
Integrating Optical Character Recognition and Machine Translation of
Historical Documents

Haithem Afli and Andy Way
ADAPT Centre

School of Computing
Dublin City University

Dublin, Ireland
{haithem.afli, andy.way}@adaptcentre.ie

Abstract

Machine Translation (MT) plays a critical role in expanding capacity in the translation industry.
However, many valuable documents, including digital documents, are encoded in non-accessible
formats for machine processing (e.g., Historical or Legal documents). Such documents must be
passed through a process of Optical Character Recognition (OCR) to render the text suitable for
MT. No matter how good the OCR is, this process introduces recognition errors, which often
renders MT ineffective. In this paper, we propose a new OCR to MT framework based on adding
a new OCR error correction module to enhance the overall quality of translation. Experimenta-
tion shows that our new system correction based on the combination of Language Modeling and
Translation methods outperforms the baseline system by nearly 30% relative improvement.

1 Introduction

While research on improving Optical Character Recognition (OCR) algorithms is ongoing, our assess-
ment is that Machine Translation (MT) will continue to produce unacceptable translation errors (or non-
translations) based solely on the automatic output of OCR systems. The problem comes from the fact
that current OCR and Machine Translation systems are commercially distinct and separate technologies.
There are often mistakes in the scanned texts as the OCR system occasionally misrecognizes letters and
falsely identifies scanned text, leading to misspellings and linguistic errors in the output text (Niklas,
2010). Works involved in improving translation services purchase off-the-shelf OCR technology but
have limited capability to adapt the OCR processing to improve overall machine translation perfor-
mance. In this context, it is appropriate to investigate the integration of OCR and MT for improved
translation accuracy. A novel integration of OCR, error correction and MT technology that results in
overall improvements in translation output quality to the point of acceptance by professional translators
for post-editing, would have a profound effect on the economics of translation in high-value (expensive)
domains such as Historical documents translation. This paper explores the effectiveness of OCR output
error correction and its impact on automatic translation. The correction uses a combination of language
modelling and statistical machine translation (SMT) methods to correct OCR errors. Our goal is to ad-
dress the question of whether a shared and novel integration of language processing encompassing OCR,
error correction and MT could significantly improve the final translation quality of the text which has
initially been OCRed. The remainder of the paper is organized as follows: Section 2 presents related
work on OCR error correction; Sections 3 and 4 describe the proposed OCR to MT framework and the
feasibility experiments conducted. Section 5 reports and discusses about the results and the directions
for further work are provided in Section 6.
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2 OCR error correction

2.1 Related work
The current state of the OCR output translation includes expensive manual intervention in order to cor-
rect the errors introduced in processing texts through OCR, or simply takes the approach of undertaking
manual re-creation of the document in a machine-processable form. Alternatively, the document is re-
tained in its original format and is provided as an ’image‘ to a professional translator to translate into
the target language, though this means that the original ’source‘ language is not available for inclusion
in Translation Memory for future use. In the worst case, the text is manually processed in its source text
and then professionally translated into the target text without any automated processing at all.

A lot of research has been carried out on OCR error correction, with different strategies including
the improvement of visual and linguistic techniques as well as combining several OCR system outputs
(Hong, 1995; Schäfer and Weitz, 2012; Springmann and Ldeling, 2016). Such post-OCR correction,
which represents the focus of this paper, is one of the main directions in this domain. In this way, we can
consider the OCR system as a black-box, since this technique does not rely on any parameters specific
to the OCR system. The goal of post-processing is to detect and correct errors in the OCR output after
the input image has been scanned and completely processed.

The obvious way to correct the OCR misspellings is to edit the output text manually using translators
or linguists. This method requires continuous manual human intervention which is a costly and
time-consuming practice. There are two main existing approaches to automatically correct the OCR
outputs.

The first approach is based on lexical error correction (Niwa et al., 1992; Hong, 1995; Bassil and
Alwani, 2012). In this method, a lexicon is used to spell-check OCR-recognized words and correct them
if they are not present in the dictionary. Although this technique is easy to implement, it still has various
limitations that prevent it from being the perfect solution for OCR error correction (Hong, 1995). It
requires a wide-ranging dictionary that covers every word in the language. Existing linguistic resources
can usually target a single specific language in a given period, but cannot therefore support historical
documents.

The second type of approach in OCR post-processing is context-based error correction. These tech-
niques are founded on statistical language modelling and word n-grams, and aims to calculate the like-
lihood that a particular word sequence appears (Tillenius, 1996; Magdy and Darwish, 2006). Applying
this technique on historical documents is challenging because the works on building corpora for this kind
of task has been very limited. Furthermore, when many consecutive corrupted words are encountered in
a sentence, it is difficult to choose the good candidate words. In this paper we conducted our experiments
using a corpus of old-style French OCR-ed data from the 17th, 18th and 19th centuries in order to verify
the applicability of our new OCR-to-MT framework.

2.2 Translation method
This technique centres on using an SMT system trained on the OCR output texts which have been post-
edited and manually corrected. SMT systems handle the translation process as the transformation of
a sequence of symbols in a source language into another sequence of symbols in a target language.
Generally the symbols dealt with are the words in the two languages. We consider that our SMT system
will translate OCR output to corrected text in the same language following the work of (Fancellu et al.,
2014; Afli et al., 2016).

In fact, using the standard approach of SMT we are given a sentence (a sequence of OCR output
words) sM = s1...sM of size M which is to be translated into a corrected sentence tN = t1...tN of size
N in the same language (French in our case). The statistical approach aims at determining the translation
t∗ which maximizes the posterior probability given the source sentence. Formally, by using Bayes’ rule,
the fundamental equation is (1):

t∗ = argmax
t
Pr(t|s) = argmax

t
Pr(s|t)Pr(t) (1)



It can be decomposed, as in the original work of (Brown et al., 1993), into a language model probability
Pr(t), and a translation model probability Pr(s|t). The language model is trained on a large quantity
of French texts and the translation model is trained using a bilingual text aligned at sentence (segment)
level, i.e. an OCR output for a segment and its ground-truth obtained manually. As in most current
state-of-the-art systems, the translation probability is modelled using the log-linear model in (2):

P (t|s) =
N∑
i=0

λihi(s, t) (2)

where hi(s, t) is the ith feature function and λi its weight (determined by an optimization process). We
call this method ”SMT cor ” in the rest of this paper. As (Nakov and Tiedemann, 2012; Tiedemann and
Nakov, 2013) demonstrated, closely related languages largely overlap in vocabulary and have a strong
syntactic and lexical similarities. We assume that we do not need to use the reordering model in the task
of error correction in the same language.

2.3 Language Modelling
Language Modelling is the field of creating models for writing text so that we can assign a probability to
a sequence of n consecutive words. Using this technique, the candidate correction of an error might be
successfully found using the Noisy Channel Model (Mays et al., 1991).

Considering the sentence ’I drink a baer‘, the error correction system would identify ’bear‘ or ’beer‘
as possible replacements for the non-word ’baer‘, and then a language model would most likely indicate
that the word trigram ’drink a beer‘ is much more likely than ’drink a bear‘. Accordingly, for each
OCR-ed word w we are looking for the word c that is the most likely spelling correction for that word
(which may indeed be the original word itself).

Figure 1: The proposed OCR-to-MT framework.

3 OCR-to-MT framework

The basic system architecture is depicted in Figure 1. We can distinguish three steps: automatic character
recognition (OCR), error correction (Sys Correction) and machine translation (MT). The OCR system
accepts original documents in language L1 (French in our case) and generates an automatic transcription.
This text is then corrected by two different correction systems based on language modelling and SMT



methods described in the previous section. Different correction systems can generate multiple input
hypotheses with varying confidence for the combination system based on confusion networks. The final
corrected text in L1 forms the input to the MT system. We anticipate that the automatic correction
will improve the quality of the final translation to the language L2 (English in our case). Accordingly,
this framework sets out to address the question of whether a shared and novel integration of language
processing components from both OCR and MT can significantly improve the final translation quality of
text which has initially been OCR-ed.

4 Impact of Error Correction on Automatic Translation

The proposed OCR-to-MT framework raises several issues. Each step can introduce a certain number
of errors. It is important to highlight the feasibility of the approach and the impact of each module on
the final automatic translation. Thus, we conducted three different types of experiments, described in
Figure 2.

In the first experiment (Exp. 1) we use the OCR reference (Ref.OCR.fr) as input to the MT system.
This is the most favourable condition, as it simulates the case where the OCR and the Error Correction
systems do not commit any error. Accordingly, we consider this as the reference during the automatic
evaluation process. In the second experiment (Exp. 2) – the baseline experiment – we use the OCR output
(OCR.output.fr) directly as input to the MT system without any correction. Finally, the third experiment
represents the complete proposed framework, described in Section 3.

Figure 2: Different experiments to analyze the impact of the Error Correction module.

5 Experimental Results

5.1 Data and systems description

For the training of our models, we used a corpus of nearly 58 million OCR output words obtained from
scanned documents, developed by (Afli et al., 2015). We used the corrected part of this corpus for the
Language Model. Next, the OCR output sentences and the manually corrected version were aligned at
word level and this bitext was used for our SMT error correction method. For testing, we used OCR-ed
French data (dev17) from the 17th century, manually corrected. The statistics of all corpora used in our
experiments can be seen in Table 1.



bitexts # OCR tokens # ref tokens
smt 17 1.98 M 1.96 M
smt 18 33.49 M 33.40 M
smt 19 23.08 M 22.9 M
dev17 9013 8946

Table 1: Statistics of MT training, development and test data available to build our systems.

For all of the different techniques used in this paper, the language model was built using the KenLM
toolkit with Kneser-Ney smoothing and default backoff. For the SMT cor method, an SMT system is
trained on all available parallel data. Our SMT system is a phrase-based system (Koehn et al., 2003)
based on the Moses SMT toolkit (Koehn et al., 2007). Word alignments in both directions are calculated,
using a multi-threaded version of the GIZA++ tool (Gao and Vogel, 2008).

The parameters of our system were tuned on a development corpus, using Minimum Error Rate Train-
ing (Och, 2003). We combined our two systems using a Confusion Network (CN) combination system
based on the work of (Wu et al., 2012). We call this combination LM cor + SMT cor.

5.2 Results
In order to evaluate the effectiveness of error correction, we used Word Error Rate (WER) which is
derived from Levenshtein distance (Levenshtein, 1966). We compare results on the test data of the two
different methods used in our experiments and their combination, against the baseline results which
represent scores between OCR output and the corrected reference (called OCR-Baseline).

Table 2 reports on the percentage of Correctness, Accuracy and WER of different system outputs. The
best model, using the CN Comb. system was able to decrease 5.39% of the OCR word errors (29.42%
relative improvement). It can also be observed that the SMT cor system improves the results more than
LM cor. Nonetheless, both underperform compared to the CN Comb. system. This is due to the fact
that the two methods are not always correcting the same errors, so the CN combination can be beneficial
in this case.

Systems Correctness Accuracy WER
Baseline 83.92 81.68 18.32
LM cor 84.82 82.57 17.43
SMT cor 87.64 86.06 13.94
CN Comb.
LM cor + 89.10 87.07 12.93
SMT cor

Table 2: Word Error Rate (WER), Accuracy and Correctness results on on dev17 OCR-corrected data.

For the translation evaluation we used BLEU-4 score (Papineni et al., 2002), Smoothed BLEU (Lin
and Och, 2004) and TER (Snover et al., 2006) calculated between the output of Exp. 1 (our reference)
and Exp. 2 output (the baseline) or Exp. 3 output (our proposed framework).

Table 3 lists the results of the two translation outputs from Exp. 1 and Exp. 2. It shows that our
proposed framework is very capable of correcting the final translation of the OCR-ed documents.

5.3 Analysis and Discussion
In order to better understand the impact of the error correction process and the problems of OCR’ed
historical document translation, we prepared a manual human translation of our test set based on the

https://kheafield.com/code/kenlm
The source is available at http://www.cs.cmu.edu/˜qing/



Systems BLEU-4 Smooth BLEU TER
Exp. 2 24.53 38.29 57.32
Exp. 3 69.43 70.15 21.62

Table 3: BLEU-4, Smooth BLEU and TER results on dev17 OCR-translated data.

transformation of the old French language to the current one and its translation to current English lan-
guage without any modification on the original format. We find that comparing to the manual translation,
the system can not get the correct context of the documents lines because of their short length. As we can
see in the figure 3, the sentence starts with the word ‘Quel’ and finish with the word ‘Roi?’ is segmented
on five lines which can cause a translation context problem for the MT system.

Figure 3: Exemple of Historical French document with short length of its lines.

As almost all current MT systems are translating document line by line, we can say that the context of
the translations is line-based even when we try to adapt the system to the domain of the document. The
particularity of historical documents can cause a problem of context translation without a pre-processing
of the corrected OCR output. Our results presented in table 4 show that the transformation of the OCR’ed
data to one sentence per line as a pre-processing can improve the automatic translation results from 12.59
to 18.92 BLEU points which is a very important improvement.

Manual translation without pre-processing sentence per line
BLEU-4 12.59 18.92

Table 4: BLEU-4 results on dev17 OCR-translated data with- and without pre-processing compared to
manual translation.

This experiment can open the way of thinking about improving our current MT methods and systems
by getting the document-level context of translation.

6 Conclusion

In this paper, we presented a new framework of OCR-ed document translation. The proposed method
consists of the integration of a new error correction system prior to the translation phase per se. We
validate the feasibility of our approach using a set of experiments to analyze the impact of our OCR error
correction module on the final translation. Experiments conducted on old-style French data showed that



our methodology improves the quality of the translation of OCR documents. Accordingly, we believe
that our method can be a good way to resolve the problem of correcting OCR errors for historical texts.
We plan to test it on other different languages and types of data and try to integrate the correction system
inside the OCR system architecture itself.

Acknowledgements

This research is supported by Science Foundation Ireland in the ADAPT Centre (Grant 13/RC/2106)
(www.adaptcentre.ie) at Dublin City University. We would like to thank Wided Baazaoui for her
useful and knowledgeable help on preparing the development- and test-set of this work.

References
Haithem Afli, Loı̈c Barrault, and Holger Schwenk. 2015. OCR Error Correction Using Statistical Machine Trans-

lation. 16th International Conference on Intelligent Text Processing and Computational Linguistics, Cairo,
Egypt.
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