THERMAL DEGRADATION AND KINETIC ANALYSIS ON STEMBARK BIOMASS OF Melaleuca cajuputi Powell (GELAM)

MUHAMAD RAZIMIE BIN MANSOR

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

THERMAL DEGRATION AND KINETIC ANALYSIS ON STEMBARK BIOMASS OF Melaleuca cajuputi Powell (GELAM)

Melaleuca species (Pokok Gelam) are a potential sources of renewable energy, melaleuca bark can produce the porous carbon materials for hydrogen storage, which is clean energy solution for future transportation. In this research, stembark of Melaleuca cajuputi Powell ware washed with distilled water to remove any contaminant and dirt before dry it at room temperature. After drying, it was shredded into smaller size for process crushed and grinded into powdered form. In pyrolysis process, powdered stembark of Melaleuca cajuputi Powell investigate in a non-isothermal thermogravimetric analyser (TGA) in order to determine the degradation behavior of powdered stembark. There are two stage present, which first stage due to the elimination of moisture content and small amount of volatile matter compound and second stage is the place where plant biomass (hemicellulos, cellulose and lignin) degrade. The main decomposition of samples occurred between 230 - 387 °C, at heating rate 10 °C/min, corresponds to the degradation of 63.47% of volatile matter. Weight loss of sample, was strongly affected by heating rates. It was found that an increasing in heating rates results in a shift of thermograms to higher temperature. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) was performed to determine the possible chemical functional groups present in stembark of Melaleuca cajuputi Powell. From the ATR-FTIR analysis, there were volatile components that found, such as CO, H₂O, O-H, and cyclic and CO2. Results showed that stem bark of Melaleuca cajuput Powell can be characterized as high volatile matter and low ash components compared to other biomasses. The activation energy of Melaleuca cajuputi Powell, was calculated by using model free FLYNN-WALL-OZAWA (FWO) and Kissinger-Akahira-Sunose (KAS) methods and ranges value were 17.15 - 32.6 kJ/mol and 17.35 - 30.04 kJ/mol, respectively.

TABLE OF CONTENTS

			PAGE
ACI	NOWI	EDGEMENTS	iii
TABLE OF CONTENTS			iv
LIST	OF TA	ABLES	vi
LIST	T OF A	BBREVEATIONS	vii
ABS	TRACT		viii
ABS	TRAK		xi
			ver to
CHA	PTER	1: INTRODUCTION	3 to 10
1.1	Backgr	ound study	1
1.2	Signific	ance of study	4
1.3	Objecti	ves of study	4
			214
CHA	PTER :	2: LITERATURE REVIEW	
2.1	Therma	l degradation on biomass	5
	2.1.1	thermal degradation in plant biomass	6
	2.1.2	Melaleuca as energy source	9
2.2	Kinetic	study on biomass using Kissinger-Akahira-Sunose (KAS) 10
	And Fly	ynn-Wall-Ozawa (FWO)	
CHA	PTER	3: METHODOLOGY	
3.1	Mater		13
	3.1.1	Chemicals	13
	3.1.2	Apparatus	13
	3.1.3	Instrument	14
3.2	Sampl	e collection	14
3.3		e preparation	14
3.4		al Characterization	15
	3.4.1	Thermogravimetric Analysis	15
	3.4.2	Attenuated Total Reflectance Fourier Transform Infrare	d 16
		Spectroscopy (ATR-FTIR)	
3.5	Kineti	c Analysis	16
	3.5.1	Flynn-Wall-Ozawa method (FWO)	19
	3.5.2		19
		ximate Analysis	20
3.61		Moisture Content	20
	3.6.2	Volatile Matter Content	21
		Ash Content	21
	3.6.4	Fixed Carbon Content	22

CHAPTER 4: RESULTS AND DISCUSSION		
4.1 Thermal DecompositionCharacterization	23	
4.1.1 Thermogravimetric Analysis of Stem Bark Melaleuca cajuputi Powell	23	
4.2 Kinetics Analysis	28	
4.2.1 The Effect of Heating Rate	28	
4.2.2 Analysis of the Activation Energy	29	
4.3 Attenuated Total Reflectance Fourier Transform Infrared		
Spectroscopy (ATR-FTIR)	34	
4.4 Approximate Analysis	36	
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	39	
CITED REFERENCES	41	
APPENDICES		
CURRICULUM VITAE	55	

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	List of biomass used for the kinetic study to find the activation energy.	12
3.1	Hazard quotient (HQ) for different heavy metals and hazard index (HI) from consumption of herbs	14
4.1	Two stages thermal decomposition of stem bark Melaleuca cajuputi Powell at heating rate 20°C/min	23
4.2	Two stages thermal decomposition of stem bark Melaleuca cajuputi Powell at heating rate 30°C/min	24
4.3	Two stages thermal decomposition of stem bark Melaleuca cajuputi Powell at heating rate 40°C/min	24
4.4	The different sample with different heating rates for final residue left.	27
4.5	the first stage activation energy (Ea) and the correlation factors (R^2) for different conversion values using the FWO and KAS methods.	29
4.6	The second stage activation energy (Ea) and the correlation factor (R^2) for different conversion values using the FWO and KAS methods.	30
4.7	ATR - FTIR result of powdered Melaleuca cajuputi Powell stem bark.	34
4.8	Approximate analysis data for Melaleuca cajuputi Powell stembark.	37