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Abstract
Different sources of data about students, ranging from static demographics to dynamic
behavior logs, can be harnessed fromavariety sources atHigherEducation Institutions.
Combining these assembles a rich digital footprint for students, which can enable insti-
tutions to better understand student behaviour and to better prepare for guiding students
towards reaching their academic potential. This paper presents a new researchmethod-
ology to automatically detect students “at-risk” of failing an assignment in computer
programming modules (courses) and to simultaneously support adaptive feedback. By
leveraging historical student data, we built predictive models using students’ offline
(static) information including student characteristics and demographics, and online
(dynamic) resources using programming and behaviour activity logs. Predictions are
generated weekly during semester. Overall, the predictive and personalised feedback
helped to reduce the gap between the lower and higher-performing students. Further-
more, students praised the prediction and the personalised feedback, conveying strong
recommendations for future students to use the system. We also found that students
who followed their personalised guidance and recommendations performed better in
examinations.
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1 Introduction

In a recent literature review on learning computer programming, 10 years of survey
results highlight that today’s CS (Computer Sciences) classes still miss out on the
use of diverse forms of Learning Analytics (Ihantola et al. 2015) to improve student
performance in some way. Automated collection of data on computer programming
activities is typically used in isolation within designated programming learning envi-
ronments such as WebCAT (Edwards and Perez-Quinones 2008). Combining with
other complementary data sources (i.e., assignment performance or demographics or
prior learning) may require retrieval and aggregation from different course manage-
ment systems. As a result, most of the data collection in the reported studies on CS
learning is extremely customized and impossible to replicate and reproduce. Today, the
majority of computer programming classes are delivered via a blended instructional
strategy with face-to-face instruction in classrooms supported by online tools such as
intelligent tutors, self-assessment quizzes, online assignment submission, and course
management systems. New attempts in today’s classrooms seek to combine multiple
modalities of data such as gestures, gaze, speech or writing from video cameras or
lecture recordings to leverage students’ digital footprints (Blikstein andWorsley 2016;
Ochoa 2017).

In this work, we propose to combine general data sources at a Higher Education
Institution and to build predictive models that are able to identify students in need of
assistance. Consequently, due to the nature of the data sources that we use are general
and well established, this approach should be reproducible for other practitioners in a
straightforward way. We use student characteristics, prior academic history, students’
programming laboratory work, and all logged interactions between students’ offline
and online resources. We generate predictions of end-of-course outcome on a weekly
basis, during the semester. In addition, during the second half of the semester, students
can opt-in to receive pseudo real-time personalised feedback on their progress. The
feedback includes notification of their predicted performance on the module outcome
and suggestions from one of the top-performing students from the same class, a form
of peer feedback. We conducted a semester-long classroom study and collected data
fromone of the programming courses that adopted our predictive system. Furthermore,
lecturers on the course were updated each week regarding students’ progress and those
studentswhoopted-in to receive customised notificationswere surveyed for their views
and impressions.

This work contributes to a new implementation of a predictive analytics system that
aggregates multiple sources of students’ digital footprints from blended classroom
settings. This is multimodal data in the sense that it is derived from multiple sources
of information about students and in the remainder of the paper we refer to it as
the students’ digital footprints. Advanced Data Mining techniques are adopted to
engineer models to provide realtime prediction and dynamic feedback. This approach
incorporates static and dynamic student data features to enhance predictive model
scalability that can be extrapolated to other blended classrooms and to other subjects.
Additionally, not only is the approach we take generic, it also permits applicability
to limited data sets (e.g., behavior logs for laboratory material only) in order to be
beneficial in helping students in need. Most importantly, the generated predictions
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allow us to generate adaptive feedback to each student according to each student’s
progression and provide guidance when in need.

The research questions can be stated as the following:

RQ1: How accurate are the proposed predictive models with generic static and
dynamic student data features, in identifying those students in need in computer
programming courses?

RQ2: What are the effects of timely automatic adaptive support andpeer-programming
feedback on students’ performances?

RQ3: What are the students’ and teachers’ perspectives and experiences after adopting
the predictive modelling and adaptive feedback system into their own classes?

2 Literature review

2.1 Learning analytics frommultiple data sources

There are several approaches that can be adopted in using Learning Analytics based
on data frommultiple sources, to assist in gathering comprehensive information about
a class of students. Examples include the collaborative confluence working space
(Martinez-Maldonado et al. 2013), streamlining digitalizing physical artifacts (Hsiao
et al. 2016, 2017b) or mobile devices (Prieto et al. 2017; VanLehn et al. 2016). Group
Scribbles is one of the early innovations (Looi et al. 2008; Chen and Looi 2013;
Lin et al. 2014) where students edit small cards on a private workspace then drag
them into a group workspace, and where cards can be moved but not edited. The
teachers’ dashboard lets them view any group’s workspace as well as control the class
activities in various ways. MTClassroom is another system which supports small
groups working around table-top computers (Martinez-Maldonado et al. 2013, 2015).
The Formative Assessment with Computational Technology (FACT) system utilizes
mobile devices to collect both physical and virtual data (VanLehn et al. 2016). Another
example is, EduAnalysis (Hsiao and Lin 2017) which provides interfaces to facilitate
paper-based artifact preparation for traditional blended classrooms, and ultimately to
integrate data analytics. Moreover, the direction of affective computing research has
attempted to detect affects from diverse sources and incorporated them in the learning
environment. For instance, learner’s joy and distress are two affective states that can
be reliably tracked from a probabilistic method based on the system interactions in
an educational game (Conati 2002). The Affective Learning Companion recognizes a
learner’s affect by monitoring facial features, posture patterns, and onscreen keyboard
or mouse behaviors (Burleson 2006).

What all these methods have in common is that they combine and present student
data drawn from diverse sources in addition to using the more traditional click-stream
logs derived from use of the tailored educational systems. The data sources essentially
encapsulate awide range of learning activities that encode different aspects of the entire
learning processes besides the interaction with a single educational system. For exam-
ple, a student can learn from a face-to-face lecture, video/audio tutorial or recordings,
various searching and reading activities, discussions, drawing and sketching. These
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activities can be encoded through body language (posture), facial expression (emo-
tion), speech (linguistics), or writing (text). Essentially, this wide variety of example
methods show that interactivity and multimodality can contribute to educational out-
comes, both jointly or individually (Ritterfeld et al. 2009). The work by Ochoa (2017)
summarizes the state of the art of Multimodal Learning Analytics research, which
involves the most commonly captured and used data formats, including textual, audio,
spatial, visual and linguistic.

There have been research efforts investigating larger scale of data collection and
modelling (Tempelaar et al. 2017; Conijn et al. 2017), but most of the work still relies
on the actual Learning Management System (LMS) or application-specific systems
to harness the data. We are beginning to see more approaches that start integrating
multiple sources of information and work with more formats of data analytics to
support today’s classrooms (Hsiao et al. 2017b). In the work in this paper, we propose
a generic predictive modelling approach and aim to upgrade various forms of classes
with advanced Learning Analytics.

2.2 Educational data mining in learning computer programming

Modelling a student’s learning of computer programming is not a new topic. Stu-
dent models reside in intelligent tutors or any similar adaptive educational systems.
Students’ learning is typically estimated based on behaviour logs, such as the inter-
actions with tutors resulting in updates to the knowledge components. In modelling
the learning of computer programming languages, there are several parameters used
to estimate students’ programming knowledge. For instance, learning can be gauged
based on the computer programming problem solving success (Guerra et al. 2014; Sos-
novsky and Peter 2015), programming assignments progression (Piech et al. 2012),
dialogic strategies (Boyer et al. 2011), programming information seeking strategies
(Lu and Hsiao 2017), help-seeking behaviour (Price et al. 2017), the use of hints
(Rivers and Koedinger 2017; Price et al. 2017), assignment submission compilation
behaviour (Altadmri and Brown 2015; Jadud and Dorn 2015), troubleshooting and
testing behaviours (Buffardi and Edwards 2013), code snapshot process state (Carter
et al. 2015), students’ reviewing and reflecting behaviours on formal assessments
across physical and digital space (Hsiao et al. 2017a), and generic Error Quotient
measures (Carter et al. 2015). In the field of affect computing in learning of program-
ming, we also see several attempts at successfully predicting students’ achievements
such as using keyboard dynamics and/or mouse behaviours to detect negative affective
states (including boredom, confusion, and frustration) among novice C++ program-
ming learning (Vea and Rodrigo 2016). Leveraging such data could not only provide
students with feedback on their computer programming problems at hand, but also
allow instructors to be informed about students’ progression through a course, their
programming learning paths, code quality, programming states over time, and ulti-
mately which students are falling behind the rest of the class (Piech et al. 2012; Diana
et al. 2017).

However, due to the fact that student data is not open and shared across or evenwithin
institutions, integrating different data sets, parameter selection and tuning results in
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different approaches and outcomes (Brooks and Thompson 2017). In addition, most
of the published work has focused on generating models retrospectively. Only a few
of those models are put into practise and use streamed student data to produce real-
time predictions and interventions (Arnold and Pistilli 2012; Corrigan et al. 2015).
To overcome the challenges and complexities of data integration in this area, we
investigate a generic predictive modelling approach which combines various data
sources and we evaluate it in blended instruction computer programming learning
modules.

2.3 The importance of feedback in programming learning

Automated assessment is one of the most popular methods in scaled generation of
student feedback. It also guarantees a fast turnaround time to deliver feedback to those
students. Such techniques have already been widely used in many educational fields,
such as computer programming, mathematics and physics. In programming, plug-ins
built within an Integrated Development Environment (IDE) can provide students with
direct feedback after they compile their codes. Other exemplar systems areWEB-CAT
(Edwards and Perez-Quinones 2008), ASSYST (Jackson and Usher 1997) among
many others. The common approach is to apply pattern-matching techniques that
verify students’ answers by comparing them with the correct answers. Unfortunately,
in learning computer programming, automatic programming evaluation emphasizes
only the concrete aspects of an answer. It does not take into account the flavour
of the answer (i.e., whether the student seems to have been on the right track or if
their logic/reasoning was somewhat correct). As a result, programming instructors
frequently examine the program quality and issue feedback personally.

There are approaches that address the issue of scaling up feedback production
by utilising parameterized exercises, peer production, data-driven hint generation.
QuizJET (Hsiao et al. 2010) is an example program that utilizes parameterized exer-
cises to create a sizeable collection of questions to facilitate automatic programming
evaluation; PeerGrader (Gehringer 2001) and PeerWise (Denny et al. 2008) are exam-
ples that utilize student cohorts to leverage mass production; Python Programming
Tutor (Rivers and Koedinger 2017) is an Intelligent Tutor that generates personalized
next-step hints as the feedback based on the vast past solutions. Overall, the field of
automatic programming evaluation is less focused on grading paper-based program-
ming problems. Therefore, there is less support for personalization in this area.

A few relevant early innovations have attempted to process paper exams and hand-
written work, and involve humans in the grading process (Bloomfield and Groves
2008), such as GradeScope (Singh et al. 2017), Online Judge (Cheang et al. 2003),
and PGA (Hsiao 2016; Murphy 2017). This stream of work reports a few benefits of
digitizing paper exams (i.e., some default feedback can be kept on the digital pages
with the predefined rubrics; a student’s identity can be kept anonymous, preventing
potential grader bias thatmay have occurred if the grader recognized a student’s name).
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3 The student’s digital footprint

Higher Education institutions collect data about students at multiple times and store
this in different locations. This includes students’ backgrounds and demographics at
registration, interaction with online learning environments, geolocated physical data
like lecture attendance or library accesses, and some aspects of their social activities
like memberships of clubs and societies. Leveraging all these sources of information
can shape a picture of the students’ engagement and involvement on campus. Thus, we
hypothesize that using data sources which form amore holistic overview of a student’s
life at University will construct a better estimation of students’ academic progression
which can be modeled over time.

Moreover, in learning some disciplines such as computer programming, students
spend a fair amount of time in laboratory sessions. Students typically interact with
an online platform to develop and submit their program code for specified problems
leaving a far greater digital footprint that analytics platforms have make use of in the
past. These types of program submission platforms are typically used to evaluate the
correctness of the students’ computer programming work. Unfortunately, these auto-
mated assessment systems are not the only tools that students and instructors will use
and they often have to switch among several online educational platforms. Therefore,
without collecting all the diverse interaction data, it is challenging to establish reliable
groundtruth data on which to train predictive models.

We identified three data sources that researchers and data scientists are often able
to leverage to model student interaction, engagement and effort in computer program-
ming or laboratory-intensive courses in order to build models which achieve good
predictive performance and these are straightforward to store and leverage. The data
sources are as follows:

– First, a platform that manages student registration will contain student character-
istics and demographics such as gender, date of birth, citizenship and domicile;
prior academic history including prior-to-university test scores, equivalent to High
SchoolGPAandSATexams in theUS; and prior academic history at theUniversity.

– Second, a custom learning platform for the teaching of computer programming or
aweb application that allows students to submit programs and instructors to review
them. Each programming submission typically contains the program name, code,
laboratory assignment sheet that it belongs to, whether the submission is correct
or incorrect according to some pre-specified test cases, and the date and time of
the submission.

– Finally, the same environment or the general Learning Management System (such
asBlackboard,Moodle or Canvas) in theUniversitywill gather student clickstream
data that reflects each student’s engagement with the course material and every
instance of student access to a resource is recorded and stored. These include the
resource or page requested, date and time, student identifier, and the IP address of
the device used for access.

These data sources contain rich information to model how students behave. In the
following section, we will show how to leverage these generic data sources to build
predictive analytics models in order to identify students in need of assistance. This
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can be extrapolated to similar data sources in other institutions. In this study, gender
was not used as we chose not to extract patterns from a value that can be biased to
previous student cohorts.

4 Context

Dublin City University offers a Bachelor of Science degree in Computer Applications
(CA). This prepares students for a career in computing and information technology
by giving them in-depth knowledge of software engineering and the practical skills to
apply this knowledge to develop the technology behind computing-based products.

The first semester teaching period (Fall) typically runs from the end of September
to mid-December. The second semester (Spring) runs from the end of January or
beginning of February until the end of April. Laboratory sessions and computer-based
examinations are carried out only during the teaching period. Dublin City University
also provides in-lab peer-mentoring for most computer programming modules as well
as the Lecturer (Professor) attending the laboratory sessions. In the UK and Ireland,
the word module is used interchangeably with course.

A custom Virtual Learning Environment (VLE) for the teaching of computer pro-
gramming has been developed byDr. StephenBlott.1 This automated grading platform
is currently used in a variety of programming courses across Computer Science in
Dublin City University. Students can browse course material (as on any LMS) and
submit and verify their computer programming laboratory work. Figure 1 shows how
students are able drag and drop their program files onto the platform. Figure 2 shows
the real-time feedback students get when verifying a program by running a suite of
pre-specified test cases on the grading sever.

This grading system has been used for almost four academic years as of February
2019 on a variety of computer programming courses. The log data generated by this
system is leveraged using Artificial Intelligence andMachine Learning techniques and
combining them with other student data sources to identify students having learning
issues and adapting their learning to this discipline. Predictivemodels are trained using
digital footprints from past student cohorts to automatically mine patterns and predict
performance of current students in computer-based formal assessments.

Our previous study (Azcona and Smeaton 2017)was carried out on aComputer Pro-
gramming I module (CS1) that introduces first-year Computer Applications students
to computer programming and the fundamentals of computational problem solving
during their first semester. We achieved this by combining two student data sources
and manually identifying students for assistance during laboratory sessions. However,
the Lecturer was not able to personally reach out to all students who might need
assistance or be at risk during the laboratory sessions.

The research methodology used in this paper has been deployed in several courses
in first and second year, building independent models per course. This paper will
introduce and explain this approach in depth and showcase the analysis done on one

1 Dr. Stephen is an Associate Professor at the School of Computing in Dublin City University http://www.
computing.dcu.ie/~sblott/.
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Fig. 1 VLE for the teaching of computer programming at Dublin City University

Fig. 2 Instant feedback prompted to the student after submitting a program

of those courses Computer Programming II (CS2) as a successful example of the
researchmethodology by combining student data frommore sources and automatically
and adaptively sending feedback to students about their course progression and further
learning resources which are available to them and which they might use. We leverage
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our previous platform PredictCS (Azcona et al. 2018) to gather student data from
different data sources and to carry out Artificial Intelligence and Machine Learning
operations.

The CS2 module introduces first-year CA students to more advanced computer
programming concepts, particularly object-oriented programming, programming
libraries, data structures and file handling. Students are expected to engage exten-
sively with hands-on computer programming in the Python programming language.
In CS2 up to seven CA second-year students as well as the lecturer, give tutoring
support during laboratory sessions. Students are assessed by taking two laboratory
computer-based programming exams, a mid-semester and an end-of-semester assess-
ment, during the teaching period. Students are also required to submit their laboratory
work as it counts towards their final grade (10% of the overall grade for the course).
This module’s lectures are taught for 4 h each week for 12 weeks and the course also
involves four additional hours of supervised laboratory work on two different days
each week using the Python language. The course is a continuation of CS1, the intro-
ductory computer programming module. In terms of numbers, 134 students registered
for CS2 during 2015/2016 academic year and 140 students in 2016/2017.

In any student intervention, it is important to capture students’ opinions regarding
the feedback shared with them, to understand how it affects their behaviour within the
modules and whether it encourages them to try new solutions or to revise material.
Thus, we gathered students’ opinions about our system and the notifications via a
written questionnaire at the end of the semester. The questions on the form were listed
as follows:

– Q1: Did you opt-in? [Yes/No]
– Q2: If you opted-out, could you tell us why? [Comment]
– Q3: How useful did you find the weekly notifications? [1–5 star rating]
– Q4: Did you run any of the suggested working programs? [Yes/No/I was never
suggested any]

– Q5: Would you recommend the system to a student taking this same module next
year? [Yes/No]

– Q6: Would you like to see weekly the system notifications for other modules?
[Yes/No]

– Q7: How could we improve the system for next year? Any other comments. [Com-
ment]
In addition, we enabled a discussion among the lecturers of the modules that
adopted this system and formal feedback was sent to researchers via email.

5 Predictive modelling

A Predictive Analytics model can be developed to classify students and identify those
who may be in need of learning assistance and are at-risk of failing their next formal
laboratory assessment. The target classes are whether their performance is above or
below a breakpoint between higher and lower performers, usually the pass threshold
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for the module. The two classes are typically imbalanced as we do not usually get
equal numbers of students passing and failing these in-semester examinations.

The predictive model is trained using digital footprints from past student cohorts.
It automatically extracts classification patterns and predicts performance of current
students in computer-based formal assessments. Computer programming modules are
quite dynamic and exercises can vary considerably from year to year, however the
concepts and knowledge components being taught typically remain the same. Learning
functions or classifiers can generate predictions in a timely basis, such as weekly, to
detect students deviating from the desired patterns of success in each course.

5.1 Data processing and feature engineering

We trained classifier (a learning function) every week to distinguish higher versus
lower-performing students based on extracting a number of features from the data. A
combination of static and dynamic student features was used for eachweekly function.
A set of static features was extracted before the start of the semester for each course
and each student based on their characteristics and prior academic performance. Then,
each week, a set of dynamic features was collected for each student by building
engagement and progression features based on their interactions and submissions to
the platforms.

Every week, a classifier was built by concatenating the static and dynamic features
from previous weeks and that week’s dynamic features in order to account for each
student’s progression and engagement throughout the course. To clarify, every week
a new set of dynamic features are appended to the pool of features extracted from
previous weeks to develop a new classifier.

The data sources we leverage in order to model student interaction, engagement
and effort in computer programming courses are the following:

– Student characteristics: student demographics.
– Prior academic history: prior-to-university test scores. In our previous work;
Azcona and Smeaton (2017), we analysed 950 first-year Computer Science (CS)
entrants across a 7 year period and showed the significant correlation between their
entry points or mathematics skills and how they perform in their first year and in
computer programming modules.

– Programming submissions: our custom platform allows students to submit their
laboratory programs and provides immediate feedback for each submission based
on a suite of unit tests. The information extracted for each submission is the
program name, code, laboratory sheet that it belongs to, whether the submission
is correct or incorrect according to the lecturer test cases, and the date and time of
the submission.

– Interaction logs: students interact online with the course’s custom VLE and every
instance of student access to a page is recorded and stored. These are web logs
from an Apache web server for the resource or page requested, date and time,
student identifier, and the IP address of the device used for access.

The following set of static features are extracted before the start of the semester
for each course and student:
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– Student characteristics:

• Age based on their date of birth and registration date.
• Travel distance from home to university based on their domicile.
• Route to university: Irish Leaving Certificate, Athletic scholarship, Disadvan-
taged background, Mature entry, etc.

– Prior academic performance:

• Irish CAO points and Leaving Certificate exam scores (equivalent to High
School GPA and SAT exams in the US)

• Prior academic history at the university.
• Final laboratory exam grades from prior courses in CS.

Then, each week, a set of dynamic features are extracted for each student based
on raw log data, interaction events for students accessing material and corresponding
computer programming submissions:

– Programming effort:

• Computer programming laboratory work completed that week: percentage of
correct exercises on that week’s labsheets.

• Cumulative computer laboratory work completed since the start of the
semester.

– Engagement:

• Lab attendance: whether the student attended the laboratory sessions or not.
• Time spent on the online platform.
• Ratio of during-laboratory to non-laboratory time accesses.
• Material covered based on the resources made available each week.
• Average time of the day the course material is accessed.
• Average lapse time between a resource being made available and the student
accessing it for the first time.

• Ratio of on-campus to off-campus accesses based on IP address.
• Ratio of weekday to weekend accesses.

Table 1 lists the features with an associated short name that we will use for graphs
and tables in the remainder of this paper.

5.2 Training themodel retrospectively

A retrospective analysis was carried out to verify the viability of the model. We devel-
oped a classification model trained with student data from 2015/2016 for CS2. A set
of learning functions or binary classifiers, one per week, were built to predict a stu-
dent’s likelihood of passing or failing the next computer-based laboratory exam. In
2015/2016, there was a mid-semester exam in week 6 and an end-of-semester exam
in week 12 for CS2. To clarify, classifiers from week 1 to 6 were trained to predict the
mid-semester laboratory exam outcome (pass or fail for each student) and from 7 to
12 the end-of-semester’s laboratory exam outcome. The dynamic features mentioned
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Table 1 Feature names and short names

Feature name Short name

Travel distance to university Distance

Irish CAO points (high school GPA) CAO points

Leaving certificate math exam score (SAT exams) Math LC

Average grade on previous formal assignments Avg. grade

Laboratory assignment Course year Exam Course year

Computer programming work completed on week x Results Wx

Cumulative computer programming work completed on week x Cumulative Wx

Laboratory attendance week x Lab attendance Wx

Time spent on the platform on week x Time Wx

Ratio of during-laboratory to non-laboratory time accesses on week x Lab access Wx

Material covered based on the resources made available on week x Coverage Wx

Average time of the day the course material is accessed on week x Hour access Wx

Average lapse time students take to access the resources on week x Checking Wx

Ratio of on-campus to off-campus accesses on week x On/off campus Wx

Ratio of weekday to weekend accesses on x Week(end) Wx

Table 2 Details and course pass rates on groundtruth (training) data

Course Academic year Semester Students 1st Exam 2nd Exam
Passing rate (%) Passing rate (%)

CS2 2015/2016 2 149 44.30 46.98

above were extracted every week using the activity interactions and computer pro-
gramming submissions. Every week, a classifier was built by concatenating the static
student data, the dynamic features from previous weeks and that week’s dynamic fea-
tures in order to account for each student’s characteristics, progression and engagement
throughout the course.

The Empirical Error Minimization (EMR) approach was employed to calculate
the misclassification error and determine which learning algorithm has the lowest
empirical error from a bag of classifiers C (Devroye et al. 2013). We leveraged the
Machine Learning Python library Scikit-learn (Pedregosa et al. 2011). Our approach
is to pick a classifier that performs well on average for both classes (likely-to-pass and
likely-to-fail) in the prediction problem. Generally, exam results are quite imbalanced
as there are many more students who pass rather than fail an assessment. The resulting
accuracy of a learning algorithm could be misinterpreted if we weigh the predictions
based on the numbers per class. However, in this case, CS2 is a challenging class
that requires a student to learn advanced computer programming concepts and the
pass rates for computer-based programming assessments are typically not very high.
The objective is still to identify students having issues and it is preferable to classify
students “on the boundary” as likely to fail rather than not flagging them at all and
miss the opportunity to intervene and help. See the training data pass rates in Table 2.
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Table 3 Performance of the learning algorithms in the bag of classifiers when trained and cross-validated

Learning algorithm Class F1-score (%) Precision (%) Recall (%)

K-Neighbors Fail 74.50 71.41 81.03

Pass 59.81 68.80 58.74

Decision tree Fail 72.53 72.14 76.07

Pass 63.32 68.22 67.37

Random forest Fail 75.39 71.64 83.07

Pass 62.25 72.92 61.28

Logistic regression Fail 73.13 72.85 76.33

Pass 62.65 66.25 67.02

Linear SVM Fail 70.23 71.35 72.80

Pass 60.91 64.41 66.32

Gaussian SVM Fail 64.52 50.47 94.79

Pass 1.14 2.00 5.31

Our bag of classifiers contain simple learning algorithms like Logistic Regression,
Support Vector Machines (SVM) with different kernels, a K-Neighbors classifier, a
Decision Tree and a Random Forest ensemble classifier. See “Appendix” A for the list
of classifiers we used.

Table 3 presents details on the performance for each learning algorithm in the bag
of classifiers. These performance metrics indicate an average of the values for each of
the 12 weeks of the semester. For each week, the resulting value is an average of the
folds after performing tenfold cross validation.

The classifier selected was the K-Neighbors classifier (being K or the numbers
of neighbors 12) which gave us high performance with metrics for F1, precision and
recall for both classes compared with other classifiers trained throughout the semester.
In addition, K-Neighbors gave us the highest F1 metric on weeks 5 and 6, and those
weeks are key to identify who is struggling before their first assessment and help
accordingly. Figure 3 shows the resulting average F1-metric between the folds for
each week of the semester on the training data (and the shaded area is creating by
adding and subtracting the average of the folds’ standard deviation from the mean).
Also, Fig. 4 indicates the F1 values for the Fail (likely-to-fail) class.

The SVMwith a Gaussian kernel failed to learn properly and classified all students
to belong to one of the classes for the first assessment and also for the second. The
selected K-Neighbors classifier’s predictions are statistically significant compared to
the Gaussian SVM’s (p < 0.00001). However, there are no statistically significant
differences between K-Neighbor’s predictions and the other classifiers. That indicates
the data is limited and, even though, some learn slightly better than others, all but the
Gaussian SVM perform similarly. Unfortunately we only have training data for one
academic semester but in future years, we will have more data from student cohorts
that will enable us to generalise better.
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Fig. 3 Performance of the bag of classifiers for the F1 metric

Fig. 4 Performance of the bag of classifiers for the F1 metric and the fail class

5.3 Importance of the features

We measured the predictive power of each of the set of individual features derived
from the student digital footprint. For that, we used the linear and non-linear rela-
tionship between those values and the target, namely the next exam scores, using the
Pearson and Spearman correlation coefficients and p-values. This was done to indicate
the probability of no correlation and the null hypothesis to be incorrect. Table 4 shows
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Table 4 2015/2016 Feature correlations with target values

Feature name Pearson Spearman
Coefficient (p-value) Coefficient (p-value)

CS1 2nd Exam 2015/2016 0.35** 0.40**

Programming work week 1 0.53** 0.52**

Programming work week 2 0.60** 0.58**

Resources coverage week 3 0.39** 0.38**

Cumulative programming work week 3 0.64** 0.64**

Cumulative programming work week 4 0.70** 0.69**

Cumulative programming work week 5 0.72** 0.72**

Programming work week 6 0.73** 0.73**

Cumulative programming work week 7 0.62** 0.62**

Lab attendance week 10 0.24 (p = 0.0027) 0.28 (p = 0.0007)

Hours spent week 10 0.31 (p = 0.0001) 0.50**

Cumulative programming work week 12 0.67** 0.68**

**p-value < 0.0001

some examples of these features: academic performance, static characteristics, inter-
action and programming features. This analysis confirms the predictive power of our
features and the programming weekly and cumulative progress features increasingly
gain importance throughout the semester as students put more effort into the modules.

For instance, in order to predict the mid-semester exam performance for each stu-
dent, the computer programming work features gain importance every week. For the
second part of the semester, similar increasing importance is observed. To clarify, the
cumulative computer programming work for week 3 is a different feature than the
cumulative programming work from week 4 and both features will exist separately
for the classifier in week 4.

In addition, an extra trees classifier, a type of forest that fits a number of randomized
decision trees (Geurts et al. 2006), with 250 estimators is computed to alsomeasure the
importance of each feature. For each weekly learning function, an extra trees classifier
is fitted and the features are ranked based on their associated normalized importance.
Interestingly, we can observe how static features such as the exam for CS1 or the
entry-to-university Mathematics score are important in the first week of the semester
(see Fig. 5) while the dynamic programming work features and the effort students put
in increasingly gain importance throughout the semester (see Fig. 6) relegating static
features to the end of the ranked list of features.

A subset of the 10 highest ranked features each week can be used to develop a new
model. This model would contain a weekly classifier with the top 10 features only.
This approach for feature selection improved our metric values, see Fig. 7 (Hanley
and McNeil 1982). This analysis also confirms the predictive power of the features.
Other models using all the features, only dynamic features or even only programming
work features do not work as well as selecting the top features for each week.
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Fig. 5 Top features for week 1’s learning function derived from an extra trees classifier

Fig. 6 Top features for week 12’s learning function derived from an extra trees classifier

This retrospective analysis shows that we can successfully gather a rich student
digital footprint about students’ learning progress in computer programming. For CS2,
we leverage the groundtruth data collected from the previous academic year, including
student demographics, prior academic history, computer programming submissions
and log interactions with the material, which was used to extract features and build
modelswhich embed patterns. Then, pseudo real-time predictionswere generatedwith
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Fig. 7 Comparative feature analysis throughout the training semester

Table 5 2016/2017 Student opt-ins and opt-outs to interventions

Students Replied No-reply Opt-ins (out of the replies) Opt-outs

140 122 (87.14%) 18 (12.86%) 111 (90.98%) 11 (9.02%)

current students and incoming student data from the data sources mentioned above.
The results will be analysed in Sect. 7.

6 Automatic and adaptive peer-programming student feedback

In computer programming modules, after the first laboratory exam in week 6, we
started sending weekly notifications to students in the class via email.

We enabled a feature in the submission platform for the teaching of computing
programming where students could opt-in or out from these notifications and read
about the project. After the feature was enabled, students were not able to submit
any programs before they chose to either opt-in or out. Table 5 shows the number of
students who replied to the opt-in option. Students who did not reply were disengaged
from the module from that time. From the replies, a significant number of students
(91%) opted-in and they received weekly notifications from that moment onwards.

The feedback to each student was personalized in the following ways:

– By leveraging our weekly predictions and based on the associated probability of
failing the next laboratory exam, students were ranked and divided into deciles.
Hence, there were 10 custom messages we sent based on their performance. From
“For the last week our records show that you are engaging really well with the
courseware and are well on top of module {{ course }}. Well done you.” for those
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in the top 10% of the class to “For the last week our records show that you are
not engaging enough with the courseware for module {{ course }} and you really
need to work harder. Please try to make more effort to keep up this week and if
you are finding this difficult then do contact the Lecturer.” for those in the lowest
10% of the class, with other 8 custom messages in between.

– If a student did not spend any time on the platform,we added themessage“Remem-
ber, computer programming is a skill that requires practice and this module is no
exception.” in bold.

– For each student we checked whether (s)he attended any of the lab sessions the
week before and regardless of the predicted probability we acknowledged if they
did or we added the message Try to make it to the next lab session so the lecturer
and tutors can help you resolve any issue.” if they did not.

– In addition, as a form of peer feedback, for each notification we included one
computer programming suggestion if the student had submitted a program that
failed any of the testcases and was incorrect. We developed a knowledge graph
and based on the concepts the lecturer considered more important each week,
we started suggesting programs for those gaps in knowledge. Typically, the most
recent labsheet exercises were suggested first, then the previous labsheet exercises
and so on. The order of the exercises selected from a particular labsheet is the
normal order in the lab. The first exercise in the labsheet will be offered before
the second if both were failed submissions for a particular student. The solution
suggested is the closest program from a top-rated student in the class that week
who got that program working as expected. The top students are the 10% highest
ranked in that class from our predictions each week. We recommended the closest
submission by text similarity between the programs after removing the comments.

– Students were given an explanation about the project and how the predictions are
computed. They were also provided with support resources to reach out to the
Lecturer of the module, our project or the Support Services at the University if
they needed assistance.

– At the end of the note, students could find links to read the Terms and Condi-
tions for the project, or unsubscribe from these notifications if desired. Nobody
unsubscribed from these notifications throughout the semester.

See Fig. 8 for a sample of the notifications.

7 Results

We will now analyse the results obtained by running predictions on data from
2016/2017’s incoming CS2 students along with the feedback sent to them and what
this means for the research questions proposed.

7.1 RQ1: Predictions

Predictions were calculated on a pseudo real-time basis every week for students who
registered for the module during the second semester of 2016/2017 using the model
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Fig. 8 Anonymised customized notification sent to a student in CS2 on 2016/2017

trained with our groundtruth data. Individual reports were emailed to the Lecturers
every week and posted on a visual analytics web application accessible to them at
any time. In order to evaluate how our predictions performed, we compared the corre-
sponding weeks’ predictions with the actual results of the two laboratory exams that
took place inweeks 6 (first exam) and 12 (second exam) in 2016/2017. Table 6 contains
details of the accuracy of our predictions. CS2’s predictions were run in 2016/2017
academic year on Semester 2.

One-hundred and thirty-three students registered in the 2016/2017 academic year.
On the first mid-semester laboratory exam, 58.57% passed the test and our predictions
had flagged 74.29% students as “at-risk” of failing that laboratory exam. We created a
confusionmatrixwith the expected pass/fail and the actual results by looking at the true
positives, true negatives, false positives and false negatives and from this we calculated
accuracy, precision, recall and F1-score. We shared that information with the lecturer
to get a feel of how accurate is the information they get automatically every week. In
addition, we looked at the probability associated with failing the laboratory exam that
the classification gives us and correlate that with the actual result that students get. See
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Table 6 2016/2017 Module information, pass rates, at-risk prediction rates, prediction metric results and
correlations for the incoming cohort

Information 1st Exam 2nd Exam

Number of students 133 133

Passing rate 58.57% 42.86%

Predicted at-risk rate 74.29% 44.29%

Model’s accuracy 64.29% 77.14%

Model’s precision 94.44% 67.95%

Model’s recall 41.46% 88.33%

Model’s F1-score 57.63% 76.81%

Pearson correlation coefficient (p value) 0.62 (p < 0.0001) 0.65 (p < 0.0001)

Spearman correlation coefficient (p value) 0.60 (p < 0.0001) 0.70 (p < 0.0001)

Table 7 Interventions sent to students

Course Year Notifications Suggestions # Corrected

CS2 2016/2017 438 181 21 (11.60%)

the last two rows for the linear and non-linear analyses. That indicates our confidence
predictions are highly correlated with the actual results.

Individual reports containing lists of students and their associated probabilities of
experiencing issues ahead of their next examination were sent to instructors each week
and shared on our analytics web application. As the semester progressed, our early
alert system gathered more information about students’ progression and our classifiers
were able to learn more as shown by the increased accuracy and F1-score measures
and the decreasing number of students flagged as “at-risk” from the mid-semester
exam to the end-of-semester’s. In short, we could automatically distinguish in a better
way, who is going to pass or fail the next laboratory exam. We could have compared
the actual results with the predictions from all weeks but we felt the 2 weeks where
the laboratory exams happened already showed their improved performance.

7.2 RQ2: Interventions

Notifications were sent to opt-in students for the second half of the semester classes
as shown in Table 7. 438 notifications were sent to students, 181 of these contained
a computer programming suggestion and the remaining did not have any program
to suggest to the students. 21 of those programs suggested were corrected by the
students after the recommendation was sent. Notifications were generated and sent on
Monday morning for this course using the programs up to 2 weeks before as students
were required to submit these programs (part of their continuous assessment) and the
deadline for submitting them in that class was 2 weeks.
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Table 8 Static features regarding student groups developed

Student Academic # Average age Gender Average GPA
Group Year Stud. [SD] Male/female [SD]

Whole class 2015/2016 149 18.94 [±3.08] M: 133 F: 16 453.35 [±52.29]

Whole class 2016/2017 137 18.82 [±2.43] M: 120 F: 17 440.10 [±34.47]

Opted IN 2016/2017 108 18.82 [±2.55] M: 93 F: 15 440.62 [±34.82]

Opted OUT 11 18.82 [±0.72] M: 10 F: 1 447.14 [±28.39]

Fixed a program 2016/2017 16 18.63 [±0.93] M: 11 F: 5 443.93 [±37.37]

Did not fix any 51 18.53 [±1.57] M: 45 F: 6 442.70 [±41.11]

Passed 1st exam 2016/2017 82 18.88 [±2.84] M: 76 F: 5 439.60 [±35.08]

Failed 1st exam 58 18.75 [±1.66] M: 44 F: 12 440.97 [±33.37]

Table 9 Differential improvement between students who fixed any of the programs suggested to them and
students who were suggested code solutions but did not fix any

Student Number Avg. grade Avg. grade Avg. grade Differential
Group Students 1st Exam (%) 2nd Exam (%) Improvement (%) Improvement (%)

Opted IN 108 54.51 37.75 −16.76 +16.05

Opted OUT 11 52.27 19.45 −32.81

In order to compare the impact these interventions may have had, we grouped the
students in several ways and compare the differential performance between the first
and second examination. The groups are the following:

(i) Students who opted in vs. students who opted out to receive these notifications
during that academic year;

(ii) Students who fixed a program vs. students who did not fix any program recom-
mended to them during that academic year;

(iii) Students who passed the first exam (higher-achievers) vs. students who failed
that exam in between two different academic years.

First, we looked at the static data including demographics and academic perfor-
mance for these groups of students. As shown in Table 8 there are no significant
differences in between these groups of students.

We then created two groups from the students, the ones who opted in to receive the
notifications and the students who opted out shown in Table 9. There were students
who never replied to whether they wanted to opt-in or out and they were not added to
either group. All students performed poorly on the second examination but students
who opted-in to these notifications did not decrease their performance grade asmuch as
students who opted-out. Based on 1 year of data, opt-in students might have benefited
from these customized notifications that include the student’s performance and code
solutions.

Second, we created two different groups from the students, the ones who corrected
any of the suggested programs with the solution outlined or another solution, and the
ones who were suggested one or more computer programming suggestions but did not
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Table 10 Differential improvement between students who fixed any of the programs they were suggested
and students who were suggested code solutions but did not fix any

Student Number Avg. grade Avg. grade Avg. grade Differential
Group Students 1st Exam (%) 2nd Exam (%) Improvement (%) Improvement (%)

Fixed a program 16 32.81 27.62 −5.19 +5.85

Did not fix any 53 45.28 34.24 −11.04

Table 11 Differential improvement between higher and lower-performing students over the two academic
years

Academic 1st # Avg. grade Avg. grade Avg. grade
Year Exam Stud. 1st Exam 2nd Exam Improvement (%)

2015/2016 ‘Passed’ 66 75.23% [±20.08%] 55.06% [±29.93%] −20.17

‘Failed’ 83 14.70% [±13.65%] 24.40% [±24.74%] +9.70%

Differential: +29.87%

2016/2017 ‘Passed’ 82 76.22% [±21.70%] 47.85% [±26.42%] −28.37

‘Failed’ 58 8.62% [±11.88%] 12.02% [±14.64%] +3.40

Differential: +31.76

correct any and these are shown in Table 10. There were 16 students who corrected
some of their failing programs as suggested and 53 who were suggested computer
programming code solutions but they did not. For the ones who did, their average
grade on the second exam was more than 5 points below. However, for the ones that
did not, their’s was more than 11 points. Again, and based on 1 year of data, students
that fixed any of their programs might have benefited by learning from programs from
their own peers that are offered to them as advice for failed submissions.

As an alternative way to view the results, we also group students into higher
and lower-performing groups based on their results in the first assessment in order
to measure whether notifications had any impact on their subsequent performance.
Table 11 shows how the the gap between the students who passed the first assessment
(‘Passed’) vs. students who failed that assessment (‘Failed’) get reduced on the sec-
ond assessment. That is likely as the group who failed the first exam had more room
for improvement and for the group who passed that exam maintaining their grade
is already an accomplishment. In this course, students who failed CS2’s first labo-
ratory exam improved almost 2 points on average respectively on 2016/2017 when
the predictions were run, students were ranked, programs were suggested and notifi-
cations were sent to students. The differential improvement between the two groups
of students, and the ones who passed their first assessments and the ones who failed,
are statistically significant (p < 0.0001) for both academic years. In both scenarios,
students who learned from the programs suggested and lower-performing students,
showed a learning improvement over the two other groups.
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Table 12 Survey responses from students about the project with respect to CS2

Response rate (%) Q1 (%) Q3 Q4 (%) Q5 (%) Q6 (%)

75.71 93.40 3.49 � 33.70 85.15 83

7.3 RQ3: Students and lecturers have their say

Overall, feedback was very positive from both students and lecturers and responses
can be found in Table 12. The survey results were anonymized. Most students would
recommend this system to students attending the same module next year or would like
to see this system included in other modules as shown in answers to questions 5 and
6 respectively.

The questionnaire was completed on the second-last day of the semester classes for
CS2 during an evaluation for another module where all CA first-year students should
have attended. That allowed us to gather a good number of responses. The response to
the first question shows the percentage of students who opted-in and the fourth shows
whether they ran any of the suggested programs. The responses in both questions are
inaccurate as, for instance, some students claimed they opted-in when they did not or
they were not suggested any program when in reality they were. That indicates that
some students may not check their mail regularly or they opted in without realising
what they were signing up for or what the system would do with their digital footprint.
Email notifications via email may not be the best way to communicate with students as
some of them pointed out in the improvements and comments section and a better way
to measure how they interact with these customized messages should be leveraged.

The last question regarding how studentswould improve the systemhad really inter-
esting comments. However, students who were doing well or very well, were getting a
similar response every week and the notification might seem monotonous. In general,
students demanded a more personalised notification and some other additional learn-
ing resources. Finally, the following are some positive and negative quotes, comments
and suggested improvements from students for this last question of the survey:
A good amount of students demanded more personalised feedback:

– “More detailed responses, where you can improve”
– “More varied responses”
– “Give more personalised feedback”
– “Maybe more detailed feedback”
– “More in depth analysis of progress, more precise areas to focus on”

Some students also asked for other features:

– “Feedback on each step of each task would be good, such as, better ways to do
things”

– “Have it from the start of the year”
– “Send a(n) end of module feedback of the whole module”
– “Maybe more suggested working programs”
– “Give advice in what the student is performing poor in”
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Others did not enjoy notifications thatmuch as they could be very repetitive for students
who are well on top of the module and do not have any failed programs for which they
could get suggestions:

– “Less repetition / automation. (It) would be nice to receive other feedback besides
“you are doing OK”.”

– “Always said the same thing”
– “More information relevant to how you are doing, it is too vague”

Overall the feedback was very positive and some students were motivated with the
weekly notifications:

– “It gave me confidence about the module. It gave me reassurance as to how I was
getting on.”

– “Good service, very helpful and effective way to manage your module”

In addition, the lecturer of this module said “(He) would be happy for you to run
further experiments in future deliveries of CS2”. “(He) liked the fact you could tailor
the release of concepts to students in order to keep pace with the delivery of themodule
e.g., avoiding sharing solutions by advanced students that used lambda expressions
not yet covered”.

8 Conclusions and future work

8.1 Summary

This paper describes a new research methodology that combines diverse data sources
in Higher Education to classify students and distinguish students at risk. Personalised
notifications were sent to students regarding their progression and suggested course
material and code they should view based on the engineered predictive models. Due
to these models involve sets of static and dynamic features covering ranges of students
offline resources (i.e., demographics) and online information (i.e., behavioural logs),
which permit to be further extrapolated to other domains as appropriately accord-
ing to the data availability. The predictive students’ performance outcomes provide
tremendous value to the at-risk students directly as well as the lecturers to be better at
identifying them and to react upon. In addition, in large classes, where lecturers are not
able to personalise their teaching and invest enough class time with each individual
student, this methodology can supply the penalisation asynchronously by suggesting
material and program code to students, keep themmore engaged, improve their success
rates and aid their learning of computer programming skills.

8.2 Limitations

There are a number of limitations in this work, they are listed as following:

– The featureswe extracted from the diverse data sources at our university aremainly
student records and logs. However, there are still various of other data sources not
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considered in the current study, such as video or speech. These can potentially
shed more insights and understandings on some detail level of how students learn
and progress in Higher Education. Additionally, the availability of more data from
previous student cohorts would potentially enable us to develop more complex
models and also higher-level representations of student learning by stacking linear
models with advanced machine learning techniques such as Deep Learning.

– Modelling is not perfect and has a probability of error. Some students will be
mis-classified. Students who are predicted as likely to fail but in reality who end
up passing are not a concern for us at this point. We may have affected their
learning with our notifications. However, we want to minimize the students that
we classify as likely to pass (false positive) or not-at-risk when they actually fail
(false negative). For that, we maximize the fail class on the grountruth data when
training.

– Students get bombarded with emails from lecturers, faculty, Student’s Union and
so on. Some students who opted-in to receive the personalised notifications may
have never looked at them. Therefore, to better quantify the effectiveness of the use
of personalised notification, the opted-in and opted-out statistics may be still too
naive. Thus, the next version of this project has already implemented the tracking
method to record student’s access of suggested resources and materials.

8.3 Contributions

In this work, the main contributions are a new implementation of a predictive analytics
system that aggregates multiple sources of students’ digital footprints from blended
classroom settings. Advanced Data Mining techniques are applied to engineer models
to provide real-timeprediction anddynamic feedback.This approach incorporates non-
subject-specific static features and subject-specific dynamic student data features. As
a result, the make-up of the predictive models can be extrapolated and further scaled to
other blended classrooms or to other subjects. Additionally, not only is the approachwe
take generic, it also permits applicability to limited data sets (i.e., laboratory material
behavioural logs only) in order to be beneficial in helping students in need. Most
importantly, the generated predictions allow us to generate adaptive feedback for each
student according to each student’s progression and provide guidance when in need.

8.4 Future work

This new implementation of a multimodal predictive analytics system has proven to
be useful to predict students struggling with their learning during the semester. Addi-
tionally, with just 1 year of training data, predictions turned out to be surprisingly
accurate. In following years we will be able to generalise far better by having more
student cohorts from which to extract usage patterns. In addition, we are planning to
add more modalities to the system such as video recordings, the use of the labora-
tory resources or physical access to buildings in our university to better model their
behaviour and to guide their learning.
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The approach employed for the recommendations on computer programming code
was to suggest the closest text program from top-ranked students in the same class
that year. The system could be further advanced by tokenizing the programs, identi-
fying variables and choosing the closest programming submission, both syntactically
and semantically. In contrast, we explored Collaborative Filtering as used in recom-
mender systems today by looking at the closest person to you in the class or within the
top-students group, and to recommend one of their programs from the closest person.
Assuming programming design learning is constant, like tastes in a movie recommen-
dation engine, students can have programs suggested from their closest peer in the
class. However, we were more interested in students being able to identify what is
wrong with their problems at a glance and the closest text solution from a top-student
worked quite well, particularly for shorter programs. We also tested crowdsourcing
solutions by recommending the program that had been uploaded the most. Interest-
ingly, even lecturers are now providing sample solutions and explanatory code after
seeing the students’ positive feedback to these notifications.

Harnessingmore studentmodalitieswasbeneficial to better understand the students’
behaviour. Guiding students by suggesting where to focus has proven to have an effect
on students who were submitting the programs suggested afterwards and on lower-
performing students. However, students might have performed better than the model
expected, which is our end goal and our model was trained with no interventions being
carried out on the groundtruth data.

We are eager to provide our students with more detailed computer programming
recommendations, suitable material and other actions to fill the knowledge program-
ming gaps they may have while learning CS programming design. This study has
proven to successfully create a digital footprint we can leverage by combining several
sources of student data. Our research methodology selects a learning algorithm and a
subset of predictors on data models and enabled us to identify students having issues
in computer programming courses and to provide them with timely interventions. The
system and these notifications have been implemented in further computer program-
ming modules in order to have a broader impact. In addition, we have added learning
resources for students to access based on their progression such as labsheets and slides.
Lecturers are also posting new code solutions with explanations and desired solutions
as part of their material based on the outcome of this research and survey responses.
We will also be more vocal about the project so more students can opt-in, understand
and benefit from this research.

Finally, since the practical aspects of this work was carried out the GDPR legisla-
tion has been enacted in Europe (in May 2018). The work has been approved by the
University’s Research Ethics Committee though We realise that for future instantia-
tions of this work we need to remove data generated by students who have chosen to
opt-out or who, even in mid-semester, choose to opt out. That means that we could
not recommend a computer program submitted by a student who opted out, to another
student in the same class, but we can use aggregated information such as access logs
and statistics about demographics, in mining patterns for subsequent students.
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Appendix A: Bag of classifiers

– Logistic Regression Classifier with regularization (C = 1) and L2 penalty.
– SVM with a Linear kernel with regularization (C = 1).
– SVM with a Gaussian kernel with regularization (C = 1) and kernel coefficient
(γ = 0.7).

– Random Forest Classifier with 10 trees in the forest.
– A Decision Tree Classifier with best split looking at all nodes if necessary.
– A K-Neighbors Classifier with neighbors K = 12, uniform weights and using the
Euclidean distance between the nodes.
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