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Surrogate models are often used to reduce the cost of design optimization problems that involve
computationally costly models, such as computational fluid dynamics simulations. However, the number
of evaluations required by surrogate models usually scales poorly with the number of design variables,
and there is a need for both better constraint formulations and multimodal function handling. To address
this issue, we developed a surrogate-based gradient-free optimization algorithm that can handle cases
where the function evaluations are expensive, the computational budget is limited, the functions are
multimodal, and the optimization problem includes nonlinear equality or inequality constraints. The
proposed algorithm—super efficient global optimization coupled with mixture of experts (SEGOMOE)—
can tackle complex constrained design optimization problems through the use of an enrichment strategy
based on a mixture of experts coupled with adaptive surrogate models. The performance of this
approach was evaluated for analytic constrained and unconstrained problems, as well as for a multimodal
aerodynamic shape optimization problem with 17 design variables and an equality constraint. Our results
showed that the method is efficient and that the optimum is much less dependent on the starting point
than the conventional gradient-based optimization.
1. Introduction

In aerodynamic shape optimization, realistic wing design prob-
lems require both a large number of design variables and con-
straints. A typical problem involves a few tens of design variables 
and objective and constraint functions that require significant CPU 
time. Because the computational budget is usually restricted, only 
a limited number of objective and constraint function evaluations 
(a few hundreds) can be performed to find the best design. The 
emergence of adjoint methods [1–3] was a considerable break-
through in the field of aerodynamic shape optimization because 
it renders the cost of computing objective and constraint gradi-
ents independent of the number of design variables. In conjunc-
tion with gradient-based optimizers, this provides an efficient way 
to converge to a local minimum in a high-dimensional problem. 
Although airfoil and wing design optimization problems are uni-
modal [4,5], once the wing planform is allowed to change, the 
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design space becomes multimodal [6]. More generally, in many 
engineering design optimization problems, we do not know a pri-
ori whether the design space is multimodal or not and perform-
ing a multistart is often intractable in terms of CPU time. When 
the gradient information is not available, an interesting option 
is to use gradient-free optimizers known as derivative-free opti-
mization (DFO) methods [7–10]. Stochastic DFO methods mostly 
fall into the category of evolutionary algorithms and are efficient 
to solve constrained problems [11]. One of the most promising 
evolutionary algorithms that can handle constraints is the covari-
ance matrix adaptation evolution strategy (CMA-ES) [12] and its 
variants [13–15]. They have gained popularity in the solution of 
high-dimensional problems. Their only drawback is still the large 
number of function evaluations required to find the optimum [16]. 
Deterministic DFO methods, such as mesh adaptive direct search 
(MADS), coordinate search (CS), and generalized pattern search 
(GPS), have been proposed [10]. These methods have been imple-
mented in different packages such as NOMAD [17], HOPSPACK [18], 
and the DFL Library [19]. Deterministic DFO methods perform lo-
cal searches and therefore depend on the initial starting point. For 



solving a multimodal problem, a multistart approach is generally 
used and the number of function evaluations increases, often with 
more than a thousand calls. In addition, some DFO algorithms, 
such as NOMAD, artificially increase the number of inequality con-
straints to manage equality constraints, making convergence even 
more difficult. Surrogate-based optimization (SBO) or Bayesian op-
timization (BO) approaches build an inexpensive approximation of 
the original function that can be used to rapidly find an approx-
imate optimum [20–23]. In BO, an acquisition function is built 
from Gaussian process approximations of the objective and con-
straint functions [24]. For some BO frameworks [17,25], inequality 
constraints are an issue. Most of the cited algorithms consider 
equality constraints as two inequality constraints, which becomes 
intractable for large numbers of constraints. The augmented La-
grangian framework ALBO [26] handles mixed-constrained prob-
lems; however, it is still not suitable for solving large-scale prob-
lems in a reasonable time. Various reviews on SBO can be found 
in the literature [27–30].

Another BO alternative is based on sequential enrichment ap-
plied to efficient global optimization (EGO) [21] using an adaptive 
surrogate model. EGO uses a kriging model (also called Gaussian 
process in the machine learning community [31]) as a substitute 
for high-fidelity models, taking advantage of the prediction of the 
variance that is built into these models to inform the adaptive 
sampling [32–34]. Wessing and Preuss [16] performed a com-
parison between EGO and CMA-ES for multimodal unconstrained 
problems. They concluded that EGO is effective in finding multiple 
optima when the budget of function evaluations is limited. To han-
dle constrained problems, Sasena et al. [35] proposed an extension 
of EGO called SuperEGO. SBO has been applied to aerodynamic 
shape optimization problems in previous research efforts [36,37], 
some of which have used adaptive sampling [38–40]. Despite the 
works cited above, the number of design variables that have been 
handled so far is insufficient for wing design optimization and 
multimodality with a restricted budget is still an issue.

For realistic aircraft wing shape optimization problems, the re-
quired number of design variables exceeds 200 [4], and, there-
fore, trying to directly solve the problems using EGO with a 
conventional kriging approach is not feasible. We recently pro-
posed to use EGO with a new type of kriging model adapted 
to high-dimensional problems (namely, KPLS and KPLS+K) [41,42]. 
The resulting optimization approach, which we call SEGOKPLS(+K), 
was demonstrated in problems with up to 50 design variables 
that were solved using approximately a hundred function evalu-
ations [43]. To handle nonlinear functions that vary significantly 
within a wide domain, researchers have proposed to cluster the 
data and construct an assembly of local surrogates, known as mix-
ture of experts (MOE), which facilitate global optimization [44–48].

The first contribution of this study is the extension of the 
SEGOKPLS algorithm to handle highly nonlinear and non-smooth 
functions by using MOE with KPLS or KPLS+K models as the local 
experts. We have previously presented an approach combining Su-
perEGO and MOE (SEGOMOE), with preliminary results for analytic 
functions [49]. We start by constructing surrogate models for the 
objective and constraint functions by combining automatic clus-
tering and best expert selection. Then, we approach the solution 
iteratively by balancing the exploration and exploitation phases 
with a new proposed criterion for the acquisition function. An-
alytic test cases are presented to compare SEGOMOE with other 
DFO algorithms such as COBYLA, NOMAD, or ALBO.

The second contribution is the comparison of the proposed ap-
proach with a gradient-based algorithm for an aerodynamic shape 
optimization problem. This problem is based on a benchmark de-
veloped by the AIAA Aerodynamic Design and Optimization Dis-
cussion Group (ADODG) [50]. The case that we solve is a sim-
plified version of ADODG Case 6, which is a subsonic wing de-
sign problem with a multimodal objective. The aerodynamic model 
is expensive, requiring high-performance parallel computing re-
sources to solve the Reynolds-averaged Navier–Stokes equations 
using computational fluid dynamics (CFD). The objective is to min-
imize the drag coefficient at a given lift coefficient. The design 
variables are the angle of attack, twist distribution, and dihedral 
distribution of the wing, for a total of 17 design variables. Multiple 
optima have been identified by using a gradient-based optimizer 
starting from different design points. The goal of this study was 
to compare the effectiveness of SEGOMOE versus an established 
gradient-based approach in converging to the global optimum.

We start the rest of this paper by summarizing the previously 
developed methods that are relevant to the present work and by 
introducing a new enrichment criterion (i.e., WB2S). We demon-
strate the ability of the proposed approach to find the global op-
tima for five analytic test cases that are multimodal. Then, we 
demonstrate the effectiveness of SEGOMOE in finding the global 
optimum of the aerodynamic shape optimization problem and dis-
cuss how it compares to a gradient-based method.

2. The SEGOMOE approach

In this section, we describe the proposed approach (SEGOMOE),
which solves the constrained optimization problem{

min
x∈�

y(x)

s.t. c1(x) ≤ 0, . . . , cm(x) ≤ 0,
(1)

where � ⊂ Rd defines the design space. Equality constraints can 
be considered a particular case where ci(x) = 0.

We start this section with a description of previously developed 
techniques (Section 2.1) and follow with a description of the novel 
contributions in the present work (Section 2.2).

2.1. Background on SEGO

The approach proposed in this paper builds upon SEGO, which, 
in turn, is based on EGO. Therefore, we start with an overview of 
EGO and follow with an explanation of how constraints are han-
dled in SEGO. We also include a description of a more local infill 
criterion (WB2). Finally, we describe the techniques that we use 
to handle high-dimensional design spaces efficiently (namely, KPLS 
and KPLS+K).

2.1.1. Original EGO
As mentioned in the Introduction, the proposed algorithm was 

inspired by EGO [21]. The main idea of the EGO approach is to 
assume that the unknown objective function is a realization of 
a Gaussian process (GP) (also known as kriging [31,51]). This re-
quires an initial design of experiments (DOE) of nDOE points X ={

x(i), i = 1, . . . ,nDOE
}

with x(i) ∈Rd , where the objective function
is evaluated to obtain the samples y = {

y(x(i)), i = 1, . . . ,nDOE
}

with y(x(i)) ∈R. Then, we can build a conditioned GP that approx-
imates the objective function at any point x by a Gaussian random 
variable Ŷ (x) with a mean of

ŷ(x) = μ̂ + rt
xX R−1 (y − 1μ̂

)
(2)

and a standard deviation of

ŝ2(x) = σ̂ 2 (1 − rt
xX R−1rxX

)
, (3)

where 1 is an nDOE × 1 column vector of 1’s, rxX = {k(x, x(i)),

i = 1, . . . , nDOE}, R is the covariance matrix of components R i j =
k(x(i), x( j)), and k(., .) is a given covariance function. In this work, 
we use the squared exponential covariance function



k(x, x′) = σ̂ 2
d∏

i=1

exp
(
−θi

(
xi − x′

i
)2
)

∀θi ∈R+,∀i ∈ [1, . . . ,d]. (4)

The scalar parameters μ̂, σ̂ , and θi, i = 1, . . . , d, can be found 
using a number of methods; here, we use likelihood maximiza-
tion [22,31]. Using this Gaussian approximation, the EGO algorithm 
initially proposed by Jones et al. [21] iteratively adds points to the 
DOE to increase the accuracy of the GP. To find new points xnew

that help the overall optimization, the EGO algorithm uses the ex-
pected improvement (EI) criterion,

EI(x) = E
[

max(0, ymin − Ŷ (x))
]
, (5)

where ymin is the minimum value of the objective function over 
the DOE, i.e., ymin = min

i∈[1,...,nDOE] y(x(i)). Because Ŷ (x) is a Gaussian 

random variable defined by its mean (2) and its variance (3), the 
EI criterion can be written as

EI(x) =

⎧⎪⎨
⎪⎩
(

ymin − ŷ(x)
)
�
(

ymin− ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin− ŷ(x)

ŝ(x)

)
,

if ŝ > 0
0, if ŝ = 0,

(6)

where φ(.) is the probability density function and �(.) is the cu-
mulative distribution function of the standard normal distribution. 
This expression highlights the trade-off between exploitation of the 
Gaussian surrogate model and exploration of the design space. If 
�(.) is large when ŷ(x) is small compared to ymin, then the EI 
criterion promotes exploitation. On the other hand, if φ(.) is large 
when ŝ(x) is large, then it promotes exploration.

Each iteration of the EGO algorithm consists of three main 
steps:

1. Construct a conditioned GP defined by a mean (2) and the
variance (3) based on a DOE of size nDOE.

2. Maximize the expected improvement (6).
3. Add a new point to the DOE (xnew) and evaluate it (ynew).

This iterative process is repeated from an initial DOE until con-
vergence. The usual stopping criterion is the maximum number of 
function evaluations corresponding to a computational budget.

2.1.2. Handling constraints
The original EGO algorithm outlined above was designed to 

minimize unconstrained functions. Because most engineering de-
sign problems are subject to constraints, it is crucial to have a 
sound strategy to handle design constraints. Although we can al-
ways add constraint functions to the objective as penalties, this 
approach is inefficient and inaccurate. To address this issue, Sasena 
et al. [52] proposed an approach they called super-efficient global 
optimization (SEGO), which can solve general nonlinearly mixed 
constrained problems. As in the EGO approach, the objective func-
tion y is approximated by a GP. To consider the m nonlinear con-
straints ci, i = 1, · · · , m, we construct a surrogate model for each 
constraint ci , denoted by ĉi , usually based on the same DOE as 
that used for the objective function. This results in the following 
constrained optimization problem:

max
x∈� f

EI(x), (7)

where the feasible domain � f is defined by the nonlinear con-
straints, i.e.,

� f := {x ∈Rd : ĉ1(x) ≤ 0, . . . , ĉm(x) ≤ 0}, (8)
where equality constraints, ĉi(x) = 0, could replace or be added to 
the set of inequality constraints above. At each iteration, the point 
xnew that solves this optimization problem is added to the DOE 
and the process is repeated until the convergence. Even if a point 
xnew is not feasible, evaluating the true functions adds information 
to the DOE.

In this procedure, the iterative construction of the various sur-
rogate models (one for the objective function and m for the con-
straints) is driven only by the EI of the objective function. There-
fore, if the surrogate models of the constraints are not accurate 
enough, the accuracy of the optimum is compromised.

In some examples, the optimal solution of Eq. (7) cannot sat-
isfy the “true” constraint functions ci(x) because only the mean 
value of the GP ĉi(x) is used to approximate the constraints during 
the optimization process. To consider the associated error esti-
mation ŝ2

ci
(x), we should implement different strategies. For han-

dling constraints in a Bayesian optimization framework considering 
the error estimation, various approaches are possible: probabilis-
tic [53], expected violation [54], predictive entropy search with 
constraints [55], or slack variables with Lagrangian formulation to 
handle mixed-constraint problems [26]. Work is still in progress 
when it comes to addressing this challenge [56].

2.1.3. Infill criterion
The optimization problem (7) is multimodal, and it is challeng-

ing to find the global maximum without incurring a large compu-
tational cost. To improve the efficiency of this optimization, Sasena 
et al. [52] recommended to use the following criterion named “lo-
cating the regional extreme” proposed by Watson and Barnes [57]:

WB2(x) = − ŷ(x) + EI(x), (9)

where the mean value of the Gaussian surrogate is subtracted from 
the EI. The result is that this criterion (WB2) is less multimodal 
than the EI, which eases the solution of the global optimization, as 
demonstrated by Sasena [58].

Nonetheless, the WB2 criterion can, in certain cases, prevent 
the algorithm from finding the global minimum, yielding a local 
minimum instead. In fact, the magnitude of the term EI(x) is ex-
pected to decrease during the iterative process, as the GP surrogate 
model becomes more accurate in the promising areas of the de-
sign space. Thus, after a few iterations, the WB2 criterion is only 
driven by the mean value of the GP surrogate model, which makes 
the algorithm focus only on the exploitation of the surrogate model 
rather than on the exploration of the design space. To address these 
issues, we developed a new criterion that builds on WB2, which is 
described in Section 2.2.1.

2.1.4. Handling a large number of design variables
One of the issues with SEGO is the scalability with the num-

ber of design variables d. To construct the GP of the objective and 
the constraint functions, we have to estimate the hyperparame-
ters θi, i = 1, . . . , d of the covariance function (4). The estimation 
of these hyperparameters by maximization of the likelihood func-
tion can be time-consuming, especially when the number of design 
variables is high (d > 10). This is because the likelihood function is 
multimodal, requiring a large number of inversions of the correla-
tion matrix to maximize it.

A recently developed surrogate technique, kriging with partial 
least squares (KPLS), was proposed by Bouhlel et al. [41] to han-
dle the large number of variables for Gaussian processes (up to 
100 variables). This technique uses the partial least squares (PLS) 
method to reduce the number of hyperparameters and the size of 
the estimation problem. Bouhlel et al. [42] subsequently improved 
KPLS by adding a new step in the construction of the surrogate 



model, which improves the accuracy for high-dimensional prob-
lems (KPLS+K). These approaches were used within the SEGO al-
gorithm, and they were demonstrated to be efficient for problems 
with up to 50 design variables [43].

In this study, we use KPLS and KPLS+K to model both the objec-
tive function and the constraints. The use of the KPLS(+K) method 
in the SEGO algorithm is what enables us to solve nonlinearly 
constrained optimization problems with a large number of design 
variables (d > 10).

2.2. SEGOMOE and its improvements

In this section, we describe the improvements we made to 
SEGOMOE that constitute the contributions of the present study. 
These contributions include a new enrichment technique that im-
proves the overall performance of the optimization, and an MOE 
approach that improves the accuracy of the surrogate model over 
a wide range in the design space.

2.2.1. New infill criterion
As discussed in Section 2.1.3, the WB2 criterion (9) improves 

some of the issues of EI; however, the lack of scaling between the 
EI term and the prediction of the model can compromise the ex-
ploration properties of the method. Therefore, we add the scaling

WB2S(x) = s EI(x) − ŷ(x), (10)

where s is a non-negative scale, EI is given by Eq. (9), and ŷ(x) is 
given by Eq. (2).

This new criterion (WB2S) has two objectives:

1. Keep the exploration property of the expected improvement
metric over the feasible design space � f .

2. Keep the original properties of the WB2 metric by smoothing
it to facilitate optimization.

The second condition is fulfilled as in the original WB2 criterion 
by penalizing the expected improvement with the term − ŷ(x) in 
Eq. (10). The first condition is more difficult to satisfy and we use 
the following heuristic. Intuitively, this condition can be translated 
to

arg max
x∈� f

EI(x) ≈ arg max
x∈� f

WB2S(x). (11)

To enforce this condition, we need to at least ensure that, for x� =
arg maxx∈� f EI(x), the following inequality is verified: sEI(x�) >
ŷ(x�). As a consequence, we define s = β| ŷ(x�)|/EI(x�), where 
β > 1. This heuristic approach does not guarantee that Eq. (11)
is true because this depends on the variation of y(x�) over � f . 
However, by setting a relatively large value for the parameter β , 
we expect this heuristic to give an acceptable approximation.

Finally, a new approximation is performed to improve the com-
putational efficiency of the proposed criterion. Finding x� over � f
is a difficult task, and we prefer to redefine x� with the follow-
ing approximation: x� = arg maxx∈X0 EI(x), where the finite subset 
X0 ⊂ � f contains the starting points used in the multistart opti-
mization of the criterion. The following procedure is used to com-
pute s > 0:

1. Compute EI for each starting point in the optimization (in a
multistart approach).

2. Evaluate the prediction of the surrogate model for the point
with the highest EI.

3. Compute the scale s such that

s =
⎧⎨
⎩ β

| ŷ
(
xstart,EImax

)|
EI
(
xstart,EImax

) if EI
(
xstart,EImax

) 	= 0

1 if EI
(
x

)= 0,

(12)

start,EImax
where β > 1 is a scaling factor. In our experiments, we have 
found that a fixed value of β = 100 works well; however, this 
could be adjusted during optimization if the EI values are too 
small compared to the ŷ(x) values. Some analytic experiments 
will be presented in Section 3.3 to study the sensitivity analy-
sis of the β parameter.

To illustrate the different behaviors associated with each crite-
rion, we provide a one-dimensional example in Fig. 1. The objec-
tive function, its associated GP mean, and the GP uncertainty (with 
a confidence interval of 99%) are plotted in Fig. 1(a). In Fig. 1(c), 
the exploration phase is less obvious with the WB2 criterion com-
pared to that with the EI or the WB2S criterion in Figs. 1(b) and 
1(d), respectively. The maximum value of WB2 is located close 
to the minimum of the kriging prediction (see Fig. 1 at x ≈ 0.4), 
which illustrates that, in that case, WB2 focuses more on the ex-
ploitation of the surrogate model rather than on the exploration. In 
contrast, the EI and WB2S criteria reach their maximum at x = 0, 
which allows to explore a promising area of the design space. The 
two advantages of WB2S are illustrated in Fig. 1(d). Similarly to 
the EI criterion, the WB2S criterion facilitates exploration of the 
three local maxima. On the other hand, the WB2 criterion is more 
unimodal, which prevents the optimizer from getting stuck in flat 
areas in the interval x ∈ [0.8, 1], where the gradient is zero.

2.2.2. Mixture of experts
One of the main contributions of this study is the combination 

of MOE with EGO. The motivation for using MOE comes from in-
dustrial optimization problems for which both the objective func-
tion and the constraints might be strongly nonlinear, discontinu-
ous, or both. In such cases, a good approximation over the whole 
design space by a kriging model might be inaccurate or require a 
large-size DOE.

To deal with the approximation of highly nonlinear functions, 
some researchers have proposed the MOE technique [59,60]. The 
key idea is to construct different local approximations (experts) for 
different domains in the design space. These local approximations 
can be tailored to deal with disparate local trends in the function, 
including flat regions, discontinuities, and strong nonlinearities.

We use MOE with KPLS(+K) surrogate models as the experts 
and implemented these methods in the Surrogate Modeling Tool-
box [61]. MOE relies on the expectation-maximization algorithm 
for Gaussian mixture models [62]. The input space is clustered to-
gether with its output value by means of a parameter estimation of 
the joint distribution. A local expert (e.g., polynomial fit, radial ba-
sis functions, and kriging) is then built on each cluster, and all the 
local experts are then combined using the Gaussian mixture model 
parameters found by the expectation-maximization algorithm to 
obtain a global model.

In this approach, the Gaussian mixture model is used to com-
bine the data to both partition the input space and derive the 
mixing proportion. To perform the clustering, we need n in-
puts, X = {

x(i), i = 1, . . . ,n
}

, and the corresponding outputs, y ={
y(x(i)), i = 1, . . . ,n

}
. Therefore, we can only know the cluster 

posterior probabilities of vectors like (x(i), y(x(i))) ∈ Rd+1. To pre-
dict the cluster posterior probabilities of a sample knowing only 
its inputs, we must project each multivariate Gaussian function k
in the Gaussian mixture model (trained in d + 1 dimensions) onto 
the input space, which has d dimensions.

Thus, for each cluster k, we create a multivariate Gaussian func-
tion in (d + 1)-dimensional space with the covariance matrix,

�k =
(

�X
k νk

νT ξk

)
, (13)
k





outputs given by a local model corresponding to the cluster are 
allowed. This method can be efficient for discontinuous functions. 
Moreover, the mixture of experts can also predict the uncertainty: 
for one sample, we choose the uncertainty corresponding to its 
cluster.

For both recombinations, the mixture of experts based on krig-
ing models approximates functions with a heterogeneous behavior, 
providing a global model with a prediction of both the Jacobian 
and the uncertainty. The proposed algorithm automatically chooses 
the best type of recombination, according to a cross-validation pro-
cedure. The MOE can be written as the sum

K∑
i=1

αiN ( ŷi, ŝ2
i ) = N

(
K∑

i=1

αi ŷi,

K∑
i=1

α2
i ŝ2

i

)
= N

(
ŷ, ŝ2

)
, (18)

where αi is defined by Eq. (17), and ŷi(x) and ŝ2
i (x) are given by 

Eqs. (2) and (3), respectively. Thus, the MOE can also predict the 
uncertainty. This information is useful to define the infill criterion 
used in the EGO or SEGO algorithm. The EI, WB2, and WB2S crite-
ria defined by Eqs. (6), (9), and (10), respectively, are adapted for 
the MOE models using

EIMOE(x) =

⎧⎪⎨
⎪⎩
(

ymin − ŷ(x)
)
�
(

ymin− ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin− ŷ(x)

ŝ(x)

)
,

if ŝ > 0
0, if ŝ = 0,

(19)

where φ(.) is the probability density function and �(.) is the cu-
mulative distribution function of the standard normal distribution 
N (0, 1). The only difference between Eq. (6) and Eq. (19) is the 
nature of ŷ. Because MOE has multiple models, ŷ is derived from 
Eq. (18) and expressed as a combination of kriging-based local ex-
perts, i.e.,

ŷ(x) =
K∑

i=1

αi ŷi(x), (20)

where ŷi(x) is given by Eq. (2). The associated variance ŝ2 is ex-
pressed in the same way, i.e.,

ŝ2(x) =
K∑

i=1

α2
i ŝ2

i (x), (21)

where ŝ2
i is given by Eq. (3). Because the infill criterion considers 

only the objective function with the knowledge of the uncertainty 
estimation (see Eq. (3)), we have a wider choice for the constraint 
surrogate models. These could be a single surrogate or a mixture 
of local experts. Analytic derivatives of the infill criterion (EI, WB2, 
or WB2S) are also available and computed for gradient-based opti-
mization.

2.2.4. The SEGOMOE algorithm
Once recombination is achieved, MOE is used in combination 

with the SEGO algorithm to solve global optimization problems 
subject to nonlinear constraints involving a large number of de-
sign variables (d > 10) and potentially highly nonlinear objective 
and constraint functions. Figure 2 shows a flowchart of the SEGO-
MOE algorithm used in this study. The main steps in the algorithm 
are as follows:

1. Construct the initial DOE and build the associated MOE models
for the objective and constraint functions.

2. Maximize the infill criterion (EI, WB2, or the new criterion de-
fined in Section 2.2.1) subject to the design constraints and
variable bounds, and propose the new enrichment point.
Fig. 2. Overview of the SEGOMOE algorithm.

3. Compute the values of the objective and constraint functions
at the new enrichment point.

4. Check if the new enrichment point is in the feasible domain
or not, and identify inactive, active, and violated constraints.

5. Return to Step 2 and update the DOE until the stopping cri-
terion is met. A common criterion is the maximum number
of function calls corresponding to the available computational
budget.

To solve the constrained optimization problem (with inequality
and/or equality constraints) in Step 2, we can use a gradient-based 
algorithm or a derivative-free optimizer. Because we use local opti-
mizers, we perform a multistart optimization with different start-
ing points (10 points by default). The gradient-based optimizers 
use the analytic Jacobian of the MOE (as described in Section 2.2.3) 
to compute the gradients of both the objective function and the 
constraints of the global optimization problem (7).

Regarding the number of clusters involved in the MOE, Bartoli 
et al. [49] compared the efficiency of SEGOMOE with K clusters 
versus one cluster on the MOPTA test case [63]. It was found that 
the number of function evaluations could be decreased by auto-
matically choosing the number of clusters K (see [49] for more 
details on the proposed strategy) and that, in every test case stud-
ied, the use of MOE in the EGO approach never increases the 
number of function evaluations required for convergence. As a con-
sequence, in the following, the SEGOMOE framework is used with 
the automatic cluster number approach already presented by Bar-
toli et al. [49]. The algorithm is implemented within the NASA 
OpenMDAO framework [64] and, additionally, can use surrogates 
available within the Surrogate Modeling Toolbox [61].

3. Analytic benchmark problems

This section presents numerical results that demonstrate the
ability of SEGOMOE to solve multimodal analytic optimization 
problems. A more realistic application is presented in Section 4. 
Here, five multimodal analytic optimization problems (three un-
constrained problems and two constrained problems) are con-



sidered. The three unconstrained problems are well known two-
dimensional benchmark analytic functions: the six-hump camel-
back function, the Michalewicz function, and the Ackley function. 
The first constrained problem is a two-dimensional analytic prob-
lem proposed by Parr et al. [65] that has two design variables and 
one inequality constraint. The solution consists of one global min-
imum and two local minima. The second constrained problem is 
a four-dimensional analytic problem proposed by [26] that has a 
(known) linear objective and two constraints: one inequality and 
one equality. Before dealing with the numerical results, we re-
view first the performance criteria based either on the objective 
value at the optimal point or on the global minimum location 
and the choice of the β parameter for the WB2S criterion (see 
Section 2.2.1). We also introduce derivative-free optimizers to 
compare their performance with that of SEGOMOE. We choose to 
consider COBYLA, NOMAD, and ALBO, which are three derivative-
free optimizers available as an open-source toolbox that can handle 
nonlinear constraints.

3.1. Performance criteria

We use three performance criteria to compare the results 
for SEGOMOE with those for the other optimization algorithms 
(COBYLA, NOMAD, and ALBO).

1. Percentage of converged runs
2. Mean number of function evaluations for converged runs
3. Standard deviation of the number of function evaluations for

converged runs.

The convergence is assessed by measuring the error in the ob-
jective value or the proximity of the design variables. When the 
objective value is used, the relative error is

RE = | f ∗
opt − f ∗

ref|
| f ∗

ref|
, (22)

where f ∗
opt is the best point given by each algorithm and f ∗

ref is 
the known reference solution given in Appendix A. When using 
the proximity of the design variables, we measure the difference 
between two solutions x1 and x2 using

μprox (x1, x2) = 1 − 1

d

d∑
i=1

∣∣x2i − x1i

∣∣
ubi − lbi

, (23)

where ubi and lbi denote the upper bound and the lower bound, 
respectively, of the ith design variable. The distances are scaled to 
[0, 1] to confer the same weight on the design variables.

In the test cases presented here, one of the solutions is the 
reference and the other one is the optimal point provided by the 
algorithm. To ensure that an optimization is converged, we check 
that 1 −μprox (x1, x2) ≤ ε , where ε is a given threshold value (10−3

by default). The type of validation and the convergence threshold 
are specified for each problem. It is crucial to look at this criterion 
because the other two are only computed for converged runs.

3.2. Derivative-free optimizers: COBYLA, NOMAD, and ALBO

To evaluate the surrogate-based strategies, we consider the 
other derivative-free algorithms (COBYLA, NOMAD, and ALBO) for 
the constrained and unconstrained analytic test cases. COBYLA 
(Constrained Optimization BY Linear Approximation) is a trust re-
gion optimization method that uses an approximating linear in-
terpolation model of the objective and constraint functions [66]. 
NOMAD is a derivative-free algorithm based on a C++ implemen-
tation of the mesh adaptive direct search (MADS) algorithm [17], 
which is designed to solve difficult blackbox optimization prob-
lems. NOMAD discretizes the design space into a mesh that refines 
adaptively to find better successive solutions. According to Audet 
et al. [67], NOMAD is intended for time-consuming blackbox sim-
ulation with a small number of variables. Another BO algorithm, 
ALBO [26], is used here to handle mixed-constrained problems. 
ALBO combines an unconstrained BO framework with the classi-
cal augmented Lagrangian (AL) framework [68]. Originally designed 
for the equality constraint problems [69], it has been extended to 
inequality constraints by means of the slack variables. The ALBO 
procedure is the same as the AL framework except that the min-
imization of the AL function is replaced by the maximization of 
an acquisition function. The new acquisition function is not given 
explicitly but only through an estimation method. We found that 
ALBO is not suitable for the solution of large-scale problems in a 
reasonable time.

We tested COBYLA and NOMAD on three well-known two-
dimensional multimodal unconstrained problems and tested ALBO 
on a four-dimensional mixed-constrained problem to compare the 
convergence to the global minimum and the number of function 
evaluations.

Both COBYLA and NOMAD require the user to specify the max-
imum number of function evaluations. For COBYLA, this is set to 
500 evaluations, which is much higher than the number of evalu-
ations required to reach the convergence in the analytic test cases 
we solve. For NOMAD, we try different values for the maximum 
number of evaluations keeping in mind that our budget is lim-
ited to 1000 calls. If no stopping criterion is specified, NOMAD 
stops as soon as the mesh size reaches a given tolerance. Because 
COBYLA and NOMAD require a starting point, it may be necessary 
to use multistart to find the global optimum of these multimodal 
functions. To use the same set of starting points between the two 
algorithms, we generate an initial set of 100 points using Latin hy-
percube sampling (LHS) [70].

As explained earlier, SEGOMOE uses an LHS strategy to generate 
the initial DOE to build the GP approximations of the objective and 
the constraints. Thus, to compare the three infill criteria (EI, WB2, 
and WB2S), we use the same set of initial LHS-generated points 
for each criterion with different numbers of sampling points (5, 10, 
20, and 30 points). This set of initial LHS-generated points is also 
used for ALBO, which, like SEGOMOE, requires an initial sample of 
points to build a GP approximation. The size of the sampling set is 
also a studied parameter.

We used the Python library Scipy [71] for COBYLA, the Python 
NOMAD framework [72], and DiceOptim [73] with the default set-
tings for ALBO.

3.3. Sensitivity analysis of the WB2S infill criterion

To find the relevant values for the β parameter in the WB2S in-
fill criterion (defined in Section 2.2.1), we performed a sensitivity 
analysis study for two analytic functions (Michalewicz and Ackley) 
defined in Appendices A.2 and A.1. The sensitivity analysis study 
consisted of 100 runs for 32 values of β ∈ [10−6, 109], resulting in 
a total of 3200 runs for each function. An initial DOE of 5 points 
was used for the two test cases. The percentage of solutions ob-
tained for varying β is plotted in Fig. 3.

The success rate for the Michalewicz problem was 100% for 
β > 1, as shown in Fig. 3(a). This was expected because s in 
Eq. (12) increases with β and the WB2S criterion tends to the 
EI criterion when β tends to infinity, as can be seen in Eq. (10). 
On the other hand, for β < 1, the WB2S criterion tends to the 
surrogate-based criterion (SBO approach), which minimizes the 
kriging-based surrogate model without any exploration. Therefore, 
small values of β lead to poor performance in both problems.



Fig. 3. Effect of the value of β in the WB2S infill criterion. One hundred DOE points (initial set with 5 points) were tested with a total of 3200 runs for each function.
For the Ackley function, the percentage of problems solved with 
WB2S initially increased with increasing β and then tended to de-
crease for β > 105 (see Fig. 3(b)). As a consequence, one can see 
that the range of β values leading to a higher success rate is quite 
large β ∈ [10, 105]. Thus, even if this range is problem dependent 
(especially the upper bound, as illustrated by the comparison of 
Fig. 3(a) and Fig. 3(b)), one might be confident in choosing an in-
termediate value for β . In the following, β = 100 is retained.

3.4. Analytic unconstrained multimodal problems

As mentioned above, the main objective of this section is to 
demonstrate the performance of SEGOMOE for multimodal prob-
lems. In particular, we want to compare the performance of the 
different infill criteria (EI, WB2, and WB2S). We first consider three 
analytic unconstrained multimodal functions:

• The six-hump camel-back function (defined in Appendix A.3)
is a two-dimensional function with six minima—two of which 
are global—that is smooth and easy to optimize. The conver-
gence is assessed based on the objective value and a threshold 
of 10−3 for the associated relative error given by Eq. (22).

• The Michalewicz function (defined in Appendix A.2) exhibits
valleys and ridges with a tunable steepness. The convergence
is assessed based on the objective value and a threshold of
10−3 for the associated relative error (22).

• The Ackley function (defined in Appendix A.1 for an arbitrary
number of dimensions d) is characterized by many local min-
ima, which makes it difficult to optimize. The value of the
global minimum is independent of the number of dimensions
and is located in an area of steep gradient. We consider the
d = 2 case. The convergence is assessed based on the proxim-
ity of the design variables with the reference solution, as the
relative error on the objective function value is not defined in
that case ( f (x∗) = 0). The proximity is computed with Eq. (23)
and a threshold is set to 10−3.

For SEGOMOE, as stated above, the same sets of DOE (one set
per initial size) are used for all the criteria for a fair compari-
son. Universal kriging models (with squared exponential correla-
tion functions and linear regression functions) are used as local 
experts to build the surrogate model of the objective f (x). The 
iteration budget is set to 300 evaluations. Each computation can 
be stopped early, either because convergence has been reached 
or because of a singularity arising when enrichment points are 
too close. The optimization of the infill SEGOMOE criterion is per-
formed using the SLSQP algorithm [74] with a multistart approach. 
The gradients for SLSQP are computed analytically for speed and 
accuracy. The convergence is assessed with a threshold of 10−3

for the relative error (see Eq. (22)) or the proximity index (see 
Eq. (23)), with an iteration budget of 300 function evaluations. The 
results are summarized in Table 1.
Table 1
SEGOMOE results for 3600 runs (100 per combination of DOE size, criterion, and
function) for the six-hump camel-back, Michalewicz, and Ackley problems, showing
the percentage of runs that converged to the analytic solution (with a relative error
threshold or a proximity index of 10−3). The best results are shown in bold.

Criterion Results DOE 5 DOE 10 DOE 20 DOE 30

Six-hump camel-back function
WB2 Converged 94% 100% 100% 100%

Mean (evaluations) 23 29 40 43
σ (evaluations) 6 7 7 4

EI Converged 100% 100% 100% 100%
Mean (evaluations) 39 40 42 44
σ (evaluations) 4 4 4 3

WB2S Converged 100% 99% 100% 100%
Mean (evaluations) 39 39 42 44
σ (evaluations) 3 3 4 3

Michalewicz function
WB2 Converged 71% 76% 83% 87%

Mean (evaluations) 25 31 36 46
σ (evaluations) 14 24 15 13

EI Converged 100% 100% 100% 100%
Mean (evaluations) 47 45 51 59
σ (evaluations) 36 43 31 21

WB2S Converged 100% 99% 100% 100%
Mean (evaluations) 48 46 51 55
σ (evaluations) 36 33 27 15

Ackley function
WB2 Converged 32% 58% 90% 91%

Mean (evaluations) 41 55 45 50
σ (evaluations) 30 38 27 17

EI Converged 71% 98% 98% 98%
Mean (evaluations) 95 73 56 80
σ (evaluations) 96 68 30 56

WB2S Converged 97% 100% 100% 100%
Mean (evaluations) 107 60 58 68
σ (evaluations) 90 45 26 23

In this table, higher success rates were obtained in decreasing 
order by WB2S (10 times), EI (8 times), and WB2 (3 times). WB2 
seems more efficient when judged on the basis of the mean and 
standard deviation of the evaluations. However, it is also impor-
tant to consider its rate of convergence. For the Michalewicz and 
the Ackley function, a significant number of runs did not converge 
(between 70% and 40% for the initial DOEs with fewer than 20 
points), although they converged with the EI and the WB2S crite-
rion. This can be explained by the multimodality of the considered 
functions, as some runs performed with the WB2 criterion ended 
up converging near the local minima. This issue is mitigated as 
the size of the initial DOE is increased. The use of more points 
improves exploitation and reduces the likelihood of being trapped 
near the local optima. The EI and the WB2S criterion performed 
similarly across all sizes of the DOE in terms of both rate of con-



Table 2
Six-hump, Michalewicz, and Ackley results using COBYLA or NOMAD (100 runs).
Different stopping criteria relative to the maximum number of blackbox evaluations
were tested. The best results are shown in bold.

Algorithm COBYLA NOMAD

MAX_BB_EVAL 500 100 300 without

Six-hump camel-back
Converged 77% 93% 95% 95%
Mean (evaluations) 51 100 294 308
σ (evaluations) 5 0 10 25

Michalewicz
Converged 29% 87% 89% 89%
Mean (evaluations) 60 100 290 300
σ (evaluations) 27 0 13 26

Ackley
Converged 38% 98% 100% 100%
Mean (evaluations) 59 100 300 499
σ (evaluations) 5 0 0 12

vergence and mean number of evaluations. The standard deviation 
of the WB2S was slightly better for DOE sizes ranging from 10 to 
30. This behavior was expected, as explained in Section 2.2.1.

The comparison results between COBYLA and NOMAD are listed
in Table 2. For COBYLA, the convergence to the global minima 
was obtained with a significantly lower success rate compared to 
that for SEGOMOE. However, when COBYLA converges, it requires 
roughly the same number of function evaluations (between 51 and 
60) as that of SEGOMOE. Table 2 shows also the NOMAD results for
the three performance criteria as a function of the stopping crite-
rion chosen (MAX_BB_EVAL for a maximum number of blackbox
evaluations of 100, 300, and no limit). Thus, the number of evalua-
tions with NOMAD was much higher than that with the SEGOMOE
approach with a similar success rate.

The efficiency of SEGOMOE was validated for three multimodal 
unconstrained problems compared to the two other derivative-
free algorithms (COBYLA and NOMAD). In terms of criteria, EI and 
WB2S yielded similar results in two problems, whereas WB2S per-
formed better in the third one.

3.5. Analytic constrained multimodal problems

To evaluate the ability of SEGOMOE to tackle multimodal and 
constrained problems, we used the following two test cases:

• The modified Branin problem, which is a two-dimensional
nonlinear problem with a single nonlinear constraint [65]. This
modification, which was proposed by Parr et al. [65], adapts
the original Branin function to have a single global optimum
and two local ones, rather than three optima of equal value.

{
min

x∈[−5,10]×[0,15] f (x)

g(x) ≥ 0
, (24)

where f (x) and g(x) are as detailed in Appendix A.4. The 
feasible space for this problem consists of isolated feasi-
ble regions within their design space, which often occurs 
for severely constrained practical cases. The problem features 
three distinct feasible regions delimited by green curves in 
Fig. 4, making it an excellent test for constraint strategies [25,
65].

• The Linear-Ackley-Hartman (LAH) mixed-constrained problem
with four input dimensions, a linear objective, and two con-
straints like the one described by Picheny et al. [26]
⎧⎪⎨
⎪⎩

min
x∈[0,1]4

f (x)

g(x) ≤ 0
h(x) = 0

(25)

The first inequality constraint is the Ackley function in four 
dimensions, and the second one is an equality constraint fol-
lowing the Hartman four-dimensional function. The problem 
is denoted by LAH in the following, and details on the func-
tion expressions and the reference solution are given in Ap-
pendix A.5.

For these two constrained test cases, we compared SEGOMOE, 
COBYLA, and NOMAD with the ALBO framework. As the LAH prob-
lem is a mixed-constrained problem, the equality constraint h(x) in 
Eq. (25) has been transformed into two inequality constraints for 
COBYLA and NOMAD. SEGOMOE and ALBO are both able to con-
sider mixed-constraint problems.

In our tests, we sought to quantify the impact of the size of 
the initial DOE and the choice of infill criterion for SEGOMOE. As 
for the unconstrained case, the results were obtained by consid-
ering universal kriging models (with squared exponential correla-
tion functions and linear regression functions) as local experts to 
build the surrogate models of both the objective f (x) and the con-
straints g(x) and h(x). The iteration budget was still set to 300 
evaluations. Optimization under constraints of the infill SEGOMOE 
criterion was still performed using the SLSQP algorithm [74] with 
a multistart approach. Because the initial DOE was computed using 
an enhanced stochastic evolutionary (ESE) algorithm [70] for build-
ing the LHS, we ran the same case 100 times to obtain statistically 
significant results. Furthermore, to reduce the bias that could ex-
ist between the results obtained with different infill criteria should 
different batches of initial DOEs be used, we kept the same initial 
batches for the criteria (size-wise) by means of a hot start feature 
implemented in SEGOMOE. The same DOEs were used to initialize 
the ALBO framework.

To compare the performances of the different algorithms 
(SEGOMOE, ALBO, COBYLA, and NOMAD), we used the criteria 
defined in Section 3.1. For the modified Branin problem, the con-
vergence was assessed for each feasible point found using the 
relative error of the objective with respect to the known solu-
tion (see Eq. (22)), and a convergence threshold of 10−3. A point is 
only a priori feasible when the relative violation of the constraint 
is less than 10−4. For the LAH problem, a convergence threshold of 
10−3 (see Eq. (23)) on the proximity index was used. The results 
of the optimizations are summarized in Table 3.

From Table 3, we can see that the convergence success rate 
increases with the size of the initial DOE for all the criteria consid-
ered, reaching nearly 100% for SEGOMOE with WB2 or WB2S when 
more than 20 points were used. When comparing the three crite-
ria we used, we found that WB2S was significantly better than the 
other two for sparse initial DOEs (sizes of 5 and 10), for which 
it had a 69% success rate for modified Branin and 10% for the 
LAH function. This can be attributed to the fact that, in WB2S, the 
scaling eases exploration. For all criteria, the mean of the SEGO-
MOE cost increased with the size of the initial DOE; however, it 
is important to note that the variance decreased. The lower suc-
cess rates for the sparser initial DOEs can be explained by the 
inaccuracy of the surrogate of the constraint, which prevented the 
enrichment optimizer from searching the promising areas.

If the WB2 and WB2S criteria both gave a convergence suc-
cess rate close to 100% for all the DOE sizes (10, 20, and 30) with 
a similar number of function evaluations (mean and variance) for 
the LAH function, the EI criterion was less efficient on this ex-
ample. Concerning the other BO algorithm, ALBO converged with 
a success rate of less than 45% with a large number of function 
evaluations (greater than 50). The ALBO results on the LAH func-



Table 3
Results for 3200 runs (100 per combination of DOE size and criterion) of the modi-
fied Branin and the LAH problems. DOEs range from 5 to 30 points, and the number
of function evaluations to reach the minimum value is reported both for SEGOMOE
depending on the infill criterion used (EI, WB2, or WB2S) and for ALBO. The num-
ber of converged runs to the analytic solution (with a relative error threshold or a
proximity index of 10−3) is given in percent. The best results are shown in bold.

Criterion Results DOE 5 DOE 10 DOE 20 DOE 30

Modified Branin function
WB2 Converged 62% 78% 93% 99%

Mean (evaluations) 38 39 53 51
σ (evaluations) 28 22 20 9

EI Converged 50% 75% 96% 100%
Mean (evaluations) 27 45 49 45
σ (evaluations) 22 29 21 8

WB2S Converged 69% 76% 90% 100%
Mean (evaluations) 34 39 49 47
σ (evaluations) 20 17 19 9

ALBO Converged 41% 32% 35% 19%
Mean (evaluations) 58 57 70 70
σ (evaluations) 15 13 8 7

LAH function
WB2 Converged 100% 100% 100% 100%

Mean (evaluations) 17 19 28 37
σ (evaluations) 4 3 3 3

EI Converged 96% 86% 80% 68%
Mean (evaluations) 45 33 43 43
σ (evaluations) 31 15 15 11

WB2S Converged 100% 100% 100% 100%
Mean (evaluations) 18 20 29 37
σ (evaluations) 3 2 3 3

ALBO Converged 5% 8% 13% 27%
Mean (evaluations) 29 50 65 84
σ (evaluations) 11 7 8 8

tion are quite different from those presented by Picheny et al. [26]; 
this could be explained by the difference in the relative violation 
of the constraint, i.e., 10−4 instead of 10−2.

To visualize the enrichment process in two dimension, Fig. 4
shows the modified Branin function, where the three feasible re-
gions are shown in green. The global optimum of the modified 
Branin case is at the border of the feasible region at the bottom 
right-hand corner of the contour plots. When the WB2S or WB2 
infill criterion was used, the solution successfully converged to the 
global minimum. However, when the conventional EI criterion was 
used, the solution remained trapped in the feasible region discov-
ered by the initial DOE. This shows that the numerical improve-
ment of WB2S relative to EI eases the enrichment optimization, 
allowing a better exploration. Moreover, the increased contribution 
of EI within WB2S, compared to WB2, enabled the optimizer to 
identify the second feasible region and, therefore, to converge for 
this particular configuration.

As for the unconstrained test cases, comparisons were per-
formed with the DFO algorithms (COBYLA and NOMAD), as re-
ported in Table 4, where 100 runs (corresponding to 100 differ-
ent starting points from an LHS) were performed and the same 
threshold criterion of 10−3 for the relative error or the proximity 
index was used. For the modified Branin problem, the conver-
gence success rate was very low for COBYLA (12%). For NOMAD, 
the constraint was treated with the Progressive Barrier option [75], 
which needs to be satisfied only at the solution and not necessarily 
at the intermediate points (relaxable constraint). The convergence 
success rate was very low (less than 27%), and the number of func-
tion evaluations was still significant (more than 300). These values 
were compared with fewer than 51 evaluations for the SEGOMOE 
results (see Table 3). For the LAH problem, COBYLA with 53% con-
Table 4
Modified Branin and LAH problems with COBYLA or NOMAD (100 runs). Different
stopping criteria relative to the maximum number of evaluations were tested. The
best results are shown in bold.

Algorithms COBYLA NOMAD

MAX_BB_EVAL 500 100 300 Without

Modified Branin
Converged 12% 20% 27% 27%
Mean (evaluations) 60 100 300 641
σ (evaluations) 6 0 0 123

LAH
Converged 53% 0% 0% –
Mean (evaluations) 42 – – –
σ (evaluations) 11 – – –

vergence success rate had a number of function evaluations quite 
comparable to the SEGOMOE-EI results. For NOMAD, the equality 
constraint was treated as two inequality constraints with the Pro-
gressive Barrier option [75]. The convergence success rate was 0% 
for the 10−3 threshold and was very low (2%) if we increased the 
threshold value to 10−1 (requiring 500 function evaluations in this 
case). In this LAH test case, a maximum number of function eval-
uations MAX_BB_EVAL is required to obtain a reasonable a CPU 
time. The obtained values were compared with fewer than 43 eval-
uations for the SEGOMOE results (see Table 3). To sum up on these 
two constrained test cases, SEGOMOE with the EI, WB2, or WB2S 
criterion was still more efficient than ALBO, NOMAD, or COBYLA 
in terms of both convergence success rate and number of function 
evaluations.

In the five analytic multimodal optimization problems consid-
ered in this section, EI and WB2S had a similar behavior in some 
cases, which justifies the use of a scalar multiplier s > 1 in the 
WB2S formula to promote the exploration phase. In other cases, 
WB2S gave better results than those of EI; especially when the 
size of the initial DOE was small, its convergence success rate 
was close to 100%. When EI found a global optimum, WB2S man-
aged to find it also, although the reciprocity was not always satis-
fied.

4. Application to wing aerodynamic shape optimization

In the previous sections, we demonstrated the performance of 
SEGOMOE for analytic cases. We now demonstrate it on a design 
optimization problem that is more representative of a real-world 
problem: a nonlinearly constrained wing aerodynamic shape opti-
mization problem where the objective function is multimodal. We 
compare SEGOMOE with a gradient-based optimizer (SNOPT) that 
requires a multistart approach to reach the global optimum. These 
comparisons are based on the performance criteria described in 
Section 3.1.

The final problem is a simplified version of an aerodynamic 
shape optimization problem defined by the ADODG, which has one 
equality constraint and exhibits multimodality.

4.1. High-fidelity aerodynamic shape optimization framework

To perform the aerodynamic shape optimization, we use a 
framework that combines a Reynolds-averaged Navier–Stokes
(RANS) CFD solver, a geometry parametrization engine, and a 
mesh perturbation algorithm. The CFD solver is ADflow, which 
uses a second-order finite-volume scheme to solve the compress-
ible Euler equations, laminar Navier–Stokes, and RANS equations 
(steady, unsteady, and time periodic) on overset meshes [76,77]. 
The Spalart–Allmaras turbulence model [78] is used to complete 
the RANS equations. The solver combines a Runge–Kutta method 





Table 5
Definition of the simplified ADODG Case 6 optimization problem.

Function/
variable

Description Quantity Range

Minimize C D Drag coefficient 1

with respect to α Angle of attack 1 [−3.0,6.0] (◦)
θ Twist 8 [−3.12,3.12] (◦)
δ Dihedral 8 [−0.25,0.25] (δ/c)

Total variables 17

subject to CL = 0.2625 Lift coefficient 1
Total constraints 1

we reduce the number of variables. This case was devised to ex-
plore the existence of multiple local minima in aerodynamic wing 
design. The baseline geometry is a rectangular wing with a chord 
of 1.0 m and a NACA 0012 airfoil cross section with a sharp trail-
ing edge. The semi-span is 3.06 m and the wing is fitted with 
a rounded wingtip cap. In the full benchmark problem, the op-
timizer is given freedom to change the twist, chord, dihedral, 
sweep, span, and sectional shape variables. In the modified ver-
sion used for this study, we reduced the variables to twist and 
dihedral, for a total of 17 design variables. The geometry is pa-
rameterized using the FFD approach implemented in pyGeo [79], 
which allows the definition of global design variables with con-
trol of the sections of the B-spline control points. Nine sections 
are defined along the span of the wing with heavier clustering 
toward the wing tip. The twist variables rotate eight of these sec-
tions (excluding the root section) about the quarter-chord. Like-
wise, each of the eight dihedral variables controls the vertical 
displacement of one of the spanwise sections, excluding the root 
section. The angle of attack can be varied to allow the optimizer 
to satisfy the lift constraint. The objective of the problem is to 
perform a lift-constrained drag minimization of a simple wing un-
der subsonic flow (M∞ = 0.5), using the Euler equations. The main 
characteristics of the optimization problem are summarized in Ta-
ble 5.

4.3. Gradient-based optimization results

The SEGOMOE approach is compared to SNOPT on the same 
test case. These gradient-based results, as well as those of other 
cases related to ADODG Case 6, are presented in more detail by 
Bons et al. [6]. Here, we just compare the SEGOMOE results for 
the Euler-based twist and dihedral optimization case, and summa-
rize the corresponding results for completeness. The optimization 
problem is solved using SNOPT [83] starting from the 15 ran-
dom shapes shown in Fig. 5(a), where we use a coarse mesh grid 
(L3 mesh with 180K cells). The average number of iterations re-
quired to converge is approximately 100. Nevertheless, in addition 
Table 6
Results obtained with SNOPT and ADflow using the adjoint method. The global op-
timum is written in bold.

C D × 104 (drag counts) Number of runs Mean constraint violation

39.9091 5 7 × 10−10

40.1971 3 1 × 10−9

40.1972 3 1 × 10−8

40.1975 2 6 × 10−10

40.1986 1 8 × 10−10

40.1995 1 5 × 10−10

to the standard evaluation, ADflow also needs to compute the gra-
dients for each aerodynamic-related function (drag and lift), each 
of which requires an adjoint solution. Therefore, for this problem, 
the mean evaluation budget is equivalent to approximately 300 
standard ADflow calls. The optimal shapes are shown in Fig. 5(b), 
and the optimal results are summarized in Table 6. This problem 
has multiple local optima and a single global one, although the 
designs are very close in terms of drag value: 39.9091 drag counts 
for the global optimum and around 40.1980 drag counts for the lo-
cal ones. Of the 15 runs, 5 converged toward the global optimum, 
which is characterized by an upward winglet. For the other 10 
runs, multiple local minima were found for shapes with a down-
ward winglet.

The radar chart in Fig. 6 shows the values of the 17 design 
variables for the various optima. We can see that all local minima 
differ only slightly on the twist parameters and on the dihedral 
parameters in the inner part of the wing. The multimodality of this 
problem, together with the complexity of the equality constraint, 
makes this a challenging proving ground for SEGOMOE.

4.4. SEGOMOE results

We performed a series of studies similar to those performed 
for the analytic functions in Sections 3.4 and 3.5. The runs were 
performed using a fixed evaluation budget of 500 evaluations, in-
cluding the initial DOE and iterations. Six initial DOE sizes were 
considered, ranging from 1 × d = 17 to 6 × d = 102. Given the di-
mension of the problem, KPLS+K surrogates were selected as local 
experts of the MOE because we have found in previous studies that 
they offer the best trade-off between efficiency and accuracy [42]. 
The tolerance on the CL was set to 10−5, and the enrichment step 
was performed using the SLSQP optimizer [74] with 50 randomly 
picked starting points at each step.

Both the WB2 and the WB2S criterion were tested using the 
same batches of initial DOEs (18 DOEs per batch, computed using 
an optimized LHS algorithm) for each size of initial DOE, leading 
to a total of 216 runs. As previously mentioned, this allows us to 
Fig. 5. SNOPT results for wing optimization with respect to the twist and dihedral variables. Multiple local minima were found when starting from 15 randomly generated
initial configurations.







of SEGOMOE to tackle multimodal optimization problems (both 
constrained and unconstrained) was evaluated using five analytic 
benchmark problems. For the first three problems, we compared 
SEGOMOE with two other derivative-free algorithms (NOMAD and 
COBYLA). The number of function evaluations was drastically re-
duced with the proposed approach, and the convergence success 
rate was higher: 99% for WB2S, compared to 89% for NOMAD 
and 29% for COBYLA in the worst cases. In the best cases, WB2S 
achieved 100%, compared to 100% for NOMAD and 77% for COBYLA. 
The fourth analytic problem (a modified Branin function) enabled 
us to obtain statistically significant results for different infill crite-
ria and different initial DOE sizes for SEGOMOE. The results show 
the overall efficiency of the SEGOMOE algorithm and demonstrate 
the advantages of WB2S, which performs a better design space ex-
ploration, especially for sparse initial DOEs. On this constrained 
multimodal analytic problem, COBYLA and NOMAD had a small 
convergence success rate (12% and 27%, respectively) with a sig-
nificant number of function evaluations. For the mixed-constrained 
problem considered in four dimensions, NOMAD had a poor con-
vergence success rate (2% to be closed to the reference solution). 
The ALBO algorithm was compared to the different variants of 
SEGOMOE in this fifth analytic example and managed to converge 
to the reference solution with a 27% success rate and a high num-
ber of function evaluations (84 calls compared to 37 with SEGO-
MOE).

We also presented the results for an aerodynamic shape con-
strained optimization problem based on the ADODG Case 6 bench-
mark, which exhibits multimodality. An exhaustive study of the 
infill criteria with various DOE sizes was conducted, and SEGO-
MOE converged to the vicinity of the global minimum area under 
a fixed computational budget. Among the criteria, WB2S appeared 
more robust than WB2 for all DOE sizes, confirming its advantages. 
Compared to a gradient-based optimizer (SNOPT) that takes ad-
vantage of adjoint gradients, and assuming a DOE size of 4 × d, 
SEGOMOE always identified the global minimum for an average 
budget that is only 50% higher than that of the gradient-based one. 
The gradient-based approach, on the other hand, only reached the 
global optimum 33% of the time.
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Appendix A

A.1. Ackley function

Objective

f (x) = −a exp

⎛
⎝−b

√√√√1

d

d∑
i=1

xi
2

⎞
⎠− exp

(
1

d

d∑
i=1

cos (cxi)

)

+ a + exp(1)

Parameters (usual)

a = 20 b = 0.2 c = 2π

Search domain

xi ∈ [−32.768,32.768] ∀i ∈ [1, . . . ,d]
Global minimum

f (x∗) = 0 x∗ = [0, . . . ,0]

A.2. Michalewicz function

Objective

f (x) = −
d∑

i=1

sin (xi) sin2m
(

ixi
2

π

)

Search domain

xi ∈ [0,π ] ∀i ∈ [1, . . . ,d]
Global minimum according to the dimension d

d = 2 f (x∗) = −1.8013 x∗ = [2.20,1.57]

d = 5 f (x∗) = −4.687658

d = 10 f (x∗) = −9.66015

A.3. Six-hump camel-back function

Objective

f (x) =
(

4 − 2.1x1
2 + x1

4

3

)
x1

2 + x1x2 +
(
−4 + 4x2

2
)

x2
2

Search domain

x1 ∈ [−3,3] x2 ∈ [−2,2]
Global minimum

f (x∗) = −1.0316 x∗ = [0.0898,−0.7126] and

x∗ = [−0.0898,0.7126]

A.4. Modified Branin problem

The modified Branin function [65] is a version of the Branin
function normalized to [0, 1] [22]. The constraint function is a nor-
malized version of the Gomez#3 function [47], with an additional 
sine wave to increase multimodality:

Objective

f (x1, x2) =
(

x2 − 5.1

4π2
x1

2 + 5

π
x1 − 6

)2

+ 10

[(
1 − 1

)
cos(x1) + 1

]
+ 5x1 + 25
8π 15



Constraint

g(x1, x2) =
(

4 − 2.1y2 + y4

3

)
y2 + yz + 4

(
y2 − 1

)
z2

+ 3 sin [6(1 − y)] + 3 sin [6(1 − z)] − 6

where y = x1−2.5
7.5 , z = x2−7.5

7.5

g(x1, x2) ≥ 0

Search domain

x1 ∈ [−5,10] x2 ∈ [0,15]
Global minimum

f (x∗) = 12.005

A.5. Linear Ackley–Hartman problem

The objective of the linear Ackley–Hartman function is a sim-
ple linear function, the inequality constraint is the Ackley function 
(centered) and the equality constraint is the “Hartman” function 
(centered, rescaled) as described by Picheny et al. [26].

Objective

f (x1, x2, x3, x4) =
4∑

i=1

xi

Inequality constraint

g(x1, x2, x3, x4) = 3 + 20 exp

⎛
⎝−0.2

√√√√1

4

4∑
i=1

(3xi − 1)2

⎞
⎠

+ exp

(
1

4

4∑
i=1

cos(2π(3xi − 1))

)
− 20

− exp(1)

g(x1, x2, x3, x4) ≤ 0

Equality constraint

h(x1, x2, x3, x4)

= 1

0.8387

⎡
⎣−1.1 +

4∑
i=1

Ci exp

⎛
⎝−

4∑
j=1

a ji(x j − p ji)
2

⎞
⎠
⎤
⎦

with

C =

⎡
⎢⎢⎣

1.0
1.2
3.0
3.2

⎤
⎥⎥⎦ , a =

⎡
⎢⎢⎣

10.0 0.05 3.0 17.0
3.0 10.0 3.5 8.0

17.0 17.0 1.70 0.05
3.5 0.1 10.0 10.0

⎤
⎥⎥⎦ ,

p =

⎡
⎢⎢⎣

0.131 0.232 0.234 0.404
0.169 0.413 0.145 0.882
0.556 0.830 0.352 0.873
0.012 0.373 0.288 0.574

⎤
⎥⎥⎦ .

h(x1, x2, x3, x4) = 0

Search domain

xi ∈ [0,1] ∀i ∈ [1, . . . ,4]
Global minimum

f (x∗) = 0.0516605 and x∗ = [0.0,0.0,0.0,0.0516605]
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