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Abstract

Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia
brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific
surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and
in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC
(BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE).
Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested
for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion
site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in
the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-
droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and
in vivo during N. brasiliensis infection.
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Introduction

Lipid-laden foamy cells may appear in bacterial infections some

of them; produce world health problems, such as malaria and

tuberculosis. In fact, members the four main groups of pathogens,

virus [1,2], bacteria [3,4], fungi [5] and parasites [6] have been

related with the presence of lipid-laden cells in infected tissues.

Prostaglandins production and foamy cells may appear as part of

the host response [7,8], reports suggest that foamy cells may favor

pathogen persistence in the host [9]. For example, foamy cells in

leprosy are related with the aggressive lepromatous form of the

disease [10,11]. Foamy cells in tuberculosis play a role as a refuge

for dormant Mycobacterium tuberculosis [4], which has switched to a

lipid-based metabolism [12]. Biochemical analysis of the caseous

material showed that its main components were triglycerides and

cholesterol, suggesting that the accumulated lipids are not

indigestible remnants of the micobacterial cell wall but rather

host-derived lipids [13].

Foamy cells have also been observed in the actinomycetoma

that may develop after accidental inoculation with the saprophyte

Nocardia brasiliensis [14]. N. brasiliensis belongs to the Actinomycetes,

as do Mycobacteria spp., and they share a similar architecture of the

cell wall with abundant mycolic acids, which are important

virulence factors [15,16]. However, N. brasiliensis has a larger

genome, which encodes more proteins that enable the bacteria to

deal with the harsh, ever-changing environments of the soil or to

develop resistance to antibiotics [17]. Actinomycetoma by N.

brasiliensis is endemic in México, and failure of antibiotic treatment

due to resistance development often leads to amputation as a final

option of treatment [18].

In order to study the host-pathogen interaction in actinomyce-

toma by N. brasiliensis, we have developed a murine experimental

model [14]. Innate, Th1 and Th2 type immunity are involved in

the host response against N. brasiliensis [19], but N. brasiliensis is able

to escape from microbicidal mechanisms and multiply both

extracellularly and within macrophages [20]. We focused our

attention to define the lineage of foamy cells in actinomycetoma.

It is generally accepted that macrophages are the precursors of

foamy cells [4,10], but there are indications that they might arise

from dendritic cells (DC) [21,22]. Lineage studies of foamy cells

are mainly based on surface markers, which are difficult to

interpret as the surface markers are not exclusive to either cell type

and/or markers may be acquired or lost depending on life cycle or

activation status. In order to be conclusive about whether

macrophages, DC or both are the precursors of foamy cells, we

carried out in vitro and in vivo studies. We present strong evidence

that not only macrophages but also dendritic cells become foamy

cells in either in vitro infection or an in vivo experimental

actinomycetoma model by Nocardia brasiliensis.

Materials and Methods

Mice
BALB/c mice were cared for and handled according to the

International Review Board regulations and the Mexican Animal

Protection Law (NOM-062-ZOO-1999), and were given Purina
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rodent food and distilled water ad libitum. The Bioethics

Committee of the Facultad de Medicina at the Universidad

Autónoma de Nuevo León approved this study under registration

IN 10-003.

Generation of Bone Marrow-derived Macrophages
(BMDM) and Dendritic Cells (BMDC)

Mice were anesthetized and sacrificed by cervical dislocation.

Bone marrow cells of femurs and tibiae of donor BALB/c mice

were collected, treated with ammonium chloride [23] and washed

in complete RPMI (RPMI-1640/25 mM HEPES/24 mM bicar-

bonate supplemented with 50–100 U penicillin/mL, 50–100 mg

streptomycin/mL, (all Sigma-Aldrich, St.Louis, MO, USA; RPMI)

and 10% heat-inactivated fetal bovine serum (Mediatech,

Manassas, VA, USA) or complete advanced DMEM (advanced

DMEM medium supplemented with 25 mM HEPES, 50–100 U

penicillin/mL, 50–100 mg streptomycin/mL, (all Sigma-Aldrich,

St.Louis, MO, USA) and 5% heat-inactivated fetal bovine serum

(Mediatech, Manassas, VA, USA). Cells were plated at 16105

cells/cm2 in complete RPMI or complete advanced DMEM with

their respective differentiation factors: 1) 30% L929-conditioned

medium for BMDM [24], and 2) 20 ng/mL recombinant murine

granulocyte-macrophage colony stimulating factor (GM-CSF) and

20 ng/mL interleukin 4 (IL-4) (Peprotech, Rocky Hill, NJ, USA)

for BMDC. Media were refreshed every 2–3 days and cells were

allowed to differentiate during 6 days. As negative control, we used

non adherent cells from mouse spleen. In order to obtain these

cells, spleen was removed under sterile conditions to prepare a cell

suspension. Mononuclear cells were isolated using a ficoll

diatrizoate density gradient and plated at 16105 cells/cm2,

incubated in complete advanced DMEM overnight. Non-adherent

cells were obtained and used in adoptive transference assays.

Labeling of Cells
Cells were labeled with 2 mM carboxy-fluorescein diacetate

succinimidyl-ester (CFSE; Molecular Probes/Invitrogen, Eugene,

OR, USA) according to the manufacturer’s instructions. Viable

cells that had been harvested with the use of scrapers one day after

CFSE-labeling were counted by trypan blue exclusion using a

hemocytometer. In the case of BMDC, ‘contaminating’ neutro-

phils were eliminated by washing the adherent cell layer 2–3 times

with 10 mM phosphate buffered saline, pH 7.3 (PBS), whereas

macrophages were depleted with the aid of streptavidin-conjugat-

ed magnetic beads (Miltenyi Biotec, Auburn, CA, USA) according

to the manufacturer’s instructions. Briefly, the cell suspension was

concentrated in 100 mL and incubated with biotin-conjugated

anti-F4/80 (clone BM8, e-Biosciences, San Diego, CA, USA)

diluted 1:100 in complete RPMI for 15 min at room temperature

plus 30 min at 4uC. After washing, the cell suspension was

incubated with the magnetic beads, washed and passed through an

MS-column (Miltenyi).

Figure 1. Morphology and immunophenotype of bone marrow-derived macrophages (BMDM) and dendritic cells (BMDC). Five-day
cultures of BMDM generated with 30% L929-conditioned medium (A) or BMDC generated with 20 ng/mL GM-CSF and IL-4 (B); images were taken at
200x+digital zoom. Over 98% of the BMDM were F4/80+ (C), but less than 4.5% of the macrophage-depleted BMDC were F4/80+ (D).
doi:10.1371/journal.pone.0100064.g001
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Immunophenotyping of Surface Markers by Flow
Cytometry

To block Fc-receptors, cells, 56105/50 mL complete RPMI,

were incubated with murine hyperimmune serum (generated

against N. brasiliensis) diluted 1:50 for 15 min. at room tempera-

ture. Then, 1 volume of 2x solutions of specific conjugated

antibody mixtures in complete RPMI were added: 1) anti-CD11b-

allophycocyanin (1:150, M1/70)+anti-CD11c-phycoerythrin

(1:40, N418), 2) anti-F4/80-phycoerythrin (1:80, BM8)+anti-

CD205-allophycocyanin (1:625, 205 yekta), all e-Biosciences,

and 3) the various phycoerythrin-conjugated isotype controls were

anti-rat IgG2a, anti-rat IgG2b, and anti-hamster IgG (1:50, all

Caltag/Invitrogen, Carlsbad, CA, USA). After incubation in the

dark for 15 min. at room temperature plus 30 min. at 4uC, the

cells were washed 3 times with 2 mL PBS (4006g, 8 min.) and

suspended in 550 mL 1% formalin/PBS or fixed in 10% formalin/

PBS (30 min 4uC) and washed again 3 times in PBS to be

suspended in 500 mL PBS. At least 16104 cells were analyzed

using a FACSCalibur or FACS Canto II cytometer (BD

Biosciences, Mountain View, CA) and Pro Quest or FACS Diva

software (BD Biosciences, San Jose, CA).

Phagocytosis Assay
16106 BMDM or BMDC cells suspended in complete RPMI

were seeded and allowed to adhere for 2 h in normal culture

conditions before being incubated with a 30-fold excess of 2 mm

Latex beads (Polysciences, Warrington, PA, USA) for 3 h at 37uC.

After extensive washing with PBS, cells were fixed in 10% formalin

and 100 cells were counted (in duplicate) and the percentage of

phagocytosis was determined.

In vitro Infection of BMDM and BMDC
BMDM and BMDC were seeded in 8-well Permanox slide

chambers (Lab-Tex Thermo Fisher Scientific, Rochester, NY) at

56104 cells per well in 700 mL of advanced DMEM medium/5%

heat-inactivated fetal bovine serum (Mediatech, Manassas, VA,

USA) without antibiotics, and incubated at 37uC in 5% CO2 for

2 h. BMDM and BMDC were infected for 2 h with log-fase N.

brasiliensis strain (ATCC no. 700358), cultured and recovered as

described in [16], at a multiplicity of infection of 5:1, After the

removal of extracellular bacteria, cells were incubated for an

additional 48 h in advanced DMEM/5% heat-inactivated fetal

bovine serum without antibiotics before lipid body staining.

Lipid Body Staining
Monolayers were washed 3 times with a sterile 0.85% saline

solution and fixed in 10% formalin for 10 min. After the addition

of 60% isopropanol, the chamber was removed and BMDM and

BMDC were stained with Oil Red O (Sigma-Aldrich) for 15 min.

Slides were rinsed with 60% isopropanol and counterstained with

hematoxylin.

Figure 2. CFSE-labeling does not alter phenotype. A) BMDM and BMDC were fluorescent-labeled with 2 mM CFSE. B) Representative dot plots
(1 out of 3 independent experiments) show that control (CTR) and CFSE-labeled macrophages (CFSE) had similar CD11b and CD11c expression
profiles.
doi:10.1371/journal.pone.0100064.g002

Macrophage and Dendritic Origin of Foamy Cells

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e100064



Figure 3. CF.SE-labeling does not alter functionality. The phagocytosis capacity of control and CFSE-labeled BMDM or CFSE-labeled BMDC
were similar; 100 cells were counted; the experiment was repeated 3 times; P.0.05.
doi:10.1371/journal.pone.0100064.g003

Figure 4. Bone marrow-derived macrophages (BMDM) and dendritic cells (BMDC) become lipid-laden after in vitro infection with N.
brasiliensis. Non-infected BMDM and BMDC (A) and BMDM and BMDC infected with N. brasiliensis were stained with Oil Red O as described in
Materials and Methods. Only infected macrophages and dendritic cells were Oil Red O positive. (Images were taken at 1006magnification).
doi:10.1371/journal.pone.0100064.g004
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Adoptive Transfer and Cell Tracing in the
Actinomycetoma

Female BALB/c mice (8–10 wk) were infected with 106 colony-

forming units of N. brasiliensis into the left rear footpad as

previously described [14]. At day 15 or 30 of the infection, 26104–

56105 CFSE-labeled DC, macrophages or non-adherent control

cells/100 mL PBS were injected into the lesions or the left rear

footpad of control mice; 7 days later, biopsies of lesions were fixed

in 10% formalin/PBS for 8–24 h, washed 3 times in PBS and

saturated with 30% sucrose/PBS before being included in OCT to

cut 10-mm cryostate sections. For detection of lipid droplets, slides

were stained with Nile Red (Molecular Probes; 300 ng/mL in PBS

from a 1 mg/mL stock in methanol). After washing the slides in

PBS, they were mounted with Vectashield including 49,6-

diamidino-2-phenylindole (DAPI) (Vector Laboratories, Burlin-

game, CA, USA). Throughout the process, exposure to light was

kept to a minimum. Slides were observed with a confocal laser

scanning microscope (LSM700 or LSM710; Zeiss or TCS SPS;

Leica) using a 20x/0.8 M27 Plan-Apochromat objective and a 30–

39 mm pinhole with the following excitation/emission wavelength

(lex/em) settings: lex/em 360/458–531 for DAPI, lex/em 488/490–

569 for CFSE; and lex/em 591/594–692 nm for Nile Red. Image

analysis was performed with ZEN2009 or LAS AS software.

Statistics
Student’s T test was used to detect significant differences

between CFSE-labeled cells and control cells. A P-value ,0.05

was considered significant.

Results and Discussion

Murine BMDM are easily generated in vitro with L929-

conditioned medium as can be verified by their homogeneous

morphology (fig. 1 a) and F4/80 expression in over 98% of the

harvested cells (fig. 1c). On the other hand, murine bone marrow

cells differentiated with GM-CSF and IL-4 generated a mixture of

semi-adherent DC, adherent macrophages, and neutrophils in

suspension [25]. The latter were easily removed by elimination of

the medium and washing of the adherent cells. However,

considering the aim of the study, it was most important to deplete

all macrophages from the DC cell cultures. We did not rely on the

commonly applied technique of positive selection of CD11c-

labeled or CD205-labeled cells because macrophages tend to be

CD11c+ [26,27], and CD205+ macrophages have been described

[21,28]. Therefore, we chose for depletion of F4/80+ cells. F4/80

is considered a macrophage marker, although a subpopulation of

DC, for example epidermal Langerhans cells and kidney DC,

might also be F4/80+ [29,30,31]. To ensure DC (fig. 1b), we

Figure 5. Transferred CFSE-labeled macrophages (MQ) and dendritic cells (DC) become lipid-laden. Macrophages (MQ; in A) and
dendritic cells (DC; in B) transferred at day 30 of a N. brasiliensis infection are 7 days later localized in the fibrotic ring (FR) of a microabscess (MA).
Non-adherent spleen control cells (NACC; in C) transferred at day 30 of a N. brasiliensis infection are 7 days later localized outside of the FR and MA.
Nile Red staining of lipid droplets is observed in transferred MQ (D) and DC (E). Transferred cells are stained green by CFSE, lipid droplets are stained
red by Nile Red, and nuclei are stained blue with DAPI.
doi:10.1371/journal.pone.0100064.g005
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preferred losing some DC above having a macrophage contam-

ination. Figure 1d demonstrates that less than 5% of the

macrophage-depleted BMDC were F4/80+.

Although CFSE labeling (fig. 2a) affected BMDM and BMDC

morphology at the short term with cells rounding up during the

first hours after labeling, the next day, viable cells had recovered

typical morphology and adherence. The immunophenotype

pattern was hardly altered between control and CFSE-labeled

BMDM or BMDC (fig. 2b) and considered acceptable. Similarly,

functionality was unaffected as verified by phagocytosis studies of

harvested and reseeded CFSE-labeled and control BMDM, which

had phagocytosis indices of 96.0% (62.96) and 97.6% (62.14),

respectively; meanwhile CFSE-labeled and control BMDC had

phagocytosis indices of 78.6% (64.1) and 77.6% (65.8),

respectively (fig. 3).

The in vitro study revealed that BMDM and BMDC became

foamy cells as both accumulated lipids into their cytoplasm after

infection with N. brasiliensis, whereas uninfected BMDM and

BMDC did not (fig. 4). CFSE-labeled BMDM and BMDC,

transferred into 30-days lesions of experimental actinomycetoma

induced by N. brasiliensis, could be traced 7 days later interspersed

into the fibrotic ring of multilocular microabscesses, the typical site

of foamy cells. The lipid droplet fluorophore Nile Red co-localized

within the transferred cells, either BMDM or BMDC, as well as in

recipient’s own cells that had accumulated lipid droplets (fig. 5).

On the other hand, non-adherent control cells were localized out

of fibrotic area and did not accumulate lipid droplets. Thus, we

demonstrated that macrophages and DC can be differentiated into

foamy cells, both in vitro and in vivo.

The ability of both cell types to become lipid-laden further

diminishes the supposed difference between them. Although

separate lineages for either cell type have been reported [32],

both 1) can differentiate from monocytes [26], 2) share many cell

surface markers in fact, it is hard to find an exclusive surface

marker, 3) can present antigens, and 4) can be classically activated,

known as M1 macrophages or TipDC, respectively [33,34].

Moreover, recently our group reported that N. brasiliensis

modulates the local immune system to favor chronic disease and

bacterial. The local microenvironment is a characterized by the

expression of inflammatory (interferon-gamma) and anti-inflam-

matory (IL-10 and IL-13) cytokines [35–36]. This immunological

environment may play an important role in foamy cell formation

and bacterial survival. The mechanism for lipid droplet accumu-

lation in N. brasiliensis infected macrophages and DC remains to be

elucidated, however the findings from infections with some

mycobacterial species may apply because they share a similar cell

wall composition and genetic background. The accumulation of

cholesterol and cholesterol esters in macrophages infected with

Mycobacterium leprae [37] may favor intracellular survival in at least

two ways as it facilitates mycobacterial entry and is involved in the

inhibition of phagosome-lysosome fusion [38]. The involvement of

Toll-like receptors, especially TLR-2 and TLR-6 has been studied

in Mycobacterium leprae pathogenesis [10] [39]. As a consequence of

the activation of the innate immune response, membrane lipids are

liberated to generate eicosanoid immunomodulators, such as

prostaglandin E (PGE), which accumulate inside the cell [7,10].

Oxygenated mycolic acids, or the oxygenated lipids generated

because of reactive oxygen species, induce the expression of lipid

scavenger receptors and thus facilitate lipid uptake and the

formation of lipid-laden cells [4] [40]. Key regulators of lipid

metabolism are a family of lipid sensor nuclear receptors, which

include three types of peroxisome proliferator-activated receptors

(PPAR), PPARa, PPARb/d, and PPARc [41]. A variety of

endogenous lipids and synthetic ligands stimulate PPAR to induce

gene expression that finally results in lowering circulating lipid

levels, In addition, PPAR agonists have significant anti-inflamma-

tory activities [41,42], which may be independent of PPAR [43],

These PPAR, especially PPARc, have received most attention in

studying molecular mechanisms of lipid accumulation in myco-

bacterial infected cells [44,45]. Virulent, but not avirulent,

mycobacterial infection induced a TLR-2 dependent PPARc
expression that correlated with lipid droplet accumulation [44],

which in turn correlated with intracellular pathogen survival [45].

Furthermore, PPARc modulated the cytokine profile of macro-

phages infected with the attenuated M. tuberculosis strain H37Ra by

diminishing pro-inflammatory signaling and favoring the anti-

inflammatory cytokine IL-10 [45]. The anti-inflammatory cyto-

kine profile favors alternative activation of macrophages and

pathogen survival. We previously reported the local induction of

an anti-inflammatory environment with increased expression of

IL-13 and IL-10 in our actinomycetoma model [35,36], Any of

these mechanisms may be involved in accumulation of lipids in

either macrophages or DC in the N. brasiliensis infection, that may

be studied in the future.

In conclusion, we present strong experimental evidence, that

macrophages and DC differentiate to foamy cells in vitro and

in vivo infections.
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