

Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft

Evaluierung von aktuellen Wintergerstesorten sowie Sichtung von Zuchtmaterial mit Flugbrand-Widerstandsfähigkeit (*Ustilago nuda*) auf Anfälligkeit gegenüber der Streifenkrankheit (*Drechslera graminea*)

Evaluation of Winter barley varieties and breeding lines with resistance to loose smut (*Ustilago nuda*) for susceptibility to natural infection with barley leaf stripe (*Drechslera graminea*)

FKZ: 100E073

Projektnehmer:

Landbauschule Dottenfelderhof e.V. Holzhausenweg 7, 61118 Bad Vilbel

Tel.: +49 6101 5056940 Fax: +49 6101 524565

E-Mail: ben.schmehe@dottenfelderhof.de Internet: https://www.dottenfelderhof.de

Autoren:

Schmehe, Ben; Spieß, Hartmut

Gefördert durch das Bundesministerium für Ernährung und Landwirtschaft aufgrund eines Beschlusses des Deutschen Bundestages im Rahmen des Bundesprogramms Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft.

Die inhaltliche Verantwortung für den vorliegenden Abschlussbericht inkl. aller erarbeiteten Ergebnisse und der daraus abgeleiteten Schlussfolgerungen liegt beim Autor / der Autorin / dem Autorenteam. Bis zum formellen Abschluss des Projektes in der Geschäftsstelle Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft können sich noch Änderungen ergeben.

Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft

Schlussbericht

BÖLN-Projekt 28100E073

Evaluierung von aktuellen Wintergerstesorten sowie Sichtung von Zuchtmaterial mit Flugbrand-Widerstandsfähigkeit (*Ustilago nuda*) auf Anfälligkeit gegenüber der Streifenkrankheit (*Drechslera graminea*)

Evaluation of Winter barley varieties and breeding lines with resistance to loose smut (Ustilago nuda) for susceptibility to natural infection with barley leaf stripe (Drechslera graminea)

Laufzeit: 1.9.2011 - 31.12.2018

Zuwendungsempfänger:

Landbauschule Dottenfelderhof e.V. Dottenfelderhof 61118 Bad Vilbel

Projektkoordination:

Schmehe, Ben
Spieß, Hartmut
Dottenfelderhof
61118 Bad Vilbel
forschung@dottenfelderhof.de

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Kurzfassung

Das Projekt "Evaluierung von aktuellen Wintergerstesorten sowie Sichtung von Zuchtmaterial mit Flugbrand-Widerstandsfähigkeit (*Ustilago nuda*) auf Anfälligkeit gegenüber der Streifenkrankheit (*Drechslera graminea*)" startete mit der Herbstaussaat 2011 und wurde nach drei Projektverlängerungen Ende 2018 abgeschlossen. Im Projektzeitraum wurden insgesamt 244 Wintergersteakzessionen mindestens einmal auf Anfälligkeit gegenüber Streifenkrankheit getestet. Das Befallsniveau stieg im Laufe des Projekts kontinuierlich an und erreichte 2017 bei der anfälligsten Akzession den Höchstwert von 48 %. Lediglich drei Akzessionen blieben befallsfrei, bei der Mehrheit wurde ein Befall von 1 % bis 5 % ermittelt.

Es konnten drei Zuchtstämme der 'Forschung & Züchtung Dottenfelderhof' identifiziert werden, welche mindestens drei Jahre geprüft wurden, zudem bei der Streifenkrankheit <2 % maximalen Befall aufweisen und gleichzeitig resistent gegenüber Flugbrand sind (HS AS 611-10, HS 561-11, HS 624-10-2). Alle drei Zuchtstämme sind zweizeilig, verfügen jedoch über keine ausreichend guten agronomischen Eigenschaften für eine offizielle Sortenanmeldung. Zwei eigene Zuchtstämme wurden gefunden, die <1 % Befall bei Streifenkrankheit aufweisen dabei jedoch nicht resistent gegenüber Flugbrand sind.

Verschiedene Labormethoden zur Bestimmung des Streifenkrankheitsbefalls am Saatgut wurden überprüft. Bis zum Projektende gelang es jedoch nicht, eine zufriedenstellende Korrelation zwischen Feldbefall und Laborbefund zu erreichen.

Abstract

The project "Evaluation of Winter barley varieties and breeding lines with resistance to loose smut (*Ustilago nuda*) for susceptibility to natural infection with barley leaf stripe (*Drechslera graminea*)" started in autumn 2011 and was conducted until end of 2018. During the project 244 accessions were evaluated for stripe disease at least once. The level of infestation was rising continuously during the project and in 2017 it reached 48 % for the most susceptible accession. Only three accessions were found completely disease free. The majority of accessions showed a disease level between 1 % to 5 %.

Three breeding lines of 'Research & Breeding Dottenfelderhof' that were tested for at least three years, were found with a maximum stripe disease level <2 % and resistant to loose smut at the same time (HS AS 611-10, HS 561-11, HS 624-10-2). All three breeding lines are two rowed but do not have satisfactory agronomic properties to justify an official DUS registration. Two breeding lines were found with a maximum stripe disease level <1 % however not resistant to loose smut.

Different laboratory methods for the determination of stripe disease on the seeds were tested. Until the end of the project no satisfactory correlation between field infection and laboratory results could be found.

Inhaltsverzeichnis

Sc	Schlussbericht							
	/iders	rung von aktuellen Wintergerstesorten sowie Sichtung von Zuchtmaterial mit Flugbrand- standsfähigkeit (<i>Ustilago nuda</i>) auf Anfälligkeit gegenüber der Streifenkrankheit (<i>Drechslera grami</i>						
Κι		ssung						
A	bstrac	ct	1					
In	halts	verzeichnis	2					
1	Ei	inführung	3					
	1.1 1.2 Bund 1.3	Gegenstand des Vorhabens Ziele und Aufgabenstellung des Projekts, Bezug des Vorhabens zu den einschlägigen Zielen des desprogramms Ökologischer Landbau oder zu konkreten Bekanntmachungen und Ausschreibungen Planung und Ablauf des Projektes	3					
2	W	Vissenschaftlicher und technischer Stand, an den angeknüpft wurde	16					
3	N	Naterial und Methoden	17					
	3.1 3.2 3.3	Auszählung des Feldbefalls in den Versuchsjahren 2012 bis 2015	17					
4	Α	usführliche Darstellung der wichtigsten Ergebnisse	21					
	4.1 4.2 4.3 4.4 Zusa 4.5 4.6	Gegenüberstellung der beiden Prüfstandorte Dottenfelderhof und Darzau 2014	22 23 24 26					
5	D	Piskussion der Ergebnisse	28					
	5.1 5.2	Diskussion Ergebnisse Auszählung des Feldbefalls bis 2018						
6 A		oraussichtlicher Nutzen und Verwertbarkeit der Ergebnisse; Möglichkeiten der Umsetzung oder dung der Ergebnisse für die Praxis und Beratung (max. 3.000 Zeichen)	30					
7 w		Gegenüberstellung der ursprünglich geplanten zu den tatsächlich erreichten Zielen; Hinweise auf führende Fragestellungen	30					
8	Z	usammenfassung	30					
9 Pı		Dersicht über alle im Berichtszeitraum vom Projektnehmer realisierten Veröffentlichungen zum t (Printmedien, Newsletter usw.), bisherige und geplante Aktivitäten zur Verbreitung der Ergebniss	e 31					
	9.1 9.2	Veröffentlichungen						
10) Li	iteratur	32					
11	L A	nhang große Abbildungen und Tabellen	35					
1.		Anhang zum Schluschericht: kurzgefasster Erfolgskontrollhericht Echler LTextmarke nicht defin	iort					

1 Einführung

In der "Forschung & Züchtung Dottenfelderhof" (FZD) wird die Wintergerste seit 2002 konsequent unter ökologischen Bedingungen züchterisch bearbeitet. Ziel ist es, Sorten zu entwickeln, die bei Verzicht auf chemisch synthetische Beizmittel langjährig ökologisch nachbaufähig sind. In der praktischen Arbeit hat sich neben dem Flugbrand (*Ustilago nuda*) die Streifenkrankheit der Gerste (*Pyrenophora graminea* (Ito et Kurib.) [*Drechslera graminea* (Rabenh. ex. Schlech.) Shoemaker]) als bedeutsam herausgestellt. Dabei handelt es sich um eine saatgutübertragbare Pilzkrankheit der Gerste (*Hordeum vulgare*), die unter den Bedingungen des ökologischen Landbaus wieder Bedeutung erlangt hat, nachdem sie im konventionellen Anbau durch chemisch synthetische Beizmittel weitgehend unter Kontrolle gebracht werden konnte.

Befallene Pflanzen entwickeln sich zwar fast vollständig, erreichen aber nicht die Kornfüllungsphase. Deshalb entspricht der prozentuale Anteil verkümmerter Ähren in etwa dem prozentualen Ertragsverlust (Porta-Puglia et al. 1986).

1.1 Gegenstand des Vorhabens

In dem Vorhaben wurden aktuelle Wintergerstesorten aus Deutschland und Österreich sowie fortgeschrittene Zuchtstämme der 'Forschung & Züchtung Dottenfelderhof' (>F7, F = Filialgeneration) hinsichtlich ihrer Anfälligkeit gegenüber der Streifenkrankheit unter den natürlichen Feldbedingungen des ökologischen Landbaus evaluiert. Das Projekt erstreckte sich nach Verlängerungen über sieben Vegetationsperioden (2011/12 bis 2017/18). Die erste Projektverlängerung wurde aufgrund eines außergewöhnlichen Auswinterungsereignisses im ersten Projektjahr beantragt. Die weiteren Verlängerungen ergaben sich zum einen aus dem noch vergleichsweise niedrigen Befallsniveau zum ursprünglich geplanten Projektende sowie aus dem Bestreben, eine Labormethode zu entwickeln, die den Befallsgrad des Saatgutes schon vor der Aussaat bestimmen könnte.

1.2 Ziele und Aufgabenstellung des Projekts, Bezug des Vorhabens zu den einschlägigen Zielen des Bundesprogramms Ökologischer Landbau oder zu konkreten Bekanntmachungen und Ausschreibungen

In seiner Zielsetzung nimmt das Projekt direkt Bezug zu dem Förderschwerpunkt 'Züchterische Weiterentwicklung von Getreide, Mais und anderen Kulturen' mit dem Schwerpunkt 'Resistenzeigenschaften gegenüber saatgutbürtigen Krankheitserregern'.

Durch die Quantifizierung der Streifenkrankheitsanfälligkeit von aktuellen zugelassenen Sorten, von Genbankakzessionen mit beschriebener Resistenz, sowie von Zuchtstämmen mit Widerstandsfähigkeit gegenüber Flugbrand (*Ustilago nuda*), soll die Grundlage für eine Resistenzzüchtung geschaffen werden. Kurz- bis mittelfristig werden damit die Grundbedingungen zur Erzeugung ökologisch produzierten Saatgutes verbessert. Ohne gezielte Resistenzzüchtung gegenüber Streifenkrankheit wird bei der Saatgutvermehrung über kurz oder lang auf konventionelle Zwischenvermehrung mit chemisch-synthetischer Beizung zur Sanierung von befallenem Saatgut zurückgegriffen werden müssen.

1.3 Planung und Ablauf des Projektes

1.3.1 Kurzbeschreibung der Ereignisse im gesamten Projektzeitraum

Das ursprünglich für drei Jahre geplante Projekt sah im ersten Jahr 2012 eine Vermehrung und Feldinfektion der Prüfglieder mit einer anschließenden zweiortigen Prüfung in den zwei darauffolgenden Jahren 2013 und 2014 vor.

Aufgrund außergewöhnlicher klimatischer Bedingungen im Winter 2012 kam es gleich im ersten Vegetationsjahr zu starken Auswinterungsschäden. Deshalb konnte von vielen Prüfgliedern nicht genug Saatgut für die zweiortige Prüfung 2013 geerntet werden, worauf eine Projektverlängerung um ein Jahr beantragt wurde (bis 2015), da der Vermehrungsanbau dieser Prüfglieder in 2013 auf dem Standort Dottenfelderhof wiederholt werden musste. Das Projekt wurde in der Folgezeit dann wie ursprünglich geplant weitergeführt, nur erfolgten alle weiteren Schritte um jeweils ein Jahr verschoben.

Die weitere Verlängerung des Projektes zunächst bis 2017 und dann noch einmal bis 2018 ergab sich zum einen aus dem zum ursprünglich geplanten Projektende 2015 vergleichsweise niedrigen Befallsniveau im Versuch. Zum anderen wurde im Laufe des Projektes die Idee geboren, eine Labormethode zu entwickeln, mit der sich der Streifenkrankheitsbefall direkt am Saatgut bestimmen ließe. Trotz vielversprechender Hinweise in der Literatur ließ sich leider mit keiner der erprobten Methoden eine hinreichende Wiederholbarkeit bzw. Übereinstimmung mit dem Feldbefall erreichen.

1.3.2 Vegetationsperiode 2011/12

Im ersten Projektjahr 2012 wurden die zu prüfenden Sorten auf dem Standort 'Dottenfelderhof', Bad Vilbel auf dem Schlag "Hölle III" intensivem Sporenflug ausgesetzt, indem sie in direkter Nachbarschaft zu zwei hoch befallenen 'Infektionsträgersorten' angebaut wurden. Dieser Standort hatte sich in vorangegangenen Untersuchungen zur Streifenkrankheit bei Sommergerste bereits als besonders geeignet für die Infektion mit Streifenkrankheit erwiesen (Müller 2006).

Als Infektionssorten wurden zunächst zwei Zuchtstämme verwendet ('CaKri' und 'CaAlp'), die in vorangegangenen Jahren den höchsten Befall mit Streifenkrankheit zeigten. Während 'CaKri' vergleichsweise starke Auswinterungsschäden und in der Folge auch einen niedrigen Streifenkrankheitsbefall hatte (knapp 10 %), erwies sich 'CaAlp' als sehr winterhart mit einem Befall von fast 70 %.

Am 14. Oktober 2011 wurden 84 aktuell zugelassene Sorten aus Deutschland, Österreich und teilweise auch Tschechien sowie 32 eigene Zuchtstämme (zusammen 116 Prüfglieder) in dem ursprünglich geplanten Versuchsdesign auf dem Schlag "Hölle III" in 3 m² Parzellen ausgesät (Abbildung 20 im Anhang).

Zusätzlich wurden im Rahmen der internationalen 'barley winter hardiness nursery' 30 Sorten in zweifacher Wiederholung auf 1,5 m² Parzellen ausgesät. Von diesen Parzellen sollte genug Material geerntet werden, um in 2013 den ersten Prüfungsanbau auf den beiden Standorten Dottenfelderhof und Darzau zu gewährleisten.

Darüber hinaus wurden noch insgesamt 69 Wintergersteakzessionen von verschiedenen Genbanken ausgesät. Da von Genbanken in der Regel nur wenige Gramm Saatgut verschickt werden, mussten diese Sorten zunächst vermehrt werden, wären also für einen Anbau im Rahmen des beantragten Projektes nicht infrage gekommen. Allerdings sind diese Genbankakzessionen für die über das Projekt hinausgehende Züchtung von neuen Wintergerstesorten auf Streifenkrankheitsresistenz interessant. Unter den 69 Akzessionen befanden sich z.B. auch 29 Akzessionen der sogenannten 'barley core collection', die nach dem 'GENRES Final report' (Enneking et al. 2002) die höchsten Toleranzen gegenüber der Streifenkrankheit aufweisen.

Die Genbankakzessionen auf den 1,5 m² Parzellen wurden in unmittelbarer Nachbarschaft zu den 3 m² Parzellen ausgesät. Zusätzlich wurden auch in diesem Block Parzellen mit den Infektionsträgern 'CaKri' und 'CaAlp' angelegt (Abbildung 21 im Anhang). Auf diese Weise sollte

sichergestellt werden, dass die 30 Prüfglieder der zweifach wiederholten 'barley winter hardiness nursery' in 2013 für den Prüfungsanbau auf beiden Standorten genutzt werden können. Zusammen mit den 116 Prüfgliedern des Infektionsanbaus hätten sich dann etwas mehr als die ursprünglich geplanten 140 Prüfglieder ergeben.

Situation im Feld, Auswinterungsschäden 2012

Aufgrund der Witterungsverhältnisse im Januar und Februar 2012 kam es bundesweit zu gravierenden Auswinterungsschäden in der Landwirtschaft. Ursache waren Kahlfröste im Februar bis zu -20 °C im Anschluss an einen sehr milden Januar. In der ersten Januarwoche blühte sogar schon die Haselnuss. Die Pflanzen konnten sich daher physiologisch im Januar nicht auf die folgende Winterkälte einstellen, weshalb die für den Standort nicht ungewöhnlichen tiefen Temperaturen im Februar besonders starke Schäden anrichteten.

Konkret wirkte sich dies in dem angelegten Wintergersteversuch so aus, dass 30 % der Prüfglieder komplett ausfielen und 38 % so stark geschädigt wurden, dass nicht genug Saatgut für eine Prüfung in 2013 geerntet werden konnte.

Abbildung 1 zeigt den Stand der ersten vier Spuren des Infektionsanbaus am 26.4.2012. Der Infektionsträger 'CaAlp' (rechts im Bild) kam vergleichsweise gut durch den Winter, während der Infektionsträger 'CaKri' links im Bild deutlich geschwächt aber noch vorhanden war. Die Prüfglieder (die beiden Spuren in der Mitte) sind sortenabhängig gut bis gar nicht durch den Winter gekommen.

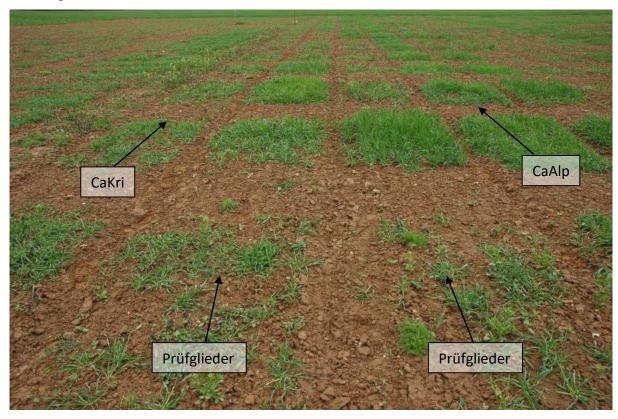


Abbildung 1: Stand der Wintergersteparzellen im Infektionsanbau Dottenfelderhof am 26.4.2012, Schlag Hölle III Beim Vermehrungsanbau in den 1,5 m² Parzellen waren die Schäden noch etwas stärker, zum Teil auch, weil die meisten Genbankakzessionen eine deutlich geringere Winterhärte aufweisen als moderne Sorten

Übersicht Anlage, Aussaat und Ausfall 3 m² Parzellen (siehe Abbildung 20 im Anhang)

- Aussaat insgesamt 440 Parzellen
- 2 Infektionssorten (CaKri und CaAlp, 208 Parzellen)
- 116 Prüfglieder in 2 Wiederholungen (232 Parzellen)
- Ausfall definitiv: 25
- Wenig vorhanden: 45
- Sicher erhalten: 46

Übersicht Anlage, Aussaat und Ausfall 1,5 m² Parzellen (siehe Abbildung 21 im Anhang)

- Aussaat insgesamt 200 Parzellen
- 2 Infektionssorten (CaKri und CaAlp, 71 Parzellen)
- 99 neue Akzessionen (129 Parzellen)
- Davon 30 Akzessionen in zwei Wiederholungen im Rahmen der 'barley winter hardiness nursery'
- Davon 69 von verschiedenen Genbanken und Forschern
- Ausfall definitiv: 48
- Wenig vorhanden: 37
- Sicher erhalten: 14

1.3.3 Vegetationsperiode 2012/13

Aufgrund der erwähnten außergewöhnlichen Kahlfröste im Februar 2012 reichte das geerntete Saatgut nicht für die geplante zweiortige Prüfung. Jedoch konnte von 154 Sorten ausreichend Saatgut für einen erneuten Infektionsanbau auf dem Dottenfelderhof gedroschen werden. Tabelle 6 im Anhang zeigt die 154 Sorten und Linien, die im Herbst 2012 für den Infektionsanbau mit Streifenkrankheit ausgesät wurden (Schlag "Himmelacker Straße").

Abbildung 22 im Anhang zeigt den Anlageplan 2013 mit den Infektionsstreifen ('CaKri' und 'CaAlp'. Das Prüfsortiment gliederte sich in 76 aktuell zugelassene Sorten, 40 Zuchtstämme der FZD sowie 38 Genbankakzessionen.

Bestandesentwicklung 2013

Die meisten Sorten kamen gut durch den zwar langen aber relativ milden Winter (Abbildung 2). Nur vereinzelte Genbankakzessionen wiesen eine so schwache Winterhärte auf, dass bei der 'Stand nach Winter'-Bonitur die Note 4 (schwach bis mittelmäßig) vergeben werden musste. Die meisten Sorten verfügten über eine gute Winterhärte, die sich in Boniturnoten von 6 (mittel bis stark) bis 8 (stark bis sehr stark) widerspiegelt. Vergleichsweise wurde im Jahr 2012 bei der 'Stand nach Winter'-Bonitur die Note 5 (mittel) nur vereinzelt als beste Note vergeben.

Abbildung 2: Stand des Wintergerste-Streifenkrankheits-Versuchsfeldes im April 2013, Dottenfelderhof, Schlag "Himmelacker Straße"

Da sämtliche angebauten Sorten im Vorjahr einer natürlichen Infektion durch Sporenflug ausgesetzt waren, war 2013 bereits eine erste Auszählung des Befalls möglich. Auch wenn die erhobenen Daten noch nicht mit einem anderen Standort verglichen werden konnten, waren so schon erste Aussagen zum Resistenzniveau möglich.

Über das vom BLE finanzierte Projekt hinausgehende Arbeiten

39 Wintergersteakzessionen, die unter Umständen über eine Streifenkrankheitsresistenz verfügen, konnten bis zum Projektbeginn nicht in ausreichender Menge vermehrt werden (Tabelle 7). Diese wurden in einem gesonderten Bereich angebaut, um sie später auf Resistenz gegenüber Streifenkrankheit testen zu können (Abbildung 23).

Nach dem außergewöhnlichen Auswinterungsereignis im Februar 2012 war der weitere Verlauf des Projekts zunächst unsicher. Glücklicherweise konnte von den meisten Sorten ausreichend Saatgut für einen Nachbau auf dem Dottenfelderhof geerntet werden. Nur wenige Sorten mussten erneut von den Züchtern angefordert werden. Dies ist für das Projekt insofern wichtig, da die streng saatgutbürtige Pilzkrankheit nur bei Sorten auftreten kann, die im Vorjahr bereits infiziert wurden.

Die Parzellen standen 2013 überwiegend sehr gut bzw. zu gut, denn viele Sorten gingen zur Abreife ins Lager, wodurch das Auszählen erheblich erschwert wurde. Von allen Sorten konnte genug Saatgut für den ersten zweiortigen Prüfungsanbau in 2014 auf dem Dottenfelderhof und in Darzau geerntet werden.

Vorstellung erster Ergebnisse Resistenztagung Fulda 2013

Erste Ergebnisse wurden auf der Resistenztagung der Deutschen Phytomedizinischen Gesellschaft (DPG) und der Gesellschaft für Pflanzenzüchtung (GPZ) im Dezember 2013 in Fulda vorgestellt.

1.3.4 Vegetationsperiode 2013/14

Die Ernte 2013 wurde auf dem Dottenfelderhof aufbereitet und konnte rechtzeitig zur Aussaat zum Standort Darzau versandt werden.

Abbildung 24 im Anhang zeigt den Anlageplan vom Dottenfelderhof mit den Infektionsstreifen ('CaKri' und 'CaAlp'). Auf dem Standort Darzau war der Anlageplan abzüglich der Infektionsstreifen identisch. Das Prüfsortiment unterteilte sich in 76 im Prüfjahr aktuell zugelassene Sorten, 40 Zuchtstämme der FZD sowie 38 genetische Ressourcen.

Auf beiden Standorten war der Feldaufgang gut und der Feldbestand war zum April 2014 absolut zufriedenstellend (Abbildung 3). Auf beiden Standorten befanden sich die meisten Sorten zum Ende April im Stadium 'Rispenschieben', das heißt, die Ähre schob sich gerade aus dem Fahnenblatt heraus.

Abbildung 3: Stand des Wintergerste-Streifenkrankheits-Versuchsfeldes auf dem Dottenfelderhof zum Dezember 2013 (oben) und Ende April 2014 (unten), Schlag "Hinter dem Garten"

Weder auf dem Standort Dottenfelderhof, noch auf dem Standort Darzau konnten im frühen Entwicklungsstadium eindeutige, auszählbare Streifenkrankheitssymptome festgestellt werden.

1.3.5 Vegetationsperiode 2014/15

Im vierten Versuchsjahr 2015 erfolgte die Wiederholungsprüfung der natürlich infizierten Testsorten parallel auf den Standorten Dottenfelderhof (Schlag "Pfaffenwald II") und Darzau. Der schematische Versuchsaufbau ist in der Abbildung 25 im Anhang dargestellt. Auf beiden Standorten zeichneten sich die Bestände durch eine üppige Vorwinterentwicklung aus.

Kennzeichnend für das Jahr 2015 war auf dem Standort Darzau ein sehr hoher Befall mit Gelbverzwergungsvirus (BYDV, Barley-Yellow-Dwarf-Virus), weshalb dort keine Streifenkrankheit gezählt werden konnte. Von den 160 Prüfsorten kam es dort bei 49 Sorten zu einem Totalausfall. Bei den überlebenden Sorten reichte das Spektrum von "beinahe Totalausfall" bis zu "kaum Ausfall". Streifenkrankheit wurde so gut wie keine gefunden. Die Vermutung ist, dass die von Gelbverzwergungsvirus und Streifenkrankheit geschwächten Pflanzen überdurchschnittlich oft ausfielen. Aus Sicht der Züchtung ist der Versuch dennoch nicht umsonst gewesen, denn die Ergebnisse zur Widerstandsfähigkeit gegenüber Gelbverzwergungsvirus differenzieren sehr gut und sind für die ökologische Züchtung relevant. In Zukunft können die Ergebnisse bei der Anlage von Kreuzungen berücksichtigt werden.

Auf dem Dottenfelderhof hingegen blieb der Bestand aufgrund einer bewusst späten Aussaat Ende Oktober vom Virus weitgehend verschont. Offenbar waren die Blattläuse, die für die Verbreitung des Erregers sorgen, zu diesem Zeitpunkt nicht mehr aktiv. Hier stellt sich die Frage, warum nicht auch in Darzau spät gesät wurde. Es wurde dort bewusst früh ausgesät, da in der Vergangenheit auf dem Standort Darzau die Auswinterung bei Spätsaat das größere Problem darstellte und gleichzeitig in den letzten drei vorangegangenen Jahren überhaupt kein Befall mit Gelbverzwergungsvirus aufgetreten war.

Abbildung 4: Stand des Wintergerste-Streifenkrankheits-Versuchsfeldes auf dem Dottenfelderhof Ende März 2015, Schlag "Pfaffenwald II"

Auf dem Dottenfelderhof gab es die Sorge, dass eine ähnliche Kahlfrost-Situation wie in 2012 auftreten könnte. Nach einem relativ milden Januar traten die tiefsten Nachtfröste Anfang Februar mit -7 °C auf. Einzelne Blätter wurden dadurch geschädigt, jedoch gab es keine Auswinterungsschäden ganzer Pflanzen (Abbildung 4).

Gegen Ende April 2015 befanden sich die Bestände auf beiden Standorten im Stadium des Schossens, was im Vergleich zum Vorjahr eine etwas langsamere Entwicklung darstellte. Eindeutige Symptome der Streifenkrankheit waren zu dem Zeitpunkt noch nicht erkennbar, was der Erfahrung der vorangegangenen beiden Jahre entsprach.

Die sommerliche Trockenheit 2015 bereitete der Wintergerste keine Probleme (im Gegensatz zu den Sommerungen) und so konnte der Versuch zumindest auf dem Dottenfelderhof ausgezählt werden.

1.3.6 Zwischenfazit 2015 und Beantragung einer Projektverlängerung

Das Zwischenfazit des Projekts 2015 war, dass der natürlich auftretende Befall bis dahin zu niedrig war, um verlässlich resistente Sorten zu identifizieren, was letztendlich zu der Entscheidung geführt, hat eine Projektverlängerung zu beantragen. Während der drei Prüfjahre (2013-15) lag der Maximalbefall einer Sorte (Etrusco) bei 18,9 % (Tabelle 1). Im Mittel lagen die Checksorten in diesem Zeitraum bei 13,1 %. Angesichts des niedrigen Befallsniveaus der Checksorten konnten resistente bzw. tolerante Sorten nicht sicher identifiziert werden. Dass unter Feldbedingungen jedoch sehr hohe Befallswerte möglich sind, hat die Auszählung von Streifenkrankheitsbefall bei eigenen Zuchtstämmen im Jahr vor Beginn des Projektes gezeigt. So erreichten die anfälligen Zuchtstämmen CaKri und CaAlp in 2011 einen Befall von bis zu 70 %.

Bei zehn Sorten wurde bis 2015 nie Befall festgestellt. Die Mehrzahl der Sorten lag in einem Befallsbereich von größer 0 % bis 5 %. Insbesondere bei diesen Sorten war es wünschenswert zu wissen, wie hoch der Befall in Jahren mit besonders günstigen Bedingungen für den Erreger sein kann, um entscheiden zu können, ob eine Sorte als Kreuzungspartner in der Züchtung verwendet werden kann.

Mit einer Verlängerung des Projektes und einer Anpassung des Versuchsdesigns war mit relativ geringem Zusatzaufwand eine erhebliche Verbesserung der Aussagekraft der Versuchsergebnisse zu erwarten. Das veränderte Versuchsdesign und die Unterschiede zum vorherigen Design werden in Kapitel **Fehler! Verweisquelle konnte nicht gefunden werden.** im Detail erläutert. Außerdem sollten verschiedene Methoden zur Bestimmung des Streifenkrankheitsbefalls am Saatgut überprüft werden (Kapitel 3.3). Folgende Zusatznutzen wurden durch eine Projektverlängerung erhofft aber nur teilweise erreicht.

Der Befall eines Jahres sollte am Saatgut noch vor der Herbstaussaat ermittelt werden

Aus züchterischer Sicht ist ein wesentlicher Nachteil der Auszählung des Feldbefalls, dass die Infektion eines gegebenen Jahres aufgrund der strengen Saatgutbürtigkeit der Streifenkrankheit erst im Folgejahr ausgezählt werden kann. In der Züchtung ist es aber wünschenswert, den Befall eines Jahres möglichst noch im gleichen Jahr auszählen zu können, damit eine Selektionsentscheidung getroffen werden kann. Mit einer Methode, die den Befallsgrad am Saatgut nach der Ernte bestimmen kann, wäre es möglich, die Anfälligkeit einer Sorte noch im Jahr der Infektion bei der Selektion zu berücksichtigen.

Die Infektionshöhe sollte durch Änderung der Versuchsanlage deutlich verbessert werden

Bei der vorherigen Versuchsanlage betrug die maximale Entfernung von einzelnen zu infizierenden Pflanzen bis zum nächsten Infektionsträger 1,5 m. Bei der veränderten Anlage reduzierte sich dieser Abstand auf maximal 20 cm. Der Anteil von Infektionsträger zu Prüfsorten

erhöhte sich von 50 % auf 75 %, wobei sich gleichzeitig der absolute Bedarf an Saatgut verringerte, da der Gesamtversuch auf kleinerer Fläche ausgesät werden konnte. Dadurch wurde ermöglicht, die Infektionsstreifen als Sortengemisch auszusäen was den Infektionserfolg weiter erhöhen konnte, da der Sporenflug über einen längeren Zeitraum gewährleistet und auf der Fläche gleichmäßiger verteilt wurde.

Die Prüfsorten können aus einer Mischung von Einzelähren ausgesät werden, dadurch sinkt die Gefahr von Fremdbesatz, eventuell auftretender Fremdbesatz lässt sich leichter bereinigen

Bei der bis dahin angewendeten Methode wurden Infektionsträger und Prüfsorten in Großparzellen ausgesät. Diese Parzellen mussten als Ganzes geerntet, aufbereitet und wieder ausgesät werden, um den Befall zu bestimmen. Bei diesem Vorgehen bestand die Gefahr, dass es zu Sortenvermischung kam (Fremdbesatz) und somit das Befallsergebnis verfälscht wurde.

Bei der veränderten Methode kam die in der Züchtung übliche Einzelreihenaussaat zum Einsatz. Bei der ursprünglichen Projektplanung war das Hauptargument gegen die Einzelreihenaussaat ein zu befürchtender Stichprobeneffekt. Das veränderte Versuchsdesign stellte also ein Kompromiss dar zwischen dem Vorgehen in Großparzellen (Aussaat einer Ährenmischung und Ernte mit Mähdrescher) und in Kleinparzellen (Aussaat als Einzelähren und Ernte von Hand). Dadurch konnte eventuell auftretender Fremdbesatz wesentlich leichter bereinigt werden als in Großparzellen, da sich der Fremdbesatz nicht in der ganzen Parzelle verteilen konnte, sondern höchstens in Einzelreihen.

Der Versuchsumfang konnte erheblich reduziert werden

Aufgrund der Einzelreihenaussaat mit der Bestimmung des Befallsgrades am Erntegut, wurde wesentlich weniger Saatgut und damit auch eine geringere Fläche für die Versuche benötigt. Im Hinblick auf die Resistenzzüchtung hat dies den Zusatznutzen, dass sich die Prüfung wesentlich früher im Züchtungsprozess durchführen lässt. Zur Veranschaulichung: bei der bisherigen Methode wurde pro Prüfsorte eine Menge von wenigstens 700 g benötigt. Für die Prüfung nach der veränderten Methode brauchte man lediglich eine Mischung von rd. 100 Einzelähren pro Prüfsorte.

Ursprüngliche und ab 2016 geänderte Versuchsanlage im Vergleich

Bis 2015 wurden die Prüfsorten zweifach wiederholt in ca. 2,5 m² großen Parzellen ausgesät. Abbildung 5 zeigt schematisch einen Ausschnitt einer Versuchsanlage mit mehreren Parzellen. Auf eine Spur Infektionsstreifen folgen jeweils zwei Spuren mit Prüfparzellen.

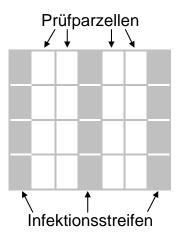


Abbildung 5: Schematische Darstellung der bisherigen Versuchsanlage (sieben Spuren mit je vier Parzellen pro Spur)

Bei dem veränderten Versuchsdesign wurden statt Großparzellen fortan Einzelährenparzellen ausgesät, das heißt mit einer speziellen Sämaschine konnte in jeder Parzellenreihe unter-

schiedliches Saatgut ausgesät werden. Abbildung 6 zeigt die sechs Reihen einer einzelnen Parzelle. In den beiden Randreihen wurde eine Mischung der hoch anfälligen Checksorten Alpaca, Etrusco und Landi ausgesät. In den beiden mittleren Reihen wurde eine Mischung aus Einzelähren der jeweiligen Prüfsorte ausgesät. Die beiden Reihen der Prüfsorte ließen sich leicht auf Fremdbesatz überprüfen. Sie wurden von Hand beerntet und der Befallsgrad am Saatgut sollte mit einer Labormethode bestimmt werden. Die Checksorten wurden in separaten, sortenreinen Parzellen am Rand des Versuchs erhalten (siehe auch Abbildung 26).

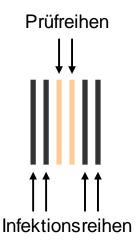


Abbildung 6: Schematische Darstellung einer einzelnen Parzelle der neu geplanten Versuchsanlage

Gegenüber der Versuchsanlage von 2014 z.B., bei der für den Versuch 25 Spuren benötigt wurden, brauchte man mit dem neuen Versuchsdesign lediglich 10 Spuren, was einer Platzersparnis von 60 % entsprach. Allerdings stand dem geringeren Aufwand auf dem Feld dafür ein höherer Aufwand nach der Ernte gegenüber, da der Befall am Saatgut von allen Sorten bestimmt werden musste.

1.3.7 Vegetationsperiode 2015/16

Das gesamte Prüfsortiment wurde nach dem veränderten Versuchsdesign (Abbildung 26) im Anhang) am 21.10.2015 in jeweils zweifacher Wiederholung auf dem Schlag "Niddaacker" ausgesät. Auch neu hinzugekommene zugelassene Sorten und eigene Zuchtstämme wurden integriert. Die Saat lief am 03.11.2015 gleichmäßig auf. Abbildung 7 zeigt den Stand der Parzellen Ende April 2016. Auch der Herbst 2015 und der Winter 2015/16 zeichneten sich durch eine sehr milde Witterung aus. Deshalb war die Befürchtung, dass trotz der vergleichsweise späten Saat Befall mit Gelbverzwergungsvirus auftreten würde. Tatsächlich trat Befall auf, allerdings nur vereinzelt, so dass eine Beeinträchtigung des Versuchs nicht zu befürchten war (Abbildung 8 linkes Foto).

Abbildung 7: Stand des Wintergerste-Streifenkrankheits-Versuchsfeldes auf dem Dottenfelderhof, Schlag: Niddacker, Foto vom 29. April 2016

Abbildung 8: Detailaufnahmen von zwei Parzellen des Streifenkrankheitsversuchs. Links verkümmerte Halme durch Gelbverzwergungsvirus (BYDV), rechts gut erkennbar die Prüfsorte in der Mitte eingerahmt vom Infektionsgemisch – Dottenfelderhof 2016

Erwähnenswert ist noch, dass auf einem Öko-Feldtag 2015 eine Sorte ('Trooper') mit außerordentlich hohem Streifenkrankheitsbefall gefunden wurde. Die Sorte war bislang nicht im Prüfsortiment enthalten, da es sich um eine Hybridsorte handelt. 'Trooper' wurde 2016 ausgesät, allerdings blieb die Sorte im eigenen Nachbau erstaunlicherweise befallsfrei und konnte somit nicht als Vergleichssorte verwendet werden.

Die Bestandesentwicklung des Versuchs auf dem Dottenfelderhof in 2016 war gut. Die neue Aussaatmethode, bei der in einer Parzelle sowohl das Infektionsgemisch als auch die Prüfsorte ausgesät wurde, hatte sich bewährt, auch wenn die Ernte bei einzelnen Sorten durch das Auftreten von Lager etwas erschwert wurde. Der Befall mit Streifenkrankheit erreichte 2016 mit 15,9 % im Mittel der Checksorten den höchsten Wert seit Beginn des Projekts in 2013 (siehe Tabelle 1).

Der Feldbefall wurde 2016, wie in der Vorhabenbeschreibung dargestellt, nur bei den Checksorten bestimmt, da der Befall des ganzen Sortiments mit einer Labormethode am Saatgut bestimmt werden sollte.

Vergleich des Stands des Vorhabens mit der ursprünglichen Planung

Entgegen der ursprünglichen Planung konnten die verschiedenen Labormethoden nicht auf ihre Eignung geprüft werden, da die Arbeiten sich als wesentlich aufwändiger herausgestellt hatten als vermutet. Das Saatgut aus der Ernte 2015 wurde jedoch im Kühlraum gelagert, so dass die geplanten Untersuchungen in enger Abstimmung mit dem JKI Darmstadt (Dr. Koch) nach der Ernte 2016 durchgeführt werden konnten.

1.3.8 Vegetationsperiode 2016/17

Aussaat für den Versuch 2017 war am 3. November 2016 auf dem Schlag "Heide" (siehe Anlageplan im Anhang, Abbildung 27). Die Aussaat wurde generell vergleichsweise spät durchgeführt, da eine niedrige Temperatur während der Keimphase nach Teviotdale & Hall (1976) und Walther & Hoffmann (1982) zu einem höheren Befallsniveau führt. Gleichzeitig wurde während des Projekts die Erfahrung gemacht, dass bei Aussaaten zum empfohlenen Zeitpunkt gegen Ende September (LfL) die Gefahr einer Infektion mit Gelbverzwergungsvirus (BYDV) steigt und zu Ausfällen ganzer Parzellen führen kann, wie auf dem Standort Darzau 2015 geschehen. Der Bestand kam gut durch den Winter und befand sich am 10. Mai 2017 im Entwicklungsstadium 32 (Zwei-Knoten-Stadium). Bei der anfälligen Checksorte Etrusco waren bereits deutliche Symptome der Streifenkrankheit zu erkennen. In den vorigen Jahren waren diese Krankheitssymptome auf den Blättern erst zum Stadium Ährenschieben (51) aufgetaucht (Abbildung 9).

Abbildung 9: Deutliche Symptome von Streifenkrankheit bei Wintergerste zum Entwicklungsstadium 32 (Zwei-Knoten-Stadium) Dottenfelderhof, Schlag: Heide, Foto vom 10. Mai 2017

Abbildung 10: : Stand des Wintergerste-Streifenkrankheits-Versuchsfeldes auf dem Dottenfelderhof, Schlag: Heide, Foto vom 16. Juni 2017

1.3.9 Vegetationsperiode 2017/18

Der Versuch wurde am 2.11.2017 auf dem Schlag "Windfang" ausgesät und lief am 18.11.2017 gleichmäßig auf (siehe Anlageplan im Anhang, Abbildung 28).

Aufgrund der milden Witterung im Januar 2018 schritt die Bestandesentwicklung langsam aber beständig voran und es setzte die Bestockung ein. Erst mit dem Kälteeinbruch im Februar kam die Vegetationsentwicklung zur Ruhe und es froren zahlreiche Herbstunkräuter ab, so dass mit einem geringen Unkrautdruck in die neue Saison gestartet werden konnte. Da der Kälteeinbruch nicht sehr plötzlich kam, konnten sich die Gerstenpflanzen langsam an die tieferen Temperaturen gewöhnen und es ist praktisch nicht zu Auswinterungsschäden im Bestand gekommen. Zum Zeitpunkt der Fotoaufnahme am 24.4.2018 (Abbildung 11) ist der Bestand im BBCH-Stadium Schossen (31-32). Erste, wenige aber deutliche Symptome der Streifenkrankheit sind an den Blättern der anfälligen Sorten sichtbar (siehe Abbildung 12).

Abbildung 11: Wintergerste-Streifenkrankheitsversuch am 24.4.2018 zum BBCH-Stadium Schossen (31-32), Dottenfelderhof, Schlag "Windfang"

Nach dem Ährenschieben wurde bei den Sorten, die bereits im Vorjahr im Feld infiziert wurden der Bestand ährentragender Halme und der Anteil Ähren mit Streifenkrankheitssymptomen ausgezählt. Von jeder Parzelle wurden 100 Ähren geerntet und mit der sogenannten 'UV-Methode' (Champion & Drews 1999) im Labor auf Infektion mit Streifenkrankheit untersucht.

Abbildung 12: Frühe Symptome von Streifenkrankheit der Gerste an den Blättern am 24.4.2018 zum BBCH-Stadium Schossen (31-32), Dottenfelderhof

2 Wissenschaftlicher und technischer Stand, an den angeknüpft wurde

Die Biologie des Erregers der Streifenkrankheit und der Infektionsweg sind intensiv untersucht und beschrieben. Es handelt sich um eine saatgutbürtige Pilzkrankheit. Bei günstigen Bedingungen während der Keimung wachsen die äußerlich ansitzenden Sporen in den Embryo ein (Platenkamp 1976; Walther & Hoffmann 1982; Delogu et al. 1989; Babadoost 1997). Nach Walther & Hoffmann (1982) liegt zwar die Temperatur für das Wachstumsoptimum des Erregers bei 28 °C, entscheidend für den Infektionserfolg sei jedoch die Kombination aus Erregeraktivität und Anfälligkeit der Pflanze. Unter Laborbedingungen lag das Optimum bei Temperaturen um 2 °C während der Keimung, da die Keimphase durch niedrige Temperaturen verlängert wird. Bei über 6 °C sank die Infektionsrate und bei über 10 °C war die Keimdauer für eine hohe Infektion zu kurz. Teviotdale & Hall (1976) fanden bei Feldversuchen nach natürlicher Infektion steigende Infektionsraten unter 12 °C Bodentemperatur und reduzierten bzw. keinen Befall über 15 °C Bodentemperatur. Aus diesem Grund soll die Aussaat der Versuchsparzellen möglichst spät im Herbst erfolgen, um die Wahrscheinlichkeit für hohen Befall durch den kühlen Boden zu erhöhen. Des Weiteren hat sich gezeigt, dass bei dem herkömmlich empfohlenen Aussaattermin um den 25. September die Gefahr eines Befalls mit Gelbverzwergungsvirus sehr hoch ist, da die Winter in der Regel milder geworden und Blattläuse noch lange aktiv sind.

Eine Zusammenfassung der bekannten Resistenzgene (R Gene) bei Gerste bieten Chelkowski et al. (2003). Danach verfügt Gerste über drei Resistenzgene gegenüber Streifenkrankheit (Rdg). Rdg 1 (auch "Vada Resistenz" genannt) wurde lokalisiert von (Thomsen et al. 1997). Rdg 2 und 3 werden von Jørgensen & Wolfe (1994) beschrieben.

Saatgutbehandlungsmethoden gegen die Streifenkrankheit mit Mitteln, die im Öko-Landbau zulässig sind, wurden untersucht und bewirkten keine vollständige Sanierung des Saatgutes (Wilbois et al. 2007). Da diese Verfahren regelmäßig wiederholt werden müssten und zudem

mit teilweise erheblicher Reduzierung des Feldaufgangs verbunden sein können, empfiehlt Müller (2006) den Einsatz von resistenten Sorten, insbesondere an gefährdeten Standorten.

Während Untersuchungen zur Anfälligkeit von Sommergersteakzessionen zum Beginn des Projekts vorlagen (Müller et al. 2003; Müller 2006), fehlten diese für Wintergerste vollständig. In der Literatur werden zahlreiche Resistenzquellen beschrieben, wobei sich die meisten Arbeiten mit Sommergerste beschäftigen (Shands & Arny 1944; Kline 1971; Mohammad & Mahmood 1976; Knudsen 1980; Smedegaard-Petersen & Jørgensen 1982; Tekauz 1983).

Letzte Untersuchungen, die sich mit der Anfälligkeit von Wintergerste gegenüber *Pyrenophora graminea* beschäftigten, wurden Anfang bis Mitte der 80er Jahre in Italien durchgeführt (Delogu et al. 1989; Porta-Puglia et al. 1986). Die in diesen Arbeiten geprüften Sorten wurden soweit erhältlich über Genbanken bezogen und in das Projekt integriert.

3 Material und Methoden

Die erste Methode zur Bestimmung der Streifenkrankheitsanfälligkeit basiert auf der natürlichen Feldinfektion und bestand darin, die zu prüfenden Sorten und Zuchtstämme in unmittelbarer Nähe von möglichst hoch anfälligen Sorten zu vermehren und im nächsten Jahr auf den beiden Standorten Dottenfelderhof und Darzau nachzubauen, da der Befall erst im Folgejahr auszählbar ist.

Da bei dieser Methode zwischen Infektion und Auszählung ein Jahr gewartet werden muss, sollten auch Labormethoden angewendet werden, die es ermöglichen sollten, den Befall bereits nach der Ernte am Saatgut zu bestimmen.

Die Methode "Auszählung des Feldbefalls" wurde im Laufe des Projekts modifiziert. Bei den "Labormethoden" wurden verschiedene Varianten erprobt und mit dem Feldbefall verglichen. Im Folgenden werden die verschiedenen Varianten der Methoden näher erläutert.

3.1 Auszählung des Feldbefalls in den Versuchsjahren 2012 bis 2015

- O Im ersten Jahr Aussaat der Prüfsorten in direkter Nachbarschaft zu Infektionsträgersorten für eine "natürliche Infektion" im Feld.
- O In den Folgejahren Aussaat der Prüfsorten in 3 m² Parzellen auf zwei Standorten (Dottenfelderhof und Darzau.
- O Auf dem Standort Dottenfelderhof: Anbau der Prüfsorten in direkter Nachbarschaft zu Infektionsträgersorten (CaKri und CaAlp), da hier das Saatgut für die Prüfung im Folgejahr geerntet wurde. Zwei Spuren Prüfsorten wurden eingerahmt von je einer Spur Infektionsträger (siehe Abbildung 5 und den Anlageplan von 2014 Abbildung 24).
- O Auszählung ährentragender Halme und befallene Halme > Berechnung des prozentualen Streifenkrankheitsbefalls in Prozent ab dem zweiten Jahr.

3.2 Auszählung des Feldbefalls in den Versuchsjahren 2016 bis 2018

- O Aussaat der Prüfsorten in den beiden mittleren Reihen (3 und 4) von 1,5 m² großen Einzelähren-Parzellen mit sechs Reihen (Abbildung 6). Aussaat der neuen Infektionsträger Alpaca, Etrusco und Landi in den Reihen 1, 2, 5 und 6.
- O Auszählung ährentragender Halme und befallene Halme > Berechnung des prozentualen Streifenkrankheitsbefalls in Prozent in den Reihen 3 und 4.
- O Ernte von hundert Einzelähren der jeweiligen Prüfsorte. Von diesem Saatgut wurde Material für die Wiederaussaat im Folgejahr sowie für die Prüfung der Labormethoden gewonnen.

O Zusätzliche Vermehrung der Infektionsträger Alpaca, Etrusco und Landi in separaten Spuren für den Versuch im Folgejahr.

3.3 Labormethoden zur Bestimmung des Befalls am Saatgut

Folgende Bestimmungsmethoden zur Ermittlung des Befalls mit Streifenkrankheit am Saatgut wurden überprüft:

- 1. Gewächshausmethode (Rennie & Tomlin 1984)
- 2. Osmotische Methode (ISTA 2014; Sperlingsson & Brodal 2011)
- 3. Freezing Blotter Methode (Rennie & Tomlin 1984)
- 4. UV-Methode (Champion & Drews 1999; Kietreiber 1977)

3.3.1 Gewächshausmethode (Rennie & Tomlin 1984)

Materialien Gewächshaus Methode

- O Referenzsaatgut mit bekanntem Befallsgrad
- O Zuerst auf Filterpapier, später umsetzen auf Boden oder Sand
- O keine Vorbehandlung des Saatguts
- O Klimakammer (7 Tage 10 °C, 21 Tage 18°-20 °C)

Inkubation Gewächshaus Methode

O 7 Tage bei 10 °C auf Filterpapier, danach für 21 Tage in Boden oder Sand

Untersuchung Gewächshaus Methode

- O Blätter auf Symptome von Streifenkrankheit untersuchen (Abbildung 13)
- O Nach Jørgensen (1980) besteht ein hohes Bestimmtheitsmaß zwischen Labor- und Feldbefall, wobei der Befall im Gewächshaus höher sein soll als im Freiland
- O Wichtig (insbesondere in der ersten Woche) ist die Regulierung der Temperatur und der Luftfeuchtigkeit

Abbildung 13: Untersuchung auf Symptome der Streifenkrankheit an Gerste (Sorte Etrusco) nach der Gewächshausmethode 2016

3.3.2 Osmotische Methode (ISTA 2014)

Materialien Osmotische Methode

- O Referenzsaatgut mit bekanntem Befallsgrad
- O Filterpapier: Munktell Qualität 1731, Durchmesser 162 mm (für 50 Karyopsen). Für 100 Körner wird größeres Papier benötigt
- O Haushaltszucker
- O Plastikschalen mit dicht schließendem Deckel
- O 1 % NaOH (Natriumhydroxid), die genaue Konzentration ist nicht entscheidend
- O Vorrichtung zum Einprägen von Vertiefungen in das Filterpapier
- O Ofen: 90° ±5 °C
- O Klimakammer: 22° ±2 °C Dunkelphase und 26° ±2 °C Lichtphase, 7 Tage Wechsel Licht 16 h, Dunkel 8 h
- O Tageslichtlampe mind. 4000 lux (CCP)

Vorbehandlung der Karyopsen Osmotische Methode

O Karyopsen in offene Schale, dünne Schicht für 2 h bei 90 °C

Vorbehandlung des Substrats Osmotische Methode

- O Filterpapier schnell in Zuckerlösung tauchen (170 g Zucker pro Liter Wasser) und Überschuss abtropfen lassen
- O 50 oder 100 Vertiefungen ins Papier prägen
- O Geprägtes Filterpapier in Schale mit eng sitzendem transparentem Deckel

Inkubation Osmotische Methode

- O Karyopsen auf Filterpapier, ein Korn pro Einprägung
- O 7 Tage mit Tageslichtlampe (mind. 4000 lux) für 16 h bei 26 $\pm 2\,$ °C und Dunkelheit für 8 Stunden bei 22 $\pm 2\,$ °C
- O Eine Kontrollprobe mit bekanntem Infektionsgrad muss unter gleichen Bedingungen mitgeprüft werden

Untersuchung Osmotische Methode

O Karyopsen vom Filterpapier entfernen und 1 % NaOH-Lösung aufs Filterpapier geben; ca. 15 ml bei 50 Körnern und doppelte Menge bei 100 Körnern. Ziegelrote Farbe ändert sich augenblicklich in violett. Violett-gefärbte Pigmente zählen unter Vergrößerungslampe. Sehr kleine Punkte ohne Violettfärbung sollten nicht gezählt werden. Vergleichen mit Kontrolle

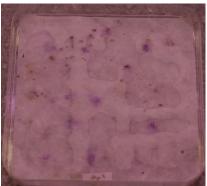


Abbildung 14: Von links nach rechts: 1. Während der Inkubation 2. Nach Inkubation 3. Nach Zugabe der 1%igen NaOH-Lösung 2016

3.3.3 Freezing Blotter Methode

Materialien Freezing Blotter Methode

- O Referenzsaatgut mit bekanntem Befallsgrad
- O Klimaschrank +20 °C
- O Gefrierschrank bis -20 °C
- O Blotters (Filterpapier)
- O UV-Lampe
- O Stereoskopisches Mikroskop (x25-40-fache Vergrößerung)
- O Natriumhypochlorid

Vorbehandlung Freezing Blotter Methode

- O Variante a: ohne Vorbehandlung
- O Variante b: 100 Körner pro Probe werden für 10 Minuten in Lösung von Natriumhypochlorit (NaClO, 1 % verfügbares Chlor) getränkt und getrocknet
- O Variante c: Vor der Behandlung mit Natriumhypochlorid werden die Karyopsen in offenen Petrischalen für eine Stunde 90 °C ausgesetzt, dann lässt man sie auf Raumtemperatur abkühlen

Inkubation Freezing Blotter Methode

O 1 Tag Dunkelheit bei +20 °C, 1 Tag -20 °C, 5 Tage +20 °C mit Zyklen von 12h Dunkelheit und 12h NUV Licht (nahes Ultraviolett)

Untersuchung Freezing Blotter Methode

- O Karyopsen unter Stereomikroskop 25 bis 40-fache Vergrößerung auf Konidien untersuchen
- O Das Tieffrieren tötet die Karyopsen und erleichtert die Untersuchung
- O Vorbehandlung b erzielt niedrigeren Befall aber erleichtert die Untersuchung, da saprophytische Organismen reduziert werden
- O Vorbehandlung c reduziert Alternaria aber reduziert auch Befall um 25 %
- O Keine Unterscheidung zwischen *P. graminea* und *P. teres.* Bei Mischinfektion keine Korrelation mit Feldbefall! Laborbefund in dem Fall höher als Feldbefall

3.3.4 UV-Methode (modifiziert nach Champion & Drews (1999) und Kietreiber (1977)

Materialien UV-Methode

- O Referenzsaatgut mit bekanntem Befallsgrad
- O Klimaraum, -kammer
- O Gefrierschrank
- O Filterpapier Hahnemühle DP 595085 Durchmesser 85 mm (wichtig ist die Qualität des Filterpapiers)
- O UV-Lampe 254 nm

Inkubation UV-Methode

O 48h +25 °C

danach

O 7h -20 °C (Gefrierfach)

danach

O 8-9 Tage bei 13°-15 °C

Untersuchung UV-Methode

- O Karyopsen auf Filterpapier unter UV-Licht 254 nm Strahlung
- O Befallene Karyopsen und Papier fluoreszieren lachsfarben

4 Ausführliche Darstellung der wichtigsten Ergebnisse

4.1 Gegenüberstellung der beiden Prüfstandorte Dottenfelderhof und Darzau 2014

Tabelle 8 zeigt die gemittelten Befallswerte der einzelnen Prüfglieder auf den beiden Standorten Dottenfelderhof und Darzau 2014 im Vergleich. Das bis dahin vergleichsweise niedrige Befallsniveau von 10,5 % im Mittel der Checksorten Alpaca, Etrusco und Landi 2014 erlaubte nur die Identifizierung von hoch anfälligen Sorten und Linien. Die als befallsfrei gelisteten Sorten und Linien konnten also nur unter Vorbehalt für eine Resistenzzüchtung empfohlen werden.

Die Ergebnisse der Befallszählung auf den beiden Standorten Dottenfelderhof und Darzau wurden in einer Varianzanalyse gegenübergestellt. Trotz Prüfung unterschiedlichster Funktionen konnte keine Normalverteilung festgestellt werden. Somit kann zur Signifikanz der Ergebnisse keine Aussage gemacht werden. Abbildung 15 zeigt die Korrelation der Befallswerte auf den Standorten Dottenfelderhof (Dfh) und Darzau (Dar) mit einem Bestimmtheitsmaß R² von 0,58, was als zufriedenstellende Übereinstimmung bezeichnet werden kann.

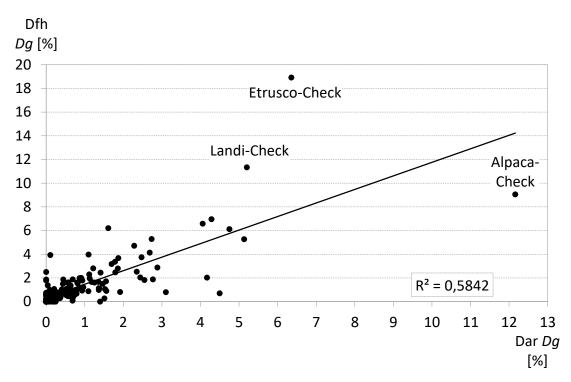


Abbildung 15: Korrelation der Befallswerte jeder Sorte/Linie mit Streifenkrankheit (*Drechslera graminea, Dg*) auf den Standorten Dottenfelderhof (Dfh) und Darzau (Dar) 2014

4.2 Befallsentwicklung der Checksorten im Projektzeitraum

Aus Tabelle 1 wird ersichtlich, dass das Befallsniveau im Mittel der Checksorten seit Beginn des Projekts kontinuierlich angestiegen ist. Der Befall mit Streifenkrankheit erreichte 2018 mit 30,8 % im Mittel der Checksorten den höchsten Wert seit Beginn der Auszählungen in 2013. Der Zuchtstamm CaAlp wurde 2018 aufgrund des dauerhaft niedrigen Befalls aus dem Check-Sortiment entfernt.

Der bisherige Maximalbefall einer Sorte trat 2017 bei der Sorte KWS Tonic mit 48 % auf. Da diese Sorte auch 2018 den höchsten Befall im Sortiment hatte (38 %) wurde sie in das Sortiment der Checksorten aufgenommen.

Tabelle 1: Feldbefall mit Streifenkrankheit (*Drechslera graminea, Dg*) der Checksorten – Dottenfelderhof 2013-2018; Darzau 2014

	Befall	Befall	Befall	Befall	Befall	Befall	Befall
Sorte	2013 Dfh ¹	2014 Dar ²	2014 Dfh	2015 Dfh	2016 Dfh	2017 Dfh	2018 Dfh
	Dg³ [%]	Dg³ [%]	Dg³ [%]	Dg³ [%]	Dg³ [%]	Dg³ [%]	Dg³ [%]
Alpaca	3,2	12,2	9,1	4,5	22,2	23,0	33,6
Etrusco	9,1	6,4	18,9	10,1	22,8	14,5	20,8
Landi	6,5	5,2	11,3	15,3	18,4	25,0	34,0
CaAlp	2,3	4,1	6,6	4,6	5,3	7,8	
CaKri	5,3	2,7	5,3	15,3	10,9	15,7	26,8
KWS						48,1	38,6
Tonic						70,1	30,0
Mittel	5,3	6,1	10,2	10,0	15,9	22,4	30,8

¹Dfh: Dottenfelderhof; ²Dar: Darzau; ³Dg: Drechslera graminea

Der maximale Feldbefall von 2013 bis 2018 mit Angabe der Anzahl Prüfjahre ist für alle geprüften Sorten in der Tabelle 9 im Anhang dargestellt.

4.3 Zusammengefasste Ergebnisse der Auszählung des Feldbefalls im Projektzeitraum Die zusammengefassten Ergebnisse des Projektes wurden auf der 15. Wissenschaftstagung Ökolandbau in Kassel vorgestellt (Schmehe et al. 2019).

Im Projektzeitraum wurden insgesamt 244 Wintergersteakzessionen mindestens einmal auf Anfälligkeit gegenüber Streifenkrankheit geprüft, davon sind 124 zweizeilige und 120 mehrzeilige Akzessionen. Insgesamt liegen 981 Datensätze vor, da die Akzessionen möglichst mehrjährig geprüft werden. In Abbildung 16 wird die jeweilige Anzahl von geprüften Akzessionen, eingeteilt in Befallsklassen des maximal ausgezählten Befalls dargestellt. Neben dem Streifenkrankheitsbefall werden auch die Befallsklassen der Flugbrandevaluierung dargestellt, da das Ziel ist, Sorten zu entwickeln, die sowohl über eine Flugbrand- als auch über eine Streifenkrankheitsresistenz verfügen.

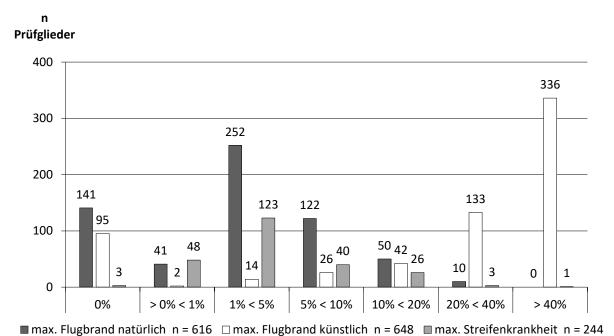


Abbildung 16: Befallskategorien von allen geprüften genetischen Ressourcen der Wintergerste auf Anfälligkeit gegenüber Flugbrand (*Ustilago nuda*) und Streifenkrankheit (*Drechslera graminea*), gruppiert nach den maximalen beobachteten Befallswerten

Für eine möglichst sichere Aussage sollten die Akzessionen wenigstens drei Jahre geprüft werden.

Unter den mindestens dreijährig geprüften konnten in der Streifenkrankheitsevaluierung noch keine befallsfreien Akzessionen gefunden werden, allerdings 14 Stück mit weniger als 1 % natürlichem Befall (7 zweizeilige, 7 mehrzeilige), davon zwei eigene Zuchtlinien. Beide eigenen Linien sind zweizeilig (siehe Tabelle 2).

Insgesamt konnten drei eigene Zuchtstämme identifiziert werden, die mindestens drei Jahre geprüft wurden, bei Streifenkrankheit <2 % maximalen Befall aufweisen und gleichzeitig resistent gegenüber Flugbrand sind (HS AS 611-10, HS 561-11, HS 624-10-2). Alle drei sind zweizeilige Zuchtstämme, die jedoch über keine ausreichend guten agronomischen Eigenschaften verfügen, um eine offizielle Sortenanmeldung zu rechtfertigen. Es konnten zwei eigene Zuchtstämme gefunden werden, die <1 % Befall bei Streifenkrankheit aufweisen dabei jedoch nicht resistent gegenüber Flugbrand sind.

Tabelle 2 Anzahl der Wintergersteakzessionen, die mindestens drei Jahre geprüft wurden mit <1 % Befall Streifenkrankheit (*Drechslera graminea*). Stand 2018

Prüfung	FZD Zuchtstämme	andere Sorten und Stämme	n zwei- zeilig	n mehr- zeilig	Akzessionen gesamt
Streifenkrankheit <1 %	2	12	7	7	14

4.4 Überprüfung der Bestimmungsmethoden des Befalls mit Streifenkrankheit am Saatgut (in Zusammenarbeit mit dem JKI-Darmstadt)

Nach der Ernte 2016 wurde am JKI Darmstadt in Zusammenarbeit mit Dr. Eckhard Koch die Überprüfung der Bestimmungsmethoden der Streifenkrankheit am Saatgut zunächst mit dem Saatgut der Ernte 2015 nachgeholt. Es wurden zunächst drei Methoden verglichen, später kam noch eine vierte hinzu:

- 1. Gewächshausmethode ("Greenhouse") (Rennie & Tomlin 1984)
- 2. Osmotische Methode (ISTA 2014, 2016)
- 3. Freezing Blotter Methode (Rennie & Tomlin 1984)
- 4. UV-Methode (Kietreiber 1977; Champion & Drews 1999)

Es wurden Vortests mit den Sorten Alpaca und Etrusco aus der Ernte 2015, von denen der Feldbefall 2016 bekannt war und später auch mit Saatgut einer unbekannten Sommergerste durchgeführt, die laut Frau Dr. Killermann (LfL Bayern) einen Streifenkrankheitsbefall von 80 % haben sollte. Der hohe Befall dieses Saatguts konnte jedoch mit keiner Methode bestätigt werden.

Bei der **Gewächshausmethode** zeigte sich nach den in der Beschreibung angegebenen 4 Wochen Inkubationszeit kaum Befall. Erst nachdem die Pflanzen in einem auf 15 °C temperierten Raum (statt 20°), und für wesentlich längere Zeit als angegeben kultiviert wurden, konnte Befall ausgezählt werden. Aufgrund des hohen Aufwands und der langen Inkubationszeit schied diese Methode als praktikable Überprüfungsmethode aus.

Die **osmotische Methode** schien bei der Überprüfung der Checksorten zunächst die beste Übereinstimmung mit dem Feldbefall aufzuweisen, weshalb entschieden wurde, das gesamte Prüfsortiment aus der Ernte 2015 mit dieser Methode zu untersuchen. Während der Untersuchung stellte sich jedoch zunehmend heraus, dass die Ergebnisse mit dem bisher ermittelten Feldbefall kaum übereinstimmen. Das Bestimmtheitsmaß (R²) zwischen dem bisherigen maximalen Feldbefall und dem Befall nach osmotischer Methode liegt lediglich bei 0,0151 (Abbildung 17). Es wurde vermutet, dass die geringe Korrelation von Feldbefall und Laborbefund darauf zurückzuführen war, dass mit der osmotischen Methode nicht zwischen Streifenkrankheit und Netzfleckenkrankheit (*Pyrenophora teres*) unterschieden werden kann. Deshalb wurde im Folgenden im Feld verstärkt auf Symptome der Netzfleckenkrankheit geachtet, jedoch konnte diese allenfalls vereinzelt ausgemacht werden.

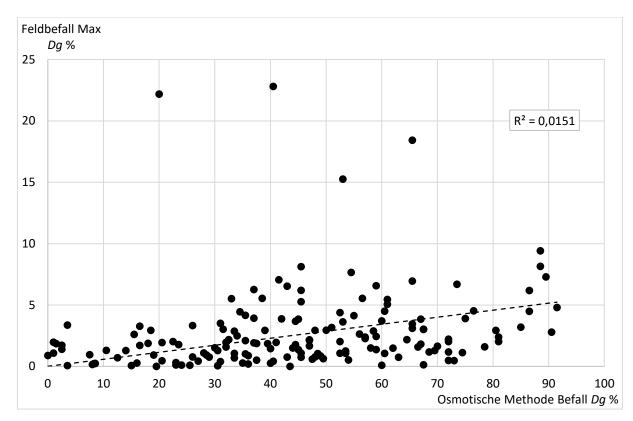


Abbildung 17: Korrelation des maximalen Feldbefalls im Untersuchungszeitraum mit dem Befall nach osmotischer Methode des Saatgutes aus der Ernte 2015 (*Dg= Drechslera graminea*)

Da die Verfärbung nicht genau mit der in der Literatur (Sperlingsson & Brodal 2011) angegebenen übereinstimmt, wurden am JKI Darmstadt von beiden Verfärbungen Isolate angefertigt, um diese mit Hilfe der PCR-Methode (polymerase chain reaction = Polymerase-Kettenreaktion) genetisch zu identifizieren (Dneasy Plant Mini Kit Qiagen). Die Bestimmung mittels PCR hat zudem den Vorteil, dass eindeutig zwischen *Drechslera graminea* und *Pyrenophora teres* unterschieden werden kann.

Abbildung 18: Beispielresultat der Prüfung auf Befall mit Streifenkrankheit durch die osmotische Methode. Gezählt wurden die Flächen mit deutlicher Lila-Verfärbung

Die **Freezing Blotter Methode** stellte sich sehr schnell als ungeeignet heraus. Bei dieser Methode wird der Befall mit einem Draufsichtmikroskop am einzelnen Korn bestimmt. Abgesehen davon, dass die Auswertung dieser Methode mit dem gesamten Prüfsortiment extrem aufwändig wäre, konnten selbst bei den anfälligen Sorten keine Konidien auf den Körnern gefunden werden.

Die **UV-Methode** schien zunächst sehr vielversprechend, da in unabhängigen Untersuchungen von Dr. Büttner (LfL Bayern), der seit längerem mit der UV-Methode arbeitet, bei den Checksorten Alpaca und Etrusco eine zufriedenstellende Übereinstimmung der Befallswerte nach

UV-Methode mit dem jeweiligen Feldbefall des dazugehörigen Jahres erreicht wurde. Bei der eigenen Untersuchung des gesamten Prüfsortiments von 2017 konnte jedoch weder eine zufriedenstellende Wiederholbarkeit der Ergebnisse der Laborwiederholungen, geschweige denn eine Übereinstimmung der Laborwerte mit dem Feldbefall erreicht werden.

Am JKI Darmstadt konnten Bilder von den Hyphen der Streifenkrankheit gemacht werden, die sich interzellulär ausbreiten und dadurch die charakteristischen Symptome an den Blättern verursachen (Abbildung 19). Die Blätter wurden dazu zunächst mit Chloralhydrat behandelt, um das Chlorophyll zu entfernen und dann mit Laktophenol blau, um die Hyphen des Pilzes blau zu färben.

Abbildung 19: Ausbreitung der Hyphen von *Drechslera graminea* (Erreger der Streifenkrankheit) in einem Gerstenblatt. Der Pilz wächst in den Zwischenräumen (=interzellulär) im Raum zwischen Epidermis und Parenchym, später auch zwischen den Parenchymzellen. Die Ausbreitung in Längsrichtung des Blattes führt zu den charakteristischen Streifen (Foto: Eckart Koch, JKI, 2016)

4.5 Befallsniveau von zugelassenen Sorten, die im Ökolandbau angebaut werden

Mit Hilfe der erstellten Datenbanken für Streifenkrankheit und Flugbrand kann nun für zugelassene Sorten das Befallsniveau dargestellt werden. In Tabelle 3 wird dies exemplarisch für die 2019 auf der Handelsplattform organicXseeds erhältlichen zugelassenen Sorten dargestellt. Bei diesen Sorten kann davon ausgegangen werden, dass sie eine gewisse Verbreitung im Ökolandbau haben. Es wird deutlich, dass keine der zugelassenen Sorten über eine zufriedenstellende Flugbrandresistenz verfügt. Bei einer langjährigen ökologischen Saatgutvermehrung kann man davon ausgehen, dass über kurz oder lang Flugbrand auftreten wird. Bei der Streifenkrankheitsanfälligkeit könnten Befallswerte unter 5 % toleriert werden, jedoch nur wenn gleichzeitig eine Flugbrandresistenz vorliegen würde.

Tabelle 3: Zugelassene Sorten, die 2019 auf der Handelsplattform organigXseeds gehandelt wurden mit Angabe des maximal ermittelten Streifenkrankheitsbefall ("Max *Dg*") und Flugbrandbefall ("Max *Un*") sowie der Anzahl der Prüfjahre (n Jahre)

Sorte/Linie	Max <i>Dg</i> [%)	n Prüfjahre <i>Dg</i>	Max <i>Un</i> [%]	n Prüfjahre <i>Un</i>
Highlight	2,4	5	76,9	2
KWS Keeper	4,0	2	61,1	1
KWS Meridian	19,5	5	89,5	2
Lomerit	8,3	5	100,0	4
Michaela (neu)				
Quadriga	1,9	1	69,5	1
SU Ellen	5,7	1	50,0	3
Semper	6,4	5	70,0	2
Titus	5,0	5	95,8	2
SU Vireni	38,5	5	37,0	1
Sandra	5,5	5	31,8	2
Zita (neu)				

4.6 Aus dem Prüfsortiment entfernte Akzessionen ostasiatischer Herkunft (2014)

An dieser Stelle sollen 29 Genbankakzessionen erwähnt werden, die von Enneking et al. (2002) als Ressourcen mit hoher Resistenz gegenüber Streifenkrankheit aufgelistet werden und größtenteils ostasiatischer Herkunft sind (Tabelle 4). Aufgrund unzureichender Winterhärte und schwacher agronomischer Eigenschaften wurden diese trotz ihrer beschriebenen Resistenzeigenschaften 2013 aus dem Prüfsortiment entfernt.

Tabelle 4: Wintergersteakzessionen der 'Barley Core Collection' (BCC) mit den höchsten Toleranzgraden gegenüber Streifenkrankheit nach Enneking et al. (2002) jedoch mit unzureichender Winterhärte

BCC-Nr	Name	BCC-Nr	Name	BCC-Nr	Name
BCC 1351	Brucker Stamm II	BCC 1308	Magie	BCC 602	Senbon Hadaka
BCC 1341	Rebekka	BCC 1311	Maris Otter	BCC 600	Shiratama Hadaka
BCC 803	Acuario	BCC 1336	Jumbo	BCC 482	Suchou 1
BCC 481	Changchou 1	BCC 1356	Ledeci Beta	BCC 690	Buan Waessalbori
BCC 476	Chinniu 1	BCC 1346	U 259	BCC 682	Jangheung Naked 2
BCC 514	Liu leng zi da mai	BCC 620	Chikurin Ibaraki 3	BCC 678	Nussalbori
BCC 461	Takungkuan	BCC 623	Honen	BCC 709	Seongwan Gyeong
BCC 459	Tatung	BCC 592	Kikai Hadaka	BCC 687	Yeonggwang Naked
BCC 473	Tyeh 4	BCC 657	Osome	BCC 1354	HOR 758
BCC 813	Atahualpa	BCC 658	Saruho		

5 Diskussion der Ergebnisse

5.1 Diskussion Ergebnisse Auszählung des Feldbefalls bis 2018

Tabelle 1 zeigt, dass das Befallsniveau im Laufe der Projekts von Jahr zu Jahr angestiegen ist und zum Ende des Projekts 2018 ein Niveau erreicht hat, bei dem resistente Sorten und Zuchtstämme mit hinreichender Verlässlichkeit identifiziert werden können. Möglicherweise baut sich das Infektionspotential über mehrere Jahre auf und erhöht die Wahrscheinlichkeit der Infektion. Wahrscheinlicher ist aber, dass die Veränderung des Versuchsdesigns ab 2016 zum höheren Infektionsniveau beigetragen hat, da die Prüfsorten wesentlich dichter an den Infektionssorten standen als zu Beginn des Projekts.

Angesichts des hohen zeitlichen und personellen Aufwandes der Streifenkrankheitsprüfung stellt sich die Frage nach dem Kosten/Nutzen Verhältnis einer Resistenzzüchtung. Da keine Beizmittel zur Verfügung stehen, die für den Ökolandbau zugelassen und ausreichend wirksam sind (Vogt-Kaute et al. 2007; Koch et al. 2012), erscheint es gerechtfertigt die langwierige Resistenzzüchtung zu verfolgen. Dennoch sollte auch in Zukunft an der Entwicklung von Saatgutbehandlungsmitteln gearbeitet werden, da bei Resistenzen grundsätzlich die Gefahr besteht, dass sie überwunden werden. Dabei müssen jedoch die Behandlungsmittel auch mit den Richtlinien des Ökolandbaus übereinstimmen. Adam et al. (2017) konnten z.B. vielversprechende Resultate mit der Verwendung von Rhizobakterien zur Induzierung von Streifenkrankheitsresistenz erreichen. Jedoch wurde die Krankheit im besten Fall nur um 66 % reduziert, was für die Praxis noch nicht ausreichen wirksam ist.

Die Ergebnisse zeigen, dass in den zur Verfügung stehenden genetischen Ressourcen der Wintergerste prinzipiell ausreichend Material zur Verfügung steht, um Linien zu entwickeln, die über eine Streifenkrankheitsresistenz verfügen.

Für eine dauerhafte ökologische Saatguterzeugung müssen die Sorten zusätzlich auch über eine Resistenz gegenüber Flubrand (*Ustilago nuda*) verfügen. Bis zum Abschluss des Projekts konnten noch keine Zuchtstämme entwickelt werden, die beide Eigenschaften vereinen und darüber hinaus agronomisch eine gute Eignung für den ökologischen Landbau aufweisen. Bis dieses Ziel erreicht ist, müssen insbesondere bei der Anfälligkeit gegenüber der Streifenkrankheit Kompromisse hinsichtlich des Befallsniveaus eingegangen werden, da die Streifenkrankheit im Gegensatz zum Flugbrand bislang bei der Saatgutzulassung keine Rolle spielt.

Wenn der Befall der verschiedenen Jahre paarweise vergleicht wird fällt auf, dass das Bestimmtheitsmaß 2017 gegenüber den anderen Jahren deutlich niedriger ist (vgl. Tabelle 5). Dies bestätigt die Beobachtung, dass zahlreiche Sorten gegenüber den Vorjahren einen deutlich höheren Befall aufwiesen. Dies kann mehrere Ursachen haben:

1. Die Parzellengröße ist doch zu klein, um einen repräsentativen Feldbefall zu ermitteln.

Zu 1.: Das gegenwärtig (seit 2016) verwendete Versuchsdesign ist in der Tat darauf ausgelegt, dass der Befall am Saatgut nach der Ernte bestimmt wird. Wenn im Feld der Feldaufgang nicht optimal war kann ein zufällig höherer Befall aufgrund des geringen Bestandes einen prozentual nicht repräsentativen Wert zur Folge haben. Die Parzellengröße zu Beginn des Projekts (3 m² / Wiederholung) war in dieser Hinsicht angemessener, jedoch ließ sich dort aufgrund der Aussaattechnik der Fremdbesatz kaum kontrollieren. Hier könnte eine größere Anzahl von Kleinparzellen pro Sorte Abhilfe schaffen. Auch könnte die Anzahl der Infektionsreihen pro Kleinparzelle von vier auf zwei reduziert und stattdessen die Reihen der Prüfsorten von zwei auf vier erhöht werden.

2. Der Erreger hat sich verändert und vormals gering anfällige Sorten sind nun stärker anfällig

Zu 2: Gegen diese Annahme spricht, dass bei den Checksorten keine dramatische Veränderung in der Befallshöhe oder der Verteilung des Befalls zu beobachten ist. Es ist jedoch nicht ganz auszuschließen, dass sich eine Veränderung auf vormals gering anfällige Sorten ausgewirkt hat.

3. Die Veränderung des Versuchsdesigns führt zu einem verbesserten Infektionserfolg.

Zu 3.: Der Befall der Checksorten ist zwar seit der Umstellung des Versuchsdesigns gestiegen, jedoch nicht so stark, wie einige vormals gering anfällige Sorten. Hier müssen noch weitere Versuchsjahre hinzukommen, um eine genauere Aussage zu treffen.

Tabelle 5: Paarweiser Vergleich des Bestimmtheitsmaß (R²) für die Prüfjahre 2013-2017 (2014 Standort Dottenfelderhof-Dfh und Darzau-Dar, sonst Standort Dottenfelderhof

	2013	2014 Dar	2014 Dfh	2015	2017
2013	1	0,33	0,61	0,39	0,12
2014 Dar		1	0,58	0,29	0,14
2014 Dfh			1	0,39	0,12
2015				1	0,24
2017					1

5.2 Diskussion der Überprüfung der Bestimmungsmethoden am Saatgut

Leider konnte trotz vielversprechender Hinweise in der Literatur und Zusammenarbeit mit dem JKI Darmstadt bei keiner der überprüften Methoden eine zufriedenstellende Übereinstimmung des Laborbefunds mit dem Feldbefall erreicht werden. Diese Methoden wurden allerdings in erster Linie entwickelt, um den Streifenkrankheitsbefall von größeren Saatgutchargen zu bestimmen und bislang nicht systematisch in einem ökologischen Zuchtprogramm eingesetzt.

Auch wenn das zum Ende des Projekts erreichte Befallsniveau hoch genug für eine effektive Selektion war, wäre es nach wie vor wünschenswert, über eine Methode zur Bestimmung des Befalls am Saatgut zu verfügen. Aufgrund der strengen Saatgutbürtigkeit der Streifenkrankheit kann bei natürlicher Infektion unter Feldbedingungen die Infektion eines gegebenen Jahres erst im darauf folgenden Jahr ausgezählt werden. Für die Selektion von Zuchtstämmen wäre es aber wünschenswert den Befall im Jahr der Infektion, möglichst noch vor der neuen Aussaat, bestimmen zu können.

Justesen et al. (2008) haben eine Echtzeit PCR-Methode entwickelt, die es ermöglicht den Befall mit Streifenkrankheit zu quantifizieren. Jedoch wurden die Ergebnisse nur mit der Freezing-Blotter Methode und der Gewächshaus-Methode verglichen, es gibt also noch keinen Vergleich mit dem Befall unter Feldbedingungen. Sie stellten auch fest, dass Saatgutpartien, die einen hohen Anteil von *P. graminea* DNA enthielten beim Gewächshaustest nur wenig oder keine Streifenkrankheitssymptome zeigten.

Eine Alternative zur Bestimmung des Befalls am Saatgut wäre die künstliche Inokulation des Saatgutes vor der Aussaat. Dann könnte das erste Jahr Infektionsanbau eingespart werden. Leider sind die bekannten Methoden zur künstlichen Inokulation sehr aufwändig und eignen

sich nur für kleine Mengen Saatgut, wie z. B. die Sandwichmethode (Mohammad & Mahmood 1974; Müller et al. 2003).

6 Voraussichtlicher Nutzen und Verwertbarkeit der Ergebnisse; Möglichkeiten der Umsetzung oder Anwendung der Ergebnisse für die Praxis und Beratung

Mit den im Laufe des Projekts erarbeiteten Datensätzen und Methoden wurde eine Grundlage geschaffen, um streifenkrankheitsresistente Sorten mit Eignung für den Ökolandbau zu entwickeln. Jedoch zeigen die Ergebnisse auch, dass es noch ein weiter Weg sein wird bis tatsächlich resistente Sorten zur Anmeldung gebracht werden können.

Im Bereich der Praxis und Beratung können die Befallswerte der Prüfungen von zugelassenen Sorten herangezogen werden, wie dies z.B. aus Tabelle 3 hervorgeht, um dem Landwirt weitere Gesichtspunkte zur Sortenwahl zu liefern, die über die üblichen Kennwerte hinausgehen.

7 Gegenüberstellung der ursprünglich geplanten zu den tatsächlich erreichten Zielen; Hinweise auf weiterführende Fragestellungen

Im Hinblick auf das ursprüngliche Ziel des Projektes, die Feld-Evaluierung auf Streifenkrankheits-Anfälligkeit der Wintergerste kann das Ziel als erreicht bezeichnet werden.

Die während des Projektes entwickelte Idee der Überprüfung von Labormethoden zur Bestimmung des Befallsgrades am Saatgut konnte in der Projektlaufzeit leider nicht erreicht werden. Beim derzeitigen Stand der Dinge ist auch nicht absehbar, ob dieses Ziel erreicht werden kann. Die erste Voraussetzung wäre eine hinreichende Übereinstimmung des Feldbefalls mit dem Laborbefund. Auch wenn dies gelänge müsste die Labormethode relativ schnell und einfach durchzuführen sein, da bei Wintergerste die Zeit zwischen Ernte und Wiederaussaat knapp ist und viele Akzessionen nach der Ernte überprüft werden müssten. Ein weiterer Nachteil der meisten Labormethoden ist, dass nicht von der Netzfleckenkrankheit (*Pyrenophora teres*) unterschieden werden kann.

Eine Alternative zu der Bestimmung des Befallsgrades am Saatgut wäre eine Inokulationsmethode, die an den Prüfakzessionen vor der Aussaat angewendet werden könnte. Dann würde das erste Jahr Infektionsanbau von neu zu prüfenden Sorten entfallen. Ein Nachteil von künstlichen Inokulationsmethoden allgemein ist allerdings, dass morphologische Resistenzen, wie z.B. Kleistogamie nicht berücksichtigt werden.

8 Zusammenfassung

Das Projekt "Evaluierung von aktuellen Wintergerstesorten sowie Sichtung von Zuchtmaterial mit Flugbrand-Widerstandsfähigkeit (*Ustilago nuda*) auf Anfälligkeit gegenüber der Streifenkrankheit (*Drechslera graminea*)" startete im September 2011 und lief nach drei Projektverlängerungen bis zum Dezember 2018.

Unter Feldbedingungen wurden insgesamt 244 Wintergersteakzessionen mindestens einmal auf Anfälligkeit gegenüber Streifenkrankheit geprüft, davon sind 124 zweizeilige und 120 mehrzeilige Akzessionen. Insgesamt liegen zum Projektende 981 Datensätze vor, da die Akzessionen möglichst mehrjährig geprüft werden, um eine verlässliche Aussage zu erhalten.

Zum Ende der ursprünglich geplanten Projektlaufzeit war das Befallsniveau nicht hoch genug für eine sichere Identifizierung von resistentem Material. Jedoch ist das Befallsniveau von Jahr zu Jahr kontinuierlich angestiegen, so dass 2018 der Befall bei den Checksorten zwischen 20 und knapp 40 % lag. Als geeignete Check- und Infektionssorten können zurzeit Alpaca, Etrusco, Landi und KWS Tonic empfohlen werden.

Insgesamt konnten drei eigene Zuchtstämme identifiziert werden, die mindestens drei Jahre geprüft wurden, bei Streifenkrankheit <2 % maximalen Befall aufweisen und gleichzeitig resistent gegenüber Flugbrand sind (HS AS 611-10, HS 561-11, HS 624-10-2). Alle drei sind zweizeilige Zuchtstämme, die jedoch über keine ausreichend guten agronomischen Eigenschaften verfügen, um eine offizielle Sortenanmeldung zu rechtfertigen. Es konnten zwei eigene Zuchtstämme gefunden werden, die <1 % Befall bei Streifenkrankheit aufweisen dabei jedoch nicht resistent gegenüber Flugbrand sind.

Die Projektverlängerungen ergaben sich unter anderem aus der während des laufenden Projekts geborenen Idee, bestehende Labormethoden zu überprüfen, mit denen man den Befallsgrad am Saatgut bestimmen kann. Bis zum Projektende ist es bei keiner der überprüften Methoden gelungen eine zufriedenstellende Korrelation zwischen Feldbefall und Laborbefund nachzuweisen.

Als Fazit kann gezogen werden, dass mit dem Projekt eine Grundlage geschaffen wurde, um Streifenkrankheitsresistente Wintergerste entwickeln zu können, die sich für den ökologischen Landbau eignen und eine dauerhafte ökologische Saatgutvermehrung ermöglichen. Um dieses Ziel letztendlich zu erreichen, wird die Evaluierung auch über das Projektende hinaus weiterlaufen, da die neu entwickelten Zuchtstämme und neue zugelassene Sorten auch in Zukunft laufend überprüft werden müssen. Die im Verlauf des Projekts als resistent eingestuften Sorten und Linien werden eingekreuzt und die Kreuzungen müssen auf Streifenkrankheitsresistenz und weitere agronomische Eigenschaften geprüft werden.

9 Übersicht über alle im Berichtszeitraum vom Projektnehmer realisierten Veröffentlichungen zum Projekt (Printmedien, Newsletter usw.), bisherige und geplante Aktivitäten zur Verbreitung der Ergebnisse

9.1 Veröffentlichungen

Schmehe, B.; Spieß, H. (2015): Evaluierung von Wintergerste-Sorten und -Zuchtstämmen auf Resistenz gegenüber Streifenkrankheit (*Drechslera graminea*). In: Anna Maria Häring (Hg.): Am Mut hängt der Erfolg. Rückblicke und Ausblicke auf die ökologische Landbewirtschaftung; Beiträge zur 13. Wissenschaftstagung Ökologischer Landbau, Eberswalde, 17. - 20. März 2015. Berlin: Köster.

Schmehe B., Spieß H. (2015): Evaluation of winter barley varieties and breeding lines for resistance to stripe disease (*Drechslera graminea*)-results 2013-14. 65. Tagung Zukünftiges Saatgut-Produktion, Vermarktung, Nutzung und Konzervierung. Future Seed-Production, Marketing, Use and Conservation. 24-26 November, 2014 Raumberg-Gumpenstein, Austria:85–87.

Schmehe, Ben; Gallehr, Andrea; Buhmann, Kathrin; Spieß, Hartmut (2019): Evaluierung von Wintergerste (*Hordeum vulgare*) auf Anfälligkeit gegenüber Flugbrand (*Ustilago nuda*) und Streifenkrankheit (*Pyrenophora graminea*). In: 15. Wissenschaftstagung Ökologischer Landbau.

Spieß, Hartmut; Schmehe, Ben; Vollenweider, Carl (2018): Key issues in breeding and trialling robust cereal cultivars for organic farming. In: Ulrich Köpke (Hg.): Improving organic crop cultivation (Burleigh Dodds series in agricultural science).

9.2 Homepage

https://www.dottenfelderhof.de/forschungzuechtung/ueber-uns/aktuelle-projekte/ble-streifenkrankheit-wintergerste/

10 Literatur

- Adam A., Arabi M. I.E., Idris I., Al-Shehadah E. (2017): Effect of several rhizobacteria strains on barley resistance against *Pyrenophora graminea* under field conditions. Hellenic Plant Protection Journal 10(1):35–45.
- Babadoost M. (1997): Barley stripe. In Mathre D. E. (Hrsg.) Compendium of barley diseases. The disease compendium series of the American Phytopathological Society. APS Press, St. Paul, Minn, S 124–125.
- Champion R., Drews F. W. (1999): Erkennen und bestimmen samenübertragbarer Pilze. Bayer AG.
- Chelkowski J., Tyrka M., Sobkiewicz A. (2003): Resistance genes in barley (*Hordeum vulgare* L.) and their identification with molecular markers. Journal of Applied Genetics 44(3):291–310.
- Delogu G., Porta-Puglia A., Vannacci G. (1989): Resistance of winter barley varieties subjected to natural inoculum of *Pyrenophora graminea*. Journal of Genetics & Breeding 43(2):61–65.
- Enneking D., Knüpffer H., Grau M., Harrer S., Begemann F., Müller K.-J., Kuntze L., Laubach E., Einfeldt C., Vaupel J., Schinkel B., Großer J., Streng S., Habekuß A., Kopahnke D., Proeseler G., Schliephake E., Walther U., Frese L., Cattivelli L., Stanca M., Di Fonzo N., Jestin L., Le Blanc A., Vetaläinen M., Poulsen M. H., Andersen O., Rasmussen M., Jalli M., Bothmer R. von, Jahoor A., Jaiser H., Bladenopoulos K., Gogas D., van Soest L., Ayerbe L., Ambrose M., Ellis R. P., Barbier A., Steyer S., Oeynhausen F., Terentyeva I., Podyma W., Záková M., Milotová J., Faberová I., Stehno Z., Kari A. G., Placinta D., Korol A. (2002): GENRES CT-98-104 Evaluation and Conservation of Barley Genetic Resources to Improve Their Accessibility to Breeders in Europe: FINAL REPORT.
- ISTA (2014): Osmotic method for the detection of *Pyrenophora teres* and *Pyrenophora graminea* on *Hordeum vulgare* (barley), Bassersdorf.
- ISTA (2016): Detection of *Pyrenophora teres* and *Pyrenophora graminea* on *Hordeum vulgare* (barley) seed, Bassersdorf.
- Jørgensen J. (1980): Comparative testing of barley seed for inoculum of *Pyrenophora graminea* and *P. teres* in greenhouse and field. Seed science and technology 8(3):377–381.
- Jørgensen J. H., Wolfe M. (1994): Genetics of powdery mildew resistance in barley. Critical Reviews in Plant Sciences 13(1):97–119.
- Justesen A. F., Hansen H. J., Pinnschmidt H. O. (2008): Quantification of *Pyrenophora graminea* in barley seed using real-time PCR. Eur J Plant Pathol 122(2):253–263. 10.1007/s10658-008-9278-1.
- Kietreiber M. (1977): Makroskopische Saatgutbefallserkennung von *Drechslera graminea*, dem Erreger der Streifenkrankheit der Gerste.
- Kline D. M. (1971): Resistance to *Helminthosporium* stripe in winter barley cultivars. Plant Disease Reporter.
- Knudsen J. C.N. (1980): Resistance to *Pyrenophora graminea* in 145 barley entries subjected to uniform natural inoculum. Aarsskrift. Kongelige Veterinaer og Landbohoejskole:81–95.

- Koch E., Slusarenko A., Wunderle J., Zink P., Orlik M., Gebremedhin L. (2012): Optimierung von Saatgutbehandlungsmitteln mit Wirkung gegen Flugbrand an Gerste und Weizen (*Ustilago nuda, U. tritici*) unter Nutzung verbesserter Verfahren zum Nachweis der Erreger: BÖLN Verbundprojekt 060E341 und 060E349. Abschlussbericht.
- LfL: Wintergerste: Allgemeine Anbauhinweise. https://www.lfl.bayern.de/ipz/getreide/021104/index.php.
- Mohammad A., Mahmood M. (1974): Inoculation techniques in *Helminthosporium* stripe of barley. Plant Disease Reporter 58:32–34.
- Mohammad A., Mahmood M. (1976): Physiologic specialization in *Helminthosporium gramineum* [leaf stripe of barley, India, fungal diseases]. Plant Disease Reporter (USA).
- Müller K.-J. (2006): Die Anfälligkeit gegenüber der Streifenkrankheit (*Pyrenophora graminea*) im deutschen Sommergerstensortiment unter natürlichen Befallsbedingungen im ökologischen Landbau, D-Neu Darchau.
- Müller K.-J., Valè G., Enneking D. (2003): Selection of resistant spring barley accessions after natural infection with leaf stripe (*Pyrenophora graminea*) under organic farming conditions in Germany and by sandwich test. Journal of Plant Pathology:9–14.
- Platenkamp R. (1976): Investigation on the infection pathway of *Drechslera graminea* in germinating barley. Kongelige Veterinaer-og Landbohoeiskoles Aarsskrift:49–64.
- Porta-Puglia A., Delogu G., Vannacci G. (1986): *Pyrenophora graminea* on winter barley seed: Effect on disease incidence and yield losses. Journal of Phytopathology 117(1):26–33.
- Rennie W. J., Tomlin M. M. (1984): Barley Leaf Stripe *Pyrenophora graminea*. ISTA Working sheet No. 6.
- Schmehe B., Gallehr A., Buhmann K., Spieß H. (2019): Evaluierung von Wintergerste (*Hordeum vulgare*) auf Anfälligkeit gegenüber Flugbrand (*Ustilago nuda*) und Streifenkrankheit (*Pyrenophora graminea*). 15. Wissenschaftstagung Ökologischer Landbau.
- Shands H. L., Arny D. C. (1944): Stripe reaction of spring barley varieties. Phytopathology 34:572–585.
- Smedegaard-Petersen V., Jørgensen J. (1982): Resistance to barley leaf stripe caused by *Pyrenophora graminea*. Journal of Phytopathology 105(2):183–191.
- Sperlingsson K., Brodal G. (2011): The osmotic method for detection of *Pyrenophora teres* and *P. graminea* on *Hordeum vulgare*. Seed Testing International(141):34–38.
- Tekauz A. (1983): Reaction of Canadian barley cultivars to *Pyrenophora graminea*, the incitant of leaf stripe. Canadian Journal of Plant Pathology 5(4):294–301.
- Teviotdale B. L., Hall D. H. (1976): Factors affecting inoculum development and seed transmission of *Helminthosporium gramineum*. Phytopathology 66(3):295–301.
- Thomsen S. B., Jensen H. P., Jensen J., Skou J. P., Jorgensen J. H. (1997): Localization of a resistance gene and identification of sources of resistance to barley leaf stripe. Plant Breeding 116(5):455–459. 10.1111/j.1439-0523.1997.tb01030.x.
- Vogt-Kaute W., Spieß H., Jahn M., Waldow F., Koch E., Wächter R., Müller K. J., Wilbois K. P. (2007): Physikalische Verfahren zur Behandlung von Saatgut im ökologischen Landbau.
- Walther H. F., Hoffmann G. M. (1982): Der Einfluß der Temperatur auf die Befallshöhe von Gerstenpflanzen durch Streifenkrankheit (*Drechslera graminea*) und die Wirkung Hg-

freier Beizmittel / The influence of temperature on the disease rate of barley leaf stripe (*Drechslera graminea*) and the effect of non-mercurial dressings. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection:449–462.

Wilbois K. P., Waldow F., Müller K. J., Vogt-Kaute W., Spieß H., Jahn M., Wächter R., Koch E. (2007): Strategien zur Bekämpfung von Streifen-und Netzfleckenkrankheit der Gerste im Ökologischen Landbau.

11 Anhang große Abbildungen und Tabellen

Tabelle 6: 154 Sorten und Linien zur Infektion mit Streifenkrankheit (*Drechslera graminea*). Dottenfelderhof 2013

Sorte/Linie	Sorte/Linie	Sorte/Linie	Sorte/Linie
Alba (OR757)	HS 617-10 ES-28	Igri	Nerz
Alinghi	HS 624-10 ES-30	Isolde	Nico
Alpaca	HS 624-10 ES-31	Jade	Novoperga
Amelie	HS 630-10 ES-32	Kathleen	OR101
Amrai	HS 635-10 ES-34	Katja	Osiris
Anisette	HS 641-10 ES-37	Kearney (ck)	Palinka
Antalya	HS 644 ES-39	Kentucky 1	Paroli
Antonella	HS 713-10 ES-44	Kentucky 1 (ck)	Passion
Astrid	HS AD 611 ES-25	Ketos	Pelican
Augusta	HS AsDuCar ES-5	KWS Ariane	Precosa
Boreale	HS AsDuCar ES-6	KWS Cassia	Purdue
California	HS AsDuCar ES-7	KWS Glacier	Queen
Campanile	HS AsDuCar ES-8	KWS Joy	Reni
Canberra	HS AsDuTaf ES-3	KWS Meridian	Roseval
Candesse	HS AsDuTaf ES-4	KWS Scala	Salamandre
Cantare	HS CaAlp	KWS Tenor	Sandra
Carrero	HS CaCanGre	Landi	Saturn
Chalup	HS CaKri	Laurena	Sebrau
Christelle	HS CarCaGre ES-14	Laverda	Selvaggio
Cordula	HS CarCaGre ES-15	Leibniz	Semper
DICKTOO	HS CarCaGre ES-16	Limpid	Souleyka
Dicktoo (ck)	HS CarThe ES-12	Lomerit	Spectrum
Duet	HS CarThe ES-13	Madame	Stendal
Etrusco	HS CaYu1 NKS 1	Maja	SU Vireni
Eufora	HS CaYu1 NKS 22	Malwinta	Tania
Eureka	HS CaYu1 NKS 7	Matros	Theresa
Famosa	HS CaYu2 NKS 4	Medina	Titus
Finesse	HS CaYu2 NKS 5	Mercedes	Vetulio
Fleuret	HS CaYu2 NKS 6	Merle	Veturia
Franziska	HS KeLav	Metaxa	Waxyma
Fridericus	HS KetNa ES-21	MH Firrenza	Wintmalt
Gerbel	HS MalCar ES-17	Mirco	Yatzy
Gigga (A)	HS MalCar ES-18	Mombasa	Yokohama
Gudrun	HS MalCar ES-19	Montana	Yoole
Heike	HS OsCar ES-10	Naomie	Yuka
Henriette	HS OsCar ES-9	NB09405	Zephyr
Highlight	HS PalOs ES-22	NB09410	Zzoom
Hobbit	HS VerAs ES-1	NB09433	
HS 571-10 ES-24	HS VerOs ES-2	NB09434	

Tabelle 7: 39 Wintergersteakzessionen, die in Kleinparzellen weiter vermehrt wurden, um sie später auf Streifenkrankheitsbefall zu prüfen. Dottenfelderhof 2013

Sorte	Sorte
Brucker Stamm II	Pamina (Selection)
Cass	Perga
Dan (VA03H-61)	Rebekka
Dicktoo HOR 3113	Robur
Eldorado	Schuyler
FAYETTE	St. 1675/70
Grannenloser B-Stamm 49/70	TAMU-Era
Harrison	Tenn. Winter (ck)
Jefferson	Tex. 46-58-55
Jumbo	Thibaut
Luther	Trebi (ck)
LYALLPUR	U 259
Mathias (OR76)	VA06B-48
MW08-04	VA06H-25 WS
NB09432	VA06H-79
NO71DH 13	VA07H-31 WS
Onice	VA08B-85
Opale	Verdant (OR712)
OR818	Veturia
Pamina	

																	1					
20	CaKri	CaKri	CaKri	CaAlp	CaAlp	CaAlp	CaKri	CaKri	CaKri	CaAlp	CaAlp	CaAlp	CaKri	CaKri	CaKri	CaAlp	CaAlp	CaAlp	CaKri	CaKri	CaKri	CaAlp
19	CaKri	Duet	Eufora	CaAlp	Naomie	Nerz	CaKri	ES-6	ES-7	CaAlp	CaKri	Alinghi	CaKri	KWS Meridian	KWS Tenor	CaAlp	Stendal	Theresa	CaKri	ES-28	ES-30	CaAlp
18	CaKri	Cordula	Eureka	CaAlp	Montana	Osiris	CaKri	ES-5	ES-8	CaAlp	CaKri	Alpaca	CaKri	KWS Cassia	Landi	CaAlp	Spectrum	Titus	CaKri	ES-25	ES-31	CaAlp
17	CaKri	Christelle	Famosa	CaAlp	Mombasa	Palinka	CaKri	ES-4	ES-9	CaAlp	CaKri	Amelie	CaKri	Ketos	Laurena	CaAlp	Souleyka	Veturia	CaKri	ES-24	ES-32	CaAlp
16	CaKri	Carrero	Finesse	CaAlp	MH Firenzza	Passion	CaKri	ES-3	ES-10	CaAlp	CaKri	Amrai	CaKri	Katja	Laverda	CaAlp	Sladoran	Waxyma	CaKri	ES-22	ES-34	CaAlp
15	CaKri	Cantare	Franziska	CaAlp	Metaxa	Pelican	CaKri	ES-2	ES-11	CaAlp	CaKri	Anisette	CaKri	Kathleen	Leibniz	CaAlp	Semper	Wintmalt	CaKri	ES-21	ES-37	CaAlp
14	CaKri	Candesse	Fridericus	CaAlp	Merle	Precosa	CaKri	ES-1	ES-12	CaAlp	CaKri	Antalya	CaKri	Jade	Limpid	CaAlp	Sebrau	Yatzy	CaKri	ES-19	ES-39	CaAlp
13	CaKri	Canberra	Gudrun	CaAlp	Mercedes	Queen	CaKri	lgri	ES-13	CaAlp	CaKri	Astrid	CaKri	Isolde	Lomerit	CaAlp	Saturn	Yokohama	CaKri	ES-18	ES-44	CaAlp
12	CaKri	Campanile	Heike	CaAlp	Medina	Reni	CaKri	Zzoom	ES-14	CaAlp	CaKri	Augusta	CaKri	Hobbit	Madame	CaAlp	Sandra	Yoole	CaKri	ES-17	CaCanGre	CaAlp
11	CaKri	CaKri	Henriette	CaAlp	Matros	Roseval	CaKri	Zephyr	ES-15	CaAlp	CaKri	CaAlp	CaKri	Highlight	Malwinta	CaAlp	Salamandre	Yuka	CaKri	ES-16	KeLav	CaAlp
10	CaKri	CaAlp	Highlight	CaAlp	Malwinta	Salamandre	CaKri	Yuka	ES-16	CaAlp	KeLav	CaKri	CaKri	Henriette	Matros	CaAlp	Roseval	Zephyr	CaKri	ES-15	CaAlp	CaAlp
9	CaKri	Augusta	Hobbit	CaAlp	Madame	Sandra	CaKri	Yoole	ES-17	CaAlp	CaCanGre	Campanile	CaKri	Heike	Medina	CaAlp	Reni	Zzoom	CaKri	ES-14	CaAlp	CaAlp
8	CaKri	Astrid	Isolde	CaAlp	Lomerit	Saturn	CaKri	Yokohama	ES-18	CaAlp	ES-44	Canberra	CaKri	Gudrun	Mercedes	CaAlp	Queen	lgri	CaKri	ES-13	CaAlp	CaAlp
7	CaKri	Antalya	Jade	CaAlp	Limpid	Sebrau	CaKri	Yatzy	ES-19	CaAlp	ES-39	Candesse	CaKri	Fridericus	Merle	CaAlp	Precosa	ES-1	CaKri	ES-12	CaAlp	CaAlp
6	CaKri	Anisette	Kathleen	CaAlp	Leibniz	Semper	CaKri	Wintmalt	ES-21	CaAlp	ES-37	Cantare	CaKri	Franziska	Metaxa	CaAlp	Pelican	ES-2	CaKri	ES-11	CaAlp	CaAlp
5	CaKri	Amrai	Katja	CaAlp	Laverda	Sladoran	CaKri	Waxyma	ES-22	CaAlp	ES-34	Carrero	CaKri	Finesse	MH Firenzza	CaAlp	Passion	ES-3	CaKri	ES-10	CaAlp	CaAlp
4	CaKri	Amelie	Ketos	CaAlp	Laurena	Souleyka	CaKri	Veturia	ES-24	CaAlp	ES-32	Christelle	CaKri	Famosa	Mombasa	CaAlp	Palinka	ES-4	CaKri	ES-9	CaAlp	CaAlp
3	CaKri	Alpaca	KWS Cassia	CaAlp	Landi	Spectrum	CaKri	Titus	ES-25	CaAlp	ES-31	Cordula	CaKri	Eureka	Montana	CaAlp	Osiris	ES-5	CaKri	ES-8	CaAlp	CaAlp
2	CaKri	Alinghi	KWS Meridian	CaAlp	KWS Tenor	Stendal	CaKri	Theresa	ES-28	CaAlp	ES-30	Duet	CaKri	Eufora	Naomie	CaAlp	Nerz	ES-6	CaKri	ES-7	CaAlp	CaAlp
1	CaKri	CaKri	CaKri	CaAlp	CaAlp	CaAlp	CaKri	CaKri	CaKri	CaAlp	CaAlp	CaAlp	CaKri	CaKri	CaKri	CaAlp	CaAlp	CaAlp	CaKri	CaKri	CaKri	CaAlp
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Abbildung 20: Wintergerste Infektionsanbau von zugelassenen Sorten (weiß), eigenen Zuchtstämmen (gelb) und Infektionsträgern der Streifenkrankheit (orange) in 3 m² Parzellen, insgesamt 440 Parzellen – Dottenfelderhof 2012, Schlag "Hölle III"

40 CaKri	41 CaAlp	120 CaKri	121 CaKri	200 CaKri
39 CaKri	42 CaAlp	119 CaKri	122 CaKri	199 CaKri
38 CaKri	43 CaAlp	118 CaKri	123 WINTER CLUB	198 CaKri
37 CaKri	44 CaAlp	117 CaKri	124 Tokak	197 CaKri
36 CaKri	45 CaAlp	116 CaKri	125 TOKAK	196 CaKri
35 CaKri	46 NO71DH 13	115 Kearney (ck)	126 Tipper	195 CaKri
34 CaKri	47 OR101	114 NB09433	127 TIPPER	194 CaKri
33 CaKri	48 Alba (OR757)	113 OR101	128 Thibaut	193 CaKri
32 CaKri	49 Verdant (OR712)	112 NB09434	129 Tex. 46-58-55	192 CaKri
31 Ledeci Beta	50 Mathias (OR76)	111 OR818	130 Robur	191 CaKri
30 HOR 758	51 OR818	110 NB09405	131 Purdue 466 A 1-77-15-10-9-10	190 CaKri
29 Brucker Stamm II	52 Maja	109 NB09410	132 Plaisant	189 CaKri
28 U 259	53 VA08B-85	108 Kenosha (wht ck)	133 Pirate	188 CaKri
27 Rebekka	54 VA09B-4	107 Maja	134 Perga	187 CaKri
26 Jumbo	55 VA09H-4	106 VA09H-4	135 Panda	186 CaKri
25 Maris Otter	56 VA06B-48	105 Verdant (OR712)	136 Meimi	185 CaKri
24 Magie	57 VA06B-19	104 MW08-15	137 MARNOBARB	184 CaKri
23 Atahualpa	58 VA06H-79	103 Kentucky 1 (ck)	138 LYALLPUR	183 CaKri
22 Acuario	59 VA07H-31 WS	102 Dicktoo (ck)	139 Luther	182 CaKri
21 Seonghwan Gyeonggi N. 3	60 VA06H-25 WS	101 VA07H-31 WS	140 Kentucky 1	181 CaKri
20 Buan Waessalbori	61 Eve (VA01H-68	100 Trebi (ck)	141 Kaskade	180 CaAlp
19 Yeonggwang Naked 1	62 Dan (VA03-61	99 Eve (VA01H-68)	142 KASKADE	179 CaAlp
18 Jangheung Naked 2	63 MW08-15	98 VA06B-19	143 Jeff	178 CaAlp
17 Nulssalbori	64 MW08-04	97 VA06H-79	144 Jaidor	177 CaAlp
16 Saruho	65 NB09434	96 VA08B-85	145 Harrison	176 CaAlp
15 Osome	66 NB09432	95 VA06B-48	146 Gerbel	175 CaAlp
14 Honen	67 NB09410	94 Tenn. Winter(ck)	147 GERBEL	174 CaAlp
13 Chikurin Ibaraki 3	68 NB09433	93 MW08-04	148 FAYETTE	173 CaAlp
12 Senbon Hadaka	69 NB09405	92 NO71DH 13	149 FAYETTE	172 CaAlp
11 Shiratama Hadaka	70 Kentucky 1 (ck)	91 Alba (OR757)	150 Eldorado	171 CaAlp
10 Kikai Hadaka	71 Dicktoo (ck)	90 Mathias (OR76)	151 DICKTOO	170 CaAlp
9 Liu leng zi da mai	72 Kenosha (wht ck)	89 VA09B-4	152 Dicktoo	169 CaAlp
8 Suchou 1	73 Kearney (ck)	88 Dan (VA03H-61)	153 Criter	168 CaAlp
7 Changchou 1	74 Trebi (ck)	87 VA06H-25 WS	154 Colonial 2	167 CaAlp
6 Chinniu 1	75 Tenn. Winter (ck)	86 NB09432	155 Ciro	166 CaAlp
5 Tayeh 4	76 Cass	85 CaAlp	156 Barberousse	165 CaAlp
4 Takungkuan	77 Jefferson	84 CaAlp	157 Arma	164 CaAlp
3 Tatung	78 Schuyler	83 CaAlp	158 Alpha	163 CaAlp
2 CaKri	79 TAMU-Era	82 CaAlp	159 CaAlp	162 CaAlp
1 CaKri	80 CaKri	81 CaAlp	160 CaAlp	161 CaAlp
1	2	3	4	5

Abbildung 21: Wintergerste Vermehrungsanbau von Genbank-Akzessionen (grün), 'barley winter hardiness nursery' (gelb) und Infektionsträgern Streifenkrankheit (orange) in 1,5 m² Kleinparzellen, insgesamt 200 Parzellen – Dottenfelderhof 2012, Schlag "Hölle III"

20	Cordula 20 / 208	DICKTOO 21 / 196	ı	HS CarCaGre ES-16 60 / 253	HS CarThe ES-12 61 / 221		Lomerit 100 / 191	Madame 101 / 239		Stendal 140 / 289	SU Vireni 141 / 203		Candesse 180 / 15	KWS Ariane 181 / 88		Zephyr 220 / 154	HS CarThe ES-12 221 / 61		Alpaca 260 / 3	HS MalCar ES-17 261 / 71		Nico 300 / 119	Anisette 301 / 6
19	Christelle 19 / 177	Dicktoo (ck) 22 / 283	Ī	HS CarCaGre ES-15 59 / 168	HS CarThe ES-13 62 / 187		Limpid 99 / 296	Maja 102 / 190		Spectrum 139 / 184	Tania 142 / 292		HS AsDuCar ES-5 179 / 49	Chalup 182 / 18		Boreale 219 / 11	Ketos 222 / 87		HS AsDuCar ES-7 259 / 51	HS 571-10 ES-24 262 / 39		Isolde 299 / 80	Fridericus 302 / 31
18	Chalup 18 / 182	Duet 23 / 192	1	HS CarCaGre ES-14 58 / 255	HS CaYu1 NKS 1 63 / 166		Leibniz 98 / 258	Malwinta 103 / 209		Souleyka 138 / 315	CaAlp Füller 143 / 303		Amelie 178 / 4	Landi 183 / 95		Kentucky 1 218 / 85	CaAlp Füller 223 /		Leibniz 258 / 98	Eureka 263 / 26		KWS Joy 298 / 90	CaAlp Füller 303 / 143
17	Carrero 17 / 163	Etrusco 24 / 194		HS CaKri 57 / 197	HS CaYu1 NKS 22 64 / 202		Laverda 97 / 285	Matros 104 / 214		Semper 137 / 211	Theresa 144 / 172		Christelle 177 / 19	Spectrum 184 / 139		Titus 217 / 145	Vetulio 224 / 146		HS AsDuTaf ES-3 257 / 53	Selvaggio 264 / 136		Medina 297 / 105	Zzoom 304 / 155
16	Cantare 16 / 272	Eufora 25 / 243	ľ	HS CaCanGre 56 / 267	HS CaYu1 NKS 7 65 / 227		Laurena 96 / 246	Medina 105 / 297		Selvaggio 136 / 264	Titus 145 / 217		HS CaAlp 176 / 55	Wintmalt 185 / 149		HS 624-10 ES-30 216 / 41	Pelican 225 / 126		Kathleen 256 / 82	HS KetNa ES-21 265 / 70		Limpid 296 / 99	Alba (OR757) 305 / 1
15	Candess 15 / 180	Eureka 26 / 263	ľ	HS CaAlp 55 / 176	HS CaYu2 NKS 4 66 / 294		Landi 95 / 183	Mercedes 106 / 287		Sebrau 135 / 250	Vetulio 146 / 224		Waxyma 175 / 148	Osiris 186 / 122		HS PalOs ES-22 215 / 76	Montana 226 / 112		HS CarCaGre ES-14 255 / 58	Highlight 266 / 37		Finesse 295 / 28	Franziska 306 / 30
14	Canberra 14 / 307	Famosa 27 / 271		HS AsDuTaf ES-4 54 / 280	HS CaYu2 NKS 5 67 / 205		KWS Tenor 94 / 206	Merle 107 / 212		Saturn 134 / 270	Veturia 147 / -		Heike 174 / 35	HS CarThe ES-13 187 / 62		Matros 214 / 104	HS CaYu1 NKS 7 227 / 65		Gudrun 254 / 34	HS CaCanGre 267 / 56		HS CaYu2 NKS 4 294 / 66	Canberra 307 / 14
13	Campani 13 / 278	Finesse 28 / 295		HS AsDuTaf ES-3 53 / 257	HS CaYu2 NKS 6 68 / 195		KWS Scala 93 / 193	Metaxa 108 / 171		Sandra 133 / 231	Waxyma 148 / 175		HS OsCar ES-9 173 / 75	Gerbel 188 / 32		KWS Glacier 213 / 91	HS 635-10 ES-34 228 / 44		HS CarCaGre ES-16 253 / 60	California 268 / 12		Roseval 293 / 131	HS OsCar ES-10 308 / 74
12	California 12 / 268	Fleuret 29 / 310		HS AsDuCar ES-8 52 / 275	HS KeLav 69 / 241		KWS Meridian 92 / 189	MH Firrenza 109 / 245		Salamandre 132 / 274	Wintmalt 149 / 185		Theresa 172 / 144	KWS Meridian 189 / 92		Merle 212 / 107	Mirco 229 / 110		Henriette 252 / 36	KWS Cassia 269 / 89		Tania 292 / 142	OR101 309 / 121
11	Boreale	Franziska 30 / 306	a ri	HS AsDuCar ES-7 51 / 259	HS KetNa ES-21 70 / 265	Ca Alp	KWS Glacier 91 / 213	Mirco 110 / 229	Ca Kri	Roseval 131 / 293	Yatzy 150 / 238	Ca Alp	Metaxa 171 / 108	Maja 190 / 102	Ca Kri	Semper 211 / 137	Amrai 230 / 5	Ca Alp	Yuka 251 / 153	Saturn 270 / 134	Ca Kri	HS MalCar ES-19 291 / 73	Fleuret 310 / 29
10	Augusta 10 / 286	Fridericus 31 / 302		HS AsDuCar ES-6 50 / 277	HS MalCar ES-17 71 / 261		KWS Joy 90 / 298	Mombasa 111 / 290		Reni 130 / 201	Yokohama 151 / 204		NB09405 170 / 114	Lomerit 191 / 100		Nerz 210 / 118	Sandra 231 / 133		Sebrau 250 / 135	Famosa 271 / 27		Mombasa 290 / 111	Katja 311 / 83
9	Astrid 9 / 169	Gerbel 32 / 188	ſ	HS AsDuCar ES-5 49 / 179	HS MalCar ES-18 72 / 313		KWS Cassia 89 / 269	Montana 112 / 226		Queen 129 / 279	Yoole 152 / 233		Astrid 169 / 9	Duet 192 / 23		Malwinta 209 / 103	HS 644 ES-39 232 / 46		lgri 249 / 79	Cantare 272 / 16		Stendal 289 / 140	Kearney (ck) 312 / 84
8	Antonella 8 / 198	Gigga (A) 33 / 237		HS AD 611 ES-25 48 / 248	HS MalCar ES-19 73 / 291		KWS Ariane 88 / 181	Naomie 113 / 199		Purdue 128 / 165	Yuka 153 / 251		HS CarCaGre ES-15 168 / 59	KWS Scala 193 / 93		Cordula 208 / 20	Yoole 233 / 152		HS AD 611 ES-25 248 / 48	HS 617-10 ES-28 273 / 40		NB09434 288 / 117	HS MalCar ES-18 313 / 72
7	Antalya 7 / 242	Gudrun 34 / 254		HS 713-10 ES-44 47 / 207	HS OsCar ES-10 74 / 308		Ketos 87 / 222	NB09405 114 / 170		Precosa 127 / 284	Zephyr 154 / 220		Jade 167 / 81	Etrusco 194 / 24		HS 713-10 ES-44 207 / 47	Kentucky 1 (ck) 234 / 86		Alinghi 247 / 2	Salamandre 274 / 132		Mercedes 287 / 106	HS 624-10 ES-31 314 / 42
6	Anisette 6 / 301	Heike 35 / 174		HS 644 ES-39 46 / 232	HS OsCar ES-9 75 / 173		Kentucky 1 (ck) 86 / 234	NB09410 115 / 236		Pelican 126 / 225	Zzoom 155 / 304		HS CaYu1 NKS 1 166 / 63	HS CaYu2 NKS 6 195 / 68		KWS Tenor 206 / 94	HS VerAs ES-1 235 / 77		Laurena 246 / 96	HS AsDuCar ES-8 275 / 52		Augusta 286 / 10	Souleyka 315 / 138
5	Amrai 5 / 230	Henriette 36 / 252		HS 641-10 ES-37 45 / 161	HS PalOs ES-22 76 / 215		Kentucky 1 85 / 218	NB09433 116 / 276		Passion 125 / 282	CaAlp Cedomon 156 / 317		Purdue 165 / 128	DICKTOO 196 / 21		HS CaYu2 NKS 5 205 / 67	NB09410 236 / 115		MH Firrenza 245 / 109	NB09433 276 / 116		Laverda 285 / 97	Igri Cedomon 316 / 158
4	Amelie 4 / 178	Highlight 37 / 266		HS 635-10 ES-34 44 / 228	HS VerAs ES-1 77 / 235		Kearney (ck) 84 / 312	NB09434 117 / 288		Paroli 124 / 164	CaAlp Ethanol 157 / 320		Paroli 164 / 124	HS CaKri 197 / 57		Yokohama 204 / 151	Gigga (A) 237 / 33		Hobbit 244 / 38	HS AsDuCar ES-6 277 / 50		Precosa 284 / 127	CaAlp Cedomon 317 / 156
3	Alpaca 3 / 260	Hobbit 38 / 244		HS 630-10 ES-32 43 / 200	HS VerOs ES-2 78 / 240		Katja 83 / 311	Nerz 118 / 210		Palinka 123 / 162	Igri Cedomon 158 / 316		Carrero 163 / 17	Antonella 198 / 8		SU Vireni 203 / 141	Yatzy 238 / 150		Eufora 243 / 25	Campanile 278 / 13		Dicktoo (ck) 283 / 22	Igri Heißwasser 318 / 159
2	Alinghi 2 / 247	HS 571-10 ES-24 39 / 262		HS 624-10 ES-31 42 / 314	lgri 79 / 249		Kathleen 82 / 256	Nico 119 / 300		Osiris 122 / 186	Igri Heißwasser 159 / 318		Palinka 162 / 123	Naomie 199 / 113		HS CaYu1 NKS 22 202 / 64	Madame 239 / 101		Antalya 242 / 7	Queen 279 / 129		Passion 282 / 125	Igri Ethanol 319 / 160
1	Alba 1 / 305	HS 617-10 ES-28 40 / 273		HS 624-10 ES-30 41 / 216	Isolde 80 / 299		Jade 81 / 167 8	Novoperga 120 / 281	10	OR101 121 / 309	Igri Ethanol 160 / 319	13	HS 641-10 ES-37 161 / 45	HS 630-10 ES-32 200 / 43	16	Reni 201 / 130 17	HS VerOs ES-2 240 / 78	19	HS KeLav 241 / 69 20	HS AsDuTaf ES-4 280 / 54 21	22	Novoperga 281 / 120 23	CaAlp Ethanol 320 / 157

Abbildung 22: Wintergerste Infektionsanbau von zugelassenen Sorten (weiß), eigenen Zuchtstämmen (gelb) und Infektionsträgern Streifenkrankheit (orange) in 3 m² Parzellen, insgesamt 440 Parzellen – Dottenfelderhof 2013, Schlag "Himmelacker Straße"

40	CaKri	CaAlp	CaAlp]
39	CaKri	CaAlp	CaAlp	
38	CaKri	CaAlp	CaAlp	
37	CaKri	35 Brucker Stamm II	CaAlp	
36	CaKri	34 Cass	CaAlp	
35	CaKri	33 Dan (VA03H-61)	CaAlp	
34	CaKri	32 Dicktoo HOR 3113	CaAlp	
33	CaKri	31 Eldorado	CaAlp	
32	CaKri	30 FAYETTE	CaAlp	
31	CaKri	29 Harrison	CaAlp	
30	CaKri	28 Jefferson	CaAlp	
29	CaKri	27 Jumbo	CaAlp	
28	CaKri	26 Luther	CaAlp	
27	CaKri	25 LYALLPUR	CaAlp	
26	CaKri	24 Mathias (OR76)	CaAlp	
25	CaKri	23 MW08-04	CaAlp	
24	CaKri	22 NB09432	CaAlp	
23	CaKri	21 NO71DH 13	CaAlp	
22	CaKri	20 Onice	CaAlp	
21	CaKri	19 Opale	CaAlp	
20	CaKri	18 OR818	CaAlp	
19	CaKri	17 Perga	CaAlp	
18	CaKri	16 Rebekka	CaAlp	
17	CaKri	15 Robur	CaAlp	
16	CaKri	14 Schuyler	CaAlp	
15	CaKri	13 Tenn. Winter (ck)	CaAlp	
14	CaKri	12 Tex. 46-58-55	CaAlp	
13	CaKri	11 Thibaut	CaAlp	
12	CaKri	10 Trebi (ck)	CaAlp	
11	CaKri	9 U 259	CaAlp	
10	CaKri	8 VA06B-48	CaAlp	
9	CaKri	7 VA06H-25 WS	CaAlp	
8	CaKri	6 VA06H-79	CaAlp	
7	CaKri	5 VA07H-31 WS	CaAlp	1 1 Clho 11666 TAMU-Era
6	CaKri	4 VA08B-85	CaAlp	1 2 Clho 11666 TAMU-Era
5	CaKri	3 Verdant (OR712)	CaAlp	1 3 HOR 4931 Pamina (Selection)
4	CaKri	2 Veturia	CaAlp	1 4 HOR 4670 St. 1675/70 (HOR 1617 * (A u. K x Neuga x Pamina))
3	CaKri	1 diverse	CaAlp	1 5 HOR 4663 Grannenloser B-Stamm 49/70 ((A u. K x Neuga) x Pamina)
2	CaKri	CaAlp	CaAlp	1 6 HOR 4607 Pamina
1	CaKri	CaAlp	CaAlp	
	1	2	3	

Abbildung 23: Wintergerste Vermehrungsanbau von Genbank-Akzessionen und Infektionsträgern Streifenkrankheit (orange) in 1,5 m² Kleinparzellen, insgesamt 120 Parzellen – Dottenfelderhof 2013, Schlag "Himmelacker Straße"

20	CK	320 (50)	319 (87)	CA		317 (97)	CK	316 (7)	315 (41)	CA		313 (21)	CK	312 (133)	311 (147)	CA	310 (56)	309 (37)	CK			CA			CK
	-	305	87b		54b	97b		7b	41b		93b	21b		133b	147b		56b	37b		19b	146b		115b	151b	
19		289 (68) 68b	290 (48) 48b		291 (94) 94b	292 (132) 132b		293 (58) 58b	294 (10) 10b		295 (89) 89b	296 (141) 141b		297 (13) 13b	298 (125) 125b		299 (25) 25b	300 (34) 34b		301 (66) 66b	302 (123) 123b		303 (62) 62b	304 (23) 23b	
		288 (110)	287 (15)		286 (11)	285 (81)	Н	284 (142)	283 (155)		282 (156)	281 (124)		280 (91)	279 (131)		278 (136)	277 (90)		276 (47)	275 (16)		274 (119)	273 (2)	
18		110b	15b		11b	81b		142b	155b		156b	124b		91b	131b		136b	90b		47b	16b		119b	2b	
		257 (127)	258 (43)		259 (9)	260 (114)	Н	261 (120)	262 (85)		263 (28)	264 (32)		265 (44)	266 (96)		267 (71)	268 (92)		269 (140)	270 (27)		271 (61)	272 (73)	
17		127b	43b		9b	114b		120b	85b		28b	32b		44b	96b		71b	92b		140b	27b		61b	73b	
	\equiv	256 (63)	255 (14)		254 (49)	253 (26)		252 (105)	251 (108)		250 (101)	249 (83)		248 (118)	247 (153)		246 (107)	245 (17)		244 (129)	243 (145)		242 (130)	241 (5)	
16		63b	14b		49b	26b		105b	108b		101b	83b		118b	153b		107b	17b		129b	145b		130b	5b	
4.5		225 (143)	226 (39)		227 (20)	228 (30)		229 (160)	230 (75)		231 (150)	232 (36)		233 (112)	234 (64)		235 (70)	236 (65)		237 (137)	238 (157)		239 (159)	240 (57)	
15		143b	39b		20b	30b		160b	75b		150b	36b		112b	64b		70b	65b		137b	157b		159b	57b	
4.4		224 (52)	223 (6)		222 (8)	221 (113)		220 (77)	219 (106)		218 (103)	217 (45)		216 (86)	215 (33)		214 (135)	213 (88)		212 (35)	211 (126)		210 (82)	209 (84)	
14		52b	6b		8b	113b		77b	106b		103b	45b		86b	33b		135b	88b		35b	126b		82b	84b	
13		193 (144)	194 (60)		195 (80)	196 (139)		197 (67)	198 (42)		199 (24)	200 (76)		201 (95)	202 (78)		203 (22)	204 (149)		205 (98)	206 (55)		207 (53)	208 (109)	
13		144b	60b		80b	139b		67b	42b		24b	76b		95b	78b		22b	149b		98b	55b		53b	109b	
12		192 (12)	191 (51)		190 (1)	189 (4)		188 (138)	187 (154)		186 (40)	185 (116)		184 (121)	183 (134)		182 (31)	181 (38)		180 (3)	179 (128)		178 (18)	177 (122)	
12		12b	51b		1b	4b		138b	154b		40b	116b		121b	134b		31b	38b		3b	128b		18b	122b	
11		161 (29)	162 (158)		163 (46)	164 (100)		165 (117)	166 (74)		167 (152)	168 (148)		169 (104)	170 (79)		171 (111)	172 (69)		173 (102)	174 (72)		175 (59)	176 (99)	
		29b	158b		46b	100b		117b	74b		152b	148b		104b	79b		111b	69b		102b	72b		59b	99b	
10		160 (229)	159 (239)		158 (162)	157 (238)		156 (282)	155 (283)		154 (187)	153 (247)		152 (167)	151 (305)		150 (231)	149 (204)		148 (168)	147 (311)		146 (307)	145 (243)	
		160a	159a		158a	157a		156a	155a		154a	153a		152a	151a		150a	149a		148a	147a		146a	145a	
9		129 (244)	130 (242)		131 (279)	132 (292)		133 (312)	134 (183)		135 (214)	136 (278)		137 (237)	138 (188)		139 (196)	140 (269)		141 (296)	142 (284)		143 (225)	144 (193)	
	_	129a	130a		131a	132a		133a	134a		135a	136a		137a	138a		139a	140a		141a	142a		143a	144a	
8		128 (179)	127 (257)		126 (211)	125 (298)		124 (281)	123 (302)		122 (177)	121 (184)		120 (261)	119 (274)		118 (248)	117 (165)		116 (185)	115 (306)		114 (260)	113 (221)	
	_	128a	127a		126a	125a	Н	124a	123a		122a	121a		120a	119a		118a	117a	Н	116a	115a		114a	113a	
7		97 (317)	98 (205)		99 (176)	100 (164)		101 (250)	102 (173)		103 (218)	104 (169)		105 (252)	106 (219)		107 (246)	108 (251)		109 (208)	110 (288)		111 (171)	112 (233)	
	-	97a	98a		99a	100a	Н	101a	102a		103a	104a		105a	106a		107a	108a		109a	110a		111a	112a	
6		96 (266) 96a	95 (201) 95a		94 (291) 94a	93 (314) 93a		92 (268) 92a	91 (280) 91a		90 (277) 90a	89 (295) 89a		88 (213) 88a	87 (319) 87a		86 (216) 86a	85 (262) 85a		84 (209) 84a	83 (249) 83a		82 (210) 82a	81 (285) 81a	
	-	65 (236)	66 (301)		67 (197)	68 (289)	Н	69 (172)	70 (235)		71 (267)	72 (174)		73 (272)	74 (166)		75 (230)	76 (200)	Н	77 (220)	78 (202)		79 (170)	80 (195)	
5		65a	66a		67a	68a		69a	70 (233) 70a		71 (207) 71a	72 (174) 72a		73 (272) 73a	74 (100) 74a		75 (230) 75a	76 (200) 76a		77 (220)	78 (202)		79 (170) 79a	80a	
	-	64 (234)	63 (256)		62 (303)	61 (271)	Н	60 (194)	59 (175)		58 (293)	57 (240)		56 (310)	55 (206)		54 (318)	53 (207)		52 (224)	51 (191)		50 (320)	49 (254)	
4		64a	63a		62a	61a		60a	59a		58a	57a		56a	55a		54a	53a		52a	51a		50a	49a	
	\equiv	33 (215)	34 (300)		35 (212)	36 (232)		37 (309)	38 (181)		39 (226)	40 (186)		41 (315)	42 (198)		43 (258)	44 (265)		45 (217)	46 (163)		47 (276)	48 (290)	
3		33a	34a		35a	36a		37a	38a		39a	40a		41a	42a		43a	44a		45a	46a		47a	48a	
		32 (264)	31 (182)		30 (228)	29 (161)		28 (263)	27 (270)		26 (253)	25 (299)		24 (199)	23 (304)		22 (203)	21 (313)		20 (227)	19 (308)		18 (178)	17 (245)	
2		32a	31a		30a	29a		28a	27a		26a	25a		24a	23a		22a	21a		20a	19a		18a	17a	
	CK	1 (190)	2 (273)	CA	3 (180)	4 (189)	СК	5 (241)	6 (223)	CA	7 (316)	8 (222)	СК	9 (259)	10 (294)	CA	11 (286)	12 (192)	СК	13 (297)	14 (255)	CA	15 (287)	16 (275)	СК
1		1a	2a		3a	4a		5a	6a		7a	8a		9a	10a		11a	12a		13a	14a		15a	16a	
		1	2		3	4		5	6		7	8		9	10		11	12		13	14		15	16	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Abbildung 24: Wintergerste Infektions- und Prüfungsanbau in zwei Wiederholungen (erste Wdh. weiß, zweite Wdh. gelb, 320 Parzellen) und Infektionsträger Streifenkrankheit (grau, 180 Parzellen) in 3 m² Parzellen, insgesamt 500 Parzellen – Dottenfelderhof 2014, Schlag "Hinter dem Garten" und Darzau ohne Infektionsstreifen

Ramd	320 (50)	319 (87)	318 (54)	317 (97)	316 (7)	315 (41)	314 (93)	313 (21)	312 (133)	311 (147)	310 (56)	309 (37)	308 (19)	307 (146)	306 (115)	305 (151)	Ramd
CaAlp	HS AD 611 ES-25	Ketos	HS AsDuCar ES-8	Laverda	Amrai	HS 571-10 ES-24	KWS Scala	Christelle	Sandra	Waxyma	HS AsDuTaf ES-4	Heike	Carrero	Veturia	NB09410	Yoole	CaAlp
Ramd	289 (68)	290 (48)	291 (107)	292 (154)	293 (58)	294 (10)	295 (89)	296 (141)	297 (13)	298 (125)	299 (25)	300 (34)	301 (66)	302 (123)	303 (62)	304 (23)	Ramd
CaAlp	HS CaYu2 NKS 6	HS 644 ES-39	Merle	Zzoom	HS CarCaGre ES-14	Antonella	KWS Cassia	SU Vireni	Boreale	Passion	Duet	Gerbel	HS CaYu2 NKS 4	Palinka	HS CarThe ES-13	DICKTOO-1	CaAlp
Ramd	288 (110)	287 (15)	286 (11)	285 (81)	284 (142)	283 (18)	282 (156)	281 (124)	280 (91)	279 (131)	278 (136)	277 (90)	276 (47)	275 (16)	274 (119)	273 (2)	Ramd
CaAlp	Mirco	Campanile	Astrid	Jade	Tania	Cantare	HS KriYu 1 (2013)	Paroli	KWS Glacier	Roseval	Selvaggio	KWS Joy	HS 641-10 ES-37	Camberra	Nico	HS CaKri	CaAlp
Ramd	257 (127)	258 (43)	259 (9)	260 (114)	261 (120)	262 (85)	263 (28)	264 (32)	265 (44)	266 (96)	267 (71)	268 (92)	269 (140)	270 (27)	271 (61)	272 (73)	Ramd
CaAlp	Precosa	HS 624-10 ES-30	Antalya	NB09405	Novoperga	Kentucky 1-1	Eureka	Franziska	HS 624-10 ES-31	Laurena	HS MalCar ES-17	KWS Meridian	Stendal	Eufora	HS CarThe ES-12	HS MalCar ES-19	CaAlp
Ramd	256 (63)	255 (14)	254 (49)	253 (26)	252 (105)	251 (108)	250 (101)	249 (83)	248 (118)	247 (153)	246 (94)	245 (17)	244 (129)	243 (145)	242 (130)	241 (5)	Ramd
CaAlp	HS CaYu1 NKS 1	California	HS 713-10 ES-44	Etrusco	Medina	Metaxa	Madame	Katja	Nerz	Zephyr	KWS Tenor	Candesse	Queen	Vetulio	Reni	Alpaca	CaAlp
Ramd	225 (143)	226 (39)	227 (20)	228 (30)	229 (160)	230 (75)	231 (150)	232 (36)	233 (112)	234 (64)	235 (70)	236 (65)	237 (137)	238 (157)	239 (159)	240 (57)	Ramd
CaAlp	Theresa	Highlight	Chalup	Finesse	HS KriYu 2 (2013)	HS OsCar ES-9	Yokohama	Gudrun	Montana	HS CaYu1 NKS 22	HS KetNa ES-21	HS CaYu1 NKS 7	Semper	HS AD 624	HS AsDuCar 561-11	HS CaCanGre	CaAlp
Ramd	224 (52)	223 (6)	222 (8)	221 (113)	220 (77)	219 (106)	218 (82)	217 (45)	216 (86)	215 (33)	214 (135)	213 (88)	212 (35)	211 (126)	210 (103)	209 (84)	Ramd
CaAlp	HS AsDuCar ES-6	Amelie	Anisette	Naomie	HS VerAs ES-1	Mercedes	Kathleen	HS 630-10 ES-32	Kentucky 1-2	Fridericus	Sebrau	KWS Ariane		Pelican	Malwinta	` ′	CaAlp
Ramd	193 (144)	194 (60)	195 (80)	196 (139)	197 (67)	198 (42)	199 (24)	200 (76)	201 (95)	202 (78)	203 (4)	204 (100)	Gigga (A) 205 (98)	206 (55)	207 (53)	Kearney (ck) 208 (109)	Ramd
CaAlp	Titus	HS CarCaGre ES-16	Isolde	Spectrum	HS CaYu2 NKS 5	HS 617-10 ES-28	Dicktoo-2	HS PalOs ES-22	Landi	HS VerOs ES-2	Alinghi	Lomerit	Leibniz	HS AsDuTaf ES-3	HS AsDuCar ES-7	MH Firrenza	CaAlp
Ramd	192 (12)	191 (51)	190 (1)	189 (22)	188 (138)	187 (132)	186 (40)	185 (116)	184 (121)	183 (134)	182 (31)	181 (38)	180 (3)	179 (128)	178 (155)	177 (122)	Ramd
CaAlp	Augusta	HS AsDuCar ES-5	HS CaAlp	Cordula	Souleyka	Salamandre	Hobbit	NB09433	OR101	Saturn	Fleuret	Henriette	Alba (OR757)	Purdue	HS CaYu 22 (2013)	Osiris	CaAlp
Ramd	161 (29)	162 (158)	163 (46)	164 (149)	165 (117)	166 (74)	167 (152)	168 (148)	169 (104)	170 (79)	171 (111)	172 (69)	173 (102)	174 (72)	175 (59)	176 (99)	Ramd
CaAlp	Famosa	HS AM 644	HS 635-10 ES-34	Yatzy	NB09434	HS OsCar ES-10	Yuka	Wintmalt	Matros	lgri	Mombasa	HS KeLav	Maja	HS MalCar ES-18	HS CarCaGre ES-15	Limpid	CaAlp
Ramd	160 (229)	159 (239)	158 (162)	157 (238)	156 (282)	155 (283)	154 (292)	153 (247)	152 (167)	151 (305)	150 (231)	149 (204)	148 (168)	147 (311)	146 (307)	145 (243)	Ramd
CaAlp	HS KriYu 2 (2013)	HS AsDuCar 561-11	HS AM 644	HS AD 624	HS KriYu 1 (2013)	HS CaYu 22 (2013)	Zzoom	Zephyr	Yuka	Yoole	Yokohama	Yatzv	Wintmalt	Waxyma	Veturia	Vetulio	CaAlp
Ramd	129 (244)	130 (242)	131 (279)	132 (187)	133 (312)	134 (183)	135 (214)	136 (278)	137 (237)	138 (188)	139 (196)	140 (269)	141 (296)	142 (284)	143 (225)	144 (193)	Ramd
CaAlp	Queen	Reni	Roseval	Salamandre	Sandra	Saturn	Sebrau	Selvaggio	Semper	Souleyka	Spectrum	Stendal	SU Vireni	Tania	Theresa	Titus	CaAlp
Ramd	128 (179)	127 (257)	126 (211)	125 (298)	124 (281)	123 (302)	122 (177)	121 (184)	120 (261)	119 (274)	118 (248)	117 (165)	116 (185)	115 (306)	114 (260)	113 (221)	Ramd
CaAlp	Purdue	Precosa	Pelican	Passion	Paroli	Palinka	Osiris	OR101	Novoperga	Nico	Nerz	NB09434	NB09433	NB09410	NB09405	Naomie	CaAlp
Ramd	97 (317)	98 (205)	99 (176)	100 (164)	101 (250)	102 (173)	103 (218)	104 (169)	105 (252)	106 (219)	107 (246)	108 (251)	109 (208)	110 (288)	111 (171)	112 (233)	Ramd
CaAlp	Laverda	Leibniz	Limpid	Lomerit	M adame	Maja	Malwinta	Matros	Medina	Mercedes	Merle	Metaxa	MH Firrenza	Mirco	Mombasa	Montana	CaAlp
Ramd	96 (266)	95 (201)	94 (291)	93 (314)	92 (268)	91 (280)	90 (277)	89 (295)	88 (213)	87 (319)	86 (216)	85 (262)	84 (209)	83 (249)	82 (210)	81 (285)	Ramd
CaAlp	Laurena	Landi	KWSTenor	KWS Scala	KWS Meridian	KWS Glacier	KWS Joy	KWS Cassia	KWS Ariane	Ketos	Kentucky 1-2	Kentucky 1-1	Kearney (ck)	Katja	Kathleen	Jade	CaAlp
Ramd	65 (236)	66 (301)	67 (197)	68 (289)	69 (172)	70 (235)	71 (267)	72 (174)	73 (272)	74 (166)	75 (230)	76 (200)	77 (220)	78 (202)	79 (170)	80 (195)	Ramd
CaAlp	HS CaYu1NKS 7	HS CaYu2 NKS 4	HS CaYu2 NKS 5	HS CaYu2 NKS 6	HS KeLav	HS KetNa ES-21	HS M alCar ES-17	HS MalCar ES-18	HS MalCar ES-19	HS OsCar ES-10	HS OsCar ES-9	HS PalOs ES-22	HS VerAs ES-1	HS VerOs ES-2	lgri	Isolde	CaAlp
Ramd	64 (234)	63 (256)	62 (303)	61 (271)	60 (194)	59 (175)	58 (293)	57 (240)	56 (310)	55 (206)	54 (318)	53 (207)	52 (224)	51 (191)	50 (320)	49 (254)	Ramd
CaAlp	HS CaYu1NKS 22	HS CaYu1 NKS 1	HS CarThe ES-13	HS CarThe ES-12	HS CarCaGre ES-16	HS CarCaGre ES-15	HS CarCaGre ES-14	HS CaCanGre	HS AsDuTaf ES-4	HS AsDuTaf ES-3	HS AsDuCar ES-8	HS AsDuCar ES-7	HS AsDuCar ES-6	HS AsDuCar ES-5	HS AD 611 ES-25	HS 713-10 ES-44	CaAlp
Ramd	33 (215)	34 (300)	35 (212)	36 (232)	37 (309)	38 (181)	39 (226)	40 (186)	41 (315)	42 (198)	43 (258)	44 (265)	45 (217)	46 (163)	47 (276)	48 (290)	Ramd
CaAlp	Fridericus	Gerbel	Gigga (A)	Gudrun	Heike	Henriette	Highlight	Hobbit	HS 571-10 ES-24	HS 617-10 ES-28	HS 624-10 ES-30	HS 624-10 ES-31	HS 630-10 ES-32	HS 635-10 ES-34	HS 641-10 ES-37	HS 644 ES-39	CaAlp
Ramd	32 (264)	31 (182)	30 (228)	29 (161)	28 (263)	27 (270)	26 (253)	25 (299)	24 (199)	23 (304)	22 (203)	21 (313)	20 (227)	19 (308)	18 (178)	17 (245)	Ramd
CaAlp	Franziska	Fleuret	Finesse	Famosa	Eureka	Eufora	Etrusco	Duet	Dicktoo-2	DICKTOO-1	Cordula	Christelle	Chalup	Carrero	Cantare	Candesse	CaAlp
Ramd	1 (190)	2 (273)	3 (180)	4 (189)	5 (241)	6 (223)	7 (316)	8 (222)	9 (259)	10 (294)	11 (286)	12 (192)	13 (297)	14 (255)	15 (287)	16 (275)	Ramd
CaAlp	HS CaAlp	HS CaKri	Alba (OR757)	Alinghi	Alpaca	Amelie	Amrai	Anisette	Antalya	Antonella	Astrid	Augusta	Boreale	California	Campanile	Canberra	CaAlp
Cartip				I							L	.,,					Cu. ap

Abbildung 25: Wintergerste Prüfungsanbau in zwei Wiederholungen (erste Wdh. weiß, zweite Wdh. gelb, 320 Parzellen) und Infektionsträger Streifenkrankheit (grau, 40 Parzellen) in 3 m² Parzellen, insgesamt 360 Parzellen – Dottenfelderhof und Darzau 2015, Schlag "Pfaffenwald II"

8		1								-														1			
40 760 Etrusco		Hobbit (h	41	571-10 E	120	Novoperg	1		200 571-11		583-11 Ca 2		-		360	OsCar Es	361	Alinghi	440 Findora 2	441	420/1-12	520 Infmisch	521 Infmisch	600 Infmisch	601 Azrah		Landi ER 681 Etrusco ER
39 759 Etrusco	***	Highlight	42	617-10 E	119	Nico	1	Osiris			KriYu 2 r				-	121-13 Ly	-		439 Trooper	442	KWS Cas	519 380 BYD	522 353 MerL	599 Infmisch	-	679	Landi ER 682 Etrusco ER
38 758 Etrusco	38	Henriette	43	624-10 E	118	Nerz	123	Palinka	198 573/2-	203	CaYu 1 r 2	78 KriYu 1	(283	Estoria 2	358	CaYu1 N	363	Duplex z	438 PalOs ES	443	122-13 Ly	518 379 BYD	523 359 Highl	598 Infmisch	603 Colonia	678	Landi ER 683 Etrusco ER
37 757 Etrusco	37	Heike	44	624-10 E	117	NB09434	124	Paroli	197 573/1-	204	KriYu mz 2	77 Caribic	z 284	MalCar E	357	Ruby zz	364	Etrusco	437 CaYu 22	444	Zephyr	517 378 BYD	524 364 Madl	597 Infmisch	604 Colonia	677	Landi ER 684 Etrusco ER
36 756 Etrusco	36	Gudrun	45	630-10 E	116	NB09433	125	Passion	196 549-12	M 205	CaYu 1 r 2	76 Boreale	285	Yoole (hy	356	CaYu2 N	365	KeLav	436 Kathleen	445	Alpaca	516 371 2779	525 366 YoLa	596 Infmisch	605 Joker	676	Landi ER 685 Etrusco ER
35 755 Etrusco	35	Gigga (A)	46	635-10 E	115	NB09410	126	Pelican	195 511/1-	206	111-13 Ly 2	75 356-12 \	286	Amrai	355	AM 644	366	KWS Inf	435 VerAs ES	446	Theresa	515 366 YoLa	526 371 2779	595 Infmisch	606 Joker	675	Landi ER 686 Etrusco ER
34 754 Etrusco	34	Gerbel	47	641-10 E	114	NB09405	127	Precosa	194 494/1-	207	139-13 Pa 2	74 Landi m	287	Yatzy	354	635-11/2	367	CaKri	434 CaYu2 NI	447	CarThe E	514 364 Madl	527 378 BYD	594 Infmisch	607 Kathman	674	Landi ER 687 Etrusco ER
33 753 Etrusco	33	Fridericus	48	644 ES-3	113	Naomie	128	Purdue	193 438-12	O 208	159-13 Ke 2	73 Tania	288	Jade	353	364-12 V	368	KWS Lig	433 Antalya	448	583-11 C	513 359 Highl	528 379 BYD	593 Infmisch	608 Kathman	673	Landi ER 688 Etrusco ER
32 752 Etrusco	32	Franziska	49	713-10 E	112	Montana	129	Queen	192 353/2-	209	160-13 Ke 2	72 Daisy n	289	KWS Ari	352	KWS Ter	369	Wintmalt	432 Antonella	449	AD 624	512 353 MerL	529 380 BYD	592 Infmisch	609 Kaylin	672	Landi ER 689 Etrusco ER
31 751 Etrusco	31	Fleuret	50	AD 611 E	111	Mombasa	130	Reni	191 332-12	V 210	161-13 K	71 SU Vire	ni 290	KWS Me	351	Canberra	370	Etincel n	431 CaYu1 N	450	Kentucky	511 10a-3 Lar	530 6b-1 Igri I	591 7c-3 Lan	610 Kaylin	671	Landi ER 690 Etrusco ER
30 750 Alpaca	30	Finesse	51	AsDuCar	110	Mirco	131	Roseval	190 161-13	K 211	332-12 Ve 2	70 635-11/°	291	Alba (OR	350	KWS Ke	371	Loreley r	430 Fox zz	451	Alpaca n	510 10a-2 Lar	531 6b-2 Igri I	590 7c-2 Lan	611 Korbina	670	Trooper E 691 Trooper ER
29 749 Alpaca	29	Famosa	52	AsDuCar	109	MH Firrer	132	Salamano	189 160-13	K 212	353/2-12	69 Titus	292	CarThe E	349	Kentucky	372	Captain	429 Candesse	452	Laverda	509 10a-1 Lar	532 6b-3 Igri E	589 7c-1 Lan	612 Korbina	669	Trooper E 692 Trooper ER
28 748 Alpaca	28	Eureka	53	AsDuCar	108	Metaxa	133	Sandra	188 159-13	K 213	438-12 O 2	68 Chalup	293	Hickory	348	Laurena	373	KWS Joy	428 432/1-12	453	California	508 9a-3 Land	533 8b-1 Land	588 2c-3 Igri	613 KWS Ko	668	Trooper E 693 Trooper ER
27 747 Alpaca	27	Eufora	54	AsDuCar	107	Merle	134	Saturn	187 139-13	P: 214	494/1-12	67 VerOs E	294	Cantare	347	608-11/1	374	KetNa ES	427 Astrid	454	Augusta	507 9a-2 Land	534 8b-2 Land	587 2c-2 Igri	614 KWS Ko	667	Trooper E 694 Trooper ER
26 746 Alpaca	26	Etrusco	55	AsDuTaf	106	Mercedes	135	Sebrau	186 111-13	Ly 215	511/1-12 2	66 CaYu2 I	295	387-12 A	346	Zzoom (h	375	Waxyma	426 132-13 Pa	455	Alora mz	506 9a-1 Land	535 8b-3 Land	586 2c-1 Igri	615 KWS So	666	Trooper E 695 Trooper ER
25 745 Alpaca	25	Duet	56	AsDuTaf	105	Medina	136	Selvaggio	185 Zirene	zz 216	549-12 M 2	65 Katja	296	Carrero	345	CaYu1 N	376	Campanil	425 Lomerit	456	Saphira	505 8a-3 Land	536 1b-1 Land	585 4c-3 Igri	616 KWS So	665	Trooper E 696 Trooper ER
24 744 Alpaca	24	Dicktoo-2	57	CaCanGr	104	Matros	137	Semper	184 Tamin	a r 217	573/1-12	64 Kearney	297	KWS Gla	344	AsDuCar	377	Yuka	424 OsCar ES	457	CaAlp	504 8a-2 Land	537 1b-2 Land	584 4c-2 Igri	617 KWS Spi	664	Trooper E 697 Trooper ER
23 743 Alpaca	23	DICKTOO	58	CarCaGre	103	Malwinta	138	Souleyka	183 SU EI	en 218	573/2-12	63 143-13 I	298	Vetulio	343	Limpid	378	Otto mz	423 KriYu 2 (2	458	Anisette	503 8a-1 Land	538 1b-3 Land	583 4c-1 Igri	618 KWS Spi	663	Trooper E 698 Trooper ER
22 742 Alpaca	22	Cordula	59	CarCaGre	102	Маја	139	Spectrum	182 Quadr	iga 219	601/1-12	62 KWS S	299	Landi	342	MalCar E	379	Isolde	422 Yokoham	459	Anja mz	502 7a-3 Land	539 5b-1 Land	582 9c-3 Lan	619 Monroe	662	Trooper E 699 Trooper ER
21 741 Alpaca	21	Christelle	60	CarCaGre	101	Madame	140	Stendal	181 KWS	To 220	571-11/1 2	61 MalCar	300	Leibniz	341	Arcanda	380	Albertine	421 123-13 Ly	460	Ketos	501 7a-2 Land	540 5b-2 Land	581 9c-2 Lan	620 Monroe	661	Trooper E 700 Trooper ER
20 740 CaKri	20	Chalup	61	CarThe E	100	Lomerit	141	SU Vireni	180 KWS	Infi 221	583-11 Ca	60 AD 611	301	161-13 K	340	Mirco	381	Osiris	420 Passion	461	Paroli	500 7a-1 Land	541 5b-3 Land	580 9c-1 Lan	621 Valentina	660	Etrusc Rr 701 CaKri ERi
19 739 CaKri	19	Carrero	62	CarThe E	99	Limpid	142	Tania	179 Hickor	y : 222	608-11/1	59 573/2-12	302	NB09410	339	160-13 K	382	Montana	419 Pelican	462	Metaxa	499 6a-3 Igri I	542 4b-1 Igri (579 10c-3 La	622 Valentina	659	Etrusc Rr 702 CaKri ERi
18 738 CaKri	18	Cantare	63	CaYu1 N	98	Leibniz	143	Theresa	178 Etince	l n 223	635-11/1 2	58 CarCaG	303	511/1-12	338	AsDuCar	383	Nico	418 Mercedes	463	139-13 P	498 6a-2 Igri I	543 4b-2 lgri (578 10c-2 La	623 Infmisch	658	Etrusc Rr 703 CaKri ERi
17 737 CaKri	17	Candesse	64	CaYu1 N	97	Laverda	144	Titus	177 Estori	a z 224	635-11/2	57 Spectru	r 304	Gerbel	337	159-13 K	384	Cordula	417 624-10 E	464	160-13 K	497 6a-1 Igri I	544 4b-3 Igri (577 10c-1 La	624 Infmisch	657	Etrusc Rr 704 CaKri ERi
16 736 CaKri	16	Canberra	65	CaYu1 N	96	Laurena	145	Vetulio	176 Daisy	m: 225	Albertine 2	56 601/1-12	305	AsDuCar	336	Heike	385	111-13 Ly	416 KriYu 2 r	465	571-11/1	496 5a-3 Land	545 7b-1 Land	576 1c-3 Lan	625 Infmisch	656	Etrusc Rr 705 CaKri ERi
15 735 CaKri	15	Campanil	66	CaYu2 N	95	Landi	146	Veturia	175 Carmi	na 226	Anja mz	55 AsDuCa	r 306	Fridericus	335	Sebrau	386	CaYu 1	415 Finesse	466	641-10 E	495 5a-2 Land	546 7b-2 Land	575 1c-2 Lan	626 Infmisch	655	Etrusc Rr 706 CaKri ERi
14 734 CaKri	14	California	67	CaYu2 N	94	KWS Ter	147	Waxyma	174 Caribi	z 227	Duplex z	54 OR101	307	Palinka	334	NB09434	387	Mombasa	414 KriYu mz	467	Souleyka	494 5a-1 Land	547 7b-3 Land	574 1c-1 Lan	627 Infmisch	654	Etrusc Rr 707 CaKri ERi
13 733 CaKri	13	Boreale	68	CaYu2 N	93	KWS Sc	148	Wintmalt	173 Capta	n : 228	Findora 2	53 Nerz	308	635-10 E	333	617-10 E	388	Malwinta	413 494/1-12	468	549-12 M	493 4a-3 Igri (548 2b-1 lgri u	573 3c-3 Lan	628 Infmisch	653	Etrusc Rr 708 CaKri ERi
12 732 CaKri	12	Augusta	69	KeLav	92	KWS Me	149	Yatzy	172 Arcan	da 229	Fox zz	52 332-12 \	309	583-11 C	332	Duet	389	MH Firrer	412 Gudrun	469	Henriette	492 4a-2 Igri (549 2b-2 lgri ι	572 3c-2 Lan	629 Infmisch	652	Etrusc Rr 709 CaKri ERi
11 731 CaKri	11	Astrid	70	KetNa ES	91	KWS Gla	150	Yokoham	171 Alora	mz 230	KWS Ke 2	51 601/1-12	310	Tamina ı	331	Precosa	390	NB09405	411 Purdue	470	571-11/1	491 4a-1 Igri (550 2b-3 lgri ι	571 3c-1 Lan	630 Infmisch	651	Etrusc Rr 710 CaKri ERi
10 730 CaAlp	10	Antonella	71	MalCar E	90	KWS Joy	151	Yoole (hy	170 432/1-1	231	KWS Lig 2	50 353/2-12	311	573/1-12	330	Madame	391	SU Eller	410 713-10 E	471	Etrusco	490 3a-3 Land	551 9b-1 Land	570 6c-3 Igri	631 Infmisch	650	Etrusc Rr 711 CaAlp ERi
9 729 CaAlp	9	Antalya	72	MalCar E	89	KWS Ca	152	Yuka	169 420/1-1		Loreley r		M.	Eufora	329	438-12 O	392	Maja	409 161-13 K	472	Highlight	489 3a-2 Land	552 9b-2 Land	569 6c-2 Igri	632 Infmisch	649	Etrusc Rr 712 CaAlp ERi
8 728 CaAlp	8	Anisette	73	MalCar E	88	KWS Aria	153	Zephyr	168 387-12	A: 233	Otto mz	48 AsDuTa	313	Dicktoo-2	328	494/1-12	393	AsDuCar	408 Merle	473	CaCanGr	488 3a-1 Land	553 9b-3 Land	568 6c-1 Igri	633 Infmisch	648	Etrusc Rr 713 CaAlp ERi
7 727 CaAlp	7	Amrai	74	OsCar E	87	Ketos	154	Zzoom (h	167 364-12	V 234	Ruby zz 2	47 Naomie	314	Christelle	327	Fleuret	394	Reni	407 Gigga (A)	474	624-10 E	487 2a-3 Igri u	554 10b-1 Lar	567 5c-3 Lan	634 Infmisch	647	Etrusc Rr 714 CaAlp ERi
6 726 CaAlp	6	Amelie	75	OsCar E	86	Kentucky	155	CaYu 22	166 356-12	V 235	Saphira i 2	46 Zirene z	315	AsDuTaf	326	KWS To	395	630-10 E	406 511/1-12	475	CarCaGre	486 2a-2 Igri u	555 10b-2 Lar	566 5c-2 Lan	635 Infmisch	646	Etrusc Rr 715 CaAlp ERi
5 725 CaAlp	5	Alpaca	76	PalOs Es	85	Kentucky	156	KriYu 1 (2	165 143-13	K 236	CaKri mz 2	45 Matros	316	438-12 O	325	Salamano	396	549-12 M	405 CaYu 1 r	476	111-13 Ly	485 2a-1 lgri ι	556 10b-3 Lar	565 5c-1 Lan	636 Infmisch	645	Etrusc Rr 716 CaAlp ERi
4 724 CaAlp	4	Alinghi	77	VerAs ES	84	Kearney	157	AD 624	164 132-13	P: 237	Alpaca n 2	44 332-12 \	317	Famosa	324	159-13 K	397	Queen	404 Saturn	477	Sandra	484 1a-3 Land	557 3b-1 Land	564 8c-3 Lan	637 Infmisch	644	Etrusc Rr 717 CaAlp ERi
3 723 CaAlp	3	Alba (OR	78	VerOs E	83	Katja	158	AM 644	163 123-13	Ly 238	Etrusco 2	43 Eureka	318	NB09433	323	CarCaGre	398	Semper	403 644 ES-3	478	DICKTOC	483 1a-2 Land	558 3b-2 Land	563 8c-2 Lan	638 Infmisch	643	Etrusc Rr 718 CaAlp ERi
2 722 CaAlp	2	CaKri	79	Igri	82	Kathleen	159	AsDuCar	162 122-13	Ly 239	Landi mz 2	42 Quadrig	319	573/2-12	322	573/1-12	399	Medina	402 353/2-12	479	139-13 P	482 1a-1 Land	559 3b-3 Land	562 8c-1 Lan	639 Infmisch	642	Etrusc Rr 719 CaAlp ERi
1 721 CaAlp	1	CaAlp	80	Isolde	81	Jade	160	KriYu 2 (2	161 121-13	Ly 240	Trooper 2	41 Roseval	320		321	Novoperg	400	Hobbit (h	401 Stendal	480		481 Infmisch	560 Infmisch	561 Infmisch		641	Etrusc Rr 720 CaAlp ERi
. 1	I	. 2	١.	3	I	4	l	5	. 6	I	. 7	. 8	1	. 9	l	10		11	. 12	١.	13	14	15	16	. 17	I	18 19

Abbildung 26: Wintergerste Prüfungsanbau in zwei Wiederholungen (erste Wdh. weiß, zweite Wdh. grün, 480 Parzellen), sortenreine und gemischte Vermehrung von Infektionsträgern Streifenkrankheit (grau, 52 Parzellen), Beizversuch Streifenkrankheit (orange, 90 Parzellen), Erstinfektion Zuchtstämme und neue zugelassene Sorten (gelb, 38 Parzellen) in 1,5 m² Parzellen, insgesamt 760 Parzellen – Dottenfelderhof 2016, Schlag "Niddaacker"

				1 3			1 1						T 3 T	-						1 1	1		
841		41 571-10 ES-2		121 OR101			 	280 Hobbit (hybr				361 OR101	440 571-11/1 Os		ļ	521 573/2-12	600 573/2-12	601 Infmisch	680 Infmisch	681 Infmisch	760 Alpaca	761 Alpaca	840
842	39 Highlight	42 617-10 ES-2	119 Nico	122 Osiris	199 601/1-1	2 Pal 202	KriYu 2 mz	279 Highlight	282 617-	10 ES-2 35	Nico	362 Osiris	439 601/1-12 Pal	442 KriYu 2 mz	519 Infmisch	522 2013-133	⁵⁹⁹ 2013-133	602 1a-1 EA-ub	oh 679 5b-1 EA-Hw	682 4b-1 EA-Eth	759 1c-1 EA-ub	h 762 14c-1 lg-Hi	v 839
843	38 Henriette	43 624-10 ES-3	118 Nerz	123 Palinka	198 573/2-1	2 Ke 203	CaYu 1 mz	278 Henriette	283 624-	10 ES-3 35	8 Nerz	363 Palinka	438 573/2-12 Ke	443 CaYu 1 mz	518 Infmisch	523 2013-139	⁵⁹⁸ 2013-139	603 1a-2 EA-ub	oh 678 5b-2 EA-Hw	683 4b-2 EA-Eth	758 1c-2 EA-ub	h 763 14c-2 lg-Hi	v 838
844	37 Heike	44 624-10 ES-3	117 NB09434	124 Paroli	197 573/1-1	2 Ke 204	KriYu mz	277 Heike	284 624-	10 ES-3 35	7 NB09434	364 Paroli	437 573/1-12 Ke		517 Infmisch	⁵²⁴ 2013-168	⁵⁹⁷ 2013-168	604 1a-3 EA-ub	677 5b-3 EA-Hw	684 4b-3 EA-Eth	757 1c-3 EA-ub	h 764 14c-3 lg-H	v 837
845	36 Gudrun	45 630-10 ES-3	116 NB09433	125 Passion	196 549-12	MalD 205	CaYu 1 mz	276 Gudrun	285 630-	10 ES-3 35	6 NB09433	365 Passion	436 549-12 MalD			2014-154	596 2014-154	605 2a-1 lg-ubh	676 12b-1 lg-Hv	685 3b-1 EA-Ce	756 12c-1 lg-Hv	765 7c-1 EA-H	v 836
846	35 Gigga (A)	46 635-10 ES-3	115 NB09410	126 Pelican	195 511/1-1	2 Ca 206	111-13 LysD	275 Gigga (A)	286 635-	10 ES-3 35	5 NB09410	366 Pelican	435 511/1-12 Ca			2014-164	⁵⁹⁵ 2014-164	606 2a-2 lg-ubh	675 12b-2 lg-Hv	686 3b-2 EA-Ce	755 12c-2 lg-Hv	766 7c-2 EA-H	v 835
847	34 Gerbel	47 641-10 ES-3	114 NB09405	127 Precosi	194 494/1-1	2 Ca 207	139-13 PalM	274 Gerbel	287 641-	10 ES-3 35	4 NB09405	367 Precosa	434 494/1-12 Ca	447 139-13 PalM	514 KWS Spirit	2014-171-2	594 2014-171-2	607 2a-3 lg-ubh	674 12b-3 lg-Hw	687 3b-3 EA-Ce	754 12c-3 lg-Hi	767 7c-3 EA-H	v 834
848	33 Fridericus	48 644 ES-39	113 Naomie	128 Purdue	193 438-12	OsC 208	159-13 KetM	273 Fridericus	288 644	ES-39 35	3 Naomie	368 Purdue	433 438-12 OsC	448 159-13 KetN	513 KWS Some	528 2014-189	⁵⁹³ 2014-189	608 3a-1 EA-Ce	ed 673 13b-1 EA-H	v 688 11b-1 EA-H	753 2c-1 lg-ubh	768 13c-1 EA-H	₩ 833
849	32 Franziska	49 713-10 ES-4	112 Montana	129 Queen	192 353/2-1	2 Ve 209	160-13 KetM	272 Franziska	289 713-	10 ES-4 35	2 Montana	369 Queen	432 353/2-12 Ve				592 2014-191-2	609 3a-2 EA-Ce	672 13b-2 EA-H	689 11b-2 EA-H	752 2c-2 lg-ubh	769 13c-2 EA-H	₩ 832
850	31 Fleuret	50 AD 611 ES-2	111 Mombasa	130 Reni	191 332-12	VerA 210	161-13 KetM	271 Fleuret	290 AD 6	311 ES-2 35	1 Mombasa	370 Reni	431 332-12 VerA	450 161-13 KetN	511 Korbina (zz	530 2015-295	591 2015-295	610 3a-3 EA-Ce	671 13b-3 EA-H	690 11b-3 EA-H	751 2c-3 lg-ubh	770 13c-3 EA-H	₩ 831
851	30 Finesse	51 AsDuCar ES	110 Mirco	131 Roseva	190 161-13	KetM 211	332-12 VerA	270 Finesse	291 AsD	uCar ES 35	0 Mirco	371 Roseval	430 161-13 KetN	451 332-12 VerA	510 Kaylin (mz)	531 2015-299	590 2015-299	611 4a-1 EA-Eti	h 670 10b-1 lg-Ub	r 691 9b-1 EA-Ub	750 3c-1 EA-Ce	c 771 16c-1 EA-N	№ 830
852	29 Famosa	52 AsDuCar ES	109 MH Firrenza	132 Salama	dre 189 160-13	KetN 212	353/2-12 Ve	269 Famosa	292 AsD	uCar ES 34	9 MH Firrenza	372 Salamandre	429 160-13 KetM	452 353/2-12 Ve	509 Kathmandu	532 2015-303	589 2015-303	612 4a-2 EA-Eti	h 669 10b-2 lg-Ub	r 692 9b-2 EA-Ub	749 3c-2 EA-Ce	c 772 16c-2 EA-N	№ 829
853	28 Eureka	53 AsDuCar ES	108 Metaxa	133 Sandra	188 159-13	KetM 213	438-12 OsC	268 Eureka	293 AsD	uCar ES 34	8 Metaxa	373 Sandra	428 (159-13 Ketl/	453 438-12 OsC	508 Joker (mz)	533 2015-309	588 2015-309	613 4a-3 EA-Eti	h 668 10b-3 lg-Ub	r 693 9b-3 EA-Ub	748 3c-3 EA-Ce	c 773 16c-3 EA-N	№ 828 :
854	27 Eufora	54 AsDuCar ES	107 Merle	134 Saturn	187 139-13	PalM 214	494/1-12 Ca	267 Eufora	294 AsD	uCar ES 34	7 Merle	374 Saturn	427 139-13 PalM	454 494/1-12 Ca	507 Colonia (zz	534 2015-311	587 2015-311	614 5a-1 EA-Hv	w 667 16b-1 EA-N	694 7b-1 EA-Hw	747 5c-1 EA-H	774 15c-1 EA-E	at 827
855	26 Etrusco	55 AsDuTaf ES	106 Mercedes	135 Sebrau	186 111-13	LysE 215	511/1-12 Ca	266 Etrusco	295 AsD	uTaf ES 34	6 Mercedes	375 Sebrau	426 111-13 LysE	455 511/1-12 Ca	506 Azrah (mz)	535 2015-316	586 2015-316	615 5a-2 EA-Hv	w 666 16b-2 EA-N	695 7b-2 EA-Hw	746 5c-2 EA-H	775 15c-2 EA-E	at 826
856	25 Duet	56 AsDuTaf ES	105 Medina	136 Selvage	io 185 Zirene	zz 216	549-12 MalD	265 Duet	296 AsD	uTaf ES 34	15 Medina	376 Selvaggio		456 549-12 MalD		536 2015-338-1	585 2015-338-1	616 5a-3 EA-Hv	w 665 16b-3 EA-N	696 7b-3 EA-Hw	745 5c-3 EA-H	776 15c-3 EA-E	et 825
857	24 Dicktoo-2	57 CaCanGre	104 Matros	137 Semper	184 Tamina	mz 217	573/1-12 Ke	264 Dicktoo-2	297 CaC	anGre 34	14 Matros	377 Semper	424 Tamina mz	457 573/1-12 Ke	504 MadLau mz	537 2015-338-2	584 2015-338-2	617 6a-1 lg-Hw	664 6b-1 lg-Hw	697 8b-1 lg-Hw l	744 11c-1 EA-H	777 Alpaca	824
858	23 DICKTOO-1	58 CarCaGre E	103 Malw inta	138 Souleyl	a 183 SU Elle	n mz 218	573/2-12 Ke	263 DICKTOO-1	298 Car0	aGre ES 34	3 Malw inta	378 Souleyka	423 SU Ellen mz			538 2015-343	583 2015-343	618 6a-2 lg-Hw	663 6b-2 lg-Hw	698 8b-2 lg-Hw l	743 11c-2 EA-H	778 Alpaca	823
859	22 Cordula	59 CarCaGre E	102 Maja	139 Spectru	m 182 Quadri	ga m; 219	601/1-12 Pal	262 Cordula	299 Car0	aGre ES 34	12 Maja	379 Spectrum	422 Quadriga m				582 2015-344	619 6a-3 lg-Hw	662 6b-3 lg-Hw	699 8b-3 lg-Hw l	742 11c-3 EA-H	M 779 Alpaca	822
860 Etrusco	21 Christelle	60 CarCaGre E	101 Madame	140 Stendal	181 KWS T	onic 220	571-11/1 Os	261 Christelle	300 Car0	aGre ES 34	11 Madame	380 Stendal	421 KWS Tonic				581 2015-349	620 Infmisch	661 Infmisch	700 Infmisch	741 Alpaca	780 Alpaca	821 Alpaca
861 aus ES	20 Chalup	61 CarThe ES-1	100 Lomerit	141 SU Vire	ni 180 KWS Ir	finity 221	583-11 CarT	260 Chalup	301 CarT	he ES-1 34	0 Lomerit	381 SU Vireni	420 KWS Infinity			541 2015-350	580 2015-350	621 Infmisch	660 Infmisch	701 Infmisch	740 Infmisch	781	820 aus ES
862	19 Carrero	62 CarThe ES-1	99 Limpid	142 Tania	179 Hickory	zz 222	608-11/1 Ca	259 Carrero	302 CarT	he ES-1 33	19 Limpid	382 Tania	419 Hickory zz	462 608-11/1 Ca	499 Infmisch	542 2016-710	579 2016-710	622 7a-1 EA-Hv	w 659 Infmisch	702 2b-1 lg-ubh	739 8c-1 lg-Hw	k 782	819
863	18 Cantare	63 CaYu1 NKS	98 Leibniz	143 Theres	178 Etincel	mz 223	635-11/1 Ma	258 Cantare	303 CaY	u1 NKS 33	88 Leibniz	383 Theresa	418 Etincel mz	463 635-11/1 Ma	498 Infmisch	543 2016-713	578 2016-713	623 7a-2 EA-Hv	w 658 Infmisch	703 2b-2 lg-ubh	738 8c-2 lg-Hw	k 783	818
864	17 Candesse	64 CaYu1 NKS	97 Laverda	144 Titus	177 Estoria	zz 224	635-11/2 Ma	257 Candesse	304 CaY	u1 NKS 33	7 Laverda	384 Titus	417 Estoria zz	464 635-11/2 Ma	497 Infmisch	544 2016-714	577 2016-714	624 7a-3 EA-Hv	w 657 Infmisch	704 2b-3 lg-ubh	737 8c-3 lg-Hw	k 784	817
865	16 Canberra	65 CaYu1 NKS	96 Laurena	145 Vetulio	176 Daisy r	nz 225	Albertine zz	256 Canberra	305 CaY	u1 NKS 33	6 Laurena	385 Vetulio	416 Daisy mz	465 Albertine zz	496 Valentina (:		576 2016-734	625 8a-1 lg-Hw	k 656 17a-1 lg-Me	r 705 1b-1 EA-ubl	736 4c-1 EA-Eti	785	816
866	15 Campanile	66 CaYu2 NKS	95 Landi	146 Veturia	175 Carmin	a mz 226	Anja mz	255 Campanile	306 CaY	u2 NKS 33	S5 Landi	386 Veturia	415 Carmina mz	466 Anja mz	495 Monroe (zz		575 2014-180	626 8a-2 lg-Hw	k 655 17a-2 lg-Me	r 706 1b-2 EA-ubl	735 4c-2 EA-Eti	786	815
867	14 California	67 CaYu2 NKS	94 KWS Tenor	147 Waxym	174 Caribic	zz 227	Duplex zz	254 California	307 CaY	u2 NKS 33	KWS Tenor	387 Waxyma	414 Caribic zz	467 Duplex zz			574 15-319	627 8a-3 lg-Hw	k 654 17a-3 lg-Me	r 707 1b-3 EA-ubi	734 4c-3 EA-Bi	787	814
868	13 Boreale	68 CaYu2 NKS	93 KWS Scala	148 Wintma	173 Captair	n zz 228	Findora zz	253 Boreale	308 CaY	u2 NKS 33	3 KWS Scala	388 Wintmalt	4 3000000000000000000000000000000000000	300000000000000000000000000000000000000	493 KWS Some		573 15-351-1	628 9a-1 EA-Ub	or 653 16a-1 EA-N	708 17b-1 lg-Me	733 6c-1 lg-Hw	788 Alpaca	813
869	12 Augusta	69 KeLav	92 KWS Merid	a 149 Yatzy	172 Arcano	ia zz 229	Fox zz	252 Augusta	309 KeL	av 33	2 KWS Meridia	389 Yatzy	1	469 Fox zz	492 KWS Kosm		572 2016-736	629 9a-2 EA-Ub	or 652 16a-2 EA-N	709 17b-2 lg-Me	732 6c-2 lg-Hw	789 aus ES	812
870	11 Astrid	70 KetNa ES-21	91 KWS Glacie	r 150 Yokoha	na 171 Alora r	nz 230	KWS Keepe	251 Astrid	310 Keth	la ES-21 33	1 KWS Glacie	390 Yokohama	411 Alora mz	470 KWS Keepe		550	571 2016-740	630 9a-3 EA-Ub	or 651 16a-3 EA-M	710 17b-3 lg-Me	731 6c-3 lg-Hw	790	811
871	10 Antonella	71 MalCar ES-1	90 KWS Joy	151 Yoole (ybri 170 432/1-1	2 As 231	KWS Liga z	250 Antonella	311 MalC	ar ES-1 33	00 KWS Joy	391 Yoole (hybr	i 410 432/1-12 As	471 KWS Liga z			570 Axioma	631 10a-1 lg-Ub	or 650 15a-1 EA-E	711 15b-1 EA-B	730 9c-1 EA-Ut	r 791	810
872	9 Antalya	72 MalCar ES-1	89 KWS Cassi	152 Yuka	169 420/1-1	2 As 232	Loreley mz	249 Antalya	312 MalC	ar ES-1 32	9 KWS Cassia	392 Yuka	409 420/1-12 As	472 Loreley mz	489 Kathmandu		569 Charisma	632 10a-2 lg-Ub	or 649 15a-2 EA-E	712 15b-2 EA-B	729 9c-2 EA-Ut	r 792	809
873	8 Anisette	73 MalCar ES-1	88 KWS Arian	153 Zephyr	168 387-12	AsD 233		248 Anisette	313 MalC		8 KWS Ariane	393 Zephyr	408 387-12 AsD		488 Joker (mz)	553 Chiara	568 Chiara	633 10a-3 lg-Ub		713 15b-3 EA-B			808
874	7 Amrai	74 OsCar ES-10	87 Ketos	154 Zzoom				247 Amrai	314 OsC		7 Ketos	ļ	407 364-12 VerC	474 Ruby zz	487 Colonia (zz		567 DZBO90904	634 11a-1 EA-H	h 647 14a-1 lg-Hv	714 14b-1 lg-Hw	727 17c-1 lg-M	794	807
875	6 Amelie	75 OsCar ES-9	86 Kentucky 1	155 CaYu 2	(20 166 356-12	VerC 235	Saphira mz	246 Amelie	315 OsC	ar ES-9 32	Rentucky 1-		406 356-12 VerC				566 Pffi	<u> </u>	N 646 14a-2 lg-Hv	-	726 17c-2 lg-M	795	806
876	5 Alpaca	76 PalOs ES-22	85 Kentucky 1	156 KriYu 1			-	245 Alpaca			5 Kentucky 1-	ļ <u> </u>	1 405 143-13 KetM		485 MerLau	556 KWS Tower	565 KWS Tower	ļ	h 645 14a-3 lg-Hv	-	725 17c-3 lg-Me		805
877	4 Alinghi	77 VerAs ES-1	84 Kearney (c	157 AD 624			 	244 Alinghi	317 Ver		24 Kearney (ck	-	404 132-13 Palm		484 MadLau mz	<u> </u>	ECA	637 12a-1 lg-Hv		-	724 10c-1 lg-Ut	·	804
878	3 Alba (OR757	78 VerOs ES-2	83 Katja	158 AM 644			ļ	243 Alba (OR75)	318 Ver0		3 Katja	398 AM 644	403 123-13 LysC			559	LG Veronika	638 12a-2 lg-Hv		· }	723 10c-2 lg-Ut	- }	803
879	2 CaKri	79 lari	82 Kathleen	159 AsDuC				242 CaKri	319 Igri		2 Kathleen	 	6 402 122-13 LysA	,	riigricau	Rubinesse	Rubinesse	639 12a-3 lg-Hv		-	722 10c-3 lg-Ut	-	802
880	1 CaAlp	80 Isolde	81 Jade	160 KriYu 2				241 CaAlp	320 Isold		21 Jade		1 401 121-13 LysA		482 BYDV15La		562 Sonnengold	040		720 Infmisch	721 Infmisch	800	801
1	2	3	4	5	6	_,0, _40	7	8 8	9	- 02	10	11	12 12	13	481 2779Car zz	Verity 15	Verity 16	lnfmisch 17	18	19	20	21	22
				·								L					L	L		L		1	

Abbildung 27: Prüfungsanbau von Wintergerste in zwei Wiederholungen (erste Wdh. weiß, zweite Wdh. grün, 480 Parzellen), sortenreine und gemischte Vermehrung von Infektionsträgern Streifenkrankheit (grau, 135 Parzellen), erster Nachbau zugelassene Sorten und Zuchtstämme (32 Parzellen), Erstinfektion Zuchtstämme und neu zugelassene Sorten (gelb, 80 Parzellen) Beizversuch Streifenkrankheit (orange/weiß, 90 Parzellen) in 1,5 m² Parzellen, insgesamt 880 Parzellen – Dottenfelderhof 2017, Schlag"Heide"

201	Etrusco ES	280	Etrusco ES	40	Füller	41	Füller	120	Füller	121	Alpaca ES	200	Alpaca ES
202		279		39	Verity	42	Verity	119	Wanda	122		199	
203		278		38	Sonnengold	43	Sonnengold	118	Zita	123		198	
204		277		37	Rubinesse	44	Rubinesse	117	SU Ruzena	124		197	
205		276	000000000000000000000000000000000000000	36	LG Veronika	45	LG Veronika	116	Padura	125		196	
206		275		35	KWS Tower EU	46	KWS Tower EU	115	Lucienne	126	Alpaca ES	195	
207		274		34	Effi	47	Effi	114	LG Caspari	127	AlpacaERi	194	
208	Etrusco ES	273		33	DZBO90904k	48	DZBO90904k	113	KWS Carbis	128		193	
209	Etrusco ERi	272		32	Chiara	49	Chiara	112	KWS Higgins	129		192	
210		271		31	Charisma	50	Charisma	111	Bella	130		191	
211		270	>>>>	30	Axioma	51	Axioma	110	Hedwig	131		190	
212		269		29	HSGW 2015-319	52	HSGW 2015-319	109	HSGW2017-705	132		189	
213		268		28	HSGW 2016-734	53	HSGW 2016-734	108	HSGW2017-702	133		188	
214		267		27	HSGW 2016-714	54	HSGW 2016-714	107	HSGW2017-687	134		187	
215		266		26	HSGW 2016-713	55	HSGW 2016-713	106	Wanda	135		186	
216		265		25	HSGW 2016-710	56	HSGW 2016-710	105	Zita	136		185	
217		264		24	HSGW 2015-350	57	HSGW 2015-350	104	SU Ruzena	137		184	
218		263		23	HSGW 2015-299	58	HSGW 2015-299	103	Padura	138		183	
219		262		22	HSGW 2015-295	59	HSGW 2015-295	102	Lucienne	139		182	
220		261		21	HSGW 2014-171-2	60	HSGW 2014-171-2	101	LG Caspari	140		181	
221		260		20	HSGW 2014-154	61	HSGW 2014-154	100	KWS Carbis	141		180	
222		259		19	HSGW 2013-168	62	HSGW 2013-168	99	KWS Higgins	142		179	
223		258		18	HSGW 573/2-12	63	HSGW 573/2-12	98	Bella	143		178	
224		257		17	Valentina (zz)	64	Valentina (zz)	97	Hedwig	144		177	
225		256		16	Monroe (zz)	65	Monroe (zz)	96	HSGW2017-705	145		176	
226		255		15	KWS Spirit (zz)	66	KWS Spirit (zz)	95	HSGW2017-702	146		175	
227		254		14	KWS Somerset (zz)	67	KWS Somerset (zz)	94	HSGW2017-687	147		174	
228		253		13	KWS Kosmos (mz)	68	KWS Kosmos (mz)	93	Landi	148		173	
229		252		12	Korbina (zz)	69	Korbina (zz)	92	KWS Tonic	149		172	
230		251		11	Kaylin (mz)	70	Kaylin (mz)	91	KWS Scala	150		171	
231	***************************************	250		10	Kathmandu (zz)	71	Kathmandu (zz)	90	KWS Liga	151		170	
232		249	***************************************	9	Joker (mz)	72	Joker (mz)	89	HS CaKri	152		169	
233		248		8	Colonia (zz)	73	Colonia (zz)	88	Etrusco	153		168	
234		247	·····	7	Azrah (mz)	74	Azrah (mz)	87	Landi	154		167	
235		246	~~~~	6	HSGW 2014-154	75	HSGW 2014-154	86	KWS Tonic	155		166	
236		245		5	HSGW 2014-171	76	HSGW 2014-171	85	KWS Scala	156		165	
237		244		4	HSGW 2014-191-2	77	HSGW 2014-191-2	84	KWS Liga	157		164	
238		243		3	Candesse	78	Candesse	83	HS CaKri	158		163	
239		242		2	Alpaca	79	Alpaca	82	Etrusco	159		162	
240	Etrusco ERi	241	Etrusco ES	1	Füller	80	Füller	81	Füller	160	AlpacaERi	161	Alpaca ES
	1		2		3		4		5		6		7

Abbildung 28: Prüfungsanbau von Wintergerste in zwei Wiederholungen, sortenreine Vermehrung von Infektionsträgern Streifenkrankheit (Alpaca, Etrusco und Landi), Erstinfektion von Zuchtstämmen und neuen zugelassenen Sorten in 1,5 m² Parzellen, insgesamt 240 Parzellen – Dottenfelderhof 2018, Schlag "Windfang"

Tabelle 8: Gegenüberstellung des Befalls mit Streifenkrankheit (*Drechslera graminea, Dg*) 2014 auf den Standorten Dottenfelderhof (Dfh) und Darzau (Dar)

_	Befall Dg	Befall Dg		Befall Dg	Befall Dg		Befall Dg	Befall Dg
Sorte	2014 Dfh [%]	2014 Dar [%]	Sorte	2014 Dfh [%]	2014 Dar [%]	Sorte	2014 Dfh [%]	2014 Dar [%]
Alpaca (check)	9,06	12,16	HS AsDuCar ES-7	1,87	0,69	Malwinta	6,95	4,29
Etrusco (check)	18,92	6,36	HS AsDuCar ES-8	0,53	0,24	Matros	1,07	0,21
Landi (check)	11,34	5,20	HS AsDuTaf ES-3	1,98	0,87	Medina	2,50	0
Alba (OR757)	0	0	HS AsDuTaf ES-4	0,33	0,70	Mercedes	0,26	0
Alinghi	0,81	0,62	HS CaAlp	6,57	4,06	Merle	0,49	0
Amelie	0	0	HS CaCanGre	0,93	0,93	Metaxa	1,78	0,94
Amrai	0,27	0,22	HS CaKri	5,29	2,73	MH Firrenza	6,12	4,75
Anisette	3,68	1,87	HS CarCaGre ES-14	1,66	1,18	Mirco	4,72	2,28
Antalya	0	0	HS CarCaGre ES-15	2,87	2,88	Mombasa	2,53	2,35
Antonella	0,14	0,09	HS CarCaGre ES-16	1,88	2,77	Montana	0,07	0,10
Astrid	0,72	0,48	HS CarThe ES-12	2,29	1,12	Naomie	1,06	0,53
Augusta	2,79	1,86	HS CarThe ES-13	1,71	1,55	NB09405	0,27	1,51
Boreale	1,61	1,25	HS CaYu 22 (2013)	0,40	0,04	NB09410	1,15	0,89
California	0,78	0,28	HS CaYu1 NKS 1	1,04	1,53	NB09433	0,09	0
Campanile	1,13	1,37	HS CaYu1 NKS 22	0,90	1,56	NB09434	1,65	1,36
Canberra	0,62	0	HS CaYu1 NKS 7	0,37	0,32	Nerz	0,74	0
Candesse	0,79	3,10	HS CaYu2 NKS 4	0,52	0,04	Nico	0	0
Cantare	0,75	0,32	HS CaYu2 NKS 5	0	0,24	Novoperga	0,11	0
Carrero	3,17	1,70	HS CaYu2 NKS 6	0,49	0,17	OR101	0	0
Chalup	0,97	0,65	HS KeLav	0,48	0	Osiris	0,53	0,52
Christelle	0	0	HS KetNa ES-21	0,66	0,14	Palinka	0,06	0,05
Cordula	0	0	HS KriYu 1 (2013)	0,43	0,13	Paroli	0,42	0,64
DICKTOO-1	0	0,08	HS KriYu 2 (2013)	0	0	Passion	0,64	0,15
Dicktoo-2	1,54	0,82	HS MalCar ES-17	5,27	5,13	Pelican	0	0,15
Duet	0	0	HS MalCar ES-18	4,14	2,68	Precosa	2,00	0,91
Eufora	0,04	0	HS MalCar ES-19	2,45	1,41	Purdue	0,71	0
Eureka	0,88	0,76	HS OsCar ES-10	0,24	0	Queen	3,37	1,79
Famosa	1,50	0,44	HS OsCar ES-9	0,63	0,36	Reni	0,05	0
Finesse	0,85	0,24	HS PalOs ES-22	0,29	0,36	Roseval	0	0,18
Fleuret	1,78	0	HS VerAs ES-1	0,56	0,57	Salamandre	6,20	1,61
Franziska	0,45	0,58	HS VerOs ES-2	0,36	0,19	Sandra	1,96	1,13
Fridericus	0,69	4,50	Igri	0,69	0,11	Saturn	0	0
Gerbel	0,58	0,24	Isolde	0,40	0,38	Sebrau	0	0,21
Gigga (A)	0,59	0,35	Jade	0,23	0,29	Selvaggio	1,50	1,47
Gudrun	0,16	0,15	Kathleen	0	0	Semper	0,98	0,10
Heike	0	0,05	Katja	1,59	0,56	Souleyka	0,79	0,59
Henriette	0,85	0,58	Kearney (ck)	0	0	Spectrum	0,81	1,92
Highlight	0,08	0,69	Kentucky 1-1	0	0	Stendal	0,68	0
Hobbit	1,37	0,04	Kentucky 1-2	0	0	SU Vireni	1,18	0,59
HS 571-10 ES-24	1,86	0	Ketos	3,97	1,10	Tania	0	0
HS 617-10 ES-28	0	1,40	KWS Ariane	0,98	1,37	Theresa	0,12	0,09
HS 624-10 ES-30	0,50	0,56	KWS Cassia	0,79	0,64	Titus	0,29	0,32
HS 624-10 ES-31	0,67	0,79	KWS Glacier	1,34	0,64	Vetulio	1,86	0,44
HS 630-10 ES-32	0	0,03	KWS Joy	3,74	2,47	Veturia	0,47	0,57
HS 635-10 ES-34	1,62	0,58	KWS Meridian	2,02	4,17	Waxyma	0	0,04
HS 641-10 ES-37	2,03	2,44	KWS Scala	2,46	1,79	Wintmalt	1,82	2,55
HS 644 ES-39	0,63	0,55	KWS Tenor	0,68	0,39	Yatzy	1,06	0,82
HS 713-10 ES-44	0,73	0,36	Laurena	0,29	0,27	Yokohama	0,52	0,73
HS AD 611 ES-25	0,48	0,37	Laverda	1,60	0,81	Yoole	1,03	0,41
HS AD 624	0	0	Leibniz	2,80	1,22	Yuka	0,42	0,08
HS AM 644	0	0	Limpid	0,20	0	Zephyr	0	0
HS AsDuCar 561-11	0	0	Lomerit	0,57	0	Zzoom	3,93	0,11
HS AsDuCar ES-5	1,21	0,96	Madame	0,23	0,17			
HS AsDuCar ES-6	0,88	1,10	Maja	1,11	1,38			

Tabelle 9: Prozentualer maximaler Feldbefall mit Streifenkrankheit (*Drechslera graminea*, Max *Dg* %) und Anzahl der Prüfjahre von Wintergerstesorten von 2013 bis 2018 auf dem Standort Dottenfelderhof, 2014 zusätzliche Prüfung auf dem Standort Darzau. Checksorten zuerst, dann sortiert nach Befallshöhe

Sorte	n	Max Dg	Sorte	n	Max Dg	Sorte	n	Max Dg	Sorte	n	Max Dg
Sorte	Jahre	[%]	Joile	Jahre	[%]	Joile	Jahre	[%]	Sorte	Jahre	[%]
Alpaca (Check)	7	33,6	HS CarCaGre	5	12,0	Eufora	5	6,2	Loreley	2	2,8
Etrusco (Check)	7	22,8	Metaxa	5	11,8	KWS Kosmos	2	6,2	Medina	5	2,8
HS CaKri (Check)	7	26,8	Albertine	2	11,6	HS VerOs	5	6,0	Charisma	1	2,7
KWS Tonic (Check neu)	2	48,1	HSGW 2014-191-	2	11,4	Zzoom (hybrid)	5	6,0	NB09433	5	2,7
Landi (Check)	7	34,0	KWS Tower	1	11,3	Kathleen	5	5,8	HS AsDuTaf	5	2,6
HS CaAlp (Check alt)	6	7,8	Yuka	5	11,3	Merle	5	5,7	HSGW 2013-160	2	2,6
SU Vireni	5	38,5	Jade	5	11,2	SU Ellen	1	5,7	HS AM 641-10	5	2,4
HSGW 2013-146	2	33,9	Henriette	5	10,8	Passion	5	5,7	HSGW 2013-121	2	2,4
HSGW 573-12	3	31,6	HS 601/1-12	2	10,6	HS AD 617-10	5	5,6	Limpid	5	2,4
Fleuret	5	28,8	Carmina	1	10,5	Pelican	5	5,5	Highlight	5	2,4
NB09405	5	28,5	Arcanda	1	10,3	Daisy	1	5,5	Reni	5	2,4
Valentina	2	28,3	HSGW 2015-350	1	10,2	HS CarCaGre	5	5,5	HS 713-10	5	2,4
HS KetNa	5	28,1	Yatzy	5	10,1	NB09410	5	5,5	Nerz	5	2,4
Yoole (hybrid)	5	27,9	Chalup	5	9,9	Sandra	5	5,5	Souleyka	5	2,4
KWS Scala	6	26,5	CaYu 1	5	9,7	Ruby	2	5,5	HS CaCanGre	5	2,3
Candesse	6	26,1	Alinghi	5	9,6	Stendal	5	5,3	HS AM 644-10	5	2,0
HSGW 2013-168	1	24,9	Boreale	5	9,6	Amelie	5	5,2	Korbina	2	1,9
Dicktoo (ck)	5	24,9	HS CarCaGre	5	9,6	HSGW 2015-299	1	5,2	HS VerAs	5	1,9
HS 608-11	2	24,0	Wintmalt	5	9,6	HS 583-11	2	5,2	Quadriga	1	1,9
Mirco	5	22,8	HSGW 2013-133	2	9,6	Katja	5	5,1	Roseval	5	1,9
Maja	5	21,3	Spectrum	5	9,5	Naomie	5	5,1	HSGW 2013-123	2	1,7
Kathmandu	2	21,2	Selvaggio	5	9,4	Novoperga	5	5,0	Monroe	2	1,7
Findora	1	20,6	HS MalCar	5	9,4	Titus	5	5,0	HS 494-12	2	1,7
	5			5	-	Cordula	5		HSGW 2014-164	1	
Precosa	-	20,5	Nico	_	9,3		-	5,0			1,7
Canberra	5	20,4	Astrid	5 5	9,3	Amrai	5	4,9	Mercedes	5	1,7
Leibniz	5	20,4	Franziska	_	9,3	HSGW 2015-319	1	4,8	HS 432-12	2	1,6
Salamandre	5	20,1	Mombasa	5	9,3	Tamina	1	4,8	Montana	5	1,6
Gigga	5	19,9	Effi	1	9,2	Paroli	5	4,8	HSGW 2013-161	2	1,6
KWS Liga	3	19,7	Gerbel	5	9,0	Verity	1	4,6	HS 571-11	2	1,6
KWS Meridian	5	19,5	MH Firrenza	5	9,0	HS 635-11	2	4,6	HS AD 611-10	5	1,6
HS 573/1-12	2	18,9	Laurena	5	8,9	Hobbit (hybrid)	5	4,3	HS 561-11	4	1,6
Ketos	5	18,9	Veturia	5	8,8	HS AsDuTaf	5	4,3	Palinka	5	1,6
HS CarThe	5	18,4	HSGW 2013-159	2	8,8	Sonnengold	1	4,3	HS AsDuCar	5	1,5
HS KeLav	5	18,4	Vetulio	5	8,8	Madame	5	4,2	HS 549-12	2	1,5
Malwinta	5	18,3	Otto	2	8,6	HS 420-12	2	4,1	HS 356-12	2	1,4
HSGW 2014-154	2	18,0	Lomerit	5	8,3	HS AM 635-10	5	4,1	Purdue 466 A 1-77-	5	1,4
Hickory	1	17,8	HS MalCar	5	8,2	KWS Keeper	2	4,0	HS 446-12	2	1,3
Anja	2	17,7	HSGW 2016-714	1	8,1	HSGW 2016-713	1	4,0	HS 624-10-1	5	1,2
Etincel	1	17,6	HS OsCar	5	7,9	Theresa	5	3,9	Duet	5	1,1
KriYu 2	4	17,6	KWS Infinity	1	7,5	Estoria	1	3,8	HS 624-10-2	5	1,1
KWS Spirit	2	16,8	Carrero	5	7,4	HSGW 2016-734	1	3,8	Trooper	2	1,0
Eureka	5	16,6	HS 364-12	2	7,3	Famosa	5	3,7	Tania	5	1,0
Fridericus	5	16,4	KWS Cassia	5	7,3	HS AsDuCar	5	3,7	Alora	1	0,9
KWS Joy	5	16,0	Duplex	2	7,2	HS 353-12	2	3,7	California	5	0,8
Captain	1	15,2	HS PalOs	5	7,1	Anisette	5	3,7	Igri	5	0,8
Campanile	5	15,2	Rubinesse	1	7,0	Azrah	2	3,7	Gudrun	5	0,7
HSGW 2015-295	1	15,0	Augusta	5	6,9	Osiris	5	3,6	HS 332-12	2	0,7
Joker	2	15,0	Caribic	1	6,9	Saturn	5	3,6	HS OsCar	5	0,7
Cantare	5	14,8	Laverda	5	6,9	Matros	5	3,5	Sebrau	5	0,7
KWS Glacier	5	14,6	HSGW 2016-710	1	6,7	Alba (OR757)	5	3,5	Zephyr	5	0,7
Christelle	5	13,7	Chiara	1	6,7	Fox	2	3,4	HS AD 630-10	5	0,5
Axioma	1	13,6	HSGW 2014-180	1	6,7	Queen	5	3,4	Saphira	2	0,5
KWS Tenor	5	13,6	KWS Ariane	5	6,6	Yokohama	5	3,3	Kearney (ck)	5	0,4
CaYu 1 NKS 7	5	13,5	HS CarThe	5	6,6	Heike	5	3,3	DICKTOO	5	0,3
KWS Somerset	2	13,4	CaYu 1 NKS 22	5	6,6	HS AsDuCar	5	3,1	Kentucky 1 (ck)	5	0,1
LG Veronika	1	12,9	Isolde	5	6,5	NB09434	5	3,1	Kentucky 1 (ck)	5	0,1
Kaylin	2	12,8	Antonella	5	6,5	HSGW 2013-111-1	2	3,1	Waxyma	5	0,1
HSGW 2014-171	2	12,6	OR101	5	6,4	HS AsDuCar	5	3,0	Antalya	5	
	5			5		Zirene	1		,	1	0,1
KriYu 1	5	12,5	Semper		6,4		_	3,0	DZB090904k		
Finesse		12,3	HS 511-12	2	6,4	HSGW 2013-139	2	3,0	HS 387-12	2	0
CaYu 2 NKS 4	5	12,0	Colonia	2	6,3	HS MalCar	5	2,9	HSGW 2013-122	2	0