

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/18149

To cite this version:

LOPES, Mailys and Fauvel, Mathieu and Girard, Stephane and Ouin, Annie *Potential of Sentinel-2 and SPOT5 (Take5) time series for the estimation of grasslands biodiversity indices.* (2017) In: 8. International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 27 June 2017 - 29 June 2017 (Bruges, Belgium).

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

Potential of Sentinel-2 and SPOT5 (Take5) time series for the estimation of grasslands biodiversity indices

Mailys Lopes ¹, Mathieu Fauvel ¹, Annie Ouin ¹ and Stéphane Girard ²

¹ Dynafor, University of Toulouse, INRA, INPT, INPT-EI PURPAN, Castanet-Tolosan, France ² Team MISTIS, University Grenoble-Alpes, INRIA, LJK, Montbonnot, France

MultiTemp 2017, Bruges, Belgium, 27-29 June 2017

Grasslands, one of the main biodiversity resources

Context

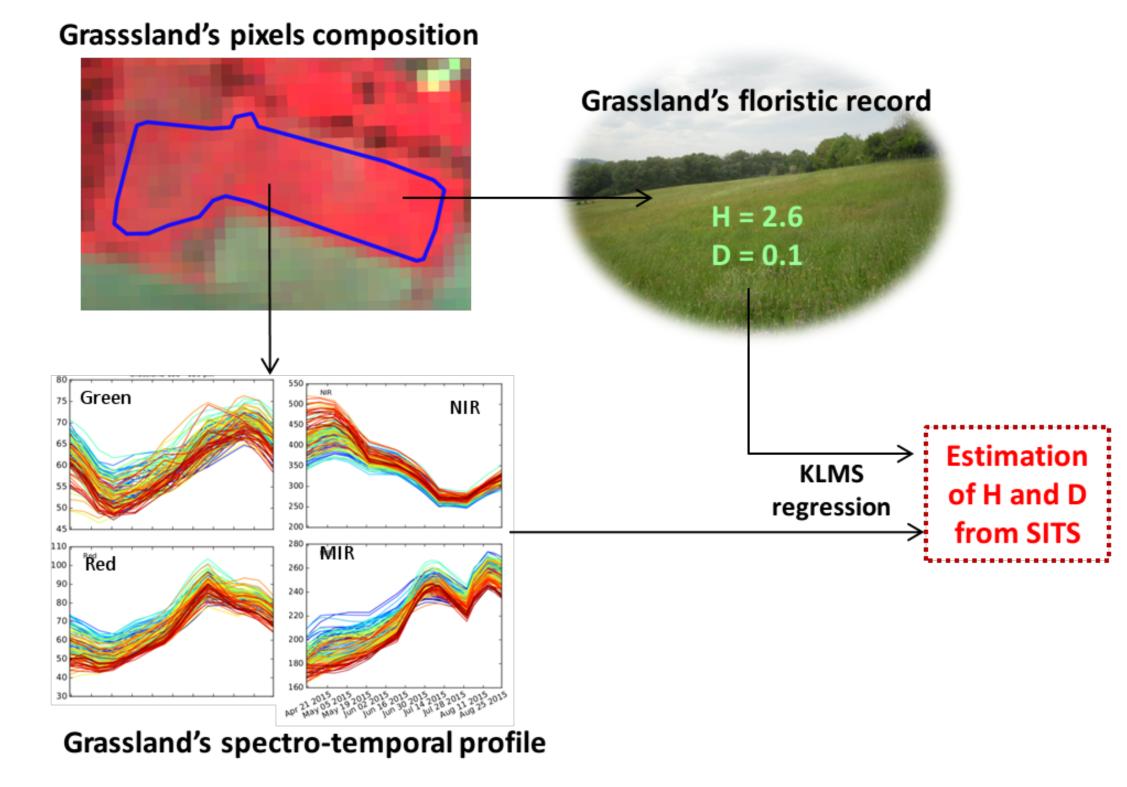
• Grasslands are one of the main **biodiversity** resources in rural landscapes. • Importance of monitoring grassland biodiversity over large extents.

• **Biodiversity indices** are defined at the **grassland scale**.

• It is better to use very high spatial resolution (<1m) and hyperspectral data

Methodology

Grassland modeling


Each grassland g_i composed of n_i **pixels** represented by a **spectro-temporal vector** $\mathbf{x}_{ik} \in \mathbb{R}^d$, where $d = n_B n_T$ is the number of spectro-temporal variables. Two grassland representations: by its mean vector $\mu_i = \frac{1}{n_i} \sum_{k=1}^{n_i} \mathbf{x}_{ik} \in \mathbb{R}^d$ and by its whole set of pixels \mathbf{x}_{ik} . One response variable $y_i \in \mathbb{R}$ per grassland.

- to discriminate grassland species. But their availability is limited.
- Tradeoff: time series with high spatial resolution and very high temporal **resolution** because species differ in their temporal behavior (phenology).

Objectives of this study

Assess the potential of multispectral satellite image time series (SITS) with high spatial and high temporal resolutions to estimate plant biodiversity (Shannon and Simpson indices) at the grassland scale.

Principle

Kernel least mean square (KLMS) regression.

The KLMS regression [1] consists in solving: $\min_{f} \sum_{i=1}^{G} (y_i - f(g_i))^2 + \theta ||f||^2$,

where f is the regression function such as $f(g_i) = \hat{y}_i = \sum_{i=1}^G \beta_j K(g_i, g_j) + \hat{y}_i$ b, \hat{y}_i is the predicted variable associated with g_i , K is the kernel function, β_i 's are the parameters of f, b is the intercept and θ is the regularization hyperparameter. β_i and b are found by least-square minimization.

Two kernels based on two grassland modelings are investigated:

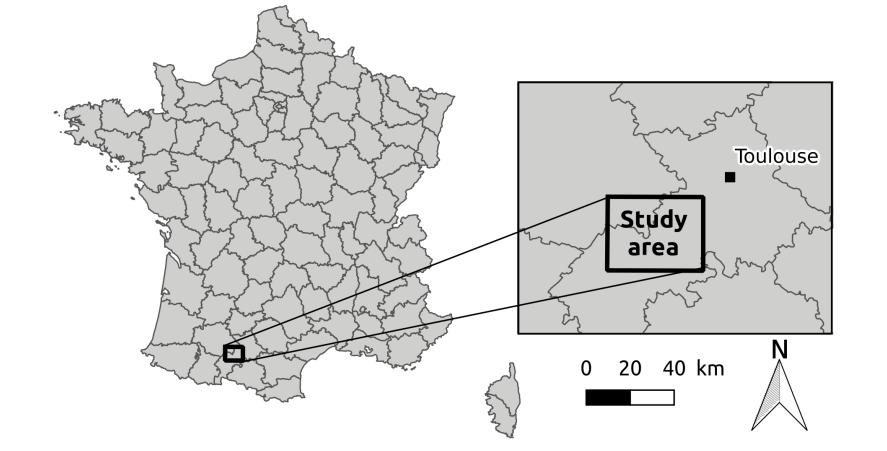
• Mean modeling and RBF kernel μ -KLMS: $K_{\text{RBF}}(g_i, g_j) = \exp(-\sigma \|\mu_i - \mu_j\|^2)$. • Empirical mean kernel *EMK-KLMS*: $K_{\text{EMP}}(g_i, g_j) = \frac{1}{n_i n_j} \sum_{k,l=1}^{n_i, n_j} K_{\text{RBF}}(\mathbf{x}_{ik}, \mathbf{x}_{jl}).$

Protocol

Regression repeated over 10 runs, dataset randomly split into two sub**sets**: 80% for training and 20% for testing.

Optimal hyperparameters tuned during a **5-fold cross-validation** based on

the highest **coefficient of determination**: $r^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$.

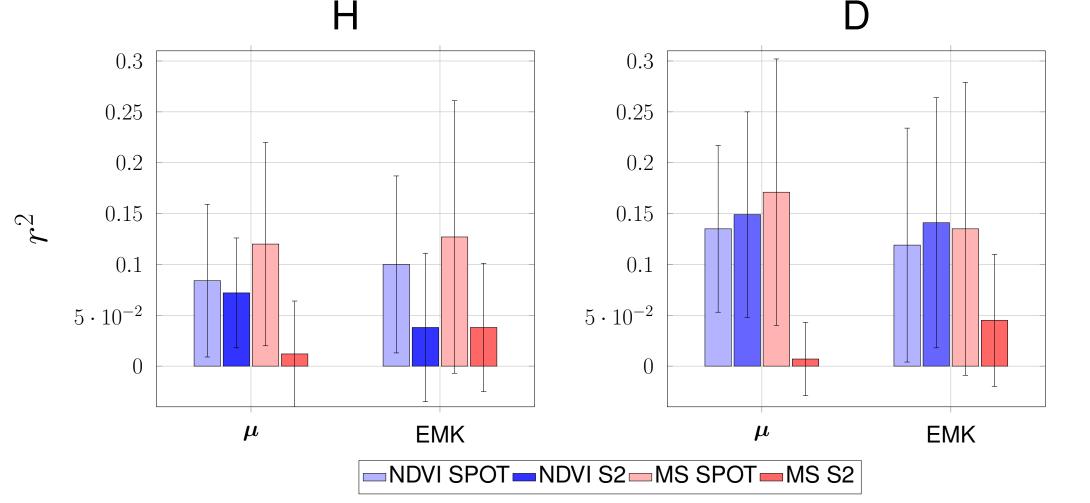

D

Results: a low estimation accuracy

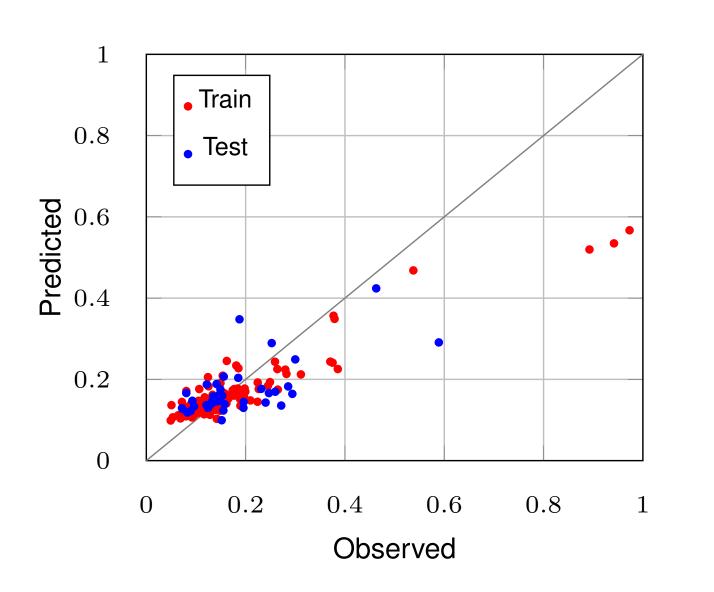
Study site and data

Study area

Long-Term Ecolog. Research site "Coteaux et Vallées de Gascogne", France.



Field data


• Floristic composition at the grassland scale recorded in 2015 and 2016, in **192 grasslands**.

• Computation of **abundance-based biodiversity indices**:

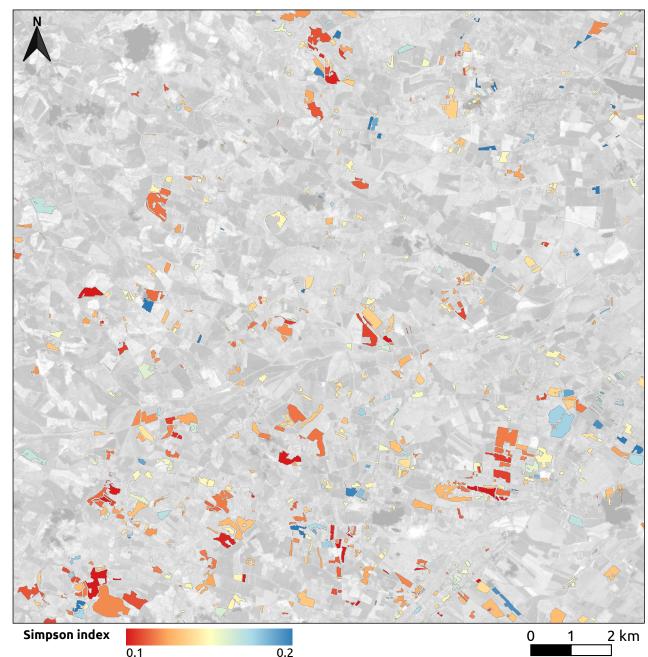

-Shannon index $H = -\sum_{i=1}^{R} p_i \ln p_i$

Figure 1: Mean and standard deviation of r^2 over the 10 repetitions.

-Simpson index $D = \sum_{i=1}^{R} p_i^2$

where p_i is the proportion of the ith species and R is the total number of species in the grassland (species richness).

> Variable Min Max Mean SD CV 0.10 3.51 2.27 0.49 0.22 Η 0.049 0.973 0.168 0.126 0.752

Satellite data

Two **multispectral** (MS) or **NDVI intra-annual** (April to September) **SITS**:

SITS	SPOT5 (Take5) (SPOT)	Sentinel-2 (S2)
Year	2015	2016
Spatial res	. 10 meters	10 meters and 20 meters
Spectral bands	Green, Red, Near Infrared (NIR), Mid Infrared (MIR), $n_B = 4$	Blue, Green, Red, NIR (10m), 3 red-edge bands and 1 narrow NIR (20m resampled at 10m), $n_B = 8$
Acquisition	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$n_T = 7 \text{ dates}$ 04 05 06 07 08 09 10

MS SPOT5 data, $r^2 = 0.43$.

Figure 3: Estimation of Simpson index of all the grasslands in the area.

Conclusions and prospects

• Lack of variance in the predicted dataset.

• Results suggest that high temporal resolution combined with high spatial resolution are **not sufficient to estimate plant biodiversity**.

• Simpson index was better predicted than Shannon index.

• Prospect: **Spectral heterogeneity** [2] as a proxy for species diversity.

References

[1] W. Liu et al., "The kernel least-mean-square algorithm," IEEE Transactions on Signal Processing, vol. 56, pp. 543–554, Feb 2008.

[2] D. Rocchini et al., "Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges," *Ecological Informatics*, vol. 5, no. 5, pp. 318 – 329, 2010.