcriptionally coregulated mRNAs and their shared regulators through sequence
enrichment analysis. We identify miR-204 as an early induced adipogenic microRNA targeting Akric14
and II1rl1.
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The signal for histone modifications associated with active and accessible chromatin has been known to correlate
with respective gene expression levels since the earliest genome-wide chromatin immunoprecipitation (ChIP)
experiments [1]. More recent work has described in further details which histone modifications, and in what
combinations, are associated with high levels of transcription [2-5]. Currently, any measurement of chromatin
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accessibility combined with transcription factor (TF) binding motif data can allow accurate predictions of gene
expression levels (6. Many approaches ranging from linear regression to various machine learning approaches
have been applied to prediction of gene expression from epigenetic data (see Singh ez al. 7] for a more detailed
description). The currently existing tools allow improved predictions by including the use of nonlinear models
and combinatorial interactions with the latest deep-learning approaches currently achieving the most accurate
predictions [7]. As a simple and easily accessible but still relatively robust approach, linear regression has been
shown to model gene expression levels with good correlation to measured expression levels, already when using
ChIP-seq data of only a few histone modifications, depending on the used histone mark and the tested genomic
region [8-10]. Moreover, based on these linear regression models, the chromatin level measurements were shown to
explain as much as 80% of the differences in mRNA levels, suggesting that regulation of mRNA stability through
post-transcriptional mechanisms has only a limited effect on the genome-wide level. However, the same models
could also show that individual genes under post-transcriptional control for example by microRNAs (miRNAs)
can be identified as less stable and having lower actual expression levels than predicted by the linear regression
model [9,10]. Moreover, in addition to the impact of post-transcriptional control, the deviations of predicted gene
expression levels from measured expression levels can also depend on the exact input data used for prediction
models. While expression of majority of the genes can be captured by measuring the levels of canonical histone
modifications at promoters and gene bodies, unusually wide signals [11], absence of canonical histone marks [12] or
for example cell-to-cell variation in gene expression [13] might influence the accuracy of the predictions.

The final outcome of protein expression levels is quite tightly linked to the levels of produced mRNA molecules
and typically a change in mRNA levels leads to a change of similar magnitude in the protein levels, although
the capacity of the mRNAs to translate into proteins varies greatly between the individual mRNAs [14]. This is
consistent with the findings that miRNAs mainly regulate their target genes at the level of mRNA stability [15,16].
Despite their moderate impact at the genome-wide level, miRNAs play an important role in most developmental
processes, as evidenced in mammals by the embryonic lethality of miRNA-depleted mice [17,18] and inability of
miRNA-deficient embryonic stem cells (ESCs) to exit self-renewal and differentiate [19-22). Moreover, miRNAs
have now been shown to impact the terminal differentiation of most cell lineages, including the commitment
to adipocytes and osteoblasts [23-25]. Most miRNAs show cell type-specific expression profiles, often switching
on or off upon induction of cell differentiation and provide robustness to the differentiation processes by in
parallel targeting and destabilizing multiple nodes within a gene regulatory circuit, and thereby reinforcing the new
cell state [26,27]. Consequently, mRNAs important for cellular differentiation change in their stability during the
differentiation process due to their dynamic targeting by miRNAs and other post-transcriptional regulators [28,29].
Conversely, genome-wide identification of changes in mRNA stabilities over time during differentiation or other
cellular processes could allow identification of novel genes and regulatory interactions important for the new cell
state.

Here, we use our recently generated time-series epigenomic data [30] of several histone modifications from the
differentiation of multipotent bone marrow stromal progenitor cells (MSCs) into two terminally differentiated
cell types, adipocytes and osteoblasts, to identify RNAs likely to be under dynamic post-transcriptional regulation
in both lineages. To achieve this, we have used a linear regression model for each time point of differentiation
to estimate the RNA expression levels from H3K4me3 and H3K36me3 signals obtained from the ChIP-seq
experiments. We use the discrepancy between the predicted expression values and the actual expression values
obtained by RNA-seq analysis (indicated by each genes residual) as a measure of RNA stability. Following the
dynamics of this discrepancy across the time-series, we identify RNAs under changing levels of post-transcriptional
regulation per lineage in an unbiased manner. We find that the RNAs with greatest changes in their stability during
differentiation are enriched for noncoding RNA (ncRNA) species and for lineage-specific biological processes. By
clustering mRNAs according to their stability dynamics and performing cluster-specific motif enrichment analysis,
we identify the putative miRNAs targeting mRNAs with similar dynamics. We find miR-204 to be an early-induced
adipocyte-specific regulator of lineage commitment capable of targeting its predicted targets, providing biological
validation to our approach.

Materials & methods

Cell culture

The mouse bone marrow stromal cell line ST2 established from Whitlock-Witte type long-term bone marrow
culture of BC8 mice [31] was used during all experiments. Cells were grown in Roswell Park Memorial Institute
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(RPMI) 1640 medium (Gibco, Life Technologies, 32404014) supplemented with 10% fetal bovine serum (Gibco,
Life Technologies, 10270-106, lot #41F8430K) and 1% L-Glutamine (Lonza, BE17-605E) and kept in a constant
atmosphere of 37°C and 5% CO,. In order to differentiate the mouse bone marrow stromal cell line into adipocytes
and osteoblasts, ST2 cells were seeded 4 days before differentiation, reached 100% confluency after 48 h and were
further cultivated for 48 h postconfluency (DO0). Adipogenic differentiation was subsequently initiated on DO by
adding differentiation medium I consisting of growth medium, 0.5 mM isobutylmethylxanthine (Sigma-Aldrich,
15879, MO, USA), 0.25 pM dexamethasone (DEXA) (Sigma-Aldrich, D4902) and 5 pg/ml insulin (Sigma-
Aldrich, 19278). From day 2 on differentiation medium II consisting of growth medium, 500 nM rosiglitazone
(Sigma-Aldrich, R2408) and 5 pg/ml insulin (Sigma-Aldrich, 19278) was added and replaced every 2 days until 9
days of differentiation. Osteoblastic differentiation was induced with growth medium supplemented with 100 ng/ml
bone morphogenetic protein-4 (BMP-4) (PeproTech, 315-27). Same media was replaced every 2 days until 9 days
of osteoblastogenesis.

Small RNA transfections

The ST2 cells were seeded in six-well plates and transfected 48 h after reaching confluency using Lipofectamine
RNAiIMAX (Life Technologies, 13778150) following manufacturer’s recommendations. Lipofectamine reagent and
small RNAs were diluted in RPMI 1640 medium without glutamine, phenol red and FCS (Gibco, Life Technologies,
32404014). The small RNAs — siGENOME Lamin A/C Control siRNA (Dharmacon D-001050-01-05; si-Lamin)
or siGENOME nontargeting siRNA Pool #2 (Dharmacon D-001206-14-05; si-Ctrl) or miRIDIAN miRNA Mouse
mmu-miR-204-5p Mimic (Dharmacon C-310460-07-0005; miR-204) or miRIDIAN miRNA Mimic Negative
Control #1 (Dharmacon CN-001000-01-05; miR-Ctrl) — were diluted to 50 nM, and Lipofectamine was diluted
9 ul in 150 pl dilution. The two solutions were combined 1:1 and incubated at room temperature for 5 min
prior to transfection. After 3.5 h, the media was changed to standard growth medium (see above). Total RNA was
collected 24 and 48 h following the medium change.

RNA extraction & cDNA synthesis

Total RNA was isolated from ST?2 cells using TRIsure (Bioline, BIO-38033). Medium was discarded and 1 ml of
TRIsure was added to each six well. The RNA was separated from DNA and proteins using 200 pl of chloroform
(Carl Roth, 6340.1) and precipitated from the aqueous phase with 400 pl of 100% isopropanol (Carl Roth, 6752.4)
and further incubated at -20°C overnight. The cDNA was synthetized using 1 pg of total RNA, 0.5 mM dNTPs
(ThermoFisher Scientific, R0181), 2.5 uM oligo dT-primer (Eurofins MWG GmbH, Germany), 1 U/ul Ribolock
RNase inhibitor (ThermoFisher Scientific, EO0381) and 1 U/pul M-MulV Reverse transcriptase (ThermoFisher
Scientific, EP0352) for 1 h at 37°C or with RevertAid Reverse Transcriptase (Thermo Scientific, EP0442) for 1 h
at 42°C. The PCR reaction was stopped by incubating samples at 70°C for 10 min.

Quantitative PCR

Real-time quantitative PCR (qPCR) was performed in an Applied Biosystems 7500 Fast Real-Time PCR System and
using Thermo Scientific Absolute Blue qPCR SYBR Green Low ROX Mix (ThermoFisher Scientific, AB4322B).
For each reaction 5 pl of cDNA, 5 pl of primer pairs (2 M) and 10 pl of the Absolute Blue qPCR mix were
used. The PCR reactions were carried out at the following conditions: 95°C for 15 min followed by 40 cycles
of 95°C for 15 sec, 55°C for 15 sec and 72°C for 30 sec. To calculate the gene expression level the 2 (AACY
method was used where AACt is equal t0 (ACtjurgec gene] = ACtihousckeeping gene])tested condition = (A Clicarger gene] -
A Ctihousckeeping gene] )control condition RpL13a was used as housekeeping gene and DO or control siRNA/miRNA were
used as control condition depending on the experiment. Sequences of the primer pairs are listed in Supplementary

Table 1.

RT-gPCR of mature miRNAs

Mature miRNAs were reverse transcribed using the TagMan® MicroRNA Reverse Transcription kit (Applied
Biosystems, 4366597) and the quantification of mature miRNAs was done by using the TagMan MicroRNA
Assays (Applied Biosystems, 4440040) according to manufacturer’s instructions an Applied Biosystems 7500 Fast
Real-Time PCR System. The PCR amplification reaction was prepared using the Applied Biosystems TagMan 2X
Universal PCR Master Mix II, with UNG. To calculate the gene expression level the 2-(AACY method were used
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where AACt is Cqual to (ACt[target miRNA] ~ ACt[Uﬂ)tested condition ~ (ACt[target miRNA] ~ AC:t[ljﬂ)comrol condition « U6
snRNA was used as control gene and DO as control condition.

Chromatin immunoprecipitation followed by qPCR

To validate the methylation profiles of H3K4me3 and H3K36me3 observed over the time course of differen-
tiation in the ChIP-seq analysis, ChIP-qPCR analysis of biological replicates for selected genomic regions was
performed. The ChIP analysis was performed as previously described [30]. Briefly, the chromatin was crosslinked
with formaldehyde (Sigma-Aldrich, F8775-25 ML) at a final concentration of 1% for 8 min and quenched with
glycine (Carl Roth, 3908.3). The cells were lysed in 1.7 ml of lysis buffer, followed by sonication in shearing buffer
containing protease inhibitors with a sonicator (Bioruptor®Standard Diagenode, UCD-200TM-EX) during 20
or 25 cycles at high intensity (30s off and 30s on) for undifferentiated cells or differentiating cells, respectively.
For each immunoprecipitation 10 pg (for an antibody against H3K4me3 [Millipore, 17-614]) or 15 g (for an
antibody against H3K36me3 [Abcam, ab9050]) of sheared chromatin and 4 pg as input were used. For each
immunoprecipitation, 5 g of antibody was used. The immunocomplexes were captured using 25 pl of PurePro-
teome'" Protein A Magnetic Bead System (Millipore, LSKMAGA10). The Protein A Magnetic beads were washed
with increasing salt concentration and protein-DNA complexes eluted. The crosslinks were reversed overnight at
65°C in the presence of 10 pg of RNase A (ThermoFisher, EN0531) and 20 pg of proteinase K (ThermoFisher,
EO0491). Immunoprecipitated DNA was purified using a MinElute Reaction Cleanup Kit (Qiagen, 28206) and
the purified DNA used as template in qPCR together with the respective input samples.

Primer sequences for the ChIP-qPCR at transcription start site (I'SS) and transcription end site (TES) of Akric14
gene and Spon2 gene were designed by the PrimerBlast software (ABI). Primers producing a DNA amplicon at the
TSS spanning region were used for the H3K4me3 enriched samples, and those producing an amplicon at the TES
spanning region were used for the H3K36me3 enriched samples. Input samples were included as an enrichment
control. As a negative control we included primers for the TSS of Pou5f1, an ESC specific gene that is silenced in
ST2 cells. ChIP-qPCR was performed on three biological replicates of immunoprecipitated genomic DNA unless
otherwise indicated. The PCR reaction itself was performed as described above (section ‘quantitative PCR’), with
the following exception: for each reaction 1 pl of genomic DNA, 1 pl of primer pairs (2 uM) and 10 pl of the
Absolute Blue qPCR mix were used, and 8 pl water topped up each reaction to a volume of 20 pl.

Data preprocessing

Gene expression from time-series transcriptomic data from differentiation of multipotent bone MSCs into
adipocytes and osteoblasts was assembled and quantified using Cufflinks suite version 2.2.1 [32-34] with the mm10
reference genome with the options: GTF guide which use the supplied annotation file and the RABT assembly
internal to Cufflinks to discover novel genes and isoforms, frag-bias-correct which improves the accuracy of the
estimated abundance of transcripts, library-type set to fr-unstranded which indicates that the RNA-Seq library is
unstranded and multiread-correct which corrects for multireads mapping, enabled. Cuffmerge was then used to
build a master transcriptome from adipocyte and osteoblast individual transcriptomes with the options: ref-gtf
which merge the provided gene assembly with novel genes and isoforms detected and ref-sequence which compares
the newly made gene assembly with known transcripts, enabled. Then, Cuffquant was used to compute gene ex-
pression profiles with the frag-bias-correct which improves the accuracy of the estimated abundance of transcripts,
multiread-correct which corrects for multireads mapping and library-type set to fr-unstranded which indicates that
the RNA-Seq library is unstranded, enabled. Finally, Cuffnorm was used to normalize the expression levels using
library-type set to fr-unstranded which indicates that the RNA-Seq library is unstranded, library-norm-method
geometric which scale the fragments per kilobase of transcript per million mapped reads (FPKM) using the median
of the geometric means over all RNA-Seq libraries and compatible-hits-norm which counts fragments that are
compatible with transcripts in the reference gene annotation, enabled. The analysis of the ChIP-seq data has been
described in Gerard ez al. (30). Prior to using them as variables in a linear regression model, the four data types from
each time point (total of nine time points from two lineages) were preprocessed as indicated in the workflow in
Supplementary Figure 1A. The reads per million (RPM) values for the time-series epigenomic data of H3K4me3
and H3K27ac were calculated over 4 kilobase (kb) windows around the TSS as inferred by the Cufflinks suite
and, given the defined width of the region, were normalized only to library size. In case of multiple alternative
TSS of one genomic locus, the 4 kb TSS-spanning region of the first TSS was used. Finally, reads per kilobase
million (RPKM) from the time-series epigenomic data of H3K36me3 were calculated from the TSS to the TES as
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inferred by the Cufflinks suite and were also normalized to both library size and gene length. The distributions of
the normalized, log-transformed and noise-filtered read counts for each data type from both lineages are shown in
Supplementary Figure 1D and E.

Reads per million, RPKM and FPKM values from epigenomic and transcriptomic data were subsequently log,-
transformed after adding a pseudo-count of 0.001 to obtain closer to normal distributions. Genes were filtered
using a distribution-based approach. For this, a filtering cutoff was selected based on the data distribution of each
of the data collection time points separately by locating low points in each density distribution data series of y-axis
coordinates and all data points below the cutoff were excluded from the dataset. Importantly, any data point that was
below cutoff even for one time point of one of the variables, was excluded from the entire dataset (Supplementary
Figure 1B-E).

Statistical computing was performed using R (R Core Team [2017]. R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria [www.R-project.org/]) in Rstudio (RStudio
Team [2016]. RStudio: integrated development for R. RStudio, Inc., Boston, MA, USA [www.rstudio.com/]) and
with tidyverse packages (Hadley Wickham [2017]. Tidyverse: easily install and load ‘tidyverse’ packages. R package
version 1.1.1. hetps://CRAN.R- project.org/package=tidyverse

Linear regression

Using the processed data as an input, a linear regression model was fitted for each time point of the time courses.
The RNA-seq measurements were assigned to represent the response variable, and ChIP-seq measures the predictor
variables for the regression. The model equation used for each time point’s data was of the following format:

mRNA abundance = B, + 3, x H3K 4me3 +B,xH3K36me3,,,.. (1)

intensity

Where B represents the intercept, 8; and B, represent the two slopes. During model fitting, residual plots
were examined for single high-leverage outliers and four genes in the adipogenesis (RP23-81C12.2, Gm10800,
Gml10801 and Yam1), all of which consistently exceeded a H3K36me3 log,-RPKM value of four across all time
points, were excluded. The same genes, with the exception of Gm10801, were also excluded in the osteoblastogenesis
dataset for the same reason. Scatter, density and bar plots were produced with ggploz2 135).

Gene ontology & motif enrichment analysis
Prior to motif enrichment, the selected gene lists were clustered by similarity of the temporal profiles of their
assigned raw residuals — reflecting the relative agreement between their measured transcript abundance and their
predicted transcription rate using the the short time-series expression miner [36). Using the resulting groups as
an input, motif enrichment of 3’-UTRs was carried out, to identify common putative regulators within groups
of similar temporal profiles as previously described [22,37). In brief, the input groups (foreground) were tested for
significantly more frequently occurring motifs compared with the list of 3'-UTRs of all expressed genes of the
respective differentiation experiment (background). The enrichment of a motif was considered significant if the
associated posterior probability was above 0.9. The 3’-UTR sequences were retrieved from the Ensembl database
from the mm10 version (GRCm38.79). Not all genes have available 3’-UTR information. Hence, these cases could
not be included in the analysis. Further, for some genes more than one possible 3’-UTR sequence is available. In
such cases, the longest alternative was included as a representative 3’-UTR. Finally, in some cases, several genes are
summarized in the representation of one data point in the model (and therefore one profile within the the short
time-series expression miner analysis). These cases originate from the data preprocessing stage, where the Cufflinks
analysis fails to separate individual genes of close genomic proximity and a single XLOC-id is assigned to multiple
genes. The UTR-sequences for each of those summarized genes were included in the background and foreground
lists for the motif enrichment. In a second step, the reverse complements of the enriched motifs were mapped
to known miRNA sequences to identify enrichment of potential miRNA seed regions. The sequences of mature
miRNAs were downloaded from miRbase (11 October 2016) [38].

In addition to motif enrichment, EnrichR [39,40] was used to perform gene ontology term enrichment analysis
and to retrieve enriched terms of the type biological process.
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Metagene analysis

Metagene plots (Supplementary Figure 5) were generated as follows. Matrices of scaled gene bodies were computed
using the tool ‘compute Matrix’ in ‘scale-regions’ mode [41]. Common options were set as -m 10000 -b 2500 -a
2500 -bs 25 —skipZeros— metagene’. So all gene bodies were normalized to 10 kb, and 2.5 kb up- and down-stream
were considered. Binning was fixed to 25 bp. Bigwig inputs were from both lineages (i.e., osteoblast and adipocyte
differentiation time points), plus the day 0 (DO0) from the ST2 progenitor cell line. The reference gene sets were

the following three GTF files:

o All genes, using the gencode file release M5 of the mouse genome GRCm38.p3.

e Top 5% of adipocyte lineage genes, after ranking them using the sdR standard in the adipocyte lineage (647
genes).

e Top 5% of osteoblast lineage genes, after ranking them using the sdR standard in the osteoblast lineage (668
genes).

Of note, some XLOC_IDs (46 and 47 for adipo and osteo, respectively) had more than one gene symbol associated.
Those genes were manually curated to retain one. Once the matrices were obtained, they were loaded into R (v3.5.1
R Core Team 2018) and plotted with ggplot2 (35] using the mean of the average intensity per bin.

Data deposit
The used RNA-seq and ChIP-seq data have been published and are described in detail in Gerard ez /. (30] and the
raw FASTQ and BAM files have been deposited in the European Nucleotide Archive with the accession number
PRJEB20933.

Results

Identification of genes under dynamic post-transcriptional regulation from time-series epigenomic
data using linear regression

Previous work has shown the usability of linear regression models in predicting gene expression levels from
genome-wide ChIP-seq data [s-10). We apply this approach for the transcriptome-wide identification of RNAs
undergoing changes in their stability during the dynamic process of cellular differentiation. To this end, we have
generated and taken advantage of parallel time-series transcriptomic and epigenomic profiles of differentiation
of two mesenchymal cell types, adipocytes and osteoblasts, from their shared MSC precursors (Figure 1A) [30].
The transcriptomic profiles were produced using RNA-seq while the epigenomic profiles consist of ChIP-seq data
for three histone modifications: H3K4me3 (marking open TSS), H3K36me3 (marking actively transcribed gene
bodies) and H3K27ac (marking active enhancers and the most active TSSs).

As shown in Supplementary Figure 2A and B, in both lineages all three histone modifications are positively
correlated with the transcriptome-wide RNA-seq measurements. Between the histone modifications, a particularly
high correlation is found between H3K4me3 and H3K27ac signals, suggesting that these two modifications
contribute relatively redundant information. Indeed, when fitting a linear regression model with RNA-seq measured
transcript levels as a response variable and each possible combination of the histone modifications signals as predictor
variables, the adjusted 7 ?-statistic for each modifications’ predictive power indicated that H3K4me3 and K3K27ac
did not provide additional value over each other (Figure 1B, Supplementary Figure 2C & D). Therefore, in
the remaining analysis, we focused on a model with H3K4me3 and H3K36me3 as the sole predictor variables
(Figure 1B). The resulting model fits for each time point of both differentiations are shown in Supplementary
Figure 3 and reflect the relationship of the predicted transcript levels over the actual RNA-seq measured transcript
levels.

The transcripts under post-transcriptional control from different regulators, such as miRNAs, are known to
deviate in their predicted expression level from the actual measured expression value [9,10]. This deviation can be
represented by each gene’s absolute raw residual value (rgene 1) obtained from the linear regression model (Figure 1C).
To identify the transcripts under dynamic post-transcriptional regulation, we obtained the residual values for each
gene from all time points, and calculated the standard deviation of those residuals per gene and time course (sdR,
not to be confused with root mean squared error or RMSE), to arrive to an estimate of each gene’s change in
post-transcriptional control across time as illustrated in Figure 1C. Distribution of the obtained sZR values shows
that most genes have a low s4R, indicating little change in the deviation from the predicted expression levels
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Figure 1. Prediction of genes under dynamic post-transcriptional regulation from time-series epigenomic data of mesenchymal
differentiation using linear regression. (A) ST2 mesenchymal progenitors were differentiated to osteoblast and adipocyte phenotypes. At
specified time points along both time courses, RNA-seq and ChIP-seq experiments were performed (for detailed description see Gerard

et al. [30]). (B) The resulting data were integrated using a linear regression approach, with H3K4me3 and H3K36me3 ChIP-seq
measurements serving as the predictor and RNA-seq as the response variables. (C) One regression fit per data collection time point
allowed to look at each gene’s measure of fit deviation (the residual) over time. (D) To approximate a gene’s change in predictability, the
standard deviation of its residual values resulting from the time point-wise regression fits (sdR) was taken. Shown is the density
distribution of the sdR values assigned to each data point in the model series fit for each of the time course experiments. (E-L) A large sdR
indicates a dynamic change of the agreement between a gene’s measured and predicted RNA-seq level during the time course in
question, while a small sdR indicates a low change in the level of this agreement. Data associated with two example genes of each time
course experiment is shown. The upper subplots display the last time point’s global model, highlighting each example gene and a trace of
its previous positions respective to the fit. The measured and predicted RNA-seq values over time are shown in the smaller subplots.
FPKM: Fragments per kilobase of transcript per million mapped reads; RNA-seq: RNA sequencing.

over time (Figure 1D). However, these density plots are positively skewed, with a number of transcripts changing
in their deviation from the predicted expression levels during differentiation. As an example of a gene with a
large sdR value, Figure 1E shows the migration of the measured expression levels of Complement factor D (Cfd)
mRNA from being lower than predicted by the model in the undifferentiated cells (indicating presence of post-
transcriptional repression) to being several folds higher than predicted from the chromatin level data (indicating
increased mRNA stability). For clarity, the same data are also depicted as a line graph in Figure 1E At the same time
CLIP-associating protein 1 (Clasp1) shows very little deviation from the predicted expression levels with no changes
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Figure 1. Prediction of genes under dynamic post-transcriptional regulation from time-series epigenomic data of mesenchymal
differentiation using linear regression (cont.). (A) ST2 mesenchymal progenitors were differentiated to osteoblast and adipocyte
phenotypes. At specified time points along both time courses, RNA-seq and ChIP-seq experiments were performed (for detailed
description see Gerard et al. [30]). (B) The resulting data were integrated using a linear regression approach, with H3K4me3 and
H3K36me3 ChIP-seq measurements serving as the predictor and RNA-seq as the response variables. (C) One regression fit per data
collection time point allowed to look at each gene’s measure of fit deviation (the residual) over time. (D) To approximate a gene’s change
in predictability, the standard deviation of its residual values resulting from the time point-wise regression fits (sdR) was taken. Shown is
the density distribution of the sdR values assigned to each data point in the model series fit for each of the time course experiments. (E-L)
A large sdR indicates a dynamic change of the agreement between a gene’s measured and predicted RNA-seq level during the time course
in question, while a small sdR indicates a low change in the level of this agreement. Data associated with two example genes of each time
course experiment is shown. The upper subplots display the last time point’s global model, highlighting each example gene and a trace of
its previous positions respective to the fit. The measured and predicted RNA-seq values over time are shown in the smaller subplots.
FPKM: Fragments per kilobase of transcript per million mapped reads; RNA-seq: RNA sequencing.

in expression over the adipogenesis, consistently with a very low sdR value of 0.06 (Figures 1 G-H). Similarly, during
osteoblastogenesis, coagulation factor XIIT A chain (F1341) is strongly induced but without a major increase in the
histone modifications, obtaining s¢R of 1.56 (indicating progressive increase in mRNA stability), while another
gene, 9330175E14Rik, is increasing both in the measured and in the predicted expression levels (sZR = 0.21;
suggesting a lack of major change in post-transcriptional regulation; Figure 11-L). See also Supplementary Figure
4 for additional examples of genes with high s4R in osteoblastogenesis.

Taken together, combining time point-specific linear regression models predicting RNA expression levels from
time-series epigenomic data, and more specifically, calculating the s¢/R values for all genes across differentiation,
allows identification of RNAs with changes in their expression predictability, thus identifying them as putative
targets of dynamic post-transcriptional control.

Genes with greatest changes in the deviation over time from predicted expression levels are
enriched for ncRNAs & lineage specific functions

To study the genes with biggest changes in their post-transcriptional regulation either during adipogenesis or
osteoblastogenesis, we extracted the top 5% of transcripts with highest s¢R values from both datasets (Figure 2A
& B). Overall the H3K36me3 and H3K4me3 signals for these top transcripts showed similar profiles as for all other
genes across the time points, with an increasing enrichment of H3K36me3 toward the end of the genes and the
strongest enrichment of H3K4me3 at the TSS (Supplementary Figure 5). While signals for H3K4me3 appeared
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Figure 2. Use of sdR to subset for potential targets of post-transcriptional regulation in two differentiation time courses. (A & B) To
subset for likely targets of dynamic post-transcriptional regulation the genes with the highest 5% sdR values were subset for both time

course datasets. Shown are density distributions of sdR values within the genes that reach above 0 log, FPKM at least

once in of the two

time courses. (C) Venn analysis of the resulting gene lists exhibited a relatively small overlap and for both (D) the adipocytes and (E) the
osteoblasts elevated proportions of noncoding transcript types when compared with the entire set of transcripts expressed in the

experimental set. For additional insight, the group of transcripts associated with the 80% lowest sdR values is plotted

indicating a

depletion of noncoding transcript types beyond that of all expressed genes. The transcript type information was retrieved from
MouseMine [67]. (F-H) Different GO terms of the types of biological process that were enriched among (F) adipogenesis- and (G)

osteoblastogenesis-specific as well as (H) lineage-overlapping predicted targets of post-transcriptional regulation.
FPKM: Fragments per kilobase of transcript per million; GO: Gene ontology.

similar between the gene groups, interestingly the H3K36me3 signal was typically lower for the high s¢R genes
compared with all genes. This is consistent with the observation that post-transcriptional regulators like miRNAs
typically target genes expressed at intermediate rather than high levels (42).

The obtained gene lists of top 5% transcripts show a relatively low level of overlap (approximately 17% of all
the top genes) between the two lineages, indicating that a large portion of the most dynamic post-transcriptional
regulation is lineage specific (Figure 2C). A clear majority of all expressed transcripts in both lineages are protein
coding genes with only around 15% of transcripts corresponding to other RNA species such as long ncRNAs,
miRNAs, and small nuclear and nucleolar RNAs (snRNAs and snoRNAs; Figure 2D-E). Moreover, this proportion
is further decreased to just a few percent of transcripts among a control set of bottom 5% of transcripts with lowest
sdR values (Supplementary Figure 6). However, among the top transcripts with high sdR values the proportion
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Figure 2. Use of sdR to subset for potential targets of post-transcriptional regulation in two differentiation time courses (cont.). (A & B)
To subset for likely targets of dynamic post-transcriptional regulation the genes with the highest 5% sdR values were subset for both time
course datasets. Shown are density distributions of sdR values within the genes that reach above 0 log, FPKM at least once in of the two
time courses. (C) Venn analysis of the resulting gene lists exhibited a relatively small overlap and for both (D) the adipocytes and (E) the
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experimental set. For additional insight, the group of transcripts associated with the 80% lowest sdR values is plotted indicating a
depletion of noncoding transcript types beyond that of all expressed genes. The transcript type information was retrieved from
MouseMine [67]. (F-H) Different GO terms of the types of biological process that were enriched among (F) adipogenesis- and (G)
osteoblastogenesis-specific as well as (H) lineage-overlapping predicted targets of post-transcriptional regulation.

FPKM: Fragments per kilobase of transcript per million; GO: Gene ontology.

of the different ncRNAs was increased to as high as 20 and 40% in the adipocytes and osteoblasts, respectively
(Figure 2D-E). This finding is consistent with the fact that the different ncRNAs are typically derived from
their precursor transcripts through multistep processing that often leads to fast turnover and lower abundance of
the initial transcript compared to what could be assumed from the transcription rates. Moreover, many ncRNA
molecules such as miRNAs are incorporated into protein complexes that significantly increase their half-life.

Next, we tested whether the top 5% and bottom 5% transcripts exhibited differences in their 3’-UTR length
or number of miRNA binding sites within their 3’-UTRs compared with all transcripts on average. As shown
in Supplementary Figure 7A and B, in both lineages the top 5% transcripts harbored shorter 3’-UTRs with less
miRNA binding sites while bottom 5% transcripts showed the opposite behavior with longer 3'-UTRs, compared
with all transcripts on average. This is most likely reflecting the proportion of ncRNAs in respective groups.
Moreover, the transcripts within the bottom 5%, albeit not predicted to be dynamically regulated in adipo- or
osteoblastogenesis, still include many known targets of post-transcriptional regulation in other biological contexts,
further contributing to the result.

Next, we asked whether the genes under dynamic post-transcriptional control would be enriched for specific
biological processes. Indeed, the transcripts with altered stability during adipogenesis were enriched for processes
such as lipid metabolism and chylomicron clearance that are relevant for adipocytes (Figure 2F). The processes
enriched in osteoblastogenesis included various differentiation and developmental processes consistent with the
on-going lineage-specification, including osteoblast differentiation and skeletal system development (Figure 2G).
Notable among the biological processes over-represented among the predicted targets of post-transcriptional regu-
lation that are shared between the two lineages, is the negative regulation of smooth muscle cell proliferation, which
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represents a third alternative cellular destination of the mesenchymal differentiation (Figure 2H). In contrast, the
bottom 5% of transcripts with lowest s¢R values were enriched for many housekeeping functions such as rRNA
and tRNA transcription (Supplementary Figure 6F-H).

Clustering of transcripts according to their stability dynamics

miRNAs typically target multiple mRNAs in parallel with a typical conserved miRNA seed sequence predicted
to recognize hundreds of targets in mammals (43]. In order to allow identification of specific miRNAs imposing
particular dynamics on their targets, we clustered the most dynamic mRNAs (top 5%) from our regression
models according to their stability dynamics, as depicted by their sZR values (Figure 3A & B, see materials and
methods for details). The clustering identified nine significant dynamic profiles for adipogenesis and five profiles
for osteoblastogenesis, with each cluster containing between 31 and 67 transcripts. The profiles ranged from steady
or late increase in stability (profiles 39 and 22, respectively) to rapid but transient drop on day 1 of differentiation
(for example profiles 33 and 44). Importantly, the observed dynamics across the profiles were largely due to changes
in the transcript levels (Supplementary Figure 8A), as expected for changes in transcript stability, while no major
changes in the H3K4me3 or H3K36me3 levels could be observed for most of the high sZR genes at the respective
loci (Supplementary Figure 8B & C).

For each profile, we extracted the 3’-UTRs of the putative target mRNAs and performed an enrichment analysis of
all possible heptamer sequences within each putatively coregulated group. The enriched heptamer motifs (posterior
probability > 0.9) matching a reverse complement of known miRNA seed regions, and the corresponding mature
miRNAs, are listed next to each profile in Figure 3. Interestingly, some of the miRNAs identified for the different
profiles of adipogenesis have already been linked to regulation of adipocyte differentiation, including miR-466
and miR-204 44]. Thus, it might be possible to identify novel targets of post-transcriptional regulation, and their
regulators, through our linear regression model analysis.

miR-204/211 family miRNAs are induced early in adipocyte differentiation

A striking feature of several of the significant clusters identified in adipocyte differentiation is an early strong
decrease in stability already by day 1 of differentiation (Figure 3A). One of the heptamers enriched in the 3’-UTRs
of genes with such behavior in profile 44 is the sequence AAGGGAA, a reverse complement of the seed sequence
of miR-204 that has already been linked to control of Runx2 expression during mesenchymal commitment toward
adipocytes. To confirm whether miR-204 is indeed induced already after day 1 of adipogenesis and could decrease
the stability of its targets specifically in adipogenesis, we used RT-qPCR to measure the mature miR-204, and
the related miR-211, in early adipocytes and osteoblasts (Figure 4A). Consistently with the prediction, both
miRNAs were undetectable in the undifferentiated cells but became induced and expressed already on the day 1
of adipogenesis, while no reproducible expression could be observed in day 1 osteoblasts. Consistently, miR-204
remained undetectable and miR-211 barely detectable also in differentiated day 9 osteoblasts while both miRNAs
continued to be expressed at >100-fold higher levels in adipocytes. Thus, miR-204/211 family miRNAs are early
induced adipocyte-specific regulators and likely to contribute to the rapid decrease of their target mRNA stabilities
upon lineage commitment.

Akric14 & Il1rl1 are novel putative miR-204 targets with sharp decrease in stability upon adipocyte
differentiation

Given the sudden induction of miR-204 and miR-211 upon adipocyte differentiation and the enrichment of their
target sequence within the 3’-UTRs of the transcripts of profile 44, that show sharp decrease in stability in parallel,
we aimed to investigate if any of the predicted targets could indeed be repressed by miR-204. From the seven
transcripts carrying miR-204 target sequence within profile 44, three genes (Akrici4, Trimi12c and I/17lI) are
harboring multiple putative miR-204 binding sites in their 3’-UTRs, making them the targets with most potential.
Parallel inspection of the RNA-seq measured expression profiles and the predicted expression levels derived by
the linear regression model from the ChIP-seq measurements of adipogenesis confirms the deviation between the
measured and predicted dynamics for all three genes (Figure 4B). All three genes show high expression in the
undifferentiated DO cells, followed by a sharp decrease within the first 24 h of differentiation that is not supported
to the same extent by the model predictions, indicating that the downregulation involves a post-transcriptional
component. For both Akrici4 and I/17/1, the downregulation is between ten and 30-fold while 77im12c decreases

Research Article

future science group 10.2217/epi-2018-0084



Research Article  Becker, Gérard, Ginolhac, Sauter & Sinkkonen

Adipogenesis

@ Profile 33 Profile 44
w5 Enriched motif | Mapped mmu-miR Enriched motif | Mapped mmu-miR
g UAUGUAU miR-297(a/b/c)-3p, s CACACAC miR-466(d/i/k/n)-5p
2 miR-466(a/b/c/d/e/p)-3p, | 2 ACACACA miR-466(d/i/k/1)-5p,
& miR-467g, miR-669d-3p &’ miR-6903-3p
UGAUUGA miR-6911-3p AAGGGAA miR-204-5p, miR-211-5p,
-5 miR-7670-3p
Profile 39 Profile 37
No enriched mmu-miR-motifs 10 Enriched motif | Mapped miR
E E] AGGGAGA miR-343-3p, miR-6976
] k-]
7] ]
& &
-5
Profile 19 Profile 9
10 | No enriched mmu-miR-motifs 10— Enriched motif | Mapped mmu-miR
g . P UCUCUCU miR-881-5p
-"% .'uE' AAAAAAA miR-7116-3p
& o - o CUCUUCU miR-6957-5p
-5—
Profile 2
10— Enriched motif | Mapped mmu-miR 10 Enriched motif | Mapped mmu-miR
E UGUGUGU miR-669¢c-3p E CCAGCCA miR-664-5p
2 UGUGUGU miR-672-3p 2
& CUUUCUU miR-7661-5p 2
Profile 22
10 i i i
Time [days] Enriched motif Mapped mmu-miR
5 CCAUCCA miR-6906-5p
3 AUAGAUA miR-701-3p
3
4
Time [days]
_ Osteoblastogenesis
Profile 46
~ Enriched motif | Mapped mmu-miR Profile 44
‘—g GUGAUGA miR-592-3p 104 No enriched mmu-miR-motifs
B 5 E] = =
3 T 5
c o 2
o 0—
_5_
_5 —
Profile 39
104 Enriched motif |Mapped mmu-miR Profile 49
§ ACUGUAU miR-582-5p, miR-872-5p 10 ) No enriched mmu-miR-motifs
,g 5 UAACCUU miR-5118 = = —_— ——
€ o : CUAACCU miR-5118 3 57
UUCCCCA miR-3572-5p, miR-7053-5p, | $ o+ -
5] miR-7118-5p, miR-7231-5p | &
AAAAAAA miR-7116-3p -5— Enriched motif | Mapped mmu-miR
5 Y8 L § [LACCULLG _ |miR-6994-5p CUAAGCU RSTi8
Time [days] GAGACUG miR-452-3p Profile 7 ACCUUUG miR-6994-5p
UCCCCAG miR-6975-5p, miR-7005-5p, | _ 4, _| UUCCCCA miR-3572-5p, miR-7053-5p,
miR-8108 & miR-7118-5p, miR-7231-5p
UUUUGAG miR-292b-3p, miR-294-5p % 5 ACUGUAU miR-582-5p
CCCCAGC miR-6975-5p & B— UAACCUU miR-872-5p, miR-5118
07 _ GAGACUG miR-452-3p
-5 UCCCCAG miR-6975-5p, miR-7005-5p,
miR-8108
(I) 1I :IB é E|9 CCCAGCA miR-3078-3p
Time [days] UUUUGAG miR-292b-5p, miR-294-5p
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Figure 4. Exploration of miR-204 as a post-transcriptional regulator in adipogenesis. (A) Both mature miR-204 and miR-211 are more
abundant after just day 1 of adipogenesis and reach even higher levels by day 9. Plotted on the y-axis is the miRNAs’ expression as
percentage of the control U6 snRNA at indicated differentiation time points including the undifferentiated state as measured by RT-qPCR.
The values represent the mean of three biological replicates +/- standard error of mean. (B) The measured and model-predicted RNA-seq
values (log, FPKM) over time of adipogenesis are displayed for the genes Akr1c14, Trim12c and I/1rl1 (C) Transcript levels of the same
three genes following miR-204 mimic transfection of undifferentiated ST2 cells. Lamin transcript quantification after si-Lamin
transfection was included as a control for transfection conditions. Plotted on the y-axis are the Rp/713a-normalized expression fold
changes at 24 and 48 h post-transfection relative to siCtrl or miR-Ctrl. The values represent the mean of three biological replicates +/-
standard error of mean. **p-value < 0.01 (one sample t-test). Rp/713a relative expression change upon transfection conditions is displayed
in Supplementary Figure 11. (D) Histone modifications H3K4me3 and H3K36me3 at the genomic locus of the Akr1c14 gene at different
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*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 (one sample t-test).

FPKM: Fragments per kilobase of transcript per million; RNA-seq: RNA sequencing.
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more moderately by approximately fourfold (Figure 4B). Moreover, while Akrici4 and /17l expression levels
recover already by D3 of differentiation, 77im12¢ follows different dynamics recovering only after D3.

To directly test whether increased miR-204 levels could repress these target mRNAs, we transfected miR-204
mimics into the undifferentiated DO cells and collected RNA 24 and 48 h post-transfection. Transfection efficiency
was controlled by a parallel transfection of si-Lamin and, as shown in Figure 4C, led to an approximately 50%
decrease in Lamin mRNA levels. Importantly, the transfection of miR-204 led to a reproducible and significant
decrease in Akricl4 mRNA levels at 24 h time point when compared with the cells similarly transfected with
an unspecific control mimic, followed by a gradual recovery by 48 h (Figure 4C). Similarly, also //77/] mRNA
responded to miR-204 transfection at 24 h time point, albeit with a higher p-value, indicating that Akr/c14 and
/171 can indeed be repressed by increased levels of miR-204. Curiously, there was no significant effect of miR-204
on TrimI2c levels, despite it being the target mRNA with highest number of putative binding sites in its 3'-UTR.

Based on the above results, we propose Akricl4 and I/17/1 to be putative novel targets of miR-204 in early
adipogenesis and that their rapid decrease upon differentiation is enhanced by destabilization triggered by the
miRNA. Indeed, the tenfold and 30-fold reductions in Akrlc14 and I/1r/1 mRNA levels at day 1 of adipogenesis
were also validated by RT-qPCR but were not supported by the inspection of H3K4me3 and H3K36me3 signals
obtained at the locus by ChIP-seq, indicating a limited contribution from transcriptional regulation (Figure 4D
& E; Supplementary Figure 9). However, the approximately threefold inductions in expression levels later in the
differentiation were also accompanied by a twofold increase in the signal of H3K36me3 for Akrlc14, and to a lesser
extent in H3K4me3 for //17/1, suggesting that this eventual upregulation is mainly driven by increased transcription.
The lack of major changes in the H3K4me3 and H3K36me3 signals at the AkrIc14 TSS and TES were also validated
by ChIP-qPCR using biological replicates (Supplementary Figure 10A & B). Using the same samples, Spon2, a
gene showing a similar expression profile to AkrIc14, but predicted not to be under post-transcriptional regulation,
could be validated to show a clear decrease and subsequent increase also in the enrichment of H3K4me3 and
H3K36me3, in parallel with the changes in the mRNA levels (Supplementary Figure 10B & D). Suggesting that
the lack of changes in these histone modifications at genes with dynamic expression might be unique to genes with
high sdR values, consistent with their putative role as targets of post-transcriptional control.

The increased transcription of both Akrici4 and I/17/1 after D3 is also accompanied by an increase in the
predicted mRNA stability, despite the remaining high levels of miR-204 and miR-211. This could be due to other
factors counteracting the destabilizing effect of the miRNAs, or, as suggested by the behavior of other mRNAs
of the profile 44, due to a collective increase in the overall target pool of these miRNAs, thereby dispersing the
miRNAs to more targets and diluting their impact on individual targets.

Discussion

Efforts to describe mRNA decay rates across species have identified a broad distribution of mRNA half-lives,
suggesting that majority of transcripts are under some level of post-transcriptional control [45]. Consistently,
majority of human mRNAs carry conserved miRNA binding sites in their 3’-UTRs [43]. However, such regulation
is often context specific, changing during cell state transitions and having a limited impact at the genome-wide
level (predicted to explain <12% of overall mRNA levels) 91.

Previous work has already shown that predicting gene expression levels from chromatin level data with high
accuracy is possible using linear regression, other statistical methods, as well as more advanced approaches such
as deep learning [7-10,46,47]. Moreover, these studies have highlighted that the deviation of the measured gene
expression levels from those predicted by the models from chromatin data can be used to infer transcript stabilities,
and thereby learn whether they are under post-transcriptional control. This is further supported by the presence
of longer 3’-UTRs with more miRNA binding sites within those transcripts that are not well predictable by the
models. However, even with improved models, it remains difficult to use this information to directly identify specific
regulator-target mRNA interactions, and their dynamics during biological processes such as cellular differentiation,
given the sheer number of identified transcripts and the different putative regulators. In fact, for our goal of
identifying RNAs under dynamic post-transcriptional control, a model that captures only well-predictable genes
and allows deviation between measured and predicted values is preferred.

We have used linear regression as a simple but robust method that can provide good predictive power based on
only a few well-selected histone modifications to predict gene expression levels. The analysis was performed across
mesenchymal differentiation into two lineages from shared precursor cells with five time points separated by one
or more days from each lineage and focused on gene loci with open TSSs. While the used RNA-seq data are based
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on three biological replicates, the ChIP-seq data were generated from one sample at each time point. However, the
gene expression and the histone modification signals across the time courses showed good correlation for most genes
and behavior of individual loci was also validated using ChIP-qPCR from several biological replicates, suggesting
that the quality of the individual ChIP-seq samples is overall comparable. This is also supported by the metagene
analysis in Supplementary Figure 5.

By generating a model for each time point separately, and thereby deriving a residual value for each gene per
each time point, we were able to focus on the deviation of those residuals (sZR) as an estimate of RNA stability
across time (Figure 1). Focusing on RNAs that change in their estimated stability over time, in other words, are
likely to be under dynamic post-transcriptional regulation, allows to significantly narrow the list of transcripts of
interest. Moreover, clustering of these transcripts according to their stability dynamics enables identification of
potentially coregulated gene sets that can be matched to their putative regulators through enrichment analysis,
combined for example with co-expression analysis (in cases where also regulator levels are altered). Our approach
is well suited for the identification of miRNA-mediated regulation as miRNAs mostly affect their targets through
mRNA destabilization 48], miRNA target recognition is relatively well defined (49,501, and miRNA activity is largely
controlled by their level of expression to control processes like cell state transitions [51]. However, although not
specifically addressed in this manuscript, our approach could equally help to identify important RNA-binding
proteins and elucidate their influence on the target mRNA stabilities over time.

Interestingly, the transcripts that showed changes in their stability were enriched for different ncRNA species
in both adipocytes and osteoblasts (Figure 2). Their deviation from predicted expression levels at a given time
point is readily explained by the various maturation processes the different RNA species go through, as well as
the typically increased stabilities introduced by their incorporation into different RNA—protein complexes, when
compared with the protein-coding mRNAs that mainly serve as the basis of used model. Thus, for long ncRNAs
that are incorporated as structural molecules in different ribonucleoprotein complexes, the stabilities are likely to
be underestimated from chromatin data. On contrary, different small RNA species, such as miRNAs, could not be
detected in their mature form by regular RNA-seq and are instead sequenced at the level of their primary miRNAs
(pri-miRs) that are processed cotranscriptionally and exhibit very fast turn-over [52], leading to an overestimation
of the stability of these unprocessed transcripts. However, identification of ncRNAs as an enriched group among
the genes with most changes in their stability suggests that our approach might allow detection of altered RNA
processing event during differentiation. Conceptually similar regulation of RNA processing has been described for
example during differentiation of ESCs that are transcribing both of the two miRNA genes giving rise to let-7 and
miR-17-92 cluster, respectively, in their pluripotent state. However, upon ESC differentiation the mature let-7
increases and mature miRNAs of the miR-17~92 cluster decrease without corresponding changes in transcription,
due to cell state-dependent post-transcriptional control of the processing of the immature precursor molecules [53,54].
Future work might reveal similar regulatory mechanisms also in other cell types such as adipocytes and osteoblasts.

Our enrichment analysis for shared miRNA binding sites within 3’-UTRs of genes with similar stability dynamics
upon adipo- and osteoblastogenesis revealed in total more than 20 enriched heptamer motifs, ranging from no
enriched motifs for some stability profiles up to ten different enriched motifs for the transcripts with gradually
increasing stability during osteoblastogenesis (Figure 3). All of the motifs could be matched to reverse complement
of at least one known mouse miRNA seed sequence. None of the miRNA motifs enriched in osteoblastogenesis
profiles were previously directly associated with bone formation or differentiation. However, among the miRNA
motifs enriched in osteoblastogenesis profiles 46 and 39 were miRNAs miR-592-3p and miR-452-3p, respectively
(Figure 3). Interestingly, miR-592 expression has previously been shown to depend on PPARG, the master regulator
of adipogenesis known to be downregulated in osteoblastogenesis [55]. Moreover, the ascending strand of the miRNA
duplex, miR-592-5p, has been shown to target Sox9, a marker of osteo-progenitors [56,57). Similarly, miR-452-3p,
reverse complement of which is enriched in the group of upregulated transcripts with high sR in profile 39 was
recently shown to target Gsk3b (58], inhibition of which is relevant for stimulation of osteoblastogenesis via BMP
and Wnt signaling [59].

The differences in dynamics between the two lineages is likely to be related to the used differentiation protocol.
While adipocyte differentiation is induced by several compounds on DO of differentiation, followed by a change
to a different combination of compounds from day 2 onward, the osteoblast differentiation relies on only one
protein throughout the differentiation (see methods for details). The most intriguing patterns of stability changes
were exhibited by many of the transcripts in adipogenesis where they first showed sharp decrease in stability which
followed by different dynamics of recovery. In two of such profiles of adipogenesis with comparable dynamics
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(profiles 33 and 44), the heptamer motifs corresponding to miR-466 family of miRNAs were found to be enriched.
Interestingly, in profile 33, the enrichments correspond to seed sequence of the miRNA from the descending strand
(3p) of hairpin while those from profile 44 corresponded to the ascending strand (5p). This suggests not only that
miR-466 family is likely to play a role in the observed regulation, but also that both strands of this family might be
loaded in the RISC-like complex and be functional in early adipogenesis. Whether the strand selection depends on
family member and which family members are active in adipocytes remains to be determined. The miR-466 family
miRNAs are expressed from multiple different loci in the mouse genome and several of which are transcribed based
on our epigenomic analysis (data not shown). Consistently, Huang ¢z a/. have shown that miR-466, and related
miR-467, are expressed in ST2 cells and become upregulated upon adipocyte differentiation [44], consistently with
our predictions. Moreover, computational analysis of miRNAs contributing to browning of adipocytes in mice has
suggested miR-466 family to target many important genes for brown adipocyte biology [c0].

In our analysis, we focused on miR-204 and miR-211, identified through enrichments in profile 44 that
share their seed sequence and thus are from the same miRNA family. We focused on these miRNAs since miR-
204 was already shown to promote adipogenesis in mouse MSCs and in human adipose-derived MSCs, and
to inhibit osteoblastogenesis [44,61], suggesting this to be both a relevant and conserved regulatory mechanism.
Moreover, inhibition of miR-204 was shown to inhibit adipogenesis, suggesting its induction is necessary for
normal differentiation [61]. Therefore, it was interesting to find putative miR-204 targets to be enriched among
transcripts early repressed in adipogenesis and we set out to test whether our predicted targets could indeed be
repressed by miR-204 overexpression (Figure 4). Based on the results, we have identified AkrIc14 and I/17/1 to be
putative novel targets of miR-204 in early adipogenesis.

Abkrlci4 is a metabolic enzyme implicated in reduction of aldehydes and ketones and has been shown to become
downregulated in adipocytes in an adipose tissue inflammation model (62] and was therefore suggested to play a role
in maintenance of normal adipocyte metabolism. Indeed, using a mouse model of increased adipocyte browning,
Milet et al. showed Akrici4 to be reduced in selected adipocyte depots with increased browning, further suggesting
a role in white adipocyte specific metabolism [63].

Also 1117/1 has been linked to adipocyte metabolism and differentiation. //17/1 encodes for a cytokine receptor
that can be bound by the cytokine IL-33, both of which are expressed in human adipocytes [64]. The protein product
of /l17/1, ST2, has been shown to mediate IL-33 signaling in white adipocytes and to have an inhibitory effect on
lipid metabolism and adipogenesis [65]. Moreover, IL-33 signaling appears to play a protective role on adipose tissue
inflammation and insulin resistance in obese mice [65,66]. Thus, both Akrlc14 and 7/17/1 are likely to contribute to
the effects of miR-204 on adipocyte biology.

Taken together, we apply a linear regression-based model for prediction of gene expression levels from time-series
epigenomic data and use the change in the deviation of predicted expression levels from measured expression (s4R)
to identify genes under dynamic post-transcriptional regulation. This approach allows identification of both protein
coding genes under classic post-transcriptional control by RBPs or miRNAs, as well as noncoding genes that could
be controlled during their processing in a lineage-specific manner. Analysis of the transcripts with similar stability
dynamics can be used to obtain more detailed regulator-target gene interactions and the overall approach could be
applied for various biological processes involving cell state transitions.

Limitation
The obtained model fits for our linear regression analysis could be higher than currently achieved. These model fits
could be improved for example by including more ChIP-seq data on additional histone modifications beyond those
currently used. In particular, including repressive marks such as H3K27me3 could aid exclusion of low abundance
genes. However, our data preprocessing prior to the linear regression analysis was planned to be very stringent
on excluding nonexpressed and very low expressed genes (Supplementary Figure 1). Indeed, >23,000 detected
transcripts were removed as a consequence of the data preprocessing, leaving only the most abundant 47% of
transcripts to be used as input in the linear regression model. Moreover, in the data preprocessing, we used also
the signal for H3K27 acetylation, occurring on the same residue as H3K27me3, at gene TSSs at each time point
of differentiation, thereby already excluding many of the H3K27me3 marked genes. In addition, the model is
considering the H3K36me3 signal, deposition of which is coupled with RNA Polymerase II activity and therefore
present only at active genes devoid of repressive marks such as H3K27me3.

While additional data are likely to improve the model fits, performing ChIP-seq analysis at several time points
over a time course of a biological process for multitude of histone modifications can be laborious and costly.
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Therefore, we are here aiming to provide an application relying on a minimal number of two histone modifications
that can still provide useful predictions.

Future perspective

Integration of different omics data types will be increasingly important to understand complex biological processes
and to harvest the full potential of these data sets. Here, we have used such an integrative approach to study the
dynamic post-transcriptional regulation in two mesenchymal differentiation processes using the data on histone
modifications H3K4me3 and H3K36me3, which are mainly studied in the current manuscript at hand. In the
related work by Gerard ez al. [30], we also focus on the analysis of transcriptional regulation and the enhancer
regions identified using the H3K27ac mark in the same differentiation processes. Only by bringing together both
the post-transcriptional and the transcriptional layers of regulation can a full overview of the gene regulatory
control of cellular differentiation be achieved. In current work, we present an example of how the integration of the
epigenomic and transcriptomic data can advise the understanding of both transcriptional and post-transcriptional
regulation and future work will be needed to further combine the two in an informative manner.

Summary points

e Combining time point-specific linear regression models predicting RNA expression levels from time-series
epigenomic data.

e Identification of putative targets of dynamic post-transcriptional control by use of gene-specific sdR values from
the linear regression models.

e Genes with greatest changes in the deviation over time from predicted expression levels are enriched for
noncoding RNAs and lineage specific functions.

e miR-204 and miR-211 are early induced adipogenic miRNAs.
e Akric14 and Il1rl1 are putative targets of miR-204 in adipogenesis.

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/full/
10.2217/epi-2018-0084
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