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Abstract: In this paper we study parameter estimation via the Expectation Maximization (EM) algorithm for
a continuous-time hidden Markov model with diffusion and point process observation. Inference problems
of this type arise for instance in credit risk modelling. A key step in the application of the EM algorithm is the
derivation of finite-dimensional filters for the quantities that are needed in the E-Step of the algorithm. In this
context we obtain exact, unnormalized and robust filters, and we discuss their numerical implementation.
Moreover, we propose several goodness-of-fit tests for hidden Markov models with Gaussian noise and point
process observation. We run an extensive simulation study to test speed and accuracy of our methodology.
The paper closes with an application to credit risk: we estimate the parameters of a hiddenMarkovmodel for
credit quality where the observations consist of rating transitions and credit spreads for US corporations.

Keywords: Expectation maximization (EM) algorithm, hidden Markov models, point processes, nonlinear
filtering, goodness-of-fit tests, credit risk ratings
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1 Introduction
Continuous-time hidden Markov models (models where key variables are affected by an unobservable finite-
state Markov chain) are commonly used in finance, insurance and economics. Examples include portfolio
optimization in models with unobservable Markov-modulated drift such as [21] or [20]; dynamic credit risk
modelling such as [13]; Markov modulated risk processes in insurance such as [1]; or high frequency data
in finance, see for instance [12]. For further examples of hidden Markov models in finance we refer to the
interesting collections [16] and [17].

Statistical inference for hidden Markov models is thus an important issue. This problem is frequently
addressed via the Expectation Maximization (EM) algorithm [8]. In the so-called E-Step of the algorithm
one needs to solve a complicated nonlinear filtering problem, so that a substantial effort is needed to tai-
lor the method to a given model setting. We now list a few important contributions in that regard. Dembo
and Zeitouni [7] provide general results on the EM algorithm for continuous-time stochastic processes that
are observed in Gaussian noise. In an important paper [9] specializes these results to a hiddenMarkovmodel
observed in Gaussian noise. In particular, he obtains finite-dimensional filters and smoothers for the quanti-
ties needed for the E-Step, see also the textbook [10]. Elliott and Malcolm [11] finally study the EM algorithm
for a Poisson process whose intensity is modulated by a finite-state Markov chain.
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In this paper we generalize the model for the observation process and consider a hidden Markov model
where the state process is observed simultaneously via diffusive and point processes information. In recent
years there has been an increasing interest in suchmodels in finance and insurance. In particular, thesemod-
els are relevant in the analysis of credit risk, see for instance [13] and the example we provide in Section 2.2.
We make the following contributions. First, we derive the exact normalized and unnormalized recursive fil-
ters that are needed for the EM algorithm in our setup. This is a nontrivial extension of the work of Elliott [9]
and of Elliott and Malcolm [11]. In the practical implementation of the algorithm it is important to work with
a version of the filters that depends continuously on the observations (so-called robust filters, see [4] or [14]).
Our second contribution is therefore the derivation of robust filters for our framework. Third, we develop
goodness-of-fit tests for the hypothesis that the hidden Markov model parametrized in terms of an estimated
parameter vector describes the observed data well. We are not aware of any prior use of such tests in the
context of hidden Markov models, so that this is also a contribution to the “classical” case of hidden Markov
models with only diffusion or point process observation. Fourth, we perform an extensive simulation analy-
sis that tests the speed and accuracy of the algorithm and of the proposed goodness-of-fit tests. This analysis
suggests that the method yield satisfactory results in the sense that the EM estimates converge to the corre-
sponding full-informationMLE estimates. Furthermore, we observe that the use of robust filters improves the
stability of the algorithm, especially when working on a coarser time grid, and we give examples where the
proposed tests are able to distinguish the correctly estimated model from amisspecified one. Finally, we give
an example with real data and apply the methodology to rating transitions and credit spreads for US corpo-
rations. The unobservable “true” credit quality is modeled as a finite-state Markov chain; the point process
observation is generated by defaults and rating changes and the diffusive observation is generated by ob-
served credit spreads. We obtain reasonable estimates for the parameters of the model and we find that the
filter estimate for the unobservable credit quality balances the spread- and the rating information in a plau-
sible fashion. A discrete-time hiddenMarkovmodel for rating transitions was estimated via the EM approach
by [15]; spread data were not considered in their analysis.

The remainder of this paper is structured as follows. In Section 2 we introduce the notation and the
setting, we give amotivating example related to credit risk modeling andwe discuss themain steps of the EM
algorithm. In Section 3 we study in detail the filtering problems arising in the E-Step of the algorithm; this is
the mathematical core of the paper. Goodness-of-fit tests are discussed in Section 4. In Section 5 we present
the results of our simulation study; the application to credit data is discussed in Section 6.

2 EM algorithm for diffusion and point process information
In this section we introduce our setup and provide a motivating example. Moreover, we derive the form that
the EM-algorithm takes in our setting.

2.1 The setup

We consider a finite-time interval [0, T] and a continuous-time finite-state Markov chain X defined on the
filtered probability space (Ω, G,𝔾,ℙ), where 𝔾 = (Gt)0≤t≤T satisfies the usual conditions. All processes we
consider are𝔾-adapted, that is,𝔾 is the global filtration. The chain X has the state space S = {e1, e2, . . . , eK},
where, without loss of generality, we assume that ek is the kth basis column vector of ℝK . The initial distri-
bution of X is denoted by p = (p1, . . . , pK), and the matrix A = (ajk), 1 ≤ j, k ≤ K, represents the transpose
of the generator matrix of X. Hence the process MX with

MX
t = Xt − X0 −

t

∫
0

AXs ds, t ≤ T,

is a𝔾-martingale.
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Information. We assume that X is not directly observable. Instead, we consider the continuous noisy obser-
vation Z̃ with

Z̃t =
t

∫
0

g̃(Xs) ds + σZWt .

Here σZ > 0measures the amount of noise in the continuousobservationofX andW is a standardℙ-Brownian
motion with respect to the filtration 𝔾, independent of X. We note that the extension of our results to an
arbitrary vector observation process is straightforward. We introduce the normalized observation process
Zt = Z̃t/σZ and we let g = g̃( ⋅ )/σZ . Then Z has dynamics

Zt =
t

∫
0

g(Xs) ds +Wt , t ≥ 0, (2.1)

so that during the theoretical analysis we assume without loss of generality that σZ = 1. In theory, the value
of σZ is equal to [Z]t/t, where [Z] is the quadratic variation of Z and is thus observable. However, in practice
the observations are typically not continuous and the value of σZ has to be estimated. We will discuss this
problem in Section 5.

The second source of information stems from a univariate point process D; the extension to multivariate
point process observation is straightforward. We assume that D admits the𝔾-intensity ht(D)λ(Xt); here ht( ⋅ )
is a bounded functional that depends on the left-continuous version (Ds−)0≤s≤t of the past trajectory of D.
For instance, the choice ht(D) = 1{Dt−=0} models the case where we can observe only one jump. Alternatively,
h can be used to model the case where D is self-exciting. To this we might set

ht(D) = 1 +M ∧
t−

∫
0

e−κ(t−s) dDs

for some (large) threshold M and some decay rate κ. It is in principle possible to estimate parameters of the
function h such as κ using the EMmethodology.However, details depend verymuchon the specific functional
form of h. For this reason we assume in the present paper that all parameters of h are known. Since h is
bounded, the process

MD
t = Dt −

t

∫
0

hs(D)λ(Xs) ds, t ≥ 0, (2.2)

is a𝔾-martingale (see for example [3, Section II, T8]).
The information available to the observer of the system is carried by the filtration 𝔽 which is gener-

ated by the noisy diffusion information 𝔽ℤ and the point process information 𝔽𝔻, that is, 𝔽 = 𝔽𝔻 ∨ 𝔽ℤ. Note
that Ft ⊂ Gt for all t ≤ T. For a generic integrable process Y we denote its 𝔽-optional projection by Ŷ, in par-
ticular, Ŷt = 𝔼[Yt|Ft] for all t ≤ T.

Remark 2.1. In practical applications one is often dealing with noisy observations arising discretely in time,
say, at time points tn = n∆ for a step size ∆ > 0. If one works on a fine time scale, that is, with a small ∆, it
is still reasonable to use continuous time models. We now explain how this situation can be embedded in
our setting. Suppose we have a noisy observation of the form zn = g̃(Xtn ) + ϵn for an i.i.d. sequence of noise
variables with mean zero and variance σ2ϵ . Define the scaled cumulative observations process by

Z̃t := ∆ ∑
tn≤t

zn = ∑
tn≤t

∆g̃(Xtn ) + ∆ ∑
tn≤t

ϵn . (2.3)

For small ∆ thefirst termon the right side is an approximationof∫t0 g̃(Xs) ds and the second term is anapproxi-
mation of σϵ√∆Wt for a standard Brownian motion W (by Donsker’s invariance theorem). It is therefore
natural to apply the continuous-time filtering formulas derived in Section 3.2 to the observation process Z̃
from (2.3). This immediately raises the issue of robust filtering: one seeks filters that perform well even if the
dynamics of Z are not exactly of the form (2.1), see Section 3.3 below.
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2.2 Examples

2.2.1 A hidden Markov model for credit quality

In this subsectionwe introduce an example from the field of credit riskmodelling that fits into our framework.
We consider a sample of m firms indexed by i = 1, . . . ,m; all of these firms are rated by some rating agency
and have CDS contracts outstanding. The corresponding credit ratings (including default) and CDS spreads
are observable and constitute the available information.

State process. Let Xi
t denote the true credit quality of firm i, modeled as a finite-state Markov chain with

state space S = {e1, . . . , eK} and generator matrix A⊤; following the literature, we assume that this matrix
is identical for all firms. Here the state e1 represents the best credit quality, while eK represents the worst
non-default state. In the sequel, we write el > ek for two elements el , ek of S whenever l > k, so that states
are ordered according to credit quality.

Observation process. Wehave two sources of information available to the observer of the system. First, there
is the point-process information which stems from observable ratings and defaults. Second, there is the con-
tinuous information provided by the time series of CDS spreads.

Point process observation. We denote by Ri
t ∈ S the observed rating of firm i at time t. In order to model the

dynamics of the process Ri in a simple way, we assume that there are only three types of events possible.
Suppose that the current state of Rt is el. First, there may be an upgrading of firm i, that is, a transitions of
Ri
t to the state el−1; second, there may be a downgrading of firm i, that is, a transitions of Ri

t to the state el+1;
third, firm i might default. Note that an upgrading is only possible if l > 1, that is, if the observed rating of
the firm is not yet in the best rating category; similarly, a downgrading is only possible if l < K. Hence the
dynamics of Ri

t can be described in terms of the following three point processes:
(i) D+,it , the number of upgradings of firm i up to time t,
(ii) D−,it , the number of downgradings of firm i up to time t,
(iii) Dd,i

t , the default indicator of firm i (a point process that jumps to one at the default time of firm i).
Note that for simplicity we do not consider upgradings or downgradings of size larger than one; if real rating
data exhibit an upgrading (downgrading) bymore than one category, we will treat this as several upgradings
(downgradings) of size one.

We denote by λ+, λ− and by λd the intensities of D+, D− and of Dd, respectively. We assume that these
intensities are identical across firms. We propose the following parametrization: if Ri

t > e1, we let

λ+(Xi
t , Ri

t) = λ
+
11{Xi

t<R
i
t} + λ
+
21{Xi

t=R
i
t} + λ
+
31{Xi

t>R
i
t};

moreover, λ+(Xi
t , e1) ≡ 0. This parametrization is motivated by the idea that the observed rating follows

the true credit quality, albeit with some rating error. In particular, we expect that λ+1 > λ
+
2 > λ
+
3, that is, an

upgrading is most likely when the true credit quality is better than the observed rating. Similarly, for Ri
t < eK

we let
λ−(Xi

t , Ri
t) = λ
−
11{Xi

t<R
i
t} + λ
−
21{Xi

t=R
i
t} + λ
−
31{Xi

t>R
i
t}.

Moreover, λ−(Xi
t , eK) ≡ 0. In this case, we expect to have λ

−
1 < λ
−
2 < λ
−
3 . Finally, concerning the default process

we take
λd(Xi

t) = ⟨λ
d , Xi

t⟩ for λd1 < ⋅ ⋅ ⋅ < λ
d
K .

Continuous observation. The diffusion information stems from observed CDS spreads as we explain next.
Let zin = log(CDSitn ), that is, z

i
n is the logarithm of the observed CDS spread of firm i at time tn, n ∈ {1, . . . , N},

tN = T. We assume that

zin = g̃(Xi
tn ) + ϵ

i
n , (2.4)

where ϵin, n ∈ {1, . . . , N}, 1 ≤ i ≤ m are independent noise variables with mean zero and some variance σϵ.
The relation (2.4) is motivated by empirical work for corporate credit markets such as [2], which shows that
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there is a reasonably stable regression-type relation between observed logarithmic CDS spreads and credit
quality as measured by short-term default probabilities or by ratings. Identifying (2.4) with a continuous
model as in Remark 2.1 gives the observation process Z̃ it.

2.2.2 Other applications

Parameter estimation problems for hidden Markov models with point process information arise also in other
areas of finance and insurance and we now give a few examples. In insurance one considers frequently
Markov modulated risk processes, where the arrival intensity of claims is driven by an unobservable Markov
chain. Some authors such as [22] consider perturbed risk processes, where a Brownian component is added
to the risk process in order to model fluctuations caused by small claims, investment returns or other sources
of randomness. This line of modelling gives rise to a hidden Markov model with diffusion and point process
information. Another interesting area of application for our methodology is high frequency data in finance.
It is well known that on very fine time-scales asset prices follow a pure jump process since in reality quoted
prices are constant between trades and jump only when new orders arrive. Moreover, there are good reasons
for introducing an unobservable regime switching factor in the price dynamics: this helps to reproduce the
clustering in inter-event durations, and a hidden Markov chain can be used to model the feedback effect
from the trading activity of the rest of the market, see for instance [6] or [5] for details. Hence it makes sense
to consider hidden Markov models with point process information in the analysis of high frequency data.

2.3 The EM algorithm

Note that for a generic function f : S → ℝ it holds that f(Xt) = ⟨Xt , f⟩, where ⟨ ⋅ , ⋅ ⟩ denotes the scalar product
onℝK and fk = f(ek), 1 ≤ k ≤ K, so that functions of theMarkov chain can be identifiedwith K-vectors. Hence
parameters to be estimated are given by the parameter vector

θ = (ajk , gj , λj , j, k ∈ {1, . . . , K}, j ̸= k);

the set of admissible parameter vectors is denoted by Θ.
We use the EM algorithm to estimate the model parameters and to infer the unobserved realization of the

state process X. Denote by ℙθ the probability measure corresponding to the parameter vector θ ∈ Θ. In order
to describe the algorithm, we define the full-information log-likelihood by

L(θ, θ) := log dℙθ
dℙθ
GT

for all θ, θ ∈ Θ.

Of course, in making this definition we implicitly assume that ℙθ and ℙθ are equivalent on GT which is
stronger than requiring equivalence of these measures on the observation σ-field FT .

The EM algorithm is an iterative procedure that leads to a sequence {θm}m≥1 of parameter estimates such
that the likelihood of the observations increases in each step. Schematically, given the optimal parameter
vector θm after the mth iteration of the algorithm, iteration m + 1 of the algorithm consists of the following
two steps:
∙ Expectation (E): Compute the estimate ̂L(θ, θm) = Eθm [L(θ, θm) | FT].
∙ Maximization (M): Find θm+1 ∈ argmaxθ∈Θ ̂L(θ, θm).
In our setup the steps of the EM algorithm are as follows.

E-Step. In order towrite the full-information log likelihood in compact formwe introduce a couple of stochas-
tic processes related to the Markov chain X. Let for t ≤ T and 1 ≤ j, k ≤ K, j ̸= k,

N jk
t = ∑

0<s≤t
1{Xs−=ej}1{Xs=ek} (number of jumps from state j to state k), (2.5)

Gj
t =

t

∫
0

1{Xs−=ej} dZs (level integral for state j), (2.6)
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6 | C. Damian, Z. Eksi and R. Frey, EM algorithm with diffusion and point process information

J jt =
t

∫
0

1{Xs−=ej} ds (occupation time for state j), (2.7)

Bj
t =

t

∫
0

1{Xs−=ej} dDs (jump level integral for state j), (2.8)

Cjt =
t

∫
0

1{Xs−=ej}hs(D) ds (modified occupation time for state j). (2.9)

Combining the Girsanov theorem for point processes (see [3, p. 166, Theorem T3]) with the likelihood func-
tion given in [9] gives that the full-information log-likelihood equals

L(θ, θ) =
K
∑

j,k=1j ̸=k
(N jk

T log akj − akjJ jT) +
K
∑
j=1
(gjGj

T −
1
2 (g

j)2J jT) +
K
∑
j=1
(log(λj)Bj

T − λ
jCjT) + R(θ

),

where R(θ) is independent of θ. This gives

̂L(θ, θm) = Eθm[log
dℙθ
dℙθm

FT]

=
K
∑

j,k=1,j ̸=k
(
̂N jk
T log akj − akĵJ jT) +

K
∑
j=1
(gĵGj

T −
1
2 (g

j)2
̂J jT) +

K
∑
j=1
(log(λj)̂Bj

T − λ
ĵCjT) + R̂(θ

m). (2.10)

M-Step. Since ̂L( ⋅ , θm) is concave, the new parameter vector θm+1 is given by equating the partial derivatives
of (2.10) to zero. We thus obtain

(akj)m+1 =
̂N jk
T
̂J jT

, (gj)m+1 =
̂Gj
T
̂J jT

and (λj)m+1 =
̂Bj
T
̂CjT

.

3 Filtering
To perform the EM algorithm, one has to obtain the filtered estimates of the quantities in (2.10). This is
a nonlinear filtering problemwith diffusion and point process information. Following [13], in Section 3.1 we
address this problem via the innovations approach to nonlinear filtering. In Section 3.2 we derive unnormal-
ized filters and the Zakai equation; Section 3.3 is concerned with robust filtering.

In the following, we consider θm given and fixed and we simply write ℙ and 𝔼 instead of ℙθm and 𝔼θm .
Moreover, we always denote𝔾martingales by upper-case letters and 𝔽martingales by lower-case letters.

3.1 Filtering via the innovations approach

The innovations Brownianmotion (the martingale part in the 𝔽-semimartingale decomposition of Z) is given
by

wt = Zt −
t

∫
0

⟨X̂s , g⟩ ds,

and the 𝔽-martingale part of the point process D is given by

mD
t = Dt −

t

∫
0

hs(D)⟨X̂s , λ⟩ ds.

The next theorem gives the first filtering result.
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Theorem 3.1. Consider a scalar process H of the form

Ht = H0 +
t

∫
0

αHs ds +
t

∫
0

γHs dWs +
t

∫
0

(βHs )⊤ dMX
s +

t

∫
0

δHs dMD
s , (3.1)

where αH , γH and δH are 𝔾-predictable scalar processes and βH is a K-dimensional vector process that is 𝔾-
predictable. Moreover, suppose that

𝔼[
T

∫
0

(|αHs | + |δHs | + (γHs )2) ds] + 𝔼[
T

∫
0

K
∑
i=1
|(βHs )i| ds] <∞. (A2)

Then Ĥ has the dynamics

Ĥt = Ĥ0 +
t

∫
0

α̂Hs ds +
t

∫
0

μHs dws +
t

∫
0

κHs dmD
s ,

where

μHs = γ̂Hs + (̂⟨X, g⟩H)s − ⟨X̂s , g⟩Ĥs , (3.2)

κHs =
1
⟨X̂s−, λ⟩

((̂⟨X, λ⟩δH)s− + (̂⟨X, λ⟩H)s− − ⟨X̂s−, λ⟩Ĥs−). (3.3)

Proof. During the proof we will frequently make use of the following facts:
(F1) For every true𝔾-martingale M, the projection M̂ is 𝔽-martingale.
(F2) For a𝔾-adapted, integrable process α, the process

(
t̂

∫
0

αs ds −
t

∫
0

α̂s ds)
0≤t≤T

is an 𝔽-martingale.
(F3) For every 𝔽-martingale m, there exists a 𝔽-adapted process δ and an integrable, 𝔽-predictable process

ν such that m has the representation

mt =
t

∫
0

δs dws +
t

∫
0

νs dmD
s .

Facts (F1) and (F2) are standard in the nonlinear-filtering literature, for a proof of (F3) we refer to [13]. Using
(F1) and (F2), we first write

Ĥt = Ĥ0 +
t

∫
0

α̂Hs ds + mH
t

for some 𝔽martingale mH . Using (F3) therefore gives that

Ĥt = Ĥ0 +
t

∫
0

α̂Hs ds +
t

∫
0

μHs dws +
t

∫
0

κHs dmD
s .

It remains to identify the integrands μH and κH . Define for some arbitrary bounded, 𝔽-predictable process ζ
the 𝔽-adapted process ρ by

ρt :=
t

∫
0

ζs dDs .

In order to identify κH we will compare two different representations for ρ̂H. On the one hand we get from
Ito’s product formula that

Htρt =
t

∫
0

Hs− dρs +
t

∫
0

ρs− dHs + [ρ, H]t .
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As [ρ, H]t = ∫
t
0 δ

H
s ζs dDs, we have for t ≥ 0,

Htρt =
t

∫
0

ρsαHs ds +
t

∫
0

Hrζshs(D)⟨Xs , λ⟩ ds +
t

∫
0

δHs ζshs(D)⟨Xs , λ⟩ ds +Mt ,

where M is a𝔾-martingale. Then, using (F1) and (F2), we get the following representation for (Ĥρ)t:

(Ĥρ)t =
t

∫
0

ρs α̂Hs ds +
t

∫
0

ζshs(D)(̂⟨X, λ⟩H)s ds +
t

∫
0

ζshs(D)(̂⟨X, λ⟩δH)s ds + mt , (3.4)

where m is an 𝔽-martingale.
On the other hand, it holds that (Ĥρ)t = Ĥtρt, as ρ is 𝔽-adapted. Moreover,

Ĥtρt =
t

∫
0

Ĥs− dρs +
t

∫
0

ρs− dĤs + [ρ, Ĥ]t ,

and [ρ, Ĥ]t = ∫
t
0 ζsκ

H
s dDs. Hence we obtain

Ĥtρt =
t

∫
0

ρs α̂Hs ds +
t

∫
0

hs(D)⟨X̂s , λ⟩Ĥsζs ds +
t

∫
0

hs(D)⟨X̂s , λ⟩κHs ζs ds + m̃t (3.5)

for an 𝔽-martingale m̃. Now, Ĥρ is a special semimartingale and hence has a unique decomposition (see,
e.g., [19, Chapter 7, Theorem 34]). This implies that the martingale and finite-variation parts in (3.4) and
(3.5) must be equal. Comparing the two equations, we get

0 =
t

∫
0

ζshs(D)(( ̂⟨X, λ⟩δH)s + (̂⟨X, λ⟩H)s − ⟨X̂s , λ⟩Ĥs − κHs ⟨X̂s , λ⟩) ds. (3.6)

Moreover, the integrands in (3.6) are continuous in s for almost all s (they jump only at the jump times of D).
Hence it also holds that

0 =
t

∫
0

ζshs(D)(( ̂⟨X, λ⟩δH)s− + (̂⟨X, λ⟩H)s− − ⟨X̂s−, λ⟩Ĥs− − κHs ⟨X̂s−, λ⟩) ds. (3.7)

As ζ is arbitrary and as κH is predictable, (3.7) yields (3.3).
In order to determine μH one follows same strategy and compares two different representations for ĤZ,

we omit the details.

Note that the integrands in (3.2) involve the filtered estimate of the product term Ht⟨Xt , g⟩. This is inconve-
nient for practical purposes as the resulting filters are not recursive. As a remedy [9] proposes to derive filters
for the product HtXt. One has HtXt = ∑Ki=1 Ht⟨Xt , ei⟩ei and hence

(ĤX)t =
K
∑
i=1
(Ĥ⟨X, ei⟩)tei .

Let 1 = (1, . . . , 1)⊤ ∈ ℝK . Given (ĤX)t, the filter for H can then be obtained from the relation

𝔼[Ht | Ft] = 𝔼[Ht

K
∑
i=1
⟨Xt , ei⟩


Ft] =

K
∑
i=1
(Ĥ⟨X, ei⟩)t = ⟨(ĤX)t , 1⟩.

Theorem 3.2. Consider a𝔾-adapted process Y of the form

Yt = Y0 +
t

∫
0

αYs ds +
t

∫
0

γYs dWs +
t

∫
0

(βYs )⊤ dMX
s +

t

∫
0

δYs dMD
s . (3.8)
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Define the diagonal matrices Γ = diag(g) and Λ = diag(λ) Then we get with β = βY

(ŶX)t = (ŶX)0+
t

∫
0

(α̂YX)s+A(ŶX)s ds+
t

∫
0

μYXs dws+
t

∫
0

κYXs dmD
s +

K
∑
i,j=1

t

∫
0

⟨(β̂jX)s−(β̂iX)s , ei⟩aji ds(ej−ei), (3.9)

where

μYXs = (γ̂YX)s + Γ(ŶX)s − ⟨X̂s , g⟩(ŶX)s , (3.10)

κYXs =
1
⟨X̂s−, λ⟩

(Λ((δ̂YX)s− + (ŶX)s−) − ⟨X̂s−, λ⟩(ŶX)s−). (3.11)

Proof. In order to reduce the claim to Theorem 3.1 we need to find the 𝔾-semimartingale decomposition
of H = YX. Note first that [Y, X]t = ∑0≤s≤t(β⊤s ∆Xs)∆Xs. Hence we get from the Itô product formula that

YtXt = Y0X0 +
t

∫
0

(YsAXs + αYs Xs) ds +
t

∫
0

γYs Xs dWs +
t

∫
0

(Ys− + Xs−β⊤s ) dMX
s

+
t

∫
0

Xs−δYs dMD
s + ∑

0≤s≤t
(β⊤s ∆Xs)∆Xs .

It is shown in the proof of [9, Theorem 2] that

∑
0≤s≤t
(β⊤s ∆Xs)∆Xs =

t

∫
0

K
∑
i,j=1
⟨βjsXs − βisXs , ei⟩aji(ej − ei) +Mt

for some𝔾-martingale M. Hence we may write H = YX in the form (3.1) with

αHs = AYsXs + αYs Xs +
K
∑
i,j=1
⟨βjsXs − βisXs , ei⟩aji(ej − ei),

δHs = δYs Xs− and γHs = γYs Xs−.

The claim follows by substituting these identities in Theorem 3.1. In order to illustrate the computational
tricks involved we now explain in detail the derivation of κYXs , the integrand in the stochastic integral with
respect to the compensated point process mD. With H = YX and hence δHt = δYt Xt we get from Theorem 3.1
that

κYXt =
1
⟨X̂t , λ⟩
(( ̂⟨Xt , λ⟩δH)t + (̂⟨X, λ⟩H)t − ⟨X̂t , λ⟩Ĥt). (3.12)

Moreover,

⟨Xt , λ⟩δYt Xt =
K
∑
i=1

λiδYt ⟨Xt , ei⟩ei

so that

( ̂⟨X, λ⟩δYX)t =
K
∑
i=1

λi( ̂δY⟨X, ei⟩)tei = Λ(δ̂YX)t .

Similarly, one gets that

( ̂⟨X, λ⟩YX)t =
K
∑
i=1

λi(̂Y⟨X, ei⟩)tei = Λ(ŶX)t ,

and the form of κYX follows by plugging these identities in (3.12).

In the following, we compute the filters for the quantities needed for the E-Step of the EM algorithm.We begin
with the state filter.

Corollary 3.3. The filtered estimate of the unobserved process X is given by

X̂t = X̂0 +
t

∫
0

AX̂s ds +
t

∫
0

(ΓX̂s − ⟨X̂s , g⟩X̂s) dws +
t

∫
0

(
ΛX̂s−

⟨X̂s−, λ⟩
− X̂s−) dmD

s .

Proof. The result follows from Theorem 3.2 with Yt = Y0 = 1 and hence with αY = γY = βY = δY = 0.
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10 | C. Damian, Z. Eksi and R. Frey, EM algorithm with diffusion and point process information

Next we consider the number of jumps N ij defined in (2.5). Fix two states i ̸= j. Since aji gives the transition
intensity from state i to state j and since 1{Xs−=ei}1{Xs=ej} = ⟨Xs−, ei⟩⟨∆Xs , ej⟩, the semimartingale decomposi-
tion of N ij is given by

N ij
t =

t

∫
0

⟨Xs−, ei⟩⟨dXs , ej⟩ =
t

∫
0

⟨Xs−, ei⟩⟨dMX
s , ej⟩ +

t

∫
0

⟨Xs−, ei⟩aji ds.

This gives the following.

Corollary 3.4. The filtered estimate for N ij is given bŷN ij
t = ⟨(N̂ ijX)t , 1⟩, where

(N̂ ijX)t =
t

∫
0

⟨X̂s , ei⟩ajiej ds +
t

∫
0

A(N̂ ijX)s ds +
t

∫
0

(
Λ(N̂ ijX)s−
⟨X̂s−, λ⟩

− (N̂ ijX)s−) dmD
s

+
t

∫
0

(Γ(N̂ ijX)s − ⟨X̂s , g⟩(N̂ ijX)s) dws .

Proof. The result follows ifwe take Y = N ij in Theorem3.2 andhence Y0 = 0, αYs = ⟨Xs , ei⟩aji, βYs = ⟨Xs , ei⟩ej,
γY = 0, δY = 0. To identify the drift of (N̂ ijX), we argue as follows: it holds that βℓs = ⟨Xs , ei⟩δℓ,j so that
βjXs = ⟨Xs , ei⟩ei and βℓXs = 0 ∈ ℝK for ℓ ̸= j. Hence

K
∑

k,ℓ=1
⟨(β̂ℓX)s , ek⟩aℓk = ⟨X̂s , ei⟩aji

and∑Kk,ℓ=1⟨(β̂kX)s , ek⟩aℓk = 0 so that
K
∑

k,ℓ=1

t

∫
0

⟨(β̂ℓX)s − (β̂kX)s , ek⟩aℓk ds(eℓ − ek) =
t

∫
0

⟨X̂s , ei⟩aji ds(ej − ei).

Moreover, αYs Xs = ⟨Xs , ei⟩ajiei and hence (α̂YX)s = ⟨X̂s , ei⟩ajiei. Plugging these identities into Theorem 3.2
gives the result.

Next we consider the occupation time J i defined in (2.7).

Corollary 3.5. The filtered estimate of the occupation time of state ei is given by Ĵ it = ⟨(Ĵ iX)t , 1⟩, where

(Ĵ iX)t =
t

∫
0

⟨X̂sei⟩ei ds +
t

∫
0

A(Ĵ iX)s ds +
t

∫
0

(Γ(Ĵ iX)s − ⟨X̂s , g⟩(Ĵ iX)s) dws +
t

∫
0

(
Λ(Ĵ iX)s−
⟨X̂s−, λ⟩

− (Ĵ iX)s−) dmD
s .

Proof. Substituting Y = J i and hence Y0 = 0, αYs = ⟨Xs , ei⟩, βYs = 0 ∈ ℝK, γY = 0 and δYs = 0 in Theorem 3.2
yields the result.

Next we turn to the level integral defined in (2.6).

Corollary 3.6. The filtered estimate of Gi
t is given by Ĝ

i
t = ⟨(ĜiX)t , 1⟩, where

(ĜiX)t = gi
t

∫
0

⟨X̂s , ei⟩ei ds +
t

∫
0

A(ĜiX)s ds +
t

∫
0

(
Λ(ĜiX)s−
⟨X̂s−, λ⟩

− (ĜiX)s−) dmD
s

+
t

∫
0

(⟨X̂s , ei⟩ei + Γ(ĜiX)s − ⟨X̂s , g⟩(ĜiX)s) dws .

Proof. Note that

Gi
t = g

i
t

∫
0

⟨Xs , ei⟩ ds +
t

∫
0

⟨Xs , ei⟩ dWs .

Hence the claim follows from Theorem 3.2 if we let Yt = Gi
t and hence Y0 = 0, αYs = gi⟨Xs , ei⟩, γYs = ⟨Xs , ei⟩,

βY = 0 ∈ ℝK and δYs = 0.
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Finally, we consider the jump level integral

Bi
t :=

t

∫
0

⟨Xs , ei⟩ dDs

and the modified occupation time Ci that were introduced in (2.8) and (2.9).

Corollary 3.7. The filtered estimate of Cit and Bi
t are given by Ĉ

i
t = ⟨(ĈiX)t , 1⟩ and B̂i

t = ⟨(B̂iX)t , 1⟩, where

(ĈiX)t =
t

∫
0

hs(D)⟨X̂s , ei⟩ei ds +
t

∫
0

A(ĈiX)s ds +
t

∫
0

Γ(ĈiX)s − ⟨X̂s , g⟩(ĈiX)s dws

+
t

∫
0

1
⟨X̂s−, λ⟩

(Λ(ĈiX)s− − ⟨X̂s−, λ⟩(ĈiX)s−) dmD
s ,

(B̂iX)t =
t

∫
0

hs(D)λi⟨X̂s , ei⟩ei ds +
t

∫
0

A(B̂iX)s ds +
t

∫
0

Γ(B̂iX)s − ⟨X̂s , g⟩(B̂iX)s dws

+
t

∫
0

1
⟨X̂s−, λ⟩

(Λ(⟨X̂s−ei⟩ei + (B̂iX)s−) − ⟨X̂s−, λ⟩(B̂iX)s−) dmD
s .

Proof. In order to compute (B̂iX)t, we take Yt = Bi
t, Y0 = 0, αYs = hs(D)λi⟨Xs , ei⟩, γYs = 0, βY = 0 ∈ ℝK and

δYs = ⟨Xs , ei⟩ and apply Theorem3.2. To obtain the process (ĈiX)t, we take Yt = Cit, Y0 = 0, αYs = hs(D)⟨Xs , ei⟩,
γYs = 0, βY = 0 ∈ ℝK and δYs = 0 and apply Theorem 3.2.

3.2 Unnormalized filters

In this subsectionwe derive so-called unnormalized filters for the quantities arising in the E-Step of the EMal-
gorithm. The resulting filtering equations are linear and driven directly by the observation processes Z and D.
Moreover, unnormalized filters are needed for the derivation of robust filters in Section 3.3 below.

Denote by ℙ∗ the so-called reference probability measure on (Ω, G). That is, under ℙ∗, Z is a Brownian
motion and D is a Poisson process with unit intensity, independent of X. Let

dℙ
dℙ∗
Gt

= Lt = 1 +
t

∫
0

Lsg(Xs) dZs +
t

∫
0

Ls−(λ(Xs−)hs−(D) − 1)(dDs − ds).

It follows from the Girsanov theorem that underℙ, Z and D have the correct joint law. For any𝔾-adapted and
integrable process Y we denote the unnormalized conditional expectation by

σ(Y)t = 𝔼∗[LtYt | Ft]. (3.13)

From Bayes’ rule, we have Ŷt = σt(Y)/σt(1). In what follows our objective is to derive the Zakai equation (the
dynamics of the unnormalized conditional expectation (3.13)). The first step towards this goal is to derive
σt(1) = 𝔼∗[Lt | Ft].

Lemma 3.8. The dynamics of σt(1) are given by

σt(1) = 1 +
t

∫
0

σs(1)⟨g, X̂s⟩dZs +
t

∫
0

σs−(1)(⟨λ, X̂s−⟩hs(D) − 1) d(Ds − s). (3.14)

Proof. The proof follows similar arguments as in [9, Theorem 3]: we use the fact that the process L is
a (ℙ∗,𝔾) martingale so that a version of Theorem 3.1 applies with Yr = Lr, αY = 0, γYr = Lr⟨g, Xr⟩, βY = 0,
δYr = Lr(⟨λ, Xr⟩hr(D) − 1), Z a Brownian motion and Dt − t a martingale. Then we use Bayes’ rule and obtain
the result.
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12 | C. Damian, Z. Eksi and R. Frey, EM algorithm with diffusion and point process information

Now we are ready to prove the main theorem of this section.

Theorem 3.9. Consider a𝔾-adapted process Y of the form (3.8). Then, with β = βY , it holds

σt(YX) = σ0(YX) +
t

∫
0

σs(αYX) ds +
t

∫
0

Aσs(YX) ds +
K
∑
i,j=1

t

∫
0

⟨σs(βjX) − σs(βiX), ei⟩aji ds(ej − ei)

+
t

∫
0

σs(γYX) + Γσs(YX) dZs +
t

∫
0

(hs(D)Λσs−(δYX) + (hs(D)Λ − I)σs−(YX))(dDs − ds).

Proof. It follows from Bayes’ formula that σt(YX) = ŶXtσt(1). Hence, we apply Itô’s product rule for jump
diffusions and write

dσt(YX) = σt−(1)d(ŶX)t + (ŶX)t−dσt(1) + d[σ(1), ŶX]t . (3.15)

Then, inserting (3.9) and (3.14) into (3.15), using Bayes’ formula and making the necessary cancellations,
we obtain the result; the details are omitted.

By using unnormalized filters, Ŷt can be computed from σt(YX) and σt(X) as follows:

Ŷt = ⟨(ŶX)t , 1⟩ =
⟨σt(YX), 1⟩

σt(1)
=
⟨σt(YX), 1⟩
⟨σt(X), 1⟩

. (3.16)

Next we compute the unnormalized filters for the various quantities of interest. In what follows, we use the
simpler notation qt = σ(X)t.

Corollary 3.10. The dynamics of the unnormalized filter for X (the Zakai equation) are given by

qt = q0 +
t

∫
0

Aqs ds +
t

∫
0

Γqs dZs +
t

∫
0

(hs(D)Λ − I)qs−(dDs − ds). (3.17)

Proof. We set Yt = 1, αYr = βYr = γYr = δYr = 0 and we apply Theorem 3.9.

Corollary 3.11. We have the following unnormalized filters:

σt(N ijX) =
t

∫
0

⟨qs , ei⟩ajiej ds +
t

∫
0

Aσs(N ijX) ds +
t

∫
0

Γσs(N ijX) dZs +
t

∫
0

(hs(D)Λ − I)σs−(N ijX)(dDs − ds),

σt(J iX) =
t

∫
0

⟨qs , ei⟩ei ds +
t

∫
0

Aσs(J iX) ds +
t

∫
0

Γσs(J iX) dZs +
t

∫
0

(hs(D)Λ − I)σs−(J iX)(dDs − ds),

σt(GiX) = gi
t

∫
0

⟨qs , ei⟩ei ds +
t

∫
0

Aσs(GiX) ds +
t

∫
0

(Γσs(GiX) + ⟨qs , ei⟩ei) dZs

+
t

∫
0

(hs(D)Λ − I)σs−(GiX)(dDs − ds),

σt(BiX) = λi
t

∫
0

hs(D)⟨qs , ei⟩ei ds +
t

∫
0

Aσs(BiX) ds +
t

∫
0

Γσs(BiX) dZs

+
t

∫
0

((hs(D)Λ − I)σs−(BiX) + hs(D)Λ⟨qs−, ei⟩ei)(dDs − ds),

σt(CiX) =
t

∫
0

hs(D)⟨qs , ei⟩ei ds +
t

∫
0

Aσs(CiX) ds +
t

∫
0

Γσs(CiX) dZs +
t

∫
0

(hs(D)Λ − I)σs−(CiX)(dDs − ds).

Proof. In order to obtain these results, we use an analogous reasoning as in the proof of Corollary 3.10.
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3.3 Robust filters and discretization

In this subsection, our objective is to derive robust filters in the sense of [4] and [14]. These filters are Lipschitz
continuous “in the observation process”, so that they performwell if applied to a situation, where Z and D are
only approximately of the form (2.1) and (2.2); a case in point is that of discrete observations, see Remark 2.1.
In order to derive these filters one transforms the filter dynamics in such a way that they involve a minimal
number of stochastic integrals.

Robust filters

Throughout this subsectionwe assume that ht(D) > 0 for all t; see however Remark 3.12 (3) below. Following
the approach of [14] and of [11], we first define

Πi
t = exp{giZt −

1
2 (g

i)2t + (1 − ht(D)λi)t + Dt log(ht(D)λi)}

and we let

Πt = diag{Π1
t , . . . , ΠK

t } = exp{ΓZt −
1
2Γ

2t + (I − ht(D)Λ)t + DtΛL
t }, (3.18)

where ΛL
t = diag{log(ht(D)λ1), . . . , log(ht(D)λK)}. The corresponding dynamics are

dΠt = ΠtΓ dZt + Πt(ht(D)Λ − I)(dDt − dt),

and the Itô formula yields

dΠ−1t = −Π
−1
t Γ dZt + Π−1t Γ2 dt − Π−1t (I −

1
ht(D)

Λ−1) dDt + Π−1t (ht(D)Λ − I) dt.

For any𝔾-adapted, integrable process Y we define

σt(YX) = Π−1t σt(YX).

It follows from Itô’s product formula that qt := σ(Xt) has the dynamics
d
dt

qt = Π−1t AΠtqt; (3.19)

in particular, qt is a process of finite variation. The unnormalized filter is then given by σt(X) = Πtqt. Note
that in order to compute σt(X) in this way we only have to discretize the ODE (3.19) and to evaluate Z and D
at given time points; it is not necessary to approximate a stochastic integral driven by these processes (as one
would have to do in a naive discretization of the Zakai equation (3.17)).

In a similar vein σt(YX) can be computed for the other quantities needed for the EM algorithm.We obtain

dσt(J iX) = ⟨qt , ei⟩ei dt + Π−1t AΠtσt(J iX) dt, (3.20)
dσt(N ijX) = ⟨qt , ei⟩⟨Aei , ej⟩ej dt + Π−1t AΠtσt(N ijX) dt, (3.21)
dσt(GiX) = ⟨qt , ei⟩ei dZt + Π−1t AΠtσt(GiX) dt, (3.22)
dσt(BiX) = ⟨qt , ei⟩ei dDt + Π−1t AΠtσt(BiX) dt, (3.23)
dσt(CiX) = ht(D)⟨qt , ei⟩ei dt + Π−1t AΠtσt(CiX) dt. (3.24)

Discretization

For the numerical implementation we need to discretize the filter equations. We now explain how to do this
for the robust filters derived above. In what follows we will consider the partition 0 = t0 < t1 < ⋅ ⋅ ⋅ < tN = T
on the interval [0, T], and we let ∆n = tn − tn−1. The easiest approach to discretize the ODE for σt is to use
a simple explicit Euler scheme, see also [11, Section D]. If we apply this to the ODE (3.19) for qt, we obtain

qtn ≈ qtn−1 + Π
−1
tn−1AΠtn−1∆nqtn−1 .
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In order to obtain the unnormalized filter we multiply both sides with Πtn :

qtn ≈ ΠtnΠ−1tn−1 (I + A∆n)qtn−1 . (3.25)

Hence, (3.25) gives a way for the recursive estimation of the unnormalized state probabilities. Note that, in
practice, it is useful to work with the ratio ΠtnΠ−1tn−1 . This ratio only involves the increments of the variables
appearing in the exponent (3.18) and thus it is computablewithout incurring anumerical overflow.Moreover,
we normalize the numerical schemes at each time step à la [14, Section VI] in order to further improve the
stability of the algorithm.

Now we define z∆n = Ztn − Ztn−1 , apply the same procedure and obtain the following recursions for the
remaining filters:

σtn (GiX) ≈ ΠtnΠ−1tn−1((I + A∆n)σtn−1 (G
iX) + ⟨qtn−1 , ei⟩eiz∆n),

σtn (J iX) ≈ ΠtnΠ−1tn−1((I + A∆n)σtn−1 (J
iX) + ⟨qtn−1 , ei⟩ei∆n),

σtn (N ijX) ≈ ΠtnΠ−1tn−1((I + A∆n)σtn−1 (N
ijX) + ⟨qtn−1 , ei⟩⟨Aei , ej⟩ej∆n),

σtn (BiX) ≈ ΠtnΠ−1tn−1((I + A∆n)σtn−1 (B
iX) + ⟨qtn−1 , ei⟩ei(Dtn − Dtn−1 )),

σtn (CiX) ≈ ΠtnΠ−1tn−1((I + A∆n)σtn−1 (C
iX) + ht(D)⟨qtn−1 , ei⟩ei∆n).

Remark 3.12. (1) Note that when the filters are represented in integral form, it is possible to make use of the
integration by parts formula and convert the stochastic integrals with respect to the processes D and Z into
integrals with respect to time. For example,

σt(BiX) = ⟨qt , ei⟩eiDt −
t

∫
0

Ds⟨dqs , ei⟩ei +
t

∫
0

Π−1s AΠsσs(BiX) ds.

This can be used to obtain a robust filter for Bi that does not contain a stochastic integral with respect to D.
In a similar vein, partial integration can be used to eliminate the stochastic integral with respect to Z in the
robust filter for Gi.

(2) There are other ways to discretize the ODE part in the robust filter equations (3.19) and (3.20)–(3.24)
that can be advantageous if the generator A of X has been constructed as a discrete approximation of a dif-
fusion process. In that case [4] recommends an implicit discretization of the ODEs.

(3) If ht(D) ≡ 0 on some stochastic interval (τ1, τ2) for 𝔽-stopping times τ1 and τ2, one works with the
solution of the matrix SDE dΠt = ΓΠtdZt instead; this leads to the robust filters derived in [14].

4 Goodness-of-fit tests
In this section we propose several statistical tests for the hypothesis that the hidden Markov model from
Section 2.1, parameterized in terms of a (estimated) parameter vector θ∗, models the observed data (Z, D)
well. These tests are based on two observations: first,

wt = Zt −
t

∫
0

⟨g∗, X̂s⟩ ds is an 𝔽-Brownian motion; (4.1)

second, D is a point process with 𝔽-intensity λ∗t := ht(D)⟨λ∗, X̂t⟩ dt (both underℙθ∗ ). Define the time change
T(t) = ∫t0 λ

∗
s ds and suppose that limt→∞ T(t) =∞ a.s. Denote by T−1(t) = inf{s ≥ 0 : T(s) ≥ t} the inverse

transform. Then it holds that the process D̃ defined by

D̃t = D ∘ T−1(t), 0 ≤ t ≤ T(T), is a standard Poisson process. (4.2)

The hypotheses (4.1) and (4.2) can be tested in various ways; this leads to a number of goodness-of-fit tests
for our setup. Note that in (4.1) and (4.2) the filter X̂t and the time change T and T−1 are computed underℙθ∗ ,
so that all components of θ∗ enter into the testing procedure.
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Testing the Brownian-motion hypothesis

Fix some time interval ∆̄ and let tk = k∆̄, k = 0, 1, . . . , κ := ⌊T/∆̄⌋. Define the random variables

Vk = wtk − wtk−1 ≈ Ztk − Ztk−1 − ⟨g∗, X̂tk−1⟩∆̄.

Under ℙθ∗ , {Vk}k≥1 is a sequence of independent, N(0, ∆̄)-distributed random variables. All of this can be
tested: a standard t-test can be performed to test the hypothesis that the Vk have mean zero, that is, that
the drift estimate ⟨g∗, X̂t⟩ is correct “on average”. The normality assumption can be tested graphically via
a QQ-plot or numerically using for instance a Kolmogorov Smirnov goodness-of-fit test. The independence
assumption (which implies zero autocorrelation at all lags) can be assessed graphically via correlograms or
numerically using for instance aLjung–Box test. Tests of the independence assumption are in fact particularly
important, as they provide a check if the model captures the dynamics of Z well.

Testing the Poisson-process hypothesis

If D̃ is standard Poisson the random variables Uk = D̃tk − D̃tk−1 , k = 1, . . . , κ, are i.i.d. Poisson with param-
eter ∆̄. This implies that the random variables Ũk = Uk ∧ 1, k = 1, . . . , κ, are Bernoulli distributed with
parameter p = 1 − exp(−∆̄), which can be tested with a standard binomial test. Moreover, one can test if the
inter-arrival times of the jumps of D̃ follow a standard exponential distribution (as they should under the
Poisson hypothesis). This can be tested graphically via a QQ-plot or numerically using Kolmogorov Smirnov.
Testing the exponentiality of the inter-arrival times of D̃ is very useful to check if the model is able to “declus-
ter” the jumps of D and hence to capture the dynamics of D reasonably well. Note that the tests of the Poisson
hypothesis are closely related to tests for the accuracy of Value at Risk models in market risk management,
see for instance of [18, Section 9.3]. For numerical illustrations of the proposed goodness-of-fit tests we refer
to the example in Section 5.

5 Simulation analysis
In this section we present the results from a simulation study that tests the speed, efficiency and accuracy
of the various algorithms and methods introduced so far. This analysis is crucial for the fine-tuning of the
methods and it serves as a bridge between theoretical results and practical implementation. We discuss the
performance of the EM algorithm (in Section 5.1), the advantage of robust filtering algorithms (Section 5.2)
and the performance of the goodness-of-fit tests (Section 5.3).

Throughoutwe consider a 3-stateMarkov chain andwe use the parameter vector fromTable 1 to generate
data sets. The stepsize is taken as ∆n = 1

500 , and we use N = 20,000 observations.

a12 a13 a21 a23 a31 a32 g̃1 g̃2 g̃3 λ1 λ2 λ3 σZ
0.2 0.3 0.3 0.2 0.2 0.3 −0.5 0 0.5 0.6 1 4 0.05

Table 1: Parameters used in simulation study.

5.1 EM algorithm

In this subsection we illustrate the performance of the EM algorithm. For this we fix a parameter vector θ,
an initial distribution p, some noise variance σ2Z and we generate trajectories of size N with step size ∆n for
the Markov chain X, the continuous observation Z and the point process D. Given these data and an initial
parameter vector θ0 we run several iterations of the algorithm and we stop as soon as the relative change in
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Parameters a12 a13 a21 a23 a31 a32 g̃1 g̃2 g̃3 λ1 λ2 λ3

True 0.200 0.300 0.300 0.200 0.200 0.300 −0.500 0.000 0.500 0.600 1.000 4.000
EM 0.103 0.180 0.219 0.144 0.390 0.221 −0.485 −0.034 0.489 0.529 1.009 3.460
MLE 0.096 0.150 0.343 0.150 0.343 0.096 −0.493 −0.039 0.487 0.515 1.009 3.444

Table 2: True parameters, EM estimates and MLE estimates (estimates for the hypothetical case where X is observable).

the parameter values is lower than a given tolerance level. Here the following issue arises. Recall that the
theoretical results are derived assuming that the Brownian motion W has unit variance. When this is not
the case, but the noise variance has a known value, it suffices to normalize Gaussian observations before
initiating the EM algorithm. In practice, though, this value is typically unknown. However, as explained
in [14, Section VI-B], in a discretized setting it is possible to obtain an MLE estimate of the noise variance.
Following this, throughout this section we assume that the noise variance is unknown and we estimate
it accordingly.

In Table 2wepresent a typical outcomeof this analysis. The table contains a comparisonbetween the true
parameters, the parameters estimated via the EM algorithm and the MLE estimates (the estimates computed
in the hypothetical casewhere the trajectory of the chain is observable). For the EM algorithm the termination
tolerance is set to 1% and the starting values are 50% of the true ones. The final estimate for the volatility
is given by σMLEZ = 0.05054923. The evolution of the estimates for the generator of X (in dependence of the
number of iterations m of the EM algorithm) is shown in Figure 1. Our analysis shows that in this case the
performance of the algorithm is reasonable. Only the estimates for the generatormatrix of the chain are some-
what off from their true values. However, these parameters are difficult to estimate as can be seen from the
fact that the MLE estimates also deviate from the true parameter value by a similar amount.
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Figure 1: Evolution of parameter estimates for matrix A.

5.2 Effect of robust discretization

Performing a robust discretization of the filters allows one to obtain much smoother estimates of the
quantities of interest in compared to those obtained when directly discretizing the exact filters using the
Euler–Maruyama method. Naturally, the larger the discretization step size (∆n in our notation), the more
evident this effect. The robust discretization effect is illustrated in Figure 2, where we focused on state filters
for the data set generated with the parameters given in Table 1. For visualization purposes, only the first
5,000 points are shown.
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Figure 2: Naive discretization of exact state filters vs. robust discretization, discretization step ∆n = 1
500 .

5.3 Tests for model validation

In this subsection we provide a numerical illustration of the goodness-of-fit tests proposed in Section 4. For
this we compare two cases. Case 1 corresponds to the situation where all parameters have been estimated
correctly. In Case 2we assume that the generatormatrix of X has been estimated correctly while the estimates
for λ and g are constant across states and given by λ∗,j = ⟨λ, π⟩ for all j and g∗,j = ⟨g, π⟩ for all j, where π is the
stationary distribution of the Markov chain X. This parameter choice implies that the increments of w and of
the time transformed process D̃ have the correctmean. However, themodelmisses the autocorrelation caused
by the randomness in the drift of w and the clustering in the jump times of D. Hence we expect that the t test
and the binomial test do not reject Case 2, but the tests for independence respectively for the exponentiality
of the inter-arrival times should lead to a rejection.

To test this conjecturewe again use a data set generatedwith the parameters given in Table 1. The left plot
in Figure 3 shows the correlogram of the increments of w for Case 1 (correct parameters); the right plot shows
the correlogram for Case 2.We see thatworking erroneouslywith a constant g induces significant autocorrela-
tion at all lags. Next we turn to the Poisson hypothesis. Here the null hypothesis of the Kolmogorov–Smirnov
test for exponentiality is rejected in Case 2 (p-value: 0.02), but not in Case 1 (p-value: 0.89). Figure 4 pro-
vides a graphical illustration: the left QQ-plot corresponds to the correctly estimated model, the right one
to Case 2. Themore erratic behavior in the latter is evident. The null hypothesis of the standard binomial test
is not rejected in both cases (the p-values are 0.55 and 0.44, respectively).
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Figure 3: Comparison of correlograms: Case 1 (left) and Case 2 (right).
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Figure 4: Comparison of QQ-plots for inter-arrival times: Case 1 (left) and Case 2 (right).

6 Application to credit risk

Implementation

We applied the HMM for credit quality described in Example 2.2 to a real data set consisting of five US
corporations, considering seven non-default rating categories. We assume that the model parameters are
identical for all firms, but that signal and observation for different firms are independent. This implies that
the log-likelihood of the observations is the sum of the likelihoods for the different firms, and the EM param-
eter updates are easily computed. In fact, this assumption leads to the filter-based cohort approach proposed
in [15]. We use normalized continuous observations as input, where the normalizing factor is given by an
average of the volatility estimates for each of the five companies.

We introduce a couple of restrictions on the parameters: first, we assume for simplicity that the Markov
chain X that models the true credit quality can jump only to neighboring states; second, since we observe
only one default in our data set, we do not estimate λd but instead we keep it fixed and take it equal to

λd = (0.00005, 0.00020, 0.00060, 0.00180, 0.01116, 0.04134, 0.17972)⊤.

These values are derived from estimated default rates of different rating classes, as given in [18, Table 10.2].
Since the intensity of the up-and downgrade processes depends on the observable ratings, we need a slight
extension of the EM methodology developed in Sections 2 and 3; details are discussed in Appendix A.
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Results

Since the state space S of the observed rating Ri and of the hidden true credit quality X are taken identical,
we identify S with the rating categories we consider (AAA, AA, A, BBB, BB, B, CCC-C). The estimates for the
transition rates between the different states of X are given in Table 3. Note that transition intensities to non-
neighbor states are zero by assumption. Overall the estimates appear reasonable; the large transition rates
between the highest categories (labelled AAA, AA and A) are probably due to the fact that given the limited
amount of data the algorithm is not able to distinguish clearly between the three classes.

The estimates for the drift coefficients g are given in Table 4. These estimates are monotonously increas-
ing, in line with the stylized fact that credit spreads are higher when the credit quality of a firm is worse.

The estimates for the up- and downgrade intensities λ+ and λ− are given in Table 5. Note that the elements
of the estimated vectors λ+ and λ− respect the expected ordering (decreasing for λ+ and increasing for λ−),
vindicating the intuition that observed ratings follow the true credit quality albeit with some rating error.

AAA AA A BBB BB B CCC-C

AAA −5.981 5.981 0 0 0 0 0
AA 6.685 −15.548 8.863 0 0 0 0
A 0 18.612 −20.923 2.311 0 0 0
BBB 0 0 0.370 −0.664 0.294 0 0
BB 0 0 0 0.349 −0.349 0.000 0
B 0 0 0 0 0.112 −0.112 0.000
CCC-C 0 0 0 0 0 0.000 0.000

Table 3: Estimated generator matrix A⊤ (annualized transition rates).

gAAA gAA gA gBBB gBB gB gCCC-C
33.972 34.446 35.062 39.618 48.759 64.175 99.370

Table 4: Estimated drift coefficients in basis points.

λ+1 λ+2 λ+3 λ−1 λ−2 λ−3
0.4794 0.2046 0.0004 0.0502 0.1298 0.2764

Table 5: Estimates for λ+ and λ− (annualized rates for rating change).

We also applied the goodness-of-fit tests described in Section 4. The results for the Poisson process
hypothesis were quite satisfactory: the p value of the Kolmogorov–Smirnov test for the exponentiality of the
interarrival times of the time transformed processes D̃+ and D̃− was 0.21 for upgrades and 0.57 for down-
grades D−; the p value of the binomial test was 0.17 for upgrades and 0.26 for downgrades. The tests for
the Brownian motion hypothesis were a bit more problematic, essentially because the observed log-credit
spreads show a very strong degree of autocorrelation; we omit the details.

Finally, we use the model to compute a filter estimate for the unobservable true credit quality of a given
firm. In Figure 5 and in Figure 6 we graph the estimated credit quality for Medtronic and Abbott, together
with the observed CDS spread and the observed rating. The analysis shows that the estimated credit quality
balances the impact of both sources of information (ratings and CDS spreads).

7 Conclusion
In thisworkwe study anEMalgorithm for the settingwhere the state variable follows aMarkov chain observed
via diffusive and point processes information. On the theoretical side, we derived the dynamics for the exact
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Medtronic − Observed ratings and filtered estimates
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Figure 5:Medtronic: Observed ratings and filtered estimate for credit quality (top) and observed credit spread
on log-scale (bottom).

Abbott Laboratories − Observed ratings and filtered estimates
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Figure 6: Abbott: Observed ratings and filtered estimate for credit quality(top) and observed credit spread
on log-scale (bottom).

Bereitgestellt von | Wirtschaftsuniversität Wien
Angemeldet | ruediger.frey@wu.ac.at Autorenexemplar

Heruntergeladen am | 22.11.17 14:51



C. Damian, Z. Eksi and R. Frey, EM algorithm with diffusion and point process information | 21

and the unnormalized filters, and we computed discretized, robust versions of the filters in the sense of [4].
Moreover, we proposed several goodness-of-fit tests for hiddenMarkovmodels with Gaussian noise and point
process observation. On the applied side we carried out a simulation analysis to test the performance of our
methodology, and we considered an application to credit risk: we estimated the parameters of a HMM for
credit quality where the observations consist of rating transitions and credit spreads for five US corporations.
Our work opens interesting avenues for future empirical work such as an analysis of sovereign credit spreads
and of contagion effects between sovereigns or parameter estimation in hidden Markov models for high fre-
quency data in finance.

A EM algorithm for Example 2.2
In what follows we are going to provide the steps of the EM algorithm corresponding to Example 2.2. To this,
we need to define newprocesses due to the dependence of the variates λ+t and λ

−
t on the rating observation Ri

t.
Namely, we define the processes Cjk and Bjk, 1 ≤ j, k ≤ K, with the following:

B+,jkt =
t

∫
0

1{Rs=ej}⟨Xs , ek⟩ dD+s and Cjkt =
t

∫
0

1{Rs=ej}⟨Xs , ek⟩ ds.

We can define B−,jk in a similar fashion. Now we have the following likelihood function:

L(θ, θ) = ⋅ ⋅ ⋅ +
t

∫
0

log(λ+(Xs , Rs)) dD+s −
t

∫
0

λ+(Xs , Rs) ds +
t

∫
0

log(λ−(Xs , Rs)) dD−s −
t

∫
0

λ−(Xs , Rs) ds + R(θ).

Note that we can write

λ+(Xs , Rs) =
K
∑
i=1

K
∑
j=1

λ+,ij1{Rs=ej}⟨Xs , ei⟩.

Hence

L(λ+, λ+) =
t

∫
0

K
∑
k=1

K
∑
j=1

log(λ+,jk)1{Rs=ej}⟨Xs , ek⟩ dD+s −
t

∫
0

K
∑
k=1

K
∑
j=1

λ+,jk1{Rs=ej}⟨Xs , ek⟩ ds + R(λ+).

Thus we have

L(λ+, λ+) =
K
∑
k=1

K
∑
j=1

log(λ+,jk)B+,jkt −
K
∑
k=1

K
∑
j=1

λ+,jkCjkt + R(λ
+).

Next we write the filtered estimate of the log-likelihood function:

̂L(λ+, λ+) =
K
∑
k=1

K
∑
j=1

log(λ+,jk)̂B+,jkt −
K
∑
k=1

K
∑
j=1

λ+,jk̂Cjkt + R(λ
+).

Hence, we have what is needed for the E-Step. Let us now use the parametrization

λ+,jk = λ+11{k<j} + λ
+
21{k=j} + λ

+
31{k>j}, 1 ≤ j, k ≤ K, k > 1.

Hence

̂L(λ+, λ+) =
K
∑
k=2

K
∑
j=1

log(λ+11{k<j} + λ
+
21{k=j} + λ

+
31{k>j})
̂B+,jkt

−
K
∑
k=2

K
∑
j=1
(λ+11{k<j} + λ

+
21{k=j} + λ

+
31{k>j})
̂Cjkt + R(λ

+).
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From the first order conditions we then obtain the following estimates:

λ̂+1 =
∑Kj=1∑

K
1<k<j
̂B+,jkt

∑Kj=1∑
K
1<k<j
̂Cjkt

, λ̂+2 =
∑Kk=2 B̂

+,kk
t

∑Kk=2 Ĉ
kk
t

, λ̂+3 =
∑Kj=1∑

K
k>j
̂B+,jkt

∑Kj=1∑
K
k>j
̂Cjkt

.

To apply the algorithm,we need to obtain the filtered estimates for the quantities Cjkt and Bjk
t , and their robust

version. These are computed exactly as in Section 3.
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ogy Fund (WWTF) through project MA14-031.

References
[1] S. R. Asmussen, Risk theory in a Markovian environment, Scand. Actuar. J. (1989), no. 2, 69–100.
[2] A. Berndt, R. Douglas, D. Duffie, F. Ferguson and D. Schranz, Measuring default risk premia from default swap rates

and EDFs, preprint (2008).
[3] P. Brémaud, Point Processes and Queues. Martingale Dynamics, Springer, Berlin, 1981.
[4] J. M. C. Clark, The design of robust approximations to the stochastic differential equations of nonlinear filtering,

in: Communication Systems and Random Process Theory, Nato Science Series E: 25, Springer, Berlin (1978), 721–734.
[5] K. Colaneri, Z. Eksi, R. Frey and M. Szoelgyenyi, Shall I sell or shall I wait: Optimal liquidation under partial information

with market impact, preprint (2017), Vienna University of Economics and Business.
[6] R. Cont, Statistical modeling of high-frequency financial data, IEEE Signal Process. Mag. 28 (2011), no. 5, 16–25.
[7] A. Dembo and O. Zeitouni, Parameter estimation of partially observed continuous time stochastic processes via the

EM algorithm, Stochastic Process. Appl. 23 (1986), no. 1, 91–113.
[8] A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist.

Soc. Ser. B 39 (1977), no. 1, 1–38.
[9] R. J. Elliott, New finite-dimensional filters and smoothers for noisily observed Markov chains, IEEE Trans. Inform.

Theory 39 (1993), no. 1, 265–271.
[10] R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models. Estimation and Control, Appl. Math. (New York) 29,

Springer, New York, 1995.
[11] R. J. Elliott and W. P. Malcolm, Discrete-time expectation maximization algorithms for Markov-modulated Poisson

processes, IEEE Trans. Automat. Control 53 (2008), no. 1, 247–256.
[12] R. Frey and W. J. Runggaldier, A nonlinear filtering approach to volatility estimation with a view towards high frequency

data, Int. J. Theor. Appl. Finance 4 (2001), no. 2, 199–210.
[13] R. Frey and T. Schmidt, Pricing and hedging of credit derivatives via the innovations approach to nonlinear filtering,

Finance Stoch. 16 (2012), no. 1, 105–133.
[14] M. R. James, V. Krishnamurthy and F. Le Gland, Time discretization of continuous-time filters and smoothers for HMM

parameter estimation, IEEE Trans. Inform. Theory 42 (1996), no. 2, 593–605.
[15] M. G. W. Korolkiewicz and R. J. Elliott, A hidden Markov model of credit quality, J. Econom. Dynam. Control 32 (2008),

no. 12, 3807–3819.
[16] R. S. Mamon and R. J. Elliott, Hidden Markov Models in Finance, Internat. Ser. Oper. Res. Management Sci. 104, Springer,

New York, 2007.
[17] R. S. Mamon and R. J. Elliott (eds.), Hidden Markov Models in Finance. Further Developments and Applications. Vol. II,

Internat. Ser. Oper. Res. Management Sci. 209, Springer, New York, 2014.
[18] A. J. McNeil, R. Frey and P. Embrechts, Quantitative Risk Management. Concepts, Techniques and Tools, revised ed.,

Princeton Ser. Finance, Princeton University Press, Princeton, 2015.
[19] P. Protter, Stochastic Integration and Differential Equations. A new Approach, Appl. Math. (New York) 21, Springer,

Berlin, 1990.
[20] U. Rieder and N. Bäuerle, Portfolio optimization with unobservable Markov-modulated drift process, J. Appl. Probab. 42

(2005), no. 2, 362–378.
[21] J. Sass and U. G. Haussmann, Optimizing the terminal wealth under partial information: The drift process as a continuous

time Markov chain, Finance Stoch. 8 (2004), no. 4, 553–577.
[22] H. Schmidli, Cramér–Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion, Insurance

Math. Econom. 16 (1995), no. 2, 135–149.

Bereitgestellt von | Wirtschaftsuniversität Wien
Angemeldet | ruediger.frey@wu.ac.at Autorenexemplar

Heruntergeladen am | 22.11.17 14:51


	EM algorithm for Markov chains observed via Gaussian noise and point process information: Theory and case studies
	1 Introduction
	2 EM algorithm for diffusion and point process information
	2.1 The setup
	2.2 Examples
	2.2.1 A hidden Markov model for credit quality
	2.2.2 Other applications

	2.3 The EM algorithm

	3 Filtering
	3.1 Filtering via the innovations approach
	3.2 Unnormalized filters
	3.3 Robust filters and discretization

	4 Goodness-of-fit tests 
	5 Simulation analysis
	5.1 EM algorithm
	5.2 Effect of robust discretization
	5.3 Tests for model validation

	6 Application to credit risk
	7 Conclusion
	A EM algorithm for Example 2.2


