
Essays on prices and frictions

Yoon J. Jo

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019



© 2019

Yoon J. Jo

All rights reserved



ABSTRACT

Essays on prices and frictions

Yoon J. Jo

This dissertation consists of three essays on prices and frictions. The first chapter

documents cyclical properties of distributions of labor factor prices, wages, in the United

States from 1979 to 2016. The second chapter investigates which theory of nominal wage

frictions in the existing literature has consistent implications with empirical regularities

documented in the first chapter. The third chapter estimates the impact of e-commerce, a

recent technology innovation reducing information frictions and trade costs, on prices and

welfare in Japan.

In Chapter 1, I construct distributions of individual workers’ year-over-year changes in

nominal hourly wages across time and across US states from two nationally representative

household surveys, the Current Population Survey (1979-2017) and the Survey of Income

and Program Participation (1984-2013). The novel result is that the share of workers with

no wage changes, which accounts for the large spike at zero in nominal wage change

distribution, is more countercyclical than the share of workers with wage cuts. A strand

of related literature interpreted the empirical finding that US states with larger decreases

in employment are also the states with lower average wage increases as a sign of wage

flexibility. This paper overturns this interpretation by showing that the states with larger

employment declines are also the states with greater increases in the share of workers with

a zero wage change, suggesting wage rigidity instead.

In Chapter 2, I ask which type of nominal wage rigidity model in the existing

literature can match empirical regularities documented in Chapter 1. This chapter builds



heterogeneous agent models with five alternative wage-setting schemes—perfectly flexible,

Calvo, long-term contracts, menu costs, and downward nominal wage rigidity. The models

feature not only idiosyncratic uncertainty but also aggregate uncertainty. Using a numerical

method, I show among alternative wage setting schemes, the model with downward

nominal wage rigidity has the most consistent implications with the empirical findings,

regarding the shape and cyclicality of wage change distributions.

In Chapter 3, joint work with Misaki Matsumura and David Weinstein, we estimate

the impact of e-commerce on Japanese prices and welfare. We find that goods sold

intensively online have always had lower relative rates of price increase than goods sold

mainly in physical stores, but the gap in inflation rates rose after the advent of e-commerce.

This happened in part because goods sold offline began experiencing faster rates of price

increase. Second, we compute the welfare gains generated by e-commerce by reducing

intercity price differentials and by increasing available varieties. While we show the

national gains were substantial, we also find that welfare rose much more for residents

of high-income cities with highly educated populations and may have fallen for residents

of other cities.
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Chapter 1

Downward nominal wage rigidity in the

United States

1.1 Introduction

Downward nominal wage rigidity is the resistance of nominal wages to adjusting

downwards. While the existence of downward nominal wage rigidity has been studied

in the literature,1 it remains controversial whether downward nominal wage rigidity could

have consequences for employment. Recent studies have theorized that downward nominal

wage rigidity led to massive unemployment in peripheral Europe and in the United

States during the Great Recession (Schmitt-Grohé and Uribe (2016); Schmitt-Grohé and

Uribe (2017)). During periods of high inflation, real wages can fall even when nominal

wages cannot adjust downwards. However, because inflation stayed low during the Great

Recession, it is believed that downward nominal wage rigidity also prevented real wages

from falling, resulting in greater unemployment. However, empirical evidence on the

1Kahn (1997); Card and Hyslop (1996); Lebow, Sacks, and Anne (2003); Daly, Hobijn, and Lucking
(2012); Barattieri, Basu, and Gottschalk (2014); Daly and Hobijn (2014); Elsby, Shin, and Solon (2016);
Fallick, Lettau, and Wascher (2016)

1



relationship between downward nominal wage rigidity, inflation, and employment is still

lacking.

This chapter uses two nationally representative household surveys in the US, the

Current Population Survey (CPS, 1979 - 2017) and the Survey of Income and Program

Participation (SIPP, 1984 - 2013), to determine if the empirical patterns of wage change

distributions of individual workers have impact on employment. While a number of other

studies have investigated the relationship between the degree of nominal wage rigidity and

employment, their findings are still contradictory, making the role of downward nominal

wage rigidity during recessions a controversial topic.2 To shed light on this discussion, I

first examine the cyclical properties of the nominal wage change distribution in relation

to employment and inflation. In the chapter 2, I show that the empirical patterns are not

only consistent with theories of downward nominal wage rigidity, but also among five

heterogeneous-agent models with alternative wage-setting schemes, only the model with

downward nominal wage rigidity is able to match all the empirical patterns.

The CPS and the SIPP provide a number of advantages for the present analysis. First,

the panel structure of both data sets allows one to measure individual year-over-year hourly

wage growth rates, thus accounting for level differences in individual-specific wages. In

addition, both data sets contain population weights, which allow for the aggregation of

data to the national level. The two data sets are also complementary. The CPS, unlike the

SIPP, is composed of rotating panels, allowing one to study a long time series containing

multiple recessions. On the other hand, the SIPP contains an employer ID for each job

of each respondent, allowing one to compare the wage change distributions of job stayers

versus that of job switchers.

As the first step of the analysis, I examine the nominal wage change distribution for

2Daly and Hobijn (2014) argue that the downward nominal wage rigidity is more binding in the recession,
however Elsby, Shin, and Solon (2016) argue that the downward nominal wage rigidity does not respond to
the business cycle.

2



each year from 1979 to 2017 for the nation as a whole. Consistent with the findings of

previous authors, I find that each year’s distribution has a large spike at zero. That is, a

large share of workers do not experience hourly wage changes from one year to another.

Furthermore, these distributions are distinctively asymmetric; nominal wages changes are

composed of many fewer wage cuts than raises. An analysis for each state in U.S. also

confirms that the general shape of wage change distributions holds not only at the national

level but also at the state level.

While it is apparent that nominal wages are more often moving upwards than

downwards, this empirical fact alone is not compelling evidence of the existence of

downward nominal wage rigidity, as it could be due to other factors such as labor

productivity growth or inflation. Hence, I examine how the nominal wage change

distribution changes over business cycles, and whether these changes are related to

employment and inflation.

My analysis mainly focuses on three statistics from the nominal wage change

distribution: the share of workers with no wage changes (which corresponds to the spike

at zero), the share with cuts, and the share with raises. The theory of downward nominal

wage rigidity suggests that downward nominal wage rigidity would have little effect on

employment during periods of high inflation, but could adversely affect employment during

periods of low inflation. Indeed, I find that the three statistics have statistically significant

relationships with employment only when controlling for inflation. In particular, the size

of the spike at zero has a negative correlation with employment when controlling for

inflation. This is consistent with the prediction that in years when downward nominal

wage rigidity is more binding, as indicated by the greater share of workers with no wage

changes, employment decreases more. This finding is also consistent with that of Daly and

Hobijn (2014), who focus on a period of relatively low inflation, namely the years 1986 -

2014, and find that the fraction of workers with no wage changes appears countercyclical.

3



Furthermore, I document a novel empirical finding, namely that the share of workers

with no wage changes has greater countercyclical fluctuations compared to the share of

workers with wage cuts. With downward nominal wage rigidity, because the movement of

wages is restricted downwards, it is plausible that the share of workers wage cuts would

vary little over time, while the share of workers with no wage changes would fluctuate more

along the business cycle.

With the national level data, I first show that, unsurprisingly, both employment and the

share of workers with raises decline during recessions: a one percentage point decline in

employment is associated with a 0.9 percentage point decline in the share of workers with

raises, controlling for inflation. Mechanically, this decline in the share of workers with

raises corresponds to the sum of the increases in the share of workers with no wage changes

and in the share with wage cuts. I then examine which of these two shares shows a larger

co-movement with employment, controlling for inflation. I find that a one percentage point

decline in employment is associated with a 0.6 percentage point increase in the share of

workers with no wage changes and a 0.3 percentage point increase of workers with a wage

cut. That is, as employment falls during recessions,the increase in the share of workers

with no wage changes is double of the increase in the share of workers with wage cuts.

This pattern I identify at the national level across time also holds in the cross-sectional

analysis of the data at the US state-level: controlling for state and time fixed effects,

declines in state-level employment still show greater association with the increase in the

share of workers with no wage changes compared to that of workers with wage cuts.

At first sight, this appears to contradict the recent finding by Beraja, Hurst, and Ospina

(2016), which shows a positive correlation between state-level changes in nominal wages

and employment during the Great Recession. Based on this finding, these authors argue

wages were “fairly flexible”, as lower employment growth was associated with lower wage

growth. However, also using the state-level data for the same time period, I show that

4



lower employment growth was also associated with larger increases in the share of workers

with no wage changes. That is, in the states with low employment growth, the overall

nominal wage growth may be lower due to declines in the share of workers with raises, but

the distribution of wage changes contains a substantial increase in the size of the spike at

zero. I therefore argue that Beraja, Hurst, and Ospina (2016)’s finding is still consistent

with downward nominal wage rigidity. I conclude, contrary to Beraja, Hurst, and Ospina

(2016), that nominal wages were “fairly rigid” during the Great Recession.

Empirical analysis suggests that the shape and cyclical properties of the nominal wage

change distribution are consistent with downward nominal wage rigidity. The findings are

established using both the CPS and the SIPP data, both at the national and state level.

The main analysis includes both job stayers and job switchers, and while the patterns that

suggest downward nominal wage rigidity are starker for job stayers (who comprise a large

majority of the sample), the patterns hold for job switchers also. In summary, my empirical

analysis presents three stylized facts about inflation, employment, and the nominal wage

change distributions. Namely, controlling for inflation, the share of workers with zero wage

changes increases as employment falls, the share of workers with wage cuts also increases

as employment falls, and most importantly, the relative change in the former is nearly twice

as large as that of the latter.

The remainder of the paper is organized as follows. Section 2.2 discusses the related

literature. Section 1.3 describes the data sets: the CPS and the SIPP. Section 1.4 discusses

the shape of nominal year-over-year hourly wage change distributions. Section 1.5

examines the cyclical properties of the nominal wage change distribution: as employment

declines, the share of workers with no wage changes increases more than the share with

wage cuts. The state-level analysis of this finding is presented in section 1.6. Section 2.5

concludes.
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1.2 Related literature

This chapter is related to various branches of the empirical literature on nominal wage

rigidity. Early studies use individual-level panel data for the period of high inflation,

1970-1993, and document a relationship between nominal wage change distribution and

inflation rather than the former and employment. Kahn (1997) use data from the Panel

Study of Income Dynamics (PSID) from 1970 to 1988 to show that nominal wage change

distributions are asymmetric with a spike at zero. However, this author does not find a

statistically significant relationship between the share of workers with no wage changes,

the spike at zero, and employment. My conjecture is that this is because in her sample

period, the average inflation was very high at 6.1 percent per year. Card and Hyslop (1996)

use both PSID and CPS data from 1979 to 1993, a period during which the average inflation

rate was about 5.3 percent per year. They argue that inflation can grease the wheels of the

labor market by showing that the share of workers with no wage changes is significantly

negatively correlated with inflation: fewer workers experience zero wage changes when

inflation is high. Like Kahn (1997), these authors do not find a statistically significant

relationship between the spike at zero and employment.

A recent paper by Daly and Hobijn (2014) studies the period of low inflation, 1986 -

2014, when the average inflation was 2.7 percent. These researchers find that the spike

at zero is countercyclical: the share of workers with no wage changes increases when

employment declines. The spike at zero from Daly and Hobijn (2014) is available from

the Wage Rigidity Meter, published by the Federal Reserve Bank of San Francisco.3 In

contrast to Daly and Hobijn (2014), Elsby, Shin, and Solon (2016) argue that the spike at

zero has been acyclical since 1998. Elsby, Shin, and Solon (2016) use the CPS data with

3The Wage Rigidity Meter shows the percentage of workers with no wage change within the subgroups
of the labor force by type of pay, education, and industry using the CPS, which is available from here.

Atlanta Fed’s Wage Growth Tracker (here) also reports the percent of individuals with zero wage changes.
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biannual job-tenure supplements from 1980 to 2017. They show that the spike at zero has

increased since 1998. They argue that the increase in the spike at zero is secular rather than

cyclical in nature and is the consequence of a secular decline in inflation.

Contrary to Elsby et al. (2016), I find that the spike at zero is countercyclical using the

CPS data with the longest time period, 1979-2012, controlling for inflation. Furthermore,

I investigate not only the cyclicality of the spike at zero but also the cyclicality of the

fraction of workers with wage cuts, which gives us a better understanding of the cyclicality

of nominal wage change distribution.

In the studies mentioned above, wage change is defined to equal zero only when data

show an exact zero, that is, when a worker reports the exact same hourly wage rate in the

interviews one year apart. Reported wages suffer from measurement error, which can over-

or understate the size of the spike at zero wage changes. Barattieri, Basu, and Gottschalk

(2014) use the SIPP panel data for the period from 1996 to 2000 to estimate the constant

frequency of no wage changes taking into account measurement error. They argue that

correcting for measurement error leads to a larger estimate of the size of the spike at zero

and a decline in the estimate of the share of workers experiencing a wage cut.

Furthermore, Fallick, Lettau, and Wascher (2016) use data from the Employment

Cost Index for the period from 1982 to 2014. This BLS survey includes information

on the annual costs for specific job descriptions and the annual hours that workers are

supposed to work (contracted hours) to obtain their annual compensation. One advantage

of employer-reported wage data is that they are free of measurement errors as they are

recorded systematically. A disadvantage of this data is that it does not allow controlling for

individual fixed effects since the base unit of observation is a job rather than an individual.

They find mixed results on the extent of downward nominal wage rigidity during the Great

Recession, and conclude that they cannot reject the hypothesis that the labor market distress

during the Great Recession lowered nominal wage rigidity.

7



Unlike the previous studies mentioned thus far, Beraja, Hurst, and Ospina (2016) use

state variations of wages and employment to argue that wages were fairly flexible during the

Great Recession. They use nominal wage data from the 2007-2010 American Community

Survey (ACS), which does not have a panel structure. To avoid composition bias, they

use the residual wages, taking out variations in wages depending on observable worker

characteristics. They argue that wages were “fairly flexible”, since they find a positive

correlation between state-level changes in nominal wages and employment during the Great

Recession. However, as described in detail in section 1.6.3, I argue that their finding still

can be consistent with the existence of downward nominal wage rigidity since I find a

negative association between the share of workers with zero wage changes and employment

at the state level.

Kurmann and McEntarfer (2017) uses data of Washington state from Longitudinal

Employer-Household Dynamics and they argue that the increased incidence of wage cuts

during the downturn suggest that downward nominal wage rigidity may not be a binding

constraint. However, this chapter shows there are larger increases in the spike at zero

compared to the share of workers with wage cuts during downturns.

A recent paper by Grigsby, Hurst, and Yildirmaz (2019) find the share of workers with

wage cuts is 8.7 percent per year for 2008-2016 for both hourly and salaried workers,

combining both job stayers and job switchers. Considering their sample period is during

the Great Recession, they show downward adjustment of nominal wages are rare. They

use payroll data from ADP, free of measurement error while it is a potential concern

using household survey data. However, their sample consists of firms with more than

50 employees, leading to sample selection bias, whereas household survey publishes

population weight to make the sample nationally representative. Rather than focusing on

the Great Recession, this chapter uses a longer sample period from 1979 to 2016, including

multiple business cycles.
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1.3 Data

This chapter uses two nationally representative household panel data sets, the CPS and

the SIPP, in the United States, which have individual-level wage data. It is important to

use disaggregated data to avoid the composition bias embedded in aggregate time series of

wages. Solon, Barsky, and Parker (1994) show that the composition of employed workers

changes over the business cycle, which gives more weight to low-skilled workers during

booms compared to recessions. Because the wages of low-skilled workers tend to be lower

than those of high-skilled workers, such cyclical changes in the composition of the workers

can lead to aggregate wages appearing not to fall during recessions, spuriously suggesting

wage rigidity. To avoid this composition bias, the present paper uses panel data.

1.3.1 Current Population Survey

The Current Population Survey (CPS)4 is jointly collected by the United States Census

Bureau and the Bureau of Labor Statistics (BLS). The purpose of this survey is mainly

to construct nationally representative labor force related statistics, such as unemployment

rates and median weekly earnings in the United States. Almost 60,000 households are

interviewed monthly. The sample period starts in 1979 and ends in 2017.

The CPS has a special sampling design. Each household in the sample is asked about

their labor force status 8 times but not in a continuous way. After the first four months of the

interview, households are out of the sample for 8 months and are interviewed 4 times again

in the following 4 months. Table 1.1 shows the sampling design of the CPS. Among the 8

interviews, only when households are in the Outgoing Rotation Group (Earner Study) - the

fourth and eighth interview of the survey - do they respond to earnings-related questions:

usual earnings, hours worked last week, union coverage, and so on. Thus, each individual

4CPS monthly microdata are available from http://www.nber.org/data/cps_basic.html .
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in the survey reports wages at most two times in a year apart, in the month in sample (MIS)

in 4 and 8.

Table 1.1: CPS sampling design

Calendar Month 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4

Month in Sample (MIS) 1 2 3 4 ——— Break ——— 5 6 7 8
Labor force status X X X X X X X X

Outgoing Roation group X X

Notes. This table is from Daly, Hobijn, and Wiles (2011)

Knowing the special sampling design of the CPS, the monthly CPS could be exploited

as panel data. However, CPS microdata do not provide unique individual identifiers within

the households. Instead, Integrated Public Use Microdata Series - CPS (IPUMS-CPS)5

provides the unique individual identifiers to link individuals across monthly CPS based on

Drew, Flood, and Warren (2014).6 To take advantage of the longitudinal features of the

CPS data, this chapter uses the unique individual identifiers from IPUMS-CPS.

The main focus of this chapter is hourly workers who directly report hourly pay rates

both in the previous year and the current year.7 For nonhourly workers, hourly wages can

be obtained by dividing the usual weekly earnings by the usual hours worked per week.

However, the imputed hourly rates for salaried workers in this manner can be excessively

volatile, as it is sensitive to any reporting errors on the number of hours worked, which

is known as the division bias. To remove errors caused by imputing the hourly pay rates,

the main results are shown only for hourly-rated workers. In the United States, about 58

5IPUMS-CPS data are available from .https://cps.ipums.org/cps/.
6Based on a method suggested by Madrian and Lefgren (1999) for matching the monthly CPS by

exploiting differential basic demographic features within the households such as age, gender, race, and
education level.

7When respondents are in the Outgoing Rotation Group (MIS4 or MIS8), they report their earnings in
the easiest way: hourly, weekly, annually, or some other basis. Those who reported that the easiest way to
report their wage is hourly are considered hourly workers. While some workers report that the easiest way to
report their earnings is not hourly, they could have been rated as hourly. Therefore, for those who indicated
that the easiest way to report their wages is some way other than hourly, they are asked again whether they
are paid on hourly basis ,and if so, their hourly pay rate.
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percent of workers are hourly-rated in 2014.8 Workers paid hourly both in the previous and

the current year represent about 50 percent of all workers.

Wages, the most important variable in this chapter, are often imputed in the CPS for

missing values. On average, 34 percent of the hourly wages of hourly rated workers

have been imputed since 1996.9 Hirsch and Schumacher (2004) and Bollinger and Hirsch

(2006) show that including imputed wages in the analysis may cause bias due to imperfect

matching of donors with nonrespondents. Therefore, it is essential to exclude imputed

wages. Although IPUMS-CPS provides individually linked CPS data, the IPUMS-CPS

does not provide allocation flags for wage variables, that indicate whether wage variables

are imputed or not. Therefore, I merge the IPUMS-CPS data with the monthly CPS, merged

with the Outgoing Rotation Group. In this way, this chapter exploits the longitudinal feature

of the CPS after excluding imputed wages.

This chapter focuses on base wages for hourly workers, which excludes other types of

benefits from earnings - paid leave, overtime payment, nonproduction bonuses, insurance,

retirement savings, and so on. In December 2018, BLS report on Employer Costs for

Employee Compensation10 says on 1.8 percent of total compensation can be contributed to

nonproduction bonuses on average, while it is 1.4 percent of total compensation.11 This

suggests nonproduction bonuses are small and not cyclical. Also, Grigsby, Hurst, and

Yildirmaz (2019) use payroll data from ADP and show median hourly workers earn 2.2

percent of annual gross earnings other than base wages from 2009 to 2016. This suggests

base wages are the main source of earnings for hourly workers. In addition, they find the

size and the frequency of bonus are acyclical.

One disadvantage of the CPS is that it is difficult to define job stayers and job switchers.

8https://www.bls.gov/opub/reports/minimum-wage/archive/characteristics-of-minimum-wage-workers-
2014.pdf.

9Table A1 in the appendix shows the imputation ratio for usual weekly earning and hourly wage.
10https://www.bls.gov/news.release/archives/ecec_03192019.pdf
11https://www.bls.gov/news.release/archives/ecec_03142012.pdf
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Although the CPS provides the variable to inform whether the respondent is employed by

the same employer from the last month since 1994, this variable is missing in the MIS5 after

8 months break of the interview. Thus, it is difficult to define job stayers in the CPS. For

example, if the respondent has switched jobs during the 8-month break period, for example

in the calendar month 5, and stayed at the same job since then, he/she would respond

as being employed by the same employer for MIS6-8. This respondent is likely to be

identified as a job stayer from MIS4 to MIS8, although he/she is a job switcher. Therefore,

this chapter does not distinguish job stayers from job switchers for the empirical analysis

using the CPS.

This chapter considers only workers above the age of 16. Self-employed workers and

workers whose earnings are top-coded or imputed are also dropped. The average number

of observations is 15,418 per year. The time series number of observations is available in

the appendix Table A2.

1.3.2 Survey of Income and Program Participation

The SIPP12 is a U.S. household survey conducted by the U.S. Census Bureau. Each panel

consists of approximately 14,000 to 52,000 households, and the interview is conducted

every 4 months over 3 or 4 years. Longitudinal weights provided by the SIPP are used to

aggregate data at the national level. This chapter uses thirteen panels: 1984, 1985, 1986,

1987, 1988, 1990, 1991, 1992, 1993, 1996, 2001, 2004, and 2008. The sample period is

from 1984 to 2012.

The main objective is the annual hourly wage growth rate for each hourly rated worker.

Although wages for each worker are available from the SIPP at a monthly frequency13,

12Data can be downloaded from http://www.nber.org/data/survey-of-income-and-program-participation-
sipp-data.html .

13Each individual is required to provide monthly wages for the prior 4 months at the time of the interview;
therefore, monthly wages are available. However, due to seam bias, this chapter uses wages only from the

12

http://www.nber.org/data/survey-of-income-and-program-participation-sipp-data.html
http://www.nber.org/data/survey-of-income-and-program-participation-sipp-data.html


this chapter studies the annual hourly wage growth rate since the hazard of a nominal

wage change is highest at 12 months after a wage change (Barattieri, Basu, and Gottschalk

(2014)). Similar to the CPS, this chapter focuses on hourly rated workers who report the

hourly rate directly to the survey in order to eliminate errors from the imputation of the

hourly pay rate for salaried workers.14

There are advantages of using the SIPP. First, the SIPP provides the unique individual

identifiers so we can match individuals across waves without an additional process. Second,

the SIPP keeps track of movers, while the address-based CPS does not follow movers in

the sample. Third, the SIPP provides the unique and consistent job IDs across waves for

each job that the respondent had, whereas the CPS does not offer them. Since job IDs are

allocated based on a respondent’s employer information in the SIPP, I define job stayers

as employer stayers.15 Job switchers are the ones who reported to work for the different

employers in any given year, regardless of jobless spell between employer switching. One

disadvantage of SIPP data is that the time series data are discontinuous because of gaps

between the panels. Thus, state-level analysis is more reliable than the aggregate time

series analysis in the SIPP.

The average number of observations in the SIPP is 13,937 per year, which is smaller but

comparable to the CPS sample size.16 In the SIPP, 55 percent of workers are hourly rated.

reference month.
14The SIPP uses a specific questionnaire to ask whether survey respondents are paid by the hour for the

main jobs. For workers who are paid by the hour, the SIPP questions for the regular hourly pay rate at that
job from the specific employer. SIPP has introduced the dependent interviewing procedure to improve data
quality since 2004 (Moore (2006)). That is, if respondents indicated the hourly wage is “the same as the last
interview”, the hourly wage at the current interview is filled by the one from the last interview.

15After the major revision of survey design in 1996, if the respondent was not employed for the entire 4
months for the reference period of the interview, then job ID will be renewed at the next interview. Thus,
even if this respondent works for the same employer after the jobless spell, the job ID can be different. This
issue is raised by Fujita and Moscarini (2017) and I corrected this problem using the method followed by
Fujita and Moscarini (2017). For the panel 1990 - 1993, I used the revised job IDs.

16The original sample size of the CPS is much larger than that of the SIP; however, the CPS collects only
2 wage data for individuals for the whole interview. Therefore, the sample size of the SIPP is comparable to
that of the CPS.
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On average, 71 percent of them are job stayers. The time series number of observations is

available from Table A13, and the number of job stayers and job switchers are available

from Table A14 in the appendix.

1.4 Asymmetric nominal wage change distribution

This section examines year-over-year nominal hourly wage change distribution for each

year from 1979 to 2017 using the CPS (section 1.4.1) and from 1984 to 2013 using the

SIPP (section 1.4.2). Nominal wage change distributions show a large spike at zero, that is,

a large share of workers experience exact zero wage changes in a given year. In addition,

these distributions are highly asymmetric: there are fewer wage cuts than raises. This is

consistent with the findings in a strand of earlier literature that argues for the existence of

downward nominal wage rigidity; Kahn (1997); Card and Hyslop (1996); Lebow, Sacks,

and Anne (2003); Barattieri, Basu, and Gottschalk (2014); Elsby, Shin, and Solon (2016);

Fallick, Lettau, and Wascher (2016).

1.4.1 Nominal wage change distribution: CPS

I plot the distribution of log nominal hourly wage changes of hourly rated workers for each

year from 1979 to 2017 using the CPS data. The following characteristics appear common

to all nominal wage change distributions: 1) there is a large spike at zero, and 2) there

are fewer wage cuts than raises. As an example, Figure 1.1 shows the distribution for the

year, 2009-2010. We can clearly observe an apparent spike at zero, which is shown in red,

defined as the percentage of hourly rated workers whose annual hourly wage growth rate is

exactly zero. In other words, the spike at zero represents the share of hourly workers who

report the exact same hourly wages in interviews one year apart. The width of all the blue
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bins is 0.02, except for the two bins at the very ends. From the smaller sizes of the blue

bins to the left of zero, it is clear that the distribution contains fewer wage cuts than raises.

I provide some context for Figure 1.1. In 2010, the unemployment rate was highest at

9.7 percent after the onset of the Great Recession, and the inflation rate was 1.6 percent.

Even with massive excess labor supply in the economy, 21.1 percent of the hourly rated

workers experienced zero wage changes from 2009 to 2010, represented as the large spike

at zero. The median hourly wage growth rate was 1.7 percent, and more than half of the

hourly rated workers had raises higher than the inflation rate. Overall, 54.2 percent of

hourly rated workers had raises, and only 24.6 percent of the hourly rated workers had

wage cuts; that is, there were many more raises than wage cuts in 2010 despite high

unemployment and low inflation. Many researchers have interpreted the asymmetry and

the spike of zero in the wage change distribution as suggestive of downward nominal wage

rigidity. Notably, focusing on the two bins right next to the spike at zero, one observes a

discontinuous drop in density approaching from the left compared to approaching from

the right. Kahn (1997) interpreted the spike at zero as a “pile-up” of workers, who

without downward nominal wage rigidity, would have had negative nominal wage changes.

Similarly, Card and Hyslop (1996) stated that the spike at zero is mostly from “swept-up”

workers, who would have been part of the bins to the left of zero if not for downward

nominal wage rigidity. Hence the drop in density to the left of zero has been also interpreted

as being consistent with the existence of downward nominal wage rigidity.

Figure A1 and A2 in the appendix show similar distributions for each year from 1979

to 2017. Similarly to the figure for 2010, all nominal wage change distributions have large

spikes at zero and more raises than cuts for the entire sample period. This suggests that

nominal wage change distributions are consistent with existence of downward nominal

wage rigidity for the entire sample period, 1979 - 2017.

To further exploit cyclical properties of nominal wage change distributions, I focus on
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 Hourly Paid Workers, CPS, 2010
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Figure 1.1: Year-over-year nominal hourly wage growth rates in 2010

Data source: CPS and author’s calculation. The bin size is 0.02. The red bin shows the spike at zero, which
represents the percentage of workers whose year-over-year nominal hourly wage growth rate is exactly zero
from 2009 to 2010. The bin to the right of the zero represents the share of workers whose log nominal hourly
wage differences are strictly greater than zero and lower than 0.02, and so on. The bin to the very right
includes all the workers whose log nominal hourly wage differences are greater than 0.5, and the bin to the
very left includes all the workers whose hourly wage growth rates are less than -0.5. The size of the spike
at zero in 2010 is 21 percent and the median nominal hourly wage growth rate in 2010 is 1.7 percent. 24.6
percent of hourly workers had wage cuts and 54.2 percent of workers had raises.

three statistics from the distributions: the spike at zero (the share of workers with no wage

changes), the share with wage cuts, and the share with raises. Table 1.2 reports the averages

of these three statistics across the sample years. On average, 15 percent of hourly workers

had exact zero hourly wage changes, 21 percent of them had wage cuts, and 64 percent had

raises. Excluding minimum wage workers17 only has a marginal effect on these average

estimates.

17Workers whose hourly wages are lower than the state’s minimum wage in either previous or current
year are dropped. Vaghul and Zipperer (2016) document the monthly state-level minimum wage from 1973
to 2016. To extend the data set to 2017, I use https://www.dol.gov/whd/state/stateMinWageHis.htm.

16

https://www.dol.gov/whd/state/stateMinWageHis.htm


Table 1.2: Descriptive statistics by worker charcteristic, CPS

% of all % of hourly Spike at zero Fraction of Fraction of
workers workers ∆W = 0 ∆W < 0 ∆W > 0

Hourly paid workers 15.25 21.13 63.63
Exc. Minimum wage workers 15.10 20.64 64.26

Male 52.17 49.25 15.17 22.15 62.69
Female 47.83 50.75 15.32 20.09 64.59

16 <= age <40 47.39 53.13 13.95 20.83 65.22
40 <= age <64 49.01 42.98 15.94 21.68 62.38

White 84.48 85.13 15.36 20.57 64.07
Non-white 15.52 14.87 14.62 24.39 60.99

High School or less 44.24 58.50 15.75 21.49 62.76
College or more 55.76 41.50 14.46 20.65 64.88

No union coverage 81.72 80.31 16.84 21.42 61.74
Union coverage 18.28 19.69 11.73 22.19 66.07

Data source: CPS and author’s calculation. Sample Period: 1979-2017 (except 1995). This table shows the sample
average of spike at zero and the fraction of workers with wage cuts and raises over time by worker characteristics.

Nominal hourly wage change distributions do not show significant heterogeneity by

worker characteristics. Table 1.2 reports descriptive statistics by worker characteristics.

As I only focus on hourly workers, there is some sample selection: female workers, young

workers, and less educated workers are overrepresented. However, calculating the averages

of the three statistics for different subsets of workers results in similar estimates.

Table 1.3: Nominal hourly wage change distribution, CPS,
by hourly wage quartiles

Hourly wage Spike at zero Fraction of Fraction of
Quartiles ∆W = 0 ∆W < 0 ∆W > 0
25th below 20.85 31.70 47.45
25th to Med 15.48 20.77 63.75
Med to 75th 13.29 18.09 68.62
75th and above 12.83 16.65 70.52

Data source: CPS and author’s calculation. Sample Period: 1979-
2017 (except 1995). This table shows the sample average of the
spike at zero and the fraction of workers with wage cuts and raises
over time by hourly wage quartiles.

On the contrary, nominal hourly wage change distributions exhibits heterogeneity by
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hourly wage level and industry. Table 1.3 reports the averages for the same three statistics

for the subsets of workers at different hourly wage quartiles. Workers in a lower hourly

wage quartile tend to show a larger spike at zero and a larger share with wage cuts,

compared to those in a higher hourly wage quartile. Table A3 in the appendix reports the

averages calculated separately for the workers in each 2-digit NAICS industry code. The

rows are sorted by the average size the spike at zero. The average size of the spike at zero

varies from 11 percent to 23 percent. The biggest industry in terms of the number of hourly

workers is manufacturing, and the average size of the spike at zero for manufacturing is

around 14 percent, which is comparable to the national average.

1.4.2 Nominal wage change distribution: SIPP

Conducting the above analysis with the SIPP data from 1984 to 2013 results in very similar

findings. Figure A4 in the appendix shows nominal hourly wage change distributions for

hourly workers for each year in the sample period.18 All the distributions are asymmetric

with a large spike at zero.

Table 1.4 is similar to Table 1.2, reporting sample averages for the fractions of workers

with zero wage changes, wage cuts, and raises. Again, these estimates do not show

heterogeneity by worker characteristics such as gender and education - common to both

the CPS and the SIPP.

In particular, the SIPP data allows me to compare nominal wage change distributions

between job stayers and job switchers. I find that the empirical patterns suggestive of

downward nominal wage rigidity - asymmetry and the spike at zero - are more pronounced

for job stayers, but also hold for job switchers. Figure 1.2 displays nominal hourly

wage change distributions in 2010 for job stayers (left) and job switchers (right). Both

18Note that the years 1990, 1996, 2001, 2004, and 2008 are missing from the sample due to the SIPP
having gaps between panels

18



distributions display large spikes at zero, although the spike for job stayers is much larger

than the other. 19

Table 1.4: Descriptive statistics by worker characteristics, SIPP

% fo hourly Spike at zero Fraction of Fraction of
workers ∆W = 0 ∆W < 0 ∆W > 0

Hourly paid workers 24.00 17.42 58.58
Exc. Minimum wage workers 23.99 16.68 59.33

Job stayers 71.08 28.89 12.32 58.79
Job switchers 28.92 12.52 29.86 57.62

Male 49.31 24.45 18.25 57.30
Female 50.69 23.58 16.59 59.83

White 83.27 23.92 17.00 59.08
Non-white 16.73 24.31 19.62 56.07

High School or less 54.92 25.19 17.51 57.30
College or more 45.08 22.54 17.30 60.15

No union coverage 89.55 25.02 14.75 60.24
Union coverage 10.45 24.39 16.14 59.47

Data source: SIPP and author’s calculation. Sample Period: 1984-2013 (except 1990, 1996, 2001,
2004, 2008). This table shows the sample average of the spike at zero and the fraction of workers with
wage cuts and raises over time by worker characteristics.

Similarly, Table 1.4 shows that for job stayers, the average size of the spike is larger,

whereas the average share of workers with wage cuts is smaller.20 The median size of wage

growth rates for job switchers is also much larger than that for job stayers, as shown in Table

1.5.21 These comparisons between job stayers and switchers appear overall consistent with

the findings by Bils (1985) and Shin (1994), who argue that wages are more flexible for job

19Table A15 in the appendix shows the average of the spike at zero and the share of wage cuts and raises
by reasons why hourly workers switched their employer in a given year. Contingent workers or temporary
employed workers, workers on layoff, and injured or ill workers show the high average spike at zero among
job switchers.

20In fact, the spike at zero for job stayers is always higher than that for job switchers and the share of
workers with wage cuts for job stayers is always lower than that for job switchers. Table A14 shows time
series spike at zero, the share of wage cuts and increases for both job stayers and job switchers.

21Nominal hourly wage change distributions for job stayers and job switchers for the entire sample period
is available in Figure A5 and Figure A6. In addition, Table A12 shows that for both job stayers and job
switchers, workers from a lower hourly wage quartile are more likely to have no wage changes or wage cuts
than workers from a higher wage quartile.
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Figure 1.2: Nominal hourly wage distribution in 2010: job stayers vs. job switchers

Data source: SIPP and author’s calculation. The figure shows nominal hourly wage change distribution for
job stayers (left) and that for job switchers (right). The red bin shows the spike at zero, which represents the
percentage of workers whose hourly wage growth rate is precisely zero from 2009 to 2010. Other than the
red bin, bin size is 0.02. The spike at zero for job stayers is 54 percent and the spike at zero for job switchers
is 16 percent.
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Figure 1.3: Nominal hourly wage growth rate distribution in 2010

Data source: SIPP and author’s calculation. The red bin shows the spike at zero, which represents the
percentage of workers whose hourly wage growth rate is exactly zero from 2009 to 2010. Other than red bin,
bin size is 0.02. The spike at zero in 2010 is 42.2 percent and the median nominal hourly wage growth rate
in 2010 is 0 percent. 16 percents of hourly workers had wage cuts and 41 percent of workers had raises.

switchers than job stayers. However, my findings suggest job switchers’ wages may still

be downwardly rigid, albeit to a lesser extent.

Because about 71 percent of hourly workers are job stayers in the SIPP, and because

nominal hourly wage change distributions for job switchers still exhibit asymmetry and the

spike at zero - although to a lesser extent - the distributions using all workers such as Figure

1.3 exhibit strong asymmetry and a large spike at zero. This is also comparable to Figure

1.1, nominal hourly wage change distributions in 2010 using the CPS, which also includes

both job stayers and job switchers, with the former being a large share.
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Table 1.5: Median size of wage change, SIPP

Median size of ∆W Median size of ∆W
given ∆W < 0 given ∆W > 0

Job stayers -7.07 6.76
Job switchers -16.29 16.20

Source: SIPP and author’s calculation. Sample Period: 1984-2013
(except 1990, 1996, 2001, 2004, 2008).

1.5 The cyclicality of the aggregate nominal wage change

distributions

This section contains the main empirical results of the paper, namely that the spike at zero

shows greater countercyclical fluctuations compared to the share of workers with wage

cuts. Section 1.5.1 documents this pattern in the CPS data for the period 1979 to 2017 and

section 1.5.2 in the SIPP data for the period 1984 to 2013. I focus on the three aggregate

time series: the share of workers with zero wage changes (the spike at zero), the fraction

of workers with wage cuts, and the fraction of workers with raises, constructed in section

1.4 above. Table A2 of appendix A.1 reports these time series along with the number

of observations of individual hourly workers that went into constructing these summary

statistics of the nominal wage change distributions for a given year.

1.5.1 Aggregate analysis: CPS

To explore the cyclicality of the nominal wage change distributions, we could think about

the following three regression equations:

[Spike at zero]t = αs + βs(1− et) + εst

[Fraction of wage cuts]t = αn + βn(1− et) + εnt

[Fraction of raises]t = αp + βp(1− et) + εpt

, (1.1)
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where et denotes the employment to population ratio in year t. Adding the above three

equations will give us

1 = αs + αn + αp + (βs + βn + βp)(1− et) + εst + εnt + εpt,

as the sum of the three shares equals 1 by definition. Since the left-hand side of this equation

is a constant, we know that

βs + βn + βp = 0.

Thus, βp – the change in the share of workers with raises associated with the change in

1− et can be decomposed into two parts: either βs – the change in the spike at zero – or βn

– the change in the share of workers with wage cuts.

This framework allows us to study the changes in nominal wage change distributions

more comprehensively, unlike most of the earlier studies that only focused on the cyclicality

of the spike at zero.

Table 1.6: The spike at zero, the fraction of wage cuts, and raises along the business cycles

(1) (2) (3) (4) (5) (6)
Spike at zero Fraction of Fraction of Spike at zero Fraction of Fraction of

∆W = 0 ∆W < 0 ∆W > 0 ∆W = 0 ∆W < 0 ∆W > 0
1-Epop ratio 0.433 0.200 -0.632 0.616∗∗∗ 0.305∗ -0.921∗∗∗

(1− et) (0.299) (0.221) (0.498) (0.161) (0.156) (0.281)

Inflation rate, πt -1.181∗∗∗ -0.674∗∗∗ 1.855∗∗∗

(0.122) (0.145) (0.218)

0.616/0.920 = 0.67

Observations 37 37 37 37 37 37
Adjusted R2 0.0419 -0.00492 0.0313 0.727 0.331 0.703
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1979-2017 (except 1995). Inflation rate is calculated from
CPI-U. This table shows regression results from regressing the spike at zero, the fraction of workers with wage cuts,
and raises on 1-epop ratio without and with controlling for inflation. Controlling for inflation, the spike at zero exhibits
greater fluctuations compared to the share of workers with wage cuts.

Table 1.6 shows regression results based on the regression equation (1.1) without and

with controlling for inflation. During periods of high inflation, nominal wage rigidity
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would have a limited impact on real wage rigidity and thus on employment. On the

other hand, during periods of low inflation, nominal wage rigidity could potentially have a

substantial effect on employment. During my sample period, 1979 - 2017, inflation varies

from negative rates (e.g., -0.4 percent in 2009) to high rates (e.g., 12.7 percent in 1980).

Hence not controlling for inflation could understate the relationship between employment

and nominal wage changes. Indeed, in the first three columns of Table 1.6 where I do

not control for inflation, I do not find a statistically significant relationships between the

dependent variables and employment.

By contrast, when I control for inflation, I find a statistically significant relationships

between the dependent variables and employment. In particular, column (4) shows

that the spike at zero increases when employment declines. The negative correlation

between the spike at zero and employment, controlling for inflation, is consistent with

the findings by Kahn (1997); Card and Hyslop (1996) and Daly and Hobijn (2014). 22 The

countercyclicality of the spike at zero can also be seen from the figure 1.4, which plots

the spike at zero against 1 − et. We observe that the spike at zero has a countercyclical

movement in the period of low inflation. Furthermore, the spike at zero shows greater

countercyclical fluctuations compared to the share of workers with wage cuts. I find that

a 1 percentage point decline in employment is associated with 1) a 0.6 percentage point

increase in the spike at zero; 2) a 0.3 percentage point increase in the share with wage cuts;

and 3) a 0.9 percentage point decrease in the share with raises. In other words, when there

is a 1 percentage point decrease in employment, the share of workers with raises declines

by 0.9 percentage points, and mechanically, the share of workers with wage cuts or no wage

22Card and Hyslop (1996) use the sample period of high inflation from 1979 to 1993 and conclude that
the spike at zero is negatively correlated with inflation, leading them to conclude that inflation can grease the
wheels of the labor market. Daly and Hobijn (2014) use the sample period of low inflation from 1986 to 2014
and argue that the spike at zero is positively related to the unemployment rate. Different from the previous
literature, this chapter explores the cyclicality of the spike at zero as well as the share of workers with wage
cuts and raises.
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Figure 1.4: Time series of the spike at zero with 1-Epop ratio

Data source: CPS and author’s calculation. Sample period: 1979 - 2017. This figure shows the spike at zero
for each year (left axis) and the 1- employment to population ratio (right axis).

changes would increase by 0.9 percentage points. In fact, 67 percent (= 0.6/0.9) of such

increase is attributable to the share of workers with no wage changes. That is, the increase

in the spike at zero is much greater than the increase in the share that have wage cuts. 23

This pattern seems plausible given downward nominal wage rigidity. During recessions

with low inflation, the workers who may have experienced wage cuts if not for downward

nominal wage rigidity, instead would experience zero wage changes, since nominal (and

real) wages are restricted from adjusting downwards. This could lead to a larger change

in the share of workers with no wage changes associated with a decline in employment.

When employment increases and more workers experience wage increases, because a large

23Section A.1.2 from the appendix shows that there are no asymmetric responses of nominal hourly wage
change distributions to employment increases compared to decreases.
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number of workers are “piled up” at zero, the decrease in the spike at zero could be larger

than the decrease in the share of workers with wage cuts. In conclusion, I find that the spike

at zero exhibits greater countercyclicality compared to the share of workers with wage cuts,

and interpret this to be consistent with the implication of downward nominal wage rigidity.

Regarding the regressions above, one may be concerned about error of self-reported

hourly wages (Bound and Krueger (1991)); however, measurement error on the dependent

variables, orthogonal to independent variables, would not bias the coefficient estimates.

For hourly wages, we can expect largely two types of measurement errors. First, when

respondents report their hourly wages, they may report their true wages with some error.

This type of measurement error would understate the wage rigidity, the spike at zero.

Second, workers may report rounded hourly wages, and this would overstate the spike

at zero. However, these measurement errors do not vary with employment. In addition,

the fraction of imputed wages, which is available from the last column of Table A1, can

be a proxy for the degree of measurement error, and it does not exhibit cyclicality. As

measurement errors do not have a cyclical component, we can argue that measurement

errors on hourly wages do not add bias on the cyclicality of the spike at zero, the share of

workers with raises, and cuts.

In addition, my primary findings are robust to using the nominal hourly wage change

distributions of salaried workers, instead of hourly wage workers. For salaried workers,

we can compute hourly wages by dividing the usual weekly earnings by the usual weekly

hours worked.24 Table 1.7 shows regression results using imputed hourly wages for salaried

workers. We can still see that the spike at zero is negatively associated with inflation and

employment, jointly. The spike at zero shows greater association with employment than

24This imputed hourly wage can be more volatile than the actual hourly wage due to measurement error
in hours worked for salaried workers. The average of the spike at zero for salaried workers is 7.0 percent,
the average of the share of workers with wage cut for salaried workers is 34.3 percent, and the average of the
share of workers with wage increases for salaried workers is 58.8 percent.
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Table 1.7: The spike at zero, the share of wage cuts, and raises for salaried workers along
business cycles

(1) (2) (3) (4) (5) (6)
Spike at zero Fraction of Fraction of Spike at zero Fraction of Fraction of

∆W = 0 ∆W < 0 ∆W > 0 ∆W = 0 ∆W < 0 ∆W > 0
1-Epop 0.429∗∗∗ -0.0646 -0.364 0.471∗∗∗ 0.0535 -0.524∗∗

(1− et) (0.0805) (0.240) (0.308) (0.0539) (0.165) (0.196)

Inflation rate, πt -0.278∗∗∗ -0.782∗∗∗ 1.060∗∗∗

(0.0322) (0.122) (0.132)

0.472/0.524 = 0.9

Observations 36 36 36 36 36 36
Adjusted R2 0.416 -0.0269 0.0224 0.656 0.430 0.601
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1979-2017 (except 1994, 1995). Inflation rate is calculated
from CPI-U. Hourly rate is calculated from usual weekly earning/usual hours worked per week. Controlling for inflation,
the spike at zero exhibits countercylical fluctuations in employment while the share of workers with wage cuts does not
respond to employment.

the share of workers with wage cuts, and in fact, the share of salaried workers with wage

cuts is not significantly associated with employment.

The primary results are also robust to looking at subgroups of workers by worker

characteristics such as gender, age, race, and education. These robustness checks are

available in section A.1.2 of the appendix. For example, low-paid young workers, who

are less likely to be in a long-term contract, also show the main empirical findings on the

cyclicality of nominal wage change distribution. I define low-paid young workers as hourly

workers whose ages are less than 30 and hourly pay rates are less than the 25th percentile of

hourly wages for each year and greater than the minimum wage. These workers constitute

about 6 percent of the overall sample. They exhibit a sizable, and in fact, a greater spike

at zero than the overall sample and also show a higher share of workers with wage cuts.25

Table 1.8 shows that low-paid young workers still show a similar cyclical pattern of nominal

wage change distribution as the overall sample. Controlling for inflation, I find that a

25The average spike at zero for low-paid young workers is 18.7 percent, and the average share of workers
with wage cuts is 32.3 percent over the period from 1979 to 2017. Both of them are greater than the overall
sample averages, 15.2 percent, and 21.1 percent, respectively.
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1 percentage point decline in employment is associated with 1) a 0.9 percentage point

increase in the spike at zero; 2) a 0.8 percentage point increase in the share of workers with

wage cuts; and 3) a 1.7 percentage point decrease in the share of workers with raises. This

can be suggestive evidence that nominal wages are also rigid for those workers without a

long-term contract.

Table 1.8: The spike at zero, the fraction of wage cuts, and raises for low-paid young
workers along the business cycles

(1) (2) (3) (4) (5) (6)
Spike at zero Fraction of Fraction of Spike at zero Fraction of Fraction of

∆W = 0 ∆W < 0 ∆W > 0 ∆W = 0 ∆W < 0 ∆W > 0
1-Epop ratio 0.693∗ 0.772∗ -1.465∗∗ 0.899∗∗∗ 0.844∗ -1.743∗∗∗

(1− et) (0.324) (0.373) (0.526) (0.188) (0.363) (0.402)

Inflation rate, πt -1.325∗∗∗ -0.468 1.794∗∗

(0.101) (0.466) (0.517)

0.899/1.743 = 0.5

Observations 37 37 37 37 37 37
Adjusted R2 0.104 0.0892 0.159 0.739 0.121 0.516
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1979-2017 (except 1995). Inflation rate is calculated from
CPI-U. The spike at zero, the share of workers with raises and cuts come from the annual nominal hourly wage growth
distribution of low-paid young workers, who are younger than the age of 30 and earn less than equal to the 25 percentile
of hourly wages for each year and greater than the minimum wages.

1.5.2 Aggregate analysis: SIPP

To analyze the cyclicality of nominal wage change distributions using the SIPP data, I

construct the same three aggregate time series using three different samples: all workers,

only job stayers and only job switchers. Table A13 in the appendix reports the spike at zero

and the fraction of workers with wage cuts and raises for all hourly workers for each year.

From this aggregate time series, we can see a sudden increase in the level of the spike at

zero in 2005 and accordingly sudden decreases in the share of workers with wage cuts and

raises. This is due to the introduction of the new survey design to 2004 panel and after – the
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dependent interviewing procedure. That is, if hourly workers mention that s/he is paid by

the same as the last interview, the hourly pay rate at the current interview is automatically

filled by the one from the last interview. Table A14 reports the time series of the three

statistics for job stayers and job switchers. Similarly, there is also a sudden jump in the

level of the spike at zero for job stayers in 2005 for the same reason.

I replicate the analysis using the regression specification (1.1). Unlike the CPS, the

SIPP does not have rotating panels and there are discontinuities between panels. To control

for heterogeneity across panels, for instance, the change in the survey design, panel fixed

effects are included.26 In Table 1.9, the first three columns report results for all hourly

workers, column (4) ~ (6) are for job stayers, and the last three columns are for job

switchers.

The results from the first three columns of Table 1.9 show that the spike at zero increases

when employment declines and the spike at zero fluctuates more than the fraction with wage

cuts, which is consistent with the results using the CPS.

The spike at zero of job stayers appears to respond to employment more than the spike

at zero of job switchers does. However, I still find that the spike at zero of job switchers

have countercyclical fluctuations. This implies that the cyclical property of nominal wage

change distributions for all hourly workers are not solely driven by job stayers. If the greater

association between the spike at zero and employment, compared to that of the share with

wage cuts and employment, is due to downward nominal wage rigidity, then this analysis

with the SIPP suggests that nominal wages are still rigid for job switchers, and more rigid

for job stayers.

This contrasts with some of the findings in previous literature. I compare my method

with those in the earlier studies, and discuss the potential reasons for the differences in

26Overall, 5 panel fixed effects are included. One for every panel before 1996 panel and dummies for
1996, 2001, 2004, and 2008 panel. There are 24 observations but 8 regressors.
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Table 1.9: The spike at zero, the fraction of wage cuts and raises - job stayers vs. job
switchers, SIPP

All hourly paid workers

(1) (2) (3)
Spike at Fraction of Fraction of

zero ∆W < 0 ∆W > 0
1 - Epop 1.794∗∗∗ -0.437 -1.357∗∗∗

(1− et) (0.386) (0.270) (0.438)

Inflation rate, πt 0.0405 -0.753∗∗∗ 0.713∗

(0.312) (0.213) (0.391)

Panel Fixed Effect Yes Yes Yes

1.794/1.357=1.32

Observations 24 24 24
Adjusted R2 0.982 0.762 0.970

Job stayers Job switchers

(1) (2) (3) (4) (5) (6)
Spike at Fraction of Fraction of Spike at Fraction of Fraction of

zero ∆W < 0 ∆W > 0 zero ∆W < 0 ∆W > 0
1 - Epop 2.186∗∗∗ -0.369 -1.817∗∗∗ 1.234∗ -0.383 -0.851
(1− et) (0.720) (0.353) (0.550) (0.590) (0.629) (0.678)

Inflation rate, πt 0.288 -0.856∗∗∗ 0.568 -0.218 -0.677 0.895∗

(0.357) (0.220) (0.447) (0.351) (0.574) (0.499)

Panel Fixed Effect Yes Yes Yes Yes Yes Yes

2.186/1.817=1.20 1.234/0.851 = 1.45

Observations 24 24 24 24 24 24
Adjusted R2 0.985 0.877 0.975 0.644 0.567 0.810
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Source: SIPP and author’s calculation. Sample Period: 1984-2013 (except 1990, 1996, 2001,
2004, 2008). Sample includes hourly paid workers in the United Sates. The three columns
in the first panel include all hourly paid workers. The first three columns in the second panel
include only job stayers, and last 3 columns in the second panel include only job switchers.
The spike at zero shows greater association with employment than the share of workers with
wage cuts for both job stayers and job switchers.
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findings in section A.1.3 of appendix.

1.6 The cyclicality of state-level nominal wage change

distributions

In this section, I validate the above results using the state-level data. This allows me to use

more observations to examine the relationship between employment, inflation and nominal

wage changes distribution, controlling for state and year fixed effects. To explore the

cyclicality of state-level nominal hourly wage change distributions, I now construct the

following statistics for each state: the share of workers with zero year-over-year changes

in hourly wages (the spike at zero), the share of workers with wage cuts and the share of

workers with raises. The state-level data analysis leads to similar findings as the aggregate

data analysis. I interpret these results to be consistent with downward nominal wage

rigidity, and contrast them with the arguments from a recent study by Beraja, Hurst, and

Ospina (2016).

1.6.1 State-level analysis of the cyclicality of nominal wage change

distribution: CPS

Similarly to the regression equations (1.1) in the aggregate analysis, we can think of the

following state-level regression equations:

[Spike at zero]it = αi,s + γt,s + βs(1− eit) + εit,s

[Fraction of wage cuts]it = αi,n + γt,n + βn(1− eit) + εit,n

[Fraction of raises]it = αi,p + γt,p + βp(1− eit) + εit,p

, (1.2)
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where eit is the employment to population ratio for each state i (i = 1, · · · , 48) and time t.

αi (αi,s, αi,n, and αi,p) capture state fixed effects, γt (γt,s, γt,n, and γt,p) absorb time fixed

effects. State fixed effects control for state-specific differential time trends. Time fixed

effects control for the factors that are common across states for each year such as monetary

policy or aggregate inflation. As shown in section 1.5, controlling for inflation is important

for obtaining a statistically significant relationship between employment and the share of

workers with zero year-over-year wage changes. I estimate these equations using data from

50 states for the years 1979-2017 (except 1985, 1986, 1995, and 1996).27

Table 1.10: The spike at zero, the fraction of wage cuts and raises
across states

(1) (2) (3)
Fraction of Fraction of

Spike at zero ∆W < 0 ∆W > 0
1 - Epop 0.383∗∗∗ 0.292∗∗∗ -0.675∗∗∗

(1− eit) (0.0792) (0.0642) (0.0865)

State fixed Effect, αi Yes Yes Yes

Time Fixed Effect, γi Yes Yes Yes

0.383/0.674 = 0.57

Observations 1700 1700 1700
Adjusted R2 0.606 0.537 0.712
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1980-2017
(except 1985, 1986, 1995, and 1996 due to small sample sizes). The sample
consists of 50 states over 34 years. The state-level spike at zero, the share
of workers with wage cuts and raies are regressed on the state-level 1-epop
ratio with both state and time fixed effects.

Table 1.10 shows the regression results using the regression specification (1.1),

exploiting state-level variations. It shows that a 1 percentage point decrease in employment

27These 4 years are dropped due to small sample size.
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is associated with 1) an increase in the spike at zero by 0.38 percentage point, 2) an increase

in the share of workers with a wage cut by 0.29 percentage point, and mechanically 3) a

decrease in the share of workers with raises by 0.67 percentage point. In other words, when

employment declines by 1 percentage point, the share of workers with raises also declines,

and 57 percent (=0.38/0.67) of this change is attributed to the change in the share of workers

with zero wage changes. The higher responsiveness of the spike at zero compared to the

fraction of workers with wage cuts in the cross-section of U.S. states implies that state-level

cyclical variations in nominal wage change distributions are still consistent with the results

obtained in section 1.5 for time variations in data for the U.S. as a whole.

The point estimate of the excess responsiveness of the spike at zero compared to that of

the share of workers with wage cuts is slightly smaller, in the state-level analysis than in the

aggregate analysis. This is likely because time fixed effects absorb all aggregate variations

and the state-level analysis only exploits the deviations from state-specific averages and

time-specific aggregate averages.

1.6.2 State-level analysis: job stayers versus job switchers

Table 1.11 shows regression results based on the equation (1.2) using the SIPP, controlling

for both time and state fixed effects. Time fixed effects control for aggregate factors

common across states for each year such as the change in the survey design in 2004.

The first three columns include all hourly workers, the next three columns include only

job stayers, and the last three columns are for job switchers. State-level regression results

using all hourly workers in the SIPP also show higher responsiveness of the spike at zero

than the share of workers with wage cuts.

The pattern - greater countercyclicality of the spike at zero than the share of workers

with wage cuts - holds for both job stayers and job switchers. Job stayers show higher
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Table 1.11: The spike at zero, the fraction of wage cuts and raises - job-stayers vs. job-
switchers across states, SIPP

All hourly paid workers

(1) (2) (3)
Spike at Fraction of Fraction of

zero ∆W < 0 ∆W > 0
1 - Epop 0.407∗∗∗ 0.0989 -0.506∗∗∗

(1− eit) (0.101) (0.0767) (0.111)

State fixed effect Yes Yes Yes

Time fixed effect Yes Yes Yes

0.407/0.506=0.80

Observations 855 855 855
Adjusted R2 0.842 0.341 0.783

Job stayers Job switchers

(1) (2) (3) (4) (5) (6)
Spike at Fraction of Fraction of Spike at Fraction of Fraction of

zero ∆W < 0 ∆W > 0 zero ∆W < 0 ∆W > 0
1 - Epop 0.489∗∗∗ 0.121 -0.610∗∗∗ 0.348∗∗∗ 0.124 -0.471∗∗

(1− eit) (0.123) (0.0789) (0.121) (0.101) (0.176) (0.182)

State fixed effect Yes Yes Yes Yes Yes Yes

Time fixed effect Yes Yes Yes Yes Yes Yes

0.489/0.610=0.80 0.348/0.471= 0.74

Observations 855 855 855 855 855 855
Adjusted R2 0.871 0.499 0.814 0.171 0.0608 0.148
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: SIPP and author’s calculation. Sample Period: 1984-2013 (except 1990, 1996,
2001, 2004, 2008). Geographical unit: States in US. Several small states are dropped due
to small sample sizes. Overall 43 states. 36 states for 21 years. 7 states for 20 years. The
three columns in the first panel include all hourly paid workers. The first three columns in
the second panel include only job stayers, and last 3 columns in the second panel include
only job switchers. The spike at zero shows greater association with employment than the
share of workers with wage cuts for both job stayers and job switchers.
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responsiveness of the spike at zero than job switchers, but the pattern still holds for job

switchers as well. This again shows that job stayers are not the sole ones driving the results

in the aggregate analysis, but the wages of job switchers also exhibit patterns consistent

with downward nominal wage rigidity.

1.6.3 The Great Recession of 2007 - 2010

In a recent study, Beraja, Hurst, and Ospina (2016) (BHO, hereafter) argue that wages

were “fairly flexible” during the Great Recession. These authors show that nominal wage

growth rates were strongly and positively correlated with employment growth rates across

states during the Great Recession. This finding is represented in the top panel of Figure

1.5, which plots the percentage change in the median nominal wage growth rate against

the percentage change in employment from 2007 to 2010 for each state. This figure uses

CPS data to replicate Figure 3 of of BHO. The difference between the wage data used in

the study of BHO and my study is these authors compute the composition adjusted average

nominal wage for each state every year using the American Community Survey (ACS), as

the ACS does not have a panel structure.28 The figure shows that a state with a higher fall in

employment also has a lower wage growth rate. Based on this, BHO argue that wages were

fairly flexible since nominal wage growth rates were responding to changes in employment.

In the bottom panel of Figure 1.5, I present a similar plot, but using the spike at zero

on the y-axis instead. That is, I plot the percentage changes in the spike at zero against

the percentage changes in employment from 2007 to 2010 for each state. This plot shows

that the changes in the spike at zero are negatively correlated with changes in employment

for the same time period. In other words, a state with a higher fall in employment had a

higher increase in the spike at zero; more workers experienced downwardly rigid wages in

28The sample consists of men between the ages of 21 and 55 with a strong attachment to the labor market
only.
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Figure 1.5: Nominal wage growth rates and changes in the spike at zero vs. employment
growth from 2007 to 2010

Data source: CPS and author’s calculation. The top panel shows the median nominal wage growth versus
employment growth rates from 2007 to 2010 across states. The bottom panel shows the changes in the spike
at zero versus employment growth from 2007 to 2010 across states. From 2007 to 2010, the annualized
inflation rate was 1.7 percent, and the cumulative inflation was 5 percent.
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Table 1.12: Changes in nominal wage distribution from 2007 to 2010 across
states

(1) (2) (3) (4)
Changes in Changes in Changes in

Spike at zero Fraction of Fraction of
∆W = 0 ∆W < 0 ∆W > 0 ln Ws2010

Ws2007

Percentage change -0.690∗∗ -0.215 0.904∗∗ 0.429∗∗∗

in the employment (0.269) (0.321) (0.397) (0.136)

0.690/0.904 = 0.76

Observations 50 50 50 50
Adjusted R2 0.103 -0.0103 0.0695 0.186
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 2007 - 2010. This table
shows changes in nominal wage change distributions along with employment for each
state from 2007 - 2010.

the states that had greater declines in employment.

I corroborate this finding by estimating the following regression equations for 2007-

2010:

∆[Spike at zero]i = αs + βs∆ei + εi,s

∆[Fraction of wage cuts]i = αn + βn∆ei + εi,n

∆[Fraction of raises]i = αp + βp∆ei + εi,p

lnWi2010 − lnWi2007 = α + β∆ei + εi

, (1.3)

where ∆ei is the difference in the employment to population ratio from 2007 to 2010 in a

state i. Table 1.12 shows regression results based on the equation (1.3). A 1 percentage

point decrease in employment in a state is associated with 1) an increase in the size of spike

at zero by 0.7 percentage points, 2) an increase in the share of workers with wage cuts by

0.2 percentage points, and 3) a decrease in the fraction with raises by 0.9 percentage points.

We again see that the responsiveness of the spike at zero is larger than the responsiveness

of the share with wage cuts, which is consistent with the findings reported earlier in table
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1.6 for time series data and table 1.10 for cross-sectional data.

This result is still compatible with BHO’s empirical finding, shown in the last column

of Table 1.12: the positive correlation with nominal wage growth rates and changes in

employment. This is because a state with a larger decline in employment is likely to also

have a higher increase in the share of workers with wage cuts, leading to a overall drop in

nominal wage growth rates. However, this is also accompanied by a much larger increase

in the spike at zero. Thus, I argue that the finding by BHO does not contradict the existence

of downward nominal wage rigidity.

1.6.4 The recession of 1979 - 1982

Table 1.13: Changes in nominal wage distribution from 1979 to 1982 across
states

(1) (2) (3) (4)
Changes in Changes in Changes in

Spike at zero Fraction of Fraction of
∆W = 0 ∆W < 0 ∆W > 0 ln Ws1982

Ws1979

Percentage changes -0.374 0.163 0.211 0.607∗∗

in the employment (0.487) (0.333) (0.678) (0.281)

Observations 50 50 50 50
Adjusted R2 0.00407 -0.0148 -0.0166 0.0715
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1979 - 1982. This table
shows changes in nominal wage change distributions along with employment for each
state from 1979 - 1982.
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Figure 1.6: Nominal wage growth and changes in the spike at zero vs. employment growth
from 1979 to 1982

Data source: CPS and author’s calcuation. The top panel shows the median nominal wage growth with
respect to employment growth rates from 1979 to 1982 across states. The bottom panel shows the change in
the spike at zero with respect to employment growth from 1979 to 1982 across states. From 1979 to 1982,
the average of annualized inflation rate was 9.5 percent and the cumulative inflation was 28.5 percent.

39



The Great Recession 2007 - 2010, was a period of relatively low inflation. Thus, it

is a period in which downward nominal wage rigidity resulted in downward real wage

rigidity, and hence reallocative effects on employment. One way to check whether nominal

wages, as opposed to real wages, are downwardly rigid is to perform the same analysis just

performed for the low inflation recession of 2007 - 2010 for a high inflation recession. In

what follows I will consider the recession of 1979 - 1982,29 because it was a deep recession

– similar in size to the 2007 - 2010 recession, and inflation was high – the aggregate price

level grew by 29 percent between 1979 and 1982. What we should see then under the

hypothesis that nominal wages, as opposed to real wages, are downwardly rigid, in that

there is no significant relationship in the cross-section of US states between employment

changes and changes in the share of workers getting a zero wage change.

The top panel of Figure 1.6 shows state-level median nominal wage growth rates with

respect to changes in employment across states from 1979 to 1982, and the bottom panel

of Figure 1.6 shows changes in the spike at zero versus employment growth rates across

states for the same period. Although median nominal wage growth rates show strong

positive relationship with employment growth rates shown in the top panel of Figure 1.6,

we cannot find the distinctive relationships between the changes in the spike at zero and

changes in employment. Table 1.13 shows the regression results of changes in nominal

wage change distributions on employment, confirming what we have seen from Figure 1.6,

when the average inflation rate is high. This shows rigid nominal wages do not matter for

the employment during the period of high inflation; it is about nominal wage rigidity, not

real wage rigidity.

29Based on NBER recession dates, there were two recessions: January 1980 - July 1980 and July 1981 -
November 1982.
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1.7 Conclusion

I document the cyclical properties of nominal wage change distributions of individual

workers. To construct nominal wage change distributions of individual workers, I use two

nationally representative US household survey, the current population survey (CPS, 1979

– 2017) and the survey of income and program participation (SIPP, 1984 – 2014), which

includes multiple business cycles.

As both data sets have panel features, I can plot the distribution of individual worker’s

year-over-year changes in nominal hourly wages for hourly workers for each year. One

notable thing from the distributions is a large spike at exact zero, meaning that a huge

fraction of workers has no wage changes from one year to another, and many more raises

than cuts. This asymmetry of the nominal wage distributions with a spike at zero has been

suggested in the literature to argue the existence of downward nominal wage rigidity.

This chapter contributes to the literature by documenting cyclical properties of nominal

wage change distributions in a relation to employment and inflation. In a recession, when

employment decreases, 1) the share of workers with no wage changes increases, 2) the

share of workers with wage cuts also increases, and 3) the former is much larger than the

latter, which is new empirical finding in the literature. In other words, in a recession, the

increase in the share of workers with no wage change is double the increase in the share of

workers with wage cuts. So in a recession, among those workers not having wage increases,

two thirds of them would pile up at zero and a few of them have wage cuts.
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Chapter 2

Theories of nominal wage rigidity

2.1 Introduction

The sluggish adjustment of nominal variables is key to understanding how demand shocks

propagate in the economy, such as monetary shocks. In terms of product price rigidity,

there is a large body of literature documenting the frequency and size of price changes

using micro-level price data and theory incorporating microdata evidence. However, when

it comes to wage rigidity, the theory of wage setting is still ad-hoc due to the lack of well-

established facts regarding wage rigidity. Thus, this chapter asks which models with wage-

setting schemes are able to match stylized facts documented in chapter 1 using micro-level

wage data.

In this chapter, I build heterogeneous agent models with 5 alternative wage-

setting schemes widely discussed in the literature - perfectly flexible, Calvo, long-

term contracts, menu costs, and downward nominal wage rigidity. The models present

not only idiosyncratic labor productivity uncertainty but also aggregate uncertainty.

Using numerical methods, I characterize the year-over-year wage change distributions of

individual workers implied by each model and study how they change with aggregate
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employment.

I find that, except for the perfectly flexible model, all the other models can predict a

stationary wage change distribution with a spike at zero. However, the time-dependent

models – Calvo and long-term contracts – fail to generate the countercyclical movement

of the spike at zero. The Calvo model assumes to have the size of the spike at zero stay

constant over the business cycle. Similarly, long-term contract model followed by Basu

and House (2016) predicts constant spike at zero along the business cycle. A long-term

contract is designed in a way that if a worker signs a long-term contract, then this worker

is paid by the same contracted wage over the contract. Thus, the share of workers in an

ongoing long-term contract determines the size of spike at zero, which induces the constant

spike at zero. This contradicts the empirical finding documented in chapter 1 – the spike at

zero increases in a recession.

On the other hand, the state-dependent models – both menu costs and downward

nominal wage rigidity – can generate the countercyclical spike at zero. However, according

to the menu cost model, the share of workers with wage cuts shows greater responsiveness

than the share of workers with no wage changes, which contradicts the last empirical

regularity, shown in chapter 1. In a recession, the optimal wage changes distribution in

the absence of wage rigidity shifts to the left, more workers want to lower their wages

optimally, due to an aggregate negative shock. This leads to an increase in the share of

workers with wage cuts. In the menu costs model, only for those whose optimal wage

change is close to zero decide not to change their wage due to a fixed cost, which becomes

the part of the spike at zero. Thus, there is more increase in workers with wage cuts

compared to workers having no wage change when employment declines, which is not

consistent with the empirical finding , namely, the spike at zero fluctuates more than the

share of workers with wage cuts.

Thus, among these alternative wage-setting schemes, I conclude the model with
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downward nominal wage rigidity is the most consistent with my new stylized fact - in a

recession, the number of workers with zero wage changes increases more than the number

of workers with wage cuts. In a recession, there are more workers who want to lower

their wages optimally due to a negative aggregate shock. In the model with downward

nominal wage rigidity, among those workers who want to lower their wages optimally,

only a constant fraction of workers can lower their wage, and the other fraction of workers

are not able to lower their wages. This leads to more increase in the spike at zero than the

share of workers with wage cuts.

The remainder of the paper is organized as follows. Section 2.3 builds heterogeneous

agent models with 5 alternative wage-setting schemes, equipped with both aggregate and

idiosyncratic shocks. Section 2.4 compares numerical predictions from 5 those wage-

setting schemes to the empirical findings. Section 2.5 concludes and discusses future work.

2.2 Related literature

This chapter is related to the theoretical literature on nominal wage rigidity. Schmitt-Grohé

and Uribe (2016) build a representative agent model with downward nominal wage rigidity.

In this model, nominal wages cannot decrease by more than a fixed fraction. This model

predicts the spike at that fixed negative wage growth rate during the recession and no spike

during the boom. Although only predicting discrete effect of downward nominal wage

rigidity, this model implies that downward nominal wage rigidity is more binding during

the recession.

Fagan and Messina (2009) use a heterogeneous agent model with downward nominal

wage rigidity and show that the implied stationary wage change distribution is similar to

the empirical nominal wage change distribution: a spike at zero and fewer wage cuts than

wage increases. Their model has only idiosyncratic shocks. To generate the stationary
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distribution similar to the empirical distribution, they impose 3 different menu-costs: one

for raises, one for cuts, and one for when wage growth rate is smaller than inflation.

Daly and Hobijn (2014) build a heterogeneous agent model with either perfectly flexible

wages or downward nominal wage rigidity, and they compare the stationary distributions

implied by the two models. After a one-time negative aggregate shock, they also find the

spike at zero increases for the model with downward nominal wage rigidity. However,

they do not consider the share of workers with wage cuts but only focus on the size of

the spike at zero. Mineyama (2018) presents a heterogeneous agent model with downward

nominal wage rigidity, equipped with both idiosyncratic and aggregate shocks. The model

by Mineyama (2018) generates the countercyclical spike at zero; however, this paper also

does not consider the changes in the share of wage cuts. Mineyama (2018) argues that

downward nominal wage rigidity is helpful for explaining the observed flattening of the

Philips curve during the Great Recession.

My theoretical analysis contributes to this literature by building models with all of the

following components: (1) heterogeneous agents; (2) both idiosyncratic uncertainty and

aggregate uncertainty; (3) 5 alternative wage-setting schemes - perfectly flexible, Calvo,

long-term contracts, menu costs, and downward nominal wage rigidity. I compare the

predictions of these models not only for the cyclical movement of the spike at zero but also

for the share of workers with wage cuts, in order to provide a comprehensive analysis.

2.3 Five alternative models of wage rigidity with

heterogeneous agents

In this section, I build heterogeneous agent models with both idiosyncratic and aggregate

shocks, imposing 5 alternative wage-setting schemes - perfectly flexible, Calvo, long-term
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contracts, menu-costs, and downward wage rigidity model. A representative firm uses

aggregate labor to produce output. The firm’s profit maximization problem gives the

labor demand function for each differenitated labor. Households supply heterogeneous

labor determined by idiosyncratic labor productivity, and set nominal wages subject to

labor demand and wage-setting constraints. The basic set up of the model is derived from

Erceg, Henderson, and Levin (2000). Daly and Hobijn (2014); Mineyama (2018) introduce

heterogeneous disutility of labor supply, and Fagan and Messina (2009) adds idiosyncratic

labor productivity shocks to the basic model of Erceg, Henderson, and Levin (2000). The

basic wage-setting mechanism of heterogeneous labor in this chapter is derived from Fagan

and Messina (2009).

2.3.1 Firm

There is a representative firm, which produces consumption goods using aggregate labor.

The firm has a constant returns to scale production function in aggregate labor, which is,

Yt = Lt,

where Lt represents the aggregate labor. The profit function of the firm is

Πt = PtYt −WtLt,

where Pt is the price of goods and Wt is the aggregate nominal wage in the economy.

There is no product price rigidity, and the firm’s profit will be redistributed to households.

The firm’s problem to maximize profits is equivalent to minimize the cost of labor. Hence,

the firm chooses differentiated labor lt(i), indexed by i ∈ [0, 1], to minimize the total

production cost

min
lt(i)

∫
Wt(i)lt(i)di (s.t.) Lt = (

∫ 1

0
(qt(i)lt(i))

θ−1
θ di),
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given Wt(i) is nominal wage for each individual i and qt(i) is idiosyncratic productivity

for i. The problem of minimizing the cost of labor gives the labor demand function by the

firm,

ldt (i) = qt(i)θ−1(Wt(i)
Wt

)−θLt, θ > 1,

where θ governs the elasticity of substitution across differentiated labor. The quantity of

labor demand increases in the level of productivity and decreases in the relative wage. The

aggregate wage Wt is given by the Dixit-Stiglitz aggregate wage index,

Wt =
 ∫ [

Wt(i)
qt(i)

]1−θ
di

 1
1−θ

.

2.3.2 Households

There is a continuum of households, indexed by i ∈ [0, 1], and each household chooses

the consumption, saving, nominal wage, and labor supply to maximize life-time utility

subject to intertemporal budget constraint, the labor demand function, and a wage-

setting constraint. Assume households have an additively separable preference between

consumption and labor supply, similar to Erceg, Henderson, and Levin (2000).

Each household chooses the {Ct(i), Bt+1(i),Wt(i), lt(i)} to maximize

max
{Ct(i),Bt+1(i),Wt(i),lt(i)}

EtΣ∞t=0β
t

Ct(i)1−γ

1− γ − 1
1 + ψ

lt(i)1+ψ


subject to

PtCt(i) +Qt+1Bt+1(i) ≤Bt(i) +Wt(i)lt(i) + Πt

ldt (i) =qt(i)θ−1(Wt(i)
Wt

)−θLt,

Wage setting constraint

given with {Pt, Qt+1,Πt, B0(i), Lt}. Pt is the price level of consumption goods. Each

household saves by Bt+1(i) and Qt+1 represents the risk-free price of 1unit of good for the
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next period. γ is the relative risk aversion parameter and ψ is the inverse Frisch elasticity

parameter. There are complete contingent asset markets so that idiosyncratic labor income

is fully insured and the household consumes the exactly same amount. However, the

amount of leisure is not insured so that the level of utility is lower for those who worked

more.

The Lagrangian of the households problem is given by

L = EtΣ∞t=0β
t

 Ct(i)1−γ

1−γ − ω
ψ+1 lt(i)

1+ψ

+λt(i)[Bt(i) +Wt(i)lt(i) + Πt − PtCt(i)−Qt+1Bt+1(i)]

+µt(i)[qt(i)θ−1(Wt(i)
Wt

)−θLt − lt(i)]

+θt(i)[Wage-setting constraint]



(2.1)

The first-order conditions with respect to Ct(i) and Bt+1(i) are

Ct(i)−γ = λt(i)Pt,

λt(i)Qt+1 = βEtλt+1(i),

respectively. As consumption risks are fully insured by complete state contingent asset

markets, we can rewrite the first order conditions as follows.

λt(i) = λt = C−γt
Pt

Qt+1 = βEt

 Pt
Pt+1

Ct+1

Ct

−γ
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2.3.3 Five wage-setting restrictions

As the household utility is additively separable, we can isolate the wage relevant part of the

Lagrangian (2.1) and households choose the wageWt(i) and labor supply lt(i) to maximize

max
{Wt(i),lt(i)}

EtΣ∞t=0β
t
{
λt(i)Wt(i)lt(i)− ω

lt(i)1+ψ

1 + ψ

}
(s.t.) ldt (i) = qt(i)θ−1(Wt(i)

Wt
)−θLt (2.2)

Wage-setting constraint

this chapter introduces five alternative wage-setting schemes.The first is that a perfectly

flexible case in which there is no wage-setting constraint.

Second, consider Calvo wage rigidity, assuming only a constant fraction of workers can

optimize wages. This is the most commonly used wage-setting mechanism for nominal

rigidity.1 Followed by Calvo (1983), wage setters cannot optimize their wages with the

constant probability of µCalvo, regardless of the state of the economy. The Calvo wage-

setting constraint can be rewritten as following,

Wt(i) =


Wt−1(i) ,with the prob µCalvo

W ∗
t (i) ,with the prob (1− µCalvo)

, where W ∗
t (i) is the optimal wage, nominal wage that maximizes the equation (2.2) in the

absence of wage-setting constraint in a period t.

Third, consider a long-term contract model. As workers are often in a long-term

contract with the firm, the present discounted value of expected nominal wages over the

contract is important to determine employment rather than the remitted wages or observed

wages in each point of time. This is often called Barro’s critique (Barro (1977)) or

efficiency-wage theory. To address this concern by Barro (1977), Basu and House (2016)

introduced long-term contracts in a New Keyensian model in which firms pay the same

nominal wages (remitted wages) over the contract. In this model, there are two notions

1Erceg, Henderson, and Levin (2000); Christiano, Eichenbaum, and Evans (2005); Smets and Wouters
(2007), and so on
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of wages: allocative wages and remitted wages. Allocative wages determine the level of

employment and remitted wages are the one that the firm actually remits to the workers.

Firms calculate allocative wages under the perfectly flexible case and find the remitted

wages of which present discounted value is the same as the present discounted value of

allocative wages over the contract. Following by Basu and House (2016), the remitted

wages for each i type of labor, xt(i) can be determined as follows.

Et[Σ∞j=0[β(1− s)]j λt+j
λt

wt+j(i)] = Et[Σ∞j=0[β(1− s)]j λt+j
λt

xt(i)]

xt(i) =
Et[Σ∞j=0[β(1− s)]j λt+j

λt
wt+j(i)]

Et[Σ∞j=0[β(1− s)]j λt+j
λt

]
,

where s is the probability of renewing the contract.

Fourth, consider the menu-costs model of wage rigidity, motivated by the empirical

evidence that changes in nominal wage change distribution is state-dependent. In the

context of wage-setting model, we may imagine the cost involved in changes in wages.

For example, whenever the wage setters want to change their wages, they have to pay an

additional cost of bargaining to bring them to the bargaining table. Wage setters must pay

menu-costs to change their wage with the probability of µMenu. With the other probability

of 1 − µMenu, wage setters can freely change their wage. The model with random menu-

cost in the price rigidity literature (Alvarez, Le Bihan, and Lippi (2016)) to explain small

changes in prices. This can be summarized as follows.

Wt(i) =




W ∗
t (i) if W ∗

t (i) 6= Wt−1(i), pays cost K

Wt−1(i) No cost
,with the prob of µMenu

W ∗
t (i) ,with the prob of (1-µMenu)

The fifth wage-setting scheme is the downward nominal wage rigidity model. If the

optimal wage in a period t, W ∗
t (i), maximizing the equation (2.2) in the absence of wage-

setting constraint in a period t, is higher than the previous wage, Wt−1(i), then the current

50



wage can be the optimal wage, Wt(i) = W ∗
t (i). There is no explicit restriction to raise the

current nominal wage. However, if the optimal wage in a period t , W ∗
t (i), is lower than

the previous wage, Wt−1(i), then wage setter cannot lower wage with the probability of

µDNWR. With the other probability of (1−µDNWR), wage setters can lower wages optimally.

This wage-setting restriction can be summarized, as follows.

if W ∗
t (i) ≥ Wt−1(i)

{
Wt(i) = W ∗

t (i)

if W ∗
t (i) < Wt−1(i)


Wt(i) = Wt−1(i) ,with the prob µDNWR

Wt(i) = W ∗
t (i) ,with the prob (1− µDNWR)

Although there is no explicit restriction on raising nominal wages, there is an implicit

restriction on raising nominal wages, as the wage setters solve the intertemporal problem.

When wage setters find the optimal to increase their wage, they do not increase as much as

they want to maximize current utility because they understand that they cannot lower their

wages with the probability of µDNWR in the future. This is pointed out by Elsby (2009) and

Mineyama (2018).

2.3.4 Closing the market

The goods market clearing condition is

Yt = Ct.

In the economy, nominal output equals to the total wage payment in the economy, which is

the same as total money supply in the economy, as follows.

PtYt = PtCt = WtLt = Mt,

where Mt is the aggregate money supply. Monetary authority uses nominal output growth

rate targeting rule, given by

ln(Mt+1) = µ+ ln(Mt) + ηt+1 ηt+1 ∼ N(0, σ2
η), (2.3)
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where µ is the average growth of nominal output. Idiosyncratic productivity shock follows

AR(1) process as following:

ln(qt+1(i)) = ρq ln(qt(i)) + εt+1(i), εt+1(i) ∼ N(0, σ2
ε ).

2.3.5 Value function

We can write down households’ wage-setting problem in a recursive way. Note that the

value function is a function of the relative wage rather than both individual wage and

aggregate wage, which allows us to reduce one dimension of the problem, followed by

Nakamura and Steinsson (2008).

Under Calvo wage rigidity, wage setters can optimize their wage with probability (1−

µCalvo) regardless of the sign of wage change. To introduce randomness, one more state

variable, xt, a binary variable, is added. Once xt equals 1 with the probability of (1−µCalvo),

wage setters can reoptimze their wage. The recursive problem under the Calvo rigidity can

be written as follows:

V (qt(i), Lt, Wt−1(i)
Wt

, xt)

= maxWt(i)

[
H(qt(i), Lt, Wt(i)

Wt
) + βE(V (qt+1(i), Lt+1,

Wt(i)
Wt+1

, xt+1))
]
I(xt = 1)

+ maxWt(i)

[
H(qt(i), Lt, Wt−1(i)

Wt
)− C × I(Wt(i) 6= Wt−1(i))

+βE(V (qt+1(i), Lt+1,
Wt−1(i)
Wt+1

, xt+1))
]
I(xt = 0)

, where C >∞ and

H(qt(i), Lt,
wt(i)
Wt

) = qt(i)θ−1(wt(i)
Wt

)1−θL
(1−γ)
t − ω

[qt(i)θ−1(wt(i)
Wt

)−θLt]1+ψ

1 + ψ
,

which can be derived from substituting labor demand into the current objective function

in the equation, (2.2). When xt is one, wage setters adjust nominal wages freely, whereas

wage setters must pay infinite cost of wage adjustment when xt equals to zero.
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For the menu-costs model, wage setters have to pay an additional fixed cost, K, to

adjust their wage with the probability of µMenu, when xt equals to zero. With the other

probability of (1 − µMenu), wage setters can adjust wages without any cost. The recursive

problem with menu costs can be written as follows:

V (qt(i), Lt, Wt−1(i)
Wt

, xt)

= maxWt(i)

[
H(qt(i), Lt, Wt(i)

Wt
) + βE(V (qt+1(i), Lt+1,

Wt(i)
Wt+1

, xt+1))
]
I(xt = 1)

+ maxWt(i)

[
H(qt(i), Lt, Wt(i)

Wt
)−KI(Wt(i) 6= Wt−1(i))

+βE(V (qt+1(i), Lt+1,
Wt(i)
Wt+1

, xt+1))
]
I(xt = 0).

Under the downward nominal wage rigidity, wage setter’s problem is

V (qt(i), Lt, Wt−1(i)
Wt

, xt)

= maxWt(i)

[
H(qt(i), Lt, Wt(i)

Wt
)I(Wt(i)

Wt
> Wt−1(i)

Wt
) + βE(V (qt+1(i), Lt+1,

Wt(i)
Wt+1

, xt+1))
]

+ maxWt(i)

[
H(qt(i), Lt, Wt(i)

Wt
)

+βE(V (qt+1(i), Lt+1,
Wt(i)
Wt+1

, xt+1))
]
I(Wt(i)

Wt
≤ Wt−1(i)

Wt
)I(xt = 1)

+
[
H(qt(i), Lt, Wt−1(i)

Wt
) + βE(V (qt+1(i), Lt+1,

Wt−1(i)
Wt+1

, xt+1))
]
I(Wt(i)

Wt
≤ Wt−1(i)

Wt
)I(xt = 0).

If the current optimal wage is higher than the previous wage, wage setters can raise the

nominal wages. However, if the current optimal wage is lower than the previous wage,

wage setters can adjust downwardly only if xt equals to 1, with the probability of (1 −

µDNWR). So, if xt equals to zero with probability of µDNWR, current wage (Wt(i)) is set to

be previous wage (Wt−1(i)).
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2.4 Numerical results

As the model has both idiosyncratic shock and aggregate shock, I solve the model

numerically. This sections starts to explain calibrated parameters and solution methods.

This section shows the stationary nominal wage change distribution and cyclical properties

of nominal wage change distributions from five alternative wage-setting schemes.

This chapter shows only downward nominal wage rigidity model exhibits consistent

implications with empirical distributions. Finally, this chapter compares data moments

to moments predicted by the model.

2.4.1 Calibration

Table 2.1 shows calibrated parameters. Parameters in the top panel show parameters related

to preference. The relative risk aversion parameter, γ, is 1, which implies the intertemporal

elasticity of substitution as 1. The discount rate β is 0.97, which implies a steady-state

annual real interest rate is 3 percent. ψ = 0.5 is the inverse of Frisch elasticity, which is in a

permissible range of macro literature shown in Chetty, Guren, Manoli, and Weber (2011).

Different from earlier parameters, there is no consensus regarding the wage elasticity of

labor demand, θ. θ varies from 1.67 to 21 from the previous theory literature.2 This chapter

sets θ to be 3, which implies steady state markup 1.5, followed by Smets and Wouters

(2007). Recent paper by De Loecker and Eeckhout (2017) mention that the average markup

in 1980 was 1.18 and started to rise and it becomes 1.67 in 2014.

The second panel of Table 2.1 shows the parameters governing shock processes in the

economy. Since the nominal output is total wage payment in the model, this chapter uses

2Erceg et al. (2000) set θ at 4. Christiano et al. (2005) set θ at 21. Smets and Wouters (2007) set wage
markup at 1.5, which implies θ being 3. Daly and Hobijn (2014) set θ at 2.5. The model from the Daly and
Hobijn (2014) has homogeneous differentiated labor but households have different disutility from the labor
supply. Fagan and Messina (2009) used θ = 11

12 . Mineyama (2018) used θ at 9, which makes the steady state
wage mark up 12.5 percent
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total wage payment3 to estimate the aggregate shock process, given by the equation (2.3).

I estimated the constant growth rate (µ) and the standard deviation from the growth rate

of the total wage payment. Parameters related to idiosyncratic productivity are from the

Guvenen (2009). Guvenen (2009) decompose individual labor earnings into nonstationary

and stationary components using more than 20 years of individual labor earnings data

from PSID. For the individual labor productivity shock in this chapter, I use the stationary

process of labor earnings from Guvenen (2009), allowing heterogeneity growth rate of

income.4

The last panel of Table 2.1 shows parameters governing the degree of wage rigidity. The

probability that workers constrained not to adjust their wages downwardly, µDNWR, comes

from Table 1.6, aggregate evidence using the CPS. Among households whose optimal

wages are lower than the previous wages, only 33 percent of them can lower current wages

at the optimal level. Other 67 percent of workers cannot lower wages if the optimal wages

are below the previous wages. Therefore, µ sets to be 0.67. Other than downward nominal

wage rigidity wage-setting, µCalvofrom Calvo model, s from long-term contracts model, and

µMenu and K from menu costs model, are set to have the same size of the spike at zero at

the steady-state level of the spike at zero under the downward nominal wage rigidity.

2.4.2 Solution methods

This chapter solves the recursive problem using the policy function iteration over the

discretized state space. Wage setter’s problem is infinite dimensional as they have to

take into account the entire wage and productivity distribution. Followed by Krusell and

Smith (1998), this chapter assumes agents use only partial information, the first and second

3The total wage payment is defined as the median weekly earning (Series ID: LEU0252881500) times
the number of people at work (CPS series LNU02005053). Source: https://www.bls.gov/data

4Table 1 row(4) from Guvenen (2009). HIP (heterogeneity income process) after assuming σβ 6= 0
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Table 2.1: Calibrated Parameters

Parameters Value Description Target/Source

γ 1 Relative Risk Aversion
β 0.971 Discount rate Annual interest rate, 3%
ψ 0.5 Inverse of Frisch elasticity
θ 3 Elasticity of substitution

µ 0.044 Mean level of aggregate shock Total wage payment
σm 0.021 Standard deviation of aggregate shock
ρq 0.821 Persistence of idiosyncratic shock Guvenen (2009)
σq 0.17 Standard deviation of idiosyncratic shock Guvenen (2009)

µDNWR 0.67 The probability of DNWR The cyclicality of DNWR
µCalvo 0.22 The frequency of no wage change

Matching the spike
at zero, implied by
DNWR model

µMenu cost 0.8 The probability of facing menu cost
K 0.002 Menu cost
s 0.23 The probability of continuing contract

Time unit is a year.

moments of the distribution, to predict the law of motion of the aggregate wage growth. I

choose the simple parametric function for the aggregate wage growth rate, as follows.

Wt+1 = H(Wt,Mt+1)

ln(Wt+1

Wt

) = H(ln(Mt+1

Wt

)) = γ0 + γ1 ln Mt+1

Wt

+ γ2(ln Mt+1

Wt

)2 (2.4)

Parameters, γ0, γ1, and γ2, are estimated by regressing the realized wage inflation on

the aggregate state variables. Starting from the initial guess, the algorithm is iterated until

the predicted wage inflation gets close enough to the realized wage inflation. The detailed

algorithm is followed by Heer and Maussner (2009), which is available in the appendix

B.1. Krusell and Smith (1998) reported R2 to check the accuracy of the predicted law of

motion and Den Haan (2010) argue that the maximum forecast error should be reported.

R2 is higher than 0.98 5 and the maximum forecast error is less than 0.1 percent.

5R2,Flex = 0.99, R2,Calvo = 0.98, R2,Menu = 0.99, and R2,DNWR = 0.98.
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2.4.3 Stationary wage change distribution

Figure 2.1 shows the stationary nominal wage change distributions generated from 5

alternative wage-setting schemes. The red bar represents the fraction of workers with

exact zero wage changes and the width of the blue bar is 0.01. The top left panel shows

the stationary wage change distribution under the perfectly flexible case. It is symmetric

around the median and there is no spike at zero.

The Calvo model generates the spike at zero but the symmetric stationary wage change

distribution. The second left panel of Figure 2.1 shows the stationary wage change

distribution generated by Calvo model. We can observe the spike at zero, which is shown

as the red bar. The frequency of wage adjustment from the Calvo model is assumed to be

constant over the business cycle, so does the frequency of no wage change. However, we

cannot find the asymmetry of nominal wage distribution - lack of wage cuts compared to

raises. Instead, the stationary distribution is symmetric around the median, excluding the

spike at zero. We can imagine one variant of the Calvo model in which the frequency of

wage adjustment is stochastic, responding to the business cycle. In this way, we may be

able to generate the countercyclical spike at zero, but we cannot generate the asymmetric

wage distribution: fewer wage cuts than raises.

The long-term contract wage-setting generates the spike at zero but symmetric

stationary wage change distribution. The second right panel of Figure 2.1 shows the

remitted wage change distribution from the long-term contract under the perfect foresight.

Allocated wages come from the perfectly flexible model, so its implications on employment

should be the same as the perfectly flexible model. However, the stationary wage

distribution has the spike at zero and is symmetric around the median, which is similar

to the one from the Calvo model, which is again inconsistent with empirical findings.

Menu-costs of wage adjustment generates the spike at zero, but there is no
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Figure 2.1: Staionary wage change distribution from 5 different wage-setting schemes

Stationary distribution generated by 5 alternative wage-setting schemes are drawn. The red bar represents the
percentage of workers with no wage change and the size of the blue bin is 0.01. The top left panel is from a
perfectly flexible case. The second row is from the Calvo model (left) and long-term contracts model (right).
The bottom panel is from the menu-costs model (left) and downward nominal wage rigidity (right).
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discontinuous drop in the stationary distribution approaching to zero from the left compared

to approaching from the right. The stationary wage change distribution from the menu-

costs model is shown at the bottom left panel of Figure 2.1. As wage setters must pay an

additional fixed cost for any changes in wages, wage setters decide to change their wages

only when the current wages are significantly different from the optimal wages. Hence, the

size of wage change is big and there are not many small wage changes compared to the

Calvo model. Under the positive inflation, the optimal nominal wage change distribution

has always higher densities above zero than below zero. Therefore, more portion of the

spike at zero comes from the right to the zero rather than the left to the zero, which leads to

the lack of raises compared to wage cuts. This is inconsistent with empirical nominal wage

change distribution, shown in the section 1.4.

The downward nominal wage rigidity wage restriction generates a spike at zero and

a sudden drop in below zero compared to above zero from the stationary nominal wage

change distribution. The bottom right panel of Figure 2.1 displays nominal wage change

distribution under the downward nominal wage rigidity model. We can observe the spike

at zero. Furthermore, it is asymmetric - fewer wage cuts than raises, and there is a sudden

drop in the below zero compared to the above zero. Therefore, we can conclude that only

model with downward nominal wage rigidity among 5 wage-setting schemes generates the

stationary distribution, consistent with empirical findings.

2.4.4 The cyclicality of wage change distribution

This section runs the main regression (1.1) using simulated data from 5 alternative wage-

setting schemes to see which model has consistent implications on cyclicality patterns

of nominal wage change distributions: 1) the spike at zero increases when employment

declines and 2) the increase in the spike at zero is higher than the increase in the fraction
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Table 2.2: The spike at zero, the fraction of wage cuts, and raises along business cycles

(1) (2) (3)
Spike at zero Fraction of Fraction of

∆W = 0 ∆W < 0 ∆W > 0
Data

Employment -0.616 -0.305 0.921
Inflation -1.181 -0.674 1.855

Perfectly flexible

Employment -0.042 -0.414 0.456
Inflation -0.042 -4.476 4.519

Calvo

Employment 0.089 -0.553 0.465
Inflation -0.192 -3.919 4.111

Long-term contracts

Employment 0.005 -0.424 0.419
Inflation -0.018 -4.207 4.225

Menu costs

Employment -0.187 -0.329 0.516
Inflation -1.623 -3.452 5.074

DNWR

Employment -0.712 -0.329 1.041
Inflation -3.699 -1.772 5.470

Data source: CPS and author’s calculation. Sample Period: 1979-
2017 (except 1995). The inflation rate is calculated from CPI-U.
The first panel is from data, last three columns of table 1.6. This
table (from the second panel to the last one) shows the regression
results based on the equation (1.1) using simulated data series
under 5 alternative wage-setting schemes.
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Figure 2.2: Conceptual wage change distribution from alternative wage-setting schemes

This figure shows conceptual nominal wage change distributions under Calvo, menu costs, and DNWR wage-
setting restriction. Upon the business cycle, nominal wage change distribution in the absence of rigidity shifts
right or left in a boom or a recession, respectively. Calvo rigidity implies the constant spike at zero along the
business cycle. Menu costs model implies the countercyclical spike at zero, but more fraction of the spike at
zero comes from workers otherwise would have positive wage growth. DNWR implies the countercyclical
spike at zero and the increase in the spike at zero is higher than the increase in the fraction of workers with
wage cuts when employment declines.
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of wage cuts when employment declines. Table 2.2 illustrates the regression results from

the data and the models. The first panel of the table shows the cyclicality of nominal wage

change distributions from national level analysis, which is shown at the last three columns

of Table 1.6 from the section 1.5.1.

Nominal wage change distributions in the model shift left or right along the business

cycle under a perfectly flexible wage model. The second panel of Table 1.6 shows

regression results using simulated data series under the perfectly flexible wage setting.

After controlling inflation, we can see that the increase in the fraction of workers with

wage cuts is almost the same as the decrease in the fraction of workers with raises when

employment declines without changing the spike at zero, which is inconsistent with the

empirical findings.

The Calvo model presents the constant spike at zero along the business cycle. The

third panel of Table 1.6 shows regression results using simulated data under the Calvo

model. The spike at zero barely responds to employment because the Calvo wage

adjustment assumes the spike at zero, the frequency of no wage change, does not respond

to the business cycle. Thus, we can observe a small coefficient of the spike at zero on

employment. The conceptual diagram of changes in wage distributions under the Calvo

model is shown at the first panel of Figure 2.2. Along the business cycle, the optimal

nominal wage changes distribution shifts left or right. When employment declines, nominal

wage change distribution shifts to the left and the fraction of workers with raises declines,

leading to the increase in the fraction of workers with wage cuts to the same extent without

any impact on the spike at zero. This is inconsistent with empirical findint that the spike at

zero is countercyclical and the greater responsiveness of the spike at zero than the share of

workers with wage cuts.

The long-term contracts model also shows the constant spike at zero along the business

cycle similar to the Calvo model. The fourth panel of Table 1.6 shows regression results
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using simulated data implied by the long-term contracts model. The decrease in the fraction

of workers with raises leads to the increase in the fraction of workers with wage cuts by

the same magnitude when employment declines. This is again inconsistent with empirical

findings.

The spike at zero implied by menu costs model responds to the employment, as the

menu costs model is state-dependent. The fifth panel of Table 1.6 shows regression results

using simulated data under the menu costs model. The spike at zero rises when employment

declines. Intuitively, nominal wage distribution in the absence of rigidity will shift to

the left in the recession, shown at the second panel of Figure 2.2. Then, there are more

densities around the zero, that is, there are more densities in the inaction region, and this

will increase the size of the spike at zero since fixed menu costs will be incurred to any

changes in nominal wage with the probability of µMenu. While the whole optimal wage

change distribution shifts to the left during a recession, only a certain fraction of worker’s

wages in the inaction region, whose optimal wages are close enough to the previous wages,

do not change, which adds the size of the spike at zero. This leads to higher responsiveness

of the share of workers with wage cuts compared to the spike at zero, which is inconsistent

with empirical evidence.6

The downward nominal wage rigidity model implies the spike at zero rises and the

increase in the spike at zero is higher than the increase in the fraction of workers with wage

cuts when employment declines, consistent with the empirical finding. The last panel of

Table 1.6 shows regression results using simulated data under the downward nominal wage

rigidity model. In the downward nominal wage rigidity model, when there is a decrease

6In the menu cost model, two parameters, µMenu and the fixed cost,κ, are calibrated to match the average
spike at zero implied by DNWR model. Thus, we cannot uniquely pin down these parameters. Holding
the average spike at zero fixed, Table B1 in the Appendix B.2.1 shows that menu cost model implies higher
responsiveness of the share of workers with wage cuts than the spike at zero by varying µMenu from 0.3 to 1.
As µMenu increases, the fixed cost, κ, decreases, so does inaction region. In the random menu cost model, the
spike at zero is the proportion of the inaction region. The proportion is determined by µMenu and the size of
inaction region is determined by κ.
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in employment by 1 percentage point, there is a decrease in the fraction of workers with

raises by 1 percentage point. Out of 1 percentage point, 0.7 percentage point of workers

have no wage change, and the other 0.3 percentage point of workers have wage cuts,

which is comparable to the first panel of Table 1.6. In the recession, nominal wage change

distribution in the absence of wage rigidity shifts to the left as shown in the third panel of

Figure 2.2. Under the downward nominal wage rigidity wage-setting constraint, 67 percent

(= µDNWR) of workers whose optimal wages are lower than the previous wages experience

no wage changes, and the other 37 percent of worker cut their wages. In the recession,

there are more workers whose optimal wages are lower than the previous wages, and this

leads to an increase in the spike at zero larger than the increase in the fraction of workers

with wage cuts.

2.4.5 Data moments

Table 2.3 shows empirical moments and moments from 5 alternative wage-setting schemes.

To compare moments across the model, wage rigidity parameters are calibrated to have the

similar level of the spike at zero, the frequency of no wage change. Sluggish adjustment

in nominal wages results in real effects of monetary policy on employment, which can be

measured by the standard deviation of employment growth rates.

Let’s compare moments generated by the Calvo model to the long-term contracts model

and menu costs-model, shown in the third, fourth, and the fifth panel of Table 2.3. The

average spike at zero and the fraction of wage cuts and raises are comparable, and it is

designed to be comparable by calibration. However, their implications on the standard

deviation of employment growth rates are different.

The volatility of the employment from the Calvo model, the degree of monetary

nonneutrality, is almost double of the long-term contracts or menu-costs model. The
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Table 2.3: Data and model generated moments

Wage Employment Spike at zero Fraction of Fraction of
growth rates growth rates ∆W = 0 ∆W < 0 ∆W > 0

Data

Mean 4.102 0.020 15.484 21.318 63.198
SD 1.539 0.792 3.059 2.436 4.686
Skewness 1.032 -1.492

Perfectly flexible

Mean 4.374 0.000 1.822 27.013 71.165
SD 2.068 0.476 3.220 9.710 9.790
Skewness 0.094 -0.000 - - -

Calvo

Mean 4.378 0.000 23.171 17.626 59.203
SD 1.529 1.051 1.703 6.663 6.905
Skewness 0.006 0.032 - - -

Long-term contracts

Mean 4.363 0.001 22.994 15.944 61.062
SD 1.403 0.476 0.603 6.128 6.151
Skewness 0.051 -0.003 - - -

Menu costs

Mean 4.374 0.000 23.085 17.332 59.583
SD 2.069 0.503 3.625 7.351 10.616
Skewness 0.073 -0.019 - - -

DNWR

Mean 4.382 0.000 23.025 10.530 66.445
SD 1.645 0.812 6.820 3.219 9.901
Skewness 0.320 -0.061 - - -

Data source: CPS and author’s calculation. Sample Period: 1979-2017 (except 1995). Wage
growth rate is average of the median hourly wage growth rate for hourly paid workers from 1979-
2017. The model generated moments are calculated from the simulated data under 5 different
wage setting schemes.
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standard deviation of employment growth rates from long-term contracts model is much

smaller than the one from the Calvo model because allocative wages from perfectly flexible

model determine employment, but not remitted wages.

Even if the fraction of wage adjustments from the menu-costs model is similar to the

one from the Calvo model, the standard deviation of employment growth from menu costs

model is smaller than the one from the Calvo model due to selection effects, noted by

Caplin and Spulber (1987) and Golosov and Lucas (2007). For the menu costs model,

only those workers whose current wages are far away from the optimal wages would want

to change their wages after paying an additional fixed cost incurred to change in wages.

Workers willing to pay a fixed cost to change their wages, they would want to change their

wages by a large amount, which leads to a smaller effect on employment from aggregate

uncertainty.

The spike at zero from the downward nominal wage rigidity model is similar to the

other rigidity model. However, the fraction of wage cut is smaller and the fraction of

raises is higher than other rigidity model as a result of the downward nominal wage rigidity

restriction. The standard deviation from the downward nominal wage rigidity model is in

between that the once from the Calvo and menu costs model. Compared to the Calvo model,

the standard deviation of the downward nominal wage rigidity model is lower because

downward nominal wage rigidity has restrictions only to lower wages but not to raise.

However, the downward nominal wage rigidity model shows many small wage changes

below zero, which makes the standard deviation higher than the menu cost model. As

wage adjustment is asymmetric in the downward nominal wage rigidity model, it has an

asymmetric implication on employment. Although the downward nominal wage rigidity

model does not explain the entire left skewness of employment growth rate, only the

downward nominal wage rigidity model can explain left skewness of employment growth,

consistent with Dupraz, Nakamura, and Steinsson (2017).
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2.5 Conclusion

In the second chapter of my dissertation, I examine which models with wage-setting

schemes are able to match these stylized facts documented in chapter 1. I build

heterogeneous agent models with 5 alternative wage-setting schemes widely discussed in

the literature - perfectly flexible, Calvo, long-term contracts, menu costs, and downward

nominal wage rigidity. The models feature not only idiosyncratic shocks but also aggregate

shocks. Using numerical methods, I show the year-over-year wage change distributions of

individual workers implied by each model and study cyclical properties of them.

Among 5 widely used wage-setting schemes, I conclude the model with downward

nominal wage rigidity has the most consistent implications with empirical findings on

cyclical properties nominal wage change distributions. This can be suggestive evidence

of allocative consequences of downward nominal wage rigidity for employment.

The model with downward nominal wage rigidity predicts a distribution of annual

employment growth that is skewed to the left, which is consistent with data, whereas

the standard model predicts a symmetric distribution. This has important implications for

monetary policy since there is a potential welfare gain in pursuing high inflation targets to

relax the downward nominal wage rigidity constraint.
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Chapter 3

The impact of e-commerce on urban

prices and welfare

with Misaki Matsumura and David Wenstein

3.1 Introduction

How has e-commerce affected prices and welfare? One of the challenges in answering this

question is that researchers typically only have short time series that do not allow them

to compare pricing dynamics before and after the advent of e-commerce. Thus, while we

can observe how the pricing dynamics of goods sold intensively online differs from those

not sold online, it is difficult to assess whether any differences arise due to the advent

of e-commerce or because of inherent differences in the pricing behavior of the goods

themselves. This issue is particularly relevant because the types of products sold intensively

online—books, clothing, electronics, and hardware—are also the types of goods that used

to be sold intensively through catalogs. Thus, evidence about different pricing dynamics for

these types of products is not necessarily evidence that e-commerce caused these pricing
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dynamics.

In order to resolve these issues, this chapter makes use of a unique Japanese data set

covering price quotes for the set of goods that make up the Japanese consumer price index

over the period 1991 to 2016 to examine the impact of the internet on Japanese prices and

welfare. We merge these data with Japanese government survey data documenting the share

of consumption expenditures occurring through each retail channel—catalog, e-commerce,

and physical store—for each of these product categories. The long time series enables us

to control for important pre-trends in the pricing dynamics of the types of goods available

from online merchants. Second, we are also able to correct for an important endogeneity

bias arising from the fact that e-commerce firms tend to enter sectors where they anticipate

high markups by using historical catalog sales as an instrument for e-commerce sales.

Following pioneering work by Goolsbee and Klenow (2018), we also find that goods

sold intensively online have significantly lower rates of price increase than goods not sold

much online. However, we differ in that we also show that this pattern was also true before

e-commerce firms entered the Japanese market. Moreover, we show that while e-commerce

appears to have increased the relative difference in goods price inflation between the two

sets of goods, an important reason for the increased differential is that the rate of price

increase of goods not sold on e-commerce platforms rose. This may reflect a mechanism

in which e-commerce eliminated low-cost physical stores, which reduced the amount of

competition faced by stores that do not compete directly with online merchants.

Second, we document that e-commerce had important impacts on rates of intercity

price differentials. Following Cavallo (2018), we argue that e-commerce is a technology

that promotes uniform pricing across locations. As such, we should expect to see the rate

of intercity price arbitrage rise for goods sold intensively online but not for goods sold

principally in physical stores. This is exactly what we observe in the data. While we find

that prior to e-commerce intercity price differentials dissipated a similar rates for the sets
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of goods that would eventually be sold online compared to goods not available online, after

the advent of the internet, we find that intercity price differentials dissipated rapidly for

goods available online but not for goods sold mostly in physical stores.

Based on our estimates of how e-commerce differentially affected the ability of

merchants to price discriminate across cities, we compute the impact of e-commerce on

Japanese welfare using the model developed in Jensen (2007). We estimate the welfare

gains due to e-commerce to be 2.9 percent of consumption expenditure in 2014. While

price arbitrage necessarily produces aggregate welfare gains in this setup, the model also

predicts that consumers in low-priced cities lose while consumers in high-priced cities gain.

This result is consistent with DellaVigna and Gentzkow (2017) who argue that uniform

regional pricing by chain stores is likely to benefit high-income locations, where demand

is likely to be more inelastic and hurt poorer consumers who benefit from the lower prices

associated with price discrimination. In Japan, we find that residents of high-income cities

benefited substantially from e-commerce, but we find negative effects for people in low-

income cities. Thus, our results support the possibility that the digital divide is an important

factor in understanding the costs and benefits of new technology.

The Jensen (2007) model has a number of potential shortcomings that we address in

the final section of the paper. First, it is a partial equilibrium model that does not take into

account how e-commerce might have affected wages and other components of marginal

cost. Second, the approach is suitable for modeling the impact of e-commerce on relative

prices, but it does not provide a framework that enables us to understand the impact of e-

commerce on welfare that might arise because it enables consumers to access new varieties

of products. As Brynjolfsson et al. (2003) and Einav et al. (2017) have argued, these variety

channels are likely to be quite important. In order to address these concerns, we also adopt

the approach developed in Arkolakis et al. (2012) to compute the general equilibrium gains

due to varieties that would have occurred if e-commerce acted like a trade technology
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that reduced the cost of purchasing products at a distance and thereby allowed consumers

purchase more varieties.

Our results for this exercise suggest that the general equilibrium gains that arise from

the main class of new trade theory models (e.g., Melitz (2003) or Eaton and Kortum (2002))

are substantially smaller than those estimated using the Jensen (2007) approach: about a

0.6 percent welfare gain. These smaller gains are surprising given that calibrated new-trade

models are hard-wired to produce welfare gains as long as e-commerce shares are non-zero.

Interestingly, despite the lower aggregate gain, we also find evidence of the digital divide

in this setup as well. Since e-commerce expenditure shares are highly correlated in Japan

with college education, we estimate that the gains due to e-commerce in a new-trade theory

setup are four times higher in cities with highly educated populations like Tokyo than in

cities with low shares of college-educated people like Akita.

3.1.1 Related Literature

Our results are related to a number of papers related to how information technology

has affected pricing and welfare. A large literature has demonstrated that information

technology serves to reduce price dispersion and promote trade. Freund and Weinhold

(2004) show that countries with more web hosts export more to each other. Jensen (2007),

Aker (2010), and Allen (2014) examine the impact of the introduction of mobile phones

on fish or agricultural markets in India, Niger, and the Philippines, and Steinwender (2018)

examines the impact of the transatlantic telegraph cables on 19th century textile prices

and exports. Our work is complementary to these papers in that we also show that e-retail

serves to reduce price dispersion. However, our work differs in focus and scope—our study

examines the role played by e-commerce in an advanced, modern economy on the prices of

hundreds of goods in physical retailers. The paper also relates to the literature on internet
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pricing. In particular, Cavallo (2017) shows that online prices and prices in physical stores

are quite similar. This fact helps motivate our assumption that local retailers with high

prices should face stiff competition from online retailers.

Our paper is also related to studies of the impact of e-commerce on welfare. Many of

these studies have focused on the gains from variety that arise as consumers can purchase

products that are not available in local stores. For example, Brynjolfsson et al. (2003)

compute the variety gains from internet book sales; Fan et al. (2018) examine the relative

variety gains in large and small Chinese cities associated with internet usage; and Einav

et al. (2017) estimate the gains from e-retail due to shopping convenience and and new

varieties. An important difference between these studies and ours is that we make use of

household survey data to measure e-commerce sales shares and control for pre-trends and

historical catalog sales.

Our paper also relates to studies of how the internet affects local markets. Goldmanis

et al. (2010) examine regional patterns in online purchase behavior change the market

structure in bookstores, travel agencies and car dealers. Goyal (2010) finds that the

introduction of internet kiosks raised soy prices in rural India. Couture et al. (2018)

conduct a randomized control trial in eight rural Chinese counties and find little effect of the

introduction of e-commerce on the local economy. Brown and Goolsbee (2002) show that

the creation of online insurance sales systems reduced the variance of insurance pricing.

Our work differs from these studies in terms of scope (the large number of different sectors

considered), the link to physical retail prices across an entire economy, and identification

strategy (the ability to examine differential rates of price convergence before and after the

advent of e-commerce).

Finally, our paper is also related to the large literature on PPP convergence regressions.

Parsley and Wei (1996) were the first to document that differences in convergence

coefficients across cities was linked to trade costs, an insight that we build upon in this

72



chapter. We estimate that intercity convergence rates for Japan pre-Rakuten are higher

than those obtained in Parsley and Wei (1996) and Cecchetti et al. (2002). These studies

found no price convergence across U.S. cities once one controlled for city fixed effects. In

contrast, we find that prior to the advent of e-commerce, the half-lives for price differentials

across Japanese cities were only 4.5 years. Our ability to better detect intercity price

convergence probably arises from the fact that Japanese CPI data is based on the sampling

of identical or extremely similar goods across cities, whereas U.S. price data is based on

similar but non-identical sets of goods across cities. Moreover, we find that after the entry

of e-commerce firms the half lives of goods sold intensively online collapsed to just a few

months whereas goods not sold much online experienced no similar change. Our approach

also builds off Bergin, Glick, and Wu (2017), who employ a similar triple difference

strategy to show that rates of price convergence across European countries increased after

joining the euro area.

The remainder of the paper is organized as follows. Section 3.2 introduces the the

estimation strategy and provides the theory for the welfare calculation. Section 1.3 presents

the data and provides some stylized facts about e-commerce suitability. Section 3.4.1

presents our results on national prices. We present our main estimates for the impact of

Rakuten on price convergence and welfare in Sections 3.4.2, 3.4.2.1, and 3.4.2.2. Section

3.4.3 presents our calibration of the new trade theory models, and Section 2.5 concludes.

3.2 Theory

In Section 3.2.1, we model the impact that e-commerce has had on interregional price

differentials and show how the decline in these differentials raises welfare in Section 3.2.2.

Estimating the impact of e-commerce on average prices and in New Trade Theory is very

straightforward following Arkolakis et al. (2012), so we will skip the theoretical discussion
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of how to do this and just deal with the estimation issues in Sections 3.4.1 and 3.4.3.

3.2.1 Estimating the Impact of the E-Retail on Price Arbitrage

We begin by defining some notation. Let pict ≡ lnPict be the log price of item i in city c

in time t. Define the ∆k operator as ∆kpict ≡ pict − pic,t−k; thus, if we set k = 1, we can

examine annual changes, but we can also examine longer differences by setting k equal to

a whole number larger than one. Let xi ∈ [0, 1] be the “e-commerce sales intensity” of a

good, where zero indicates it is not suitable for e-commerce and one indicates that it is the

most suitable good for e-retail. LetDt be an indicator variable that is one if e-commerce are

positive in period t and zero otherwise. We assume that the change in the price of any item

in a city c can be written as a standard purchasing price parity specification in which we

introduce a modification that allows the rate of price converge for goods available online to

change, i.e.,

∆kpict = αit + βct + (γ + δ1xi + δ2Dtxi) pic,t−k + εict, (3.1)

where αit is a item-time fixed effect; βct is a city-time fixed effect; γ is a parameter that

captures the rate of intercity price convergence for goods not available online; δ1 is a

parameter that captures the rate of price convergence for goods available online prior to

the entry of e-commerce firms; δ2 captures the increase in rate of price convergence for

online goods after the entry of e-commerce firms; and εict is an iid error term. We think

of this error as price shocks arising from period t local supply-and-demand conditions for

an item in a city that are not shared by all items in the city and are uncorrelated with past

prices.

In this specification, a critical parameter is the rate of convergence given by

(γ + δ1xi + δ2Dtxi), which we expect to be between −1 and 0. A value of −1 means
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that equation (3.1) collapses to pict = αit + βct + εict, and therefore the price of any item

can be decomposed into its national price (αit), a common local market premium (βct), and

an iid error term that is not persistent. In this case, any idiosyncratic price shock to a good

in a city (εict) has no impact on prices in the next period. Hence, price convergence occurs

in one period, and prices always equal their conditional mean of (αit + βct) plus a random

iid shock. At the other extreme, we have the case of where (γ + δ1xi + δ2Dtxi) = 0,

which implies that the price of that good i in city c follows a random walk with a drift term

given by (αit + βct). In intermediate cases where (γ + δ1xi + δ2Dtxi) ∈ (−1, 0) , price

differences across cities can persist for more than k years.

In our setup, we can write the approximate half-life1 of any price deviation from the

steady-state price (measured in intervals of length k) as2

Ht ≡
ln (0.5)

ln
(
1 + γ̂ + δ̂1xi + δ̂2Dtxi

) . (3.2)

As one can see from this formula, the change in the rate of convergence depends on all

of the estimated convergence parameters, therefore there is not a simple mapping from

changes in δt into rates of convergence. Thus, the impact of e-commerce on the rate of

convergence for any good i can be written as:

∆Ht ≡
ln (0.5)

ln
(
1 + γ̂ + (δ̂1 + δ̂2)xi

) − ln (0.5)
ln
(
1 + γ̂ + δ̂1xi

) . (3.3)

3.2.2 Welfare

We can use these estimates to inform us about the welfare gains from e-commerce by

using the framework developed in Jensen (2007). Jensen considered a technological

1As Goldberg and Verboven (2005) note, this formula is only correct for AR1 processes.
2The steady state price is given by the price at which setting ∆pict = 0. This price equals pic =

− (αit + βct) / (γ + δ1xi + δ2Dtxi).
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change that enabled arbitrage between a high-priced region (H) and a low-priced region

(L). This framework can easily be applied to the e-commerce context since e-commerce

firms provide a platform that enables consumers in any city to purchase goods from a large

number of retailers spread across Japan. If e-commerce enables local retailers in the low-

priced region to make ∆Q units of sales to the high-priced region, we should expect the

price in region H to fall and the price in L to rise as shown in Figure 3.1. Consumers in H

will gain (A+B), and sellers will gain (C − A), yielding a net gain of (B + C). Similarly,

in region L, consumers will lose (D + E) and sellers will gain (D − F ), yielding a net loss

of (E + F ). Overall, the welfare gain is (B + C) − (E + F ), which will necessarily be

positive in the case of linear demands with equal slopes as long as the price in H is at least

as large as the price in the region L after arbitrage (i.e., P (QH + ∆Q) ≥ P (QL −∆Q)).

One can also see this condition holds in the figure because both trapezoids (B + C) and

(E + F ) have identical bases and differ only in the heights of their parallel sides.

Figure 3.1: Welfare Gains from Arbitrage in the Jensen Model
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Jensen (2007) considered a case in which the marginal cost of supplying a market

is zero, which enabled him to compute the lengths of the parallel sides of the quasi-

trapezoids by just using the prices. When thinking about production more generally,

however, marginal costs are likely to be positive, so technically we should subtract

marginal costs from prices when computing the lengths of the parallel sides of the quasi-

trapezoids. However, as one can see from Figure3.1, if we assume constant and equal

marginal costs of production, then G = G
′ , and we can still compute the welfare gain as

(B + C +G)−
(
E + F +G

′
)

= (B + C)− (E + F ).3

In order to compute the welfare gain, we need to compute the price change associated

with the arbitrage opportunity associated with e-commerce. We begin by writing the

change in welfare due to the price change of good i in city c over a year as

∆Wict = 1
2 (2Pic,t−1 + ∆P ict) ∆Qic,t −m∆Qic,t, (3.4)

where m is the marginal cost of producing the good. Without loss of generality we can

decompose prices and quantities into two components: a national component that captures

national movements in the price of good i (∆PN
ict ≡ (Pic,t−1/Pi,t−1) ∆Pit), a city-specific

component that captures relative movements in prices in that city (∆PR
ict):

∆Pict = ∆PN
ict + ∆PR

ict. (3.5)

Let the total quantity demanded of item i in time t be denoted by Qit ≡
∑
cQict. We

can now decompose quantity movements (∆Qict) into a national component (∆QN
ict ≡

(Qic,t−1/Qi,t−1) ∆Qit), which tells us how consumption in the city would have moved if it

followed the national trend, and a city-specific (∆QR
ict ≡ ∆Qict−∆QN

ict) component. This

lets us rewrite equation (3.4) as

3The assumption of equal marginal costs is probably not extreme for Japan given the small physical size
of the country (most major cities are within a few hours drive of Tokyo), which means that transport costs are
unlikely to produce large price differences across cities.
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∆Wict = 1
2
(
2Pic,t−1 + ∆PN

ict + ∆PR
ict

) (
∆QN

ict + ∆QR
ict

)
−m∆Qic,t−1 (3.6)

Rearranging terms produces

∆Wict =

(
2Pic,t−1 + ∆PN

ict + ∆PR
ict

)
∆QN

ict

2 +

(
2Pic,t−1 + ∆PN

ict + ∆PR
ict

)
∆QR

ict

2 −m∆Qict

=

(
2Pic,t−1 + ∆PN

ict

)
∆QN

ict

2 +

(
2Pic,t−1 + ∆PR

ict

)
∆QR

ict

2

+ ∆PR
ict∆QN

ict

2 + ∆PN
ict∆QR

ict

2 −m∆Qict

=
(
∆WN

ict −m∆QN
ict

)
+
(
∆WR

ict −m∆QR
ict

)
+ ∆PR

ict∆QN
ict

2 + ∆PN
ict∆QR

ict

2
(3.7)

In other words, the change in welfare in a city can be decomposed into a term that depends

on how the national change in prices and quantities affected welfare, a second term that

depends on how price movements in that city relative to the national average affected

welfare, and two second-order terms that capture the fact that a relative price decline

matters more for welfare if it occurs for a good that is on average growing in consumption

and one that captures the fact that a national drop in prices raises welfare more if local

demand is also rising. Our focus will be on the aggregate gains arising from the second

term (
∑
c ∆WR

ict=
∑
c ∆WR

ict−m
∑
c ∆QR

ict), gains due to arbitrage, which captures the first-

order impact of relative price movements on welfare.

Defining the terms this way lets us write ∆QR
ict/Qic,t−1 = ∆Qict/Qic,t−1−∆Qit/Qi,t−1,

which is more convenient to write as a log approximation given by ∆qRict ≡ ∆qict −∆qit.

If we assume that there is no regional variation in demand elasticities (ηc = η ∀c), we then

have

∆qRict ≡ ∆qict −∆qit = −η (∆pict −∆pit) . (3.8)

If we multiply this expression by Qic,t−1 and sum across all cities we obtain an expression

for the aggregate change in quantity due to relative price movements across the cities:
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∑
c

∆QR
ict ≡

∑
c

Qic,t−1∆qRict = −η
(∑

c

Qic,t−1∆pict −
∑
c

Qic,t−1∆pit
)

= 0, (3.9)

where the last equality follows from our assumption (which is the same as that of Jensen

(2007)) that relative price changes arising from new arbitrage opportunities do not affect

aggregate demand for the good. This expression lets us solve for the expression for national

prices:

∆pit =
∑
cQic,t−1∆pict∑

cQic,t−1
(3.10)

In other words, the log-change in national price index is just a quantity-weighted average of

the log price change in each city. We now can conduct our counterfactual welfare analysis.

Based on equation (3.1), we can write the best estimate of price change:

∆̂pict = α̂it + β̂ct +
(
γ̂ + δ̂1xi + δ̂2Dtxi

)
pic,t−1. (3.11)

Therefore, the aggregate price change for any good is

∆̂pit = α̂it +
∑
c

Qic,t−1β̂ct∑
cQic,t−1

+
(
γ̂ + δ̂1xi + δ̂2Dtxi

)∑
c

Qic,t−1pic,t−1∑
cQic,t−1

, (3.12)

The evolution of prices in each city relative to the national price increase can be expressed

as the difference between equations (3.11) and (3.12):

∆̂pRict(Dt) =
β̂ct −∑

c

Qic,t−1β̂ct∑
cQic,t−1

+
(
γ̂ + δ̂1xi + δ̂2Dtxi

) [
pic,t−1 −

∑
c

Qic,t−1pic,t−1∑
cQic,t−1

]
.

(3.13)

We now can write the impact of a price change on welfare in a city as

∆̂WR
ict (Dt) = −η2

[
2Pic,t−1 + Pic,t−1∆̂pRict(Dt)

]
Qic,t−1∆̂pRict(Dt) (3.14)
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The welfare gains due to the enhanced price arbitrage from e-commerce can be written

as

∆̂W
E

ict ≡ ŴR
ict(Dt = 1)− ŴR

ict(Dt = 0)

= [∆̂W
R

ict(Dt = 1)− ∆̂W
R

ict(Dt = 0)] + [ŴR
ict(Dt = 1)− ŴR

ict(Dt = 0)]+

=
∑t
τ=1997[∆̂W

R

icτ (Dt = 1)− ∆̂W
R

icτ (Dt = 0)] + ŴR
ic1996(D1996 = 1)− ŴR

ic1996(D1996 = 0)

=
∑t
τ=1997[∆̂W

R

icτ (Dt = 1)− ∆̂W
R

icτ (Dt = 0)]

, where in the last line we assume that e-commerce provided no gains to consumers before

the entry of Rakuten, i.e.,
[
ŴR
ic1996(D1996 = 1)− ŴR

ic1996(D1996 = 0)
]

= 0. The estimated

welfare gains due to arbitrage from e-commerce can therefore be written as

∆̂W
E

t = ΣiΣc∆̂W
E

ict (3.15)

3.3 Data

A major advantage of using Japanese data is that one can obtain measures of consumer

expenditures by product and type of sales merchant. The National Survey of Family Income

and Expenditures (NSFIE) is a representative survey of households with two or more

members that records expenditures by product from each major retail outlet store type:

small retail, supermarket, convenience, department, club, discount, catalog, internet, and

“other”. Starting in 2004, the NSFIE also began a quinquennial recording the expenditure

share of each product from online merchants. One of the problems with the NSFIE data

is that it tends to under-report aggregate internet sales due to questions about which retail

outlet they used. Fortunately, the Ministry of Economy Trade and Industry (METI) reports

very reliable aggregate estimates of sales by e-commerce and other retailers by surveying

sales to consumers by retail merchants. We therefore scale the NSFIE data by the ratio of

aggregate sales in the METI data relative to the NSFIE data in order to obtain the same

value for aggregate e-commerce sales in the two datasets.
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In order to make sure that sampling problems are not driving our results, we also

conduct a robustness check for all of our main results using data from Rakuten, the largest

e-retail company in Japan, who provided us with 2010 internet sales data (aggregated across

buyers and merchants) for each of approximately 40,000 product categories or “genres.” In

that year, Rakuten had a 30 percent market share of all Japanese e-commerce.4 We then

matched these genres to the expenditure categories in the 2010 Japanese Family Income

and Expenditure Survey (FIES) that are used in to construct the Japanese consumer price

index. This generated a matched sample in which we have 312 tradable goods in a typical

year, which we use in our main specifications.

We construct e-commerce intensity of an expenditure category by comparing the

average household total expenditure on that category with the average household’s online

expenditure on it. We measure total expenditure share ei on category i by using national

average expenditures per household in 2009 taken from the Family Income and Expenditure

Survey (“FIES”, which forms the basis of the Japanese CPI and is distinct from the NSFIE).

We denote online expenditure share in category i from NSFIE by si. We then define e-

commerce intensity xi of category i by taking the ratio of the online to total expenditures

share, normalized by the maximum value of this ratio:

xi = si
ei
/max

j

(
sj
ej

)
.

In order to see how e-commerce intensity varies across products, we aggregated the

FIES codes into some broader categories in Table 3.1 so that we could display the data

in a compact form. As most of services are not available online, we will focus on e-

commerce’s impact on goods prices for all of our main results. The rows are ordered by a

category’s share of Japanese expenditures on goods. The first column of Table 3.1 reports

the percentage of expenditures in category ` among goods in 2009 as reported in the FIES

4Rakuten, Inc. (2010) Annual Report.

81



(E` ≡
∑
i∈Ω` ei/

∑
j ej × 100), where Ω` is the set of items in some more aggregated

category `. In the second column, we report the percentage of online expenditure in

2009 that corresponds to that category ((S` ≡
∑
i∈Ω` si/

∑
j sj × 100), where si is online

expenditure from NSFIE). The third column reports the “e-commerce intensity” in 2009,

which we define to be the ratio of the two previous columns divided it by the maximum

value of S`/E` (i.e., xi ≡ Si/Ei/ [maxj {Sj/Ej}]). Thus, our measure of e-commerce

intensity takes on a value of zero if there are no transactions involving an expenditure

category and a value of 1 if the online expenditure relative to those in the economy is the

highest among all categories of goods. Expressing e-commerce intensity this way makes

our e-commerce intensity (xi) invariant to the size of sector i.
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Table 3.1: E-Commerce intensity of consumer expenditure on goods

Category Share of Total Share of E-Commerce E-Commerce Intensity E-Commerce Intensity E-Commerce Intensity Catalog Intensity E-Commerce Intensity
Expenditure 2009 Expenditure 2009 2004 2009 2014 1999 Rakuten 2010

Fruits and vegetables 10.24 1.76 0.01 0.03 0.05 0.06 0.03
Household consumables 10.19 18.00 0.15 0.36 0.28 0.34 0.58
Clothing 9.61 13.45 0.11 0.28 0.22 0.41 0.42
Store-bought cooked food 7.62 1.10 0.03 0.03 0.04 0.04 0.03
Cereal 6.21 1.54 0.02 0.05 0.05 0.06 0.07
Fish and shellfish 6.13 1.40 0.02 0.05 0.05 0.05 0.04
Cakes and candies 5.72 1.62 0.03 0.06 0.04 0.05 0.08
Meat 5.55 0.73 0.01 0.03 0.04 0.02 0.03
Recreational goods 4.65 12.71 0.30 0.55 0.47 0.22 0.93
Household applicances 4.05 6.32 0.21 0.31 0.36 0.17 0.35
Electronics 3.88 19.32 1.00 1.00 1.00 0.41 0.53
Alcoholic beverages 3.36 1.32 0.05 0.08 0.10 0.06 0.26
Medicine and nutritional supplements 3.35 4.85 0.23 0.29 0.31 1.00 0.23
Non-alcoholic beverages 3.17 2.20 0.09 0.14 0.15 0.27 0.16
Oils, fats and seasonings 3.11 0.73 0.02 0.05 0.07 0.09 0.05
Newspapers and magazines 2.96 0.00 0.00 0.00 0.00 0.00 0.00
Dairy products and eggs 2.81 0.29 0.01 0.02 0.04 0.02 0.01
Transportation equiment 2.14 3.01 0.23 0.28 0.18 0.40 0.58
Domestic utensils 2.06 4.04 0.14 0.39 0.49 0.41 0.53
Furniture and furnishings 1.78 3.45 0.33 0.39 0.51 0.56 1.00
Footwear 1.40 2.13 0.14 0.30 0.28 0.33 0.92

Total/Mean 100.00 100.00 0.15 0.22 0.23 0.24 0.32

Data source: FIES, NSFIE, Rakuten, and authors’ calculation. Notes: The first column is from FIES. Column 2- 6 are from NSFIE and the last column
is from Rakuten. Notes: Shares are expressed as percentages. This table shows the share of consumption expenditure, e-commerce expenditure, and
e-commerce sales intensity, and catalog intensity for goods. E-Commerce intensity is calculated as xi = si

ei
/maxj( si

ei
).
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Table 3.1 makes clear some basic stylized facts of our data. First, within goods

categories we see that there are no zeros except newspapers and magazines in the table

indicating that at this level of aggregation all categories of goods were available online

in 2009. Second, there is enormous variation in the e-commerce intensity. Some of

this reflects the fact that highly perishable, non-standardized items (e.g. fresh foods),

restricted/time-sensitive items (e.g., medicine and physical newspapers ), and high weight-

to-value items (non-perishable groceries) are not sold much online. At the other end of

the spectrum, we see that more standardized goods—e.g., electronics, books, clothing,

footwear, and furniture and furnishings—are sold very intensively online. Interestingly, we

see that domestic utensils, household consumables (which includes non-durable household

supplies like paper products and cleaning agents), and recreational goods (which includes

items like sports equipment and gardening supplies) are sold very intensively online as

well.

As one can also see from the table, there is a lot of similarity between goods that

are sold intensively online and goods that were sold intensively by catalogs in 1999. In

that year, e-commerce firms in Japan were still in their infancy: Amazon had not yet

entered the Japanese market and Rakuten only had 5.5 million dollars worth of sales on its

platform (Olsen 2012). Thus, we can be fairly confident that Japanese catalog sales were

probably not much influenced by e-commerce sales. Nevertheless, it is interesting to note

that goods sold intensively online tend have characteristics that are similar to those goods

historically available in catalogs—i.e., goods that are non-perishable, low weight-to-value,

standardized, and storable.

Although e-commerce was small in Japan in 1999, the situation changed radically

over the next two years. By April of 2000, when Rakuten announced its initial public

offering and a year before the entry of Amazon into Japan, Rakuten had grown to be a

platform in which consumers had access to goods available from 2,300 merchants, and
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the Rakuten website was getting 95 million hits per month—almost one hit for every

man, woman, and child in Japan.5 The following year sales on the Rakuten platform

exceeded ¥52 billion (about $430 million). Thus, within five years, Japanese consumers

in any city went from only being able to buy locally or from catalogs to being able to

purchase goods from thousands of merchants located across Japan. Rakuten’s growth was

part of a broader e-commerce boom in Japan. By 2017, e-commerce firms accounted for

5.8 percent of Japanese retail sales or about ¥16.5 trillion (about $149 billion). Despite

the explosive growth, as one can see in the last column of Table 3.1, the set of goods

selling well on the Rakuten platform remained remarkably similar to those that sold well in

catalogs. Moreover, the Rakuten sales intensities are highly correlated (ρ = 0.57) with the

e-commerce sales intensities we obtained from the NSFIE data, which suggests that these

datasets are in broad agreement as to what goods sell well online.

In addition to the retail sales data that we have been discussing, we also make use of

the fact that the Japan Statistical Bureau (JSB), which produces the Japanese CPI, provides

detailed information on representative prices of the products in the FIES categories. These

prices are sampled in all cities that are either a prefectural government or have population of

150,000 or more, which gives us the ability to not only tracking product prices across time

but also across space. This information typically identifies the brand of an item or a detailed

description (e.g., “Big-eyed tuna, sliced (for sashimi), lean, 100g”). While the data is not

sufficiently detailed to always pin down the exact barcode, the data leaves limited scope for

unobserved quality differences to affect intercity price differentials. For example, Imai and

Watanabe (2015) find that it is sufficiently detailed to rule out approximately 85 percent of

all bar codes in a CPI product category. Moreover, since the objective of the JSB sampling

is to make meaningful intercity price comparisons, there is a tendency to select the same

5Phred Dvorak, "Japan’s Highly Popular Rakuten Plans IPO Despite Shaky Market," Wall Street Journal,
April 18, 2000.
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products by, for example always picking the largest selling item within a sampling frame

if available. Thus, while US CPI data typically is based on different baskets of goods in

different cities, the JSB’s “purposive” sampling generate samples in which the same good

or very similar goods are sampled in different cities. Therefore, it is reasonable to believe

that intercity prices are informative about true price differences across locations.6 One

problem in the data is that we have periodic product substitutions that arise as goods are

added to or dropped from the CPI sample. Fortunately, we have official quality-adjusted

price quotes for Tokyo computed by the JSB7, which we use to adjust the prices in other

cities. This procedure is equivalent to assuming that the quality change associated with a

product substitution in the CPI is identical across cities.

6In order to further clean the data, we drop all observations in which the item only appears in one city.
We also trimmed 3 smallest and 3 largest price quotes within an item-year observation. Finally, we dropped
the bottom and top 1% of log price changes.

7http://www.e-stat.go.jp/SG1/estat/List.do?bid=000001033703&cycode=0, accessed on April 5th, 2017.
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Table 3.2: Summary Statistics for the Sample of Goods

Mean Standard Min p10 p50 p90 Max
Deviation

Period: 1991 to 1996
∆1pict -0.004 0.099 -0.858 -0.101 0.000 0.090 0.953
xi(t=2009) 0.057 0.073 0.000 0.004 0.022 0.157 0.456
xi(t=2009) × pic(t−1) 0.456 0.679 0.000 0.021 0.142 1.340 4.107
xcati(t=1999) 0.078 0.119 0.000 0.004 0.035 0.207 0.995
xcati(t=1999) × pic(t−1) 0.592 1.022 0.000 0.019 0.219 1.662 9.725

Observations 74,732

Period: 1996 to 2001
∆1pict -0.008 0.106 -1.124 -0.117 -0.001 0.084 1.165
xi(t=2009) 0.053 0.070 0.000 0.004 0.022 0.151 0.456
xi(t=2009) × pic(t−1) 0.417 0.646 0.000 0.021 0.125 1.215 4.075
xcati(t=1999) 0.073 0.112 0.000 0.004 0.034 0.170 0.995
xcati(t=1999) × pic(t−1) 0.541 0.934 0.000 0.022 0.212 1.376 9.826

Observations 109,486

Period: 2001 to 2006
∆1pict -0.009 0.114 -1.798 -0.127 -0.003 0.104 1.679
xi(t=2009) 0.052 0.074 0.000 0.004 0.022 0.146 1.000
xi(t=2009) × pic(t−1) 0.400 0.690 0.000 0.021 0.115 1.169 11.690
xcati(t=1999) 0.071 0.107 0.000 0.004 0.033 0.170 0.995
xcati(t=1999) × pic(t−1) 0.508 0.873 0.000 0.020 0.202 1.243 9.703

Observations 163,473

Period: 2006 to 2011
∆1pict -0.001 0.124 -1.695 -0.127 0.000 0.126 1.556
xi(t=2009) 0.053 0.081 0.000 0.004 0.022 0.146 1.000
xi(t=2009) × pic(t−1) 0.411 0.751 0.000 0.020 0.114 1.197 10.684
xcati(t=1999) 0.070 0.104 0.000 0.004 0.032 0.162 0.995
xcati(t=1999) × pic(t−1) 0.497 0.845 0.000 0.019 0.197 1.235 9.411

Observations 164,029

Period: 2011 to 2016
∆1pict 0.014 0.100 -1.276 -0.084 0.010 0.122 1.092
xi(t=2009) 0.052 0.080 0.000 0.004 0.020 0.143 1.000
xi(t=2009) × pic(t−1) 0.398 0.725 0.000 0.020 0.109 1.175 10.300
xcati(t=1999) 0.068 0.104 0.000 0.004 0.029 0.162 0.995
xcati(t=1999) × pic(t−1) 0.485 0.838 0.000 0.016 0.165 1.215 9.081

Observations 168,241

Data source: RPS, NSFIE, and authors’ calculation. Notes: This table shows summary statistics of of price
changes, e-commerce intensity, and catalog intensity for five five-year-periods from 1991 to 2016. Prices are
in natural log. ∆1pict is the one-year log difference in prices; xi(t=2009) = si/ei

maxj(sj/ej) shows e-commerce
intensity in 2009 using NSFIE and xcati(t=1999) indicates catalog sales intensity in 1999.
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One obvious concern with these data is that they are not as good as barcode data.

However, we can test how problematic they are by computing some simple sample

statistics. Hottman, Redding, and Weinstein (2016) show that the correlation between price

and quality in bar-code data is 0.9, so we should expect sampling problems to produce high

levels of price dispersion in our sample. Thus, if there is substantial quality variation within

the goods used in the Japanese CPI sample, we should expect to see a lot of intercity price

dispersion for the same items. In order to check for this, we compute the price of each

good in each city less the average price of that good across all cities and then taking the

standard deviation of this difference. When we do this, we find that the standard deviation

of intercity price differences for the same good in Japan is about 15 percent. By contrast,

Broda and Weinstein (2008) find the standard deviation in intercity prices of bar-coded

goods is 22 percent in the US and 19 percent for Canadian provinces. The fact that intercity

price dispersion of goods in the Japanese CPI is lower than that for bar-coded goods in the

US and Canada suggests that the JSB item definitions probably do not include goods that

differ substantially in quality in different cities and therefore that quality variation across

cities for the same product is unlikely to be a major problem in our data.

Table 3.2 reports the sample statistics for our data. As one can see from the table, we

have more than 100,000 price quotes in each of our five-year periods since e-retail has

become available in Japan in 1997. The first line of the table shows the average annual

rate of inflation across the sample period. As one can see, on average goods prices fell

before 2011, which reflects the deflation that can be observed in Japan over this time

period. The second line reports information on the e-commerce intensity of the goods

in our sample (xi). The values of xi across goods tell us about the relative importance of

online sales. Here we see that goods in the the upper 90th percentile of the distribution

have an e-commerce sales intensity of 0.146 over the full sample period, which is more

than six times higher than a good with the median intensity. Moreover, at the upper tail of
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the distribution, we observe goods with an e-commerce intensity that is more than 45 times

higher than that of the median good. These summary statistics reflect the skewness in the

distribution of e-retail sales intensity that we saw in Table 3.1. Some goods are sold very

intensively online, but most goods are purchased predominantly in physical stores.

3.4 Estimation

In Section 3.4.2, we present plots to show that price convergence is a central tendency in

the data and that the internet appears to have changed the rate of convergence for goods

available online but not for other goods. This provides some prima facie evidence that

our focus on relative intercity price movements of goods sold by e-retailers as opposed to

absolute price declines of online goods is in line with the data. We next estimate the impact

of e-retail on the rate of price convergence in Section 3.4.2.1. Finally, in Section 3.4.2.2,

we present our estimates of the welfare gain from e-retail.

3.4.1 E-commerce and National Prices

Goolsbee and Klenow (2018) find that goods traded online have inflation rates that were

about one percentage point lower than goods not available online. Here, we extend

this work to show that these differential rates of price increase were present long before

the entry of e-commerce firms, became more pronounced after the entry of e-commerce

merchants, and arose in part because the rate of price increase of goods not available online

rose.

In order to examine this in the data, we regress annual log price changes of goods

(∆pict) on good (αi) and city (βc) fixed effects along with an indicator variable, Dt, that is

one starting in 1997 (the year Rakuten opened) and zero before as well as the e-commerce

intensity of the good interacted with this dummy (xiDt):
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∆pict = αi + βc + φDt + θxiDt + εict, (3.16)

where αi is a parameter to capture any pre-trends in the data that might arise if goods

available online exhibit have different price increase trends than goods not available online.

The coefficient on Dt (φ) tells us whether there was any differential trend in price inflation

for goods available online after the entrance of e-commerce firms and θ, the coefficient on

the e-commerce intensity interaction term (xiDt) tells us about the differential rate of price

change for goods traded online after the entry of e-commerce firms. We do this for two

time periods (1992-2001) and (1992-2016) to see if there is any difference in the results we

obtain by looking at the period immediately after the entry of e-commerce firms versus the

full time period.

One of the advantages of our specification is that we can eliminate any good-specific

pre-trends (αi) that might confound specifications that compare growth rates of goods

available online with those not sold online. In order to understand to understand whether

controlling for these pre-trends is likely to be important, we split the sample into two

groups by e-commerce sales intensity. The first sample of goods (XB) consists of products

that have an e-commerce sales intensity (xi) in the bottom quartile, and second sample

is composed of goods with an e-commerce sales intensity in the top quartile (XT ). We

then computed the average rate of price increase for the two sets of goods by running the

following regression separately for each sample:

∆pict = θt + εict, (3.17)

where the estimates of the time fixed effect θt in each sample tell us the average rate of

price increase for the goods in each sample.

We plot these estimates and the 95-percent confidence bands in Figure 3.2. As the figure
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Figure 3.2: Price Growth of of Goods With High and Low E-Commerce Intensity
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Data source: RPS, NSFIE, and authors’ calculation. Notes: This black line shows time fixed effect θ̂t from
equation (3.17), which tells the average rate of price increase for the goods in two groups: products with
bottom quartile e-commerce sales intensity (black line with dot) and products with top quartile e-commerce
intensity (black line with symbol x). The red dashed line shows the average rate of price increase before and
after the entry of Rakuten for goods with bottom quartile e-commerce sales intensity and the blue dashed line
shows that for goods with top quartile e-commerce sales intensity.

makes clear, there are unmistakable pre-trends in the data. Before the entry of the Rakuten

in 1997, the average rate of price increase for the types of goods that would ultimately

be sold on e-commerce platforms was -1.9 percent per year, while the average annual

rate of price increase for goods that not sold much on these platforms was 2.0 percent

per year. Thus, there was a 3.9 percentage point gap between the relative inflation rates

of goods would be sold intensively online relative to those would not be sold intensively

online even in the early 1990s. These differences in inflation rates may reflect the fact

that the production of standardized, non perishable goods, which tend to dominate e-

commerce platforms, may benefit more from the cost reductions associated with modern
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manufacturing techniques.

It is also interesting to see what happened to this gap in inflation rates after the entry of

e-commerce firms. While we do not see much change in pricing behavior in the first five

years after the entry of Rakuten, by 2002, we see that the differences in the price growth

rates between the two sets of goods widened significantly. The relative inflation rate for

goods sold heavily online relative to goods not sold much online fell substantially. Goods

in the top quartile of e-commerce sales intensity had an average rate of price growth from

1997 to 2016 of -3.2 percent per year: a 1.3 percent per year fall in the rate of price growth.

By contrast, the rate of price growth for goods in the bottom quartile of e-commerce sales

rose to 4.5 percent per year: an increase of 2.5 percent per year.8

8The cause of this price increase is not clear, but the higher prices charged by merchants for goods
not sold intensively online may be related to the impact that e-commerce firms have had on large national
retailers. DellaVigna and Gentzkow (2017) argue that chain stores typically offer uniform pricing across cities
and this works to depress regional price dispersion. This implies that a negative shock to chain stores that sell
standardized products might be associated with a rise in prices in stores selling products not available online.
For example, suppose mass-merchandisers traditionally sell groceries and electronics. If e-commerce firms
eliminate mass-merchandise stores, local grocery stores may find themselves with fewer physical competitors
and more able to raise prices.
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Table 3.3: Relative Price Changes

(1) (2) (3) (4)
∆1pict ∆1pict ∆1pict ∆1pict

Dt -0.0001 0.0097*** -0.0001 0.0142***
(0.0021) (0.0022) (0.0038) (0.0030)

E-Commerce Intensity -0.0069 -0.0906*** -0.0049 -0.1636***
×Dt (0.0246) (0.0200) (0.0668) (0.0411)

Sample Goods Goods Goods Goods
Fixed Effects Product Product Product Product
Estimation Period 1992-2001 1992-2016 1992-2001 1992-2016
Observations 152,416 393,246 150,417 387,918
R2 0.04 0.03
E-Commerce Intensity Year 2009 2009 2009 2009
First-Stage F-Stat 57.33 58.26
Estimation Method OLS OLS IV IV

Data source: RPS, NSFIE, and author’s calculation. Notes: Table shows relative price changes for goods sold
online intensively relative to goods not sold online intensively before and after the entry of e-commerce firms.
Column 1 and 3 are for 1992-2001 and column 2 and 4 are for 1992-2016. For the first two columns, OLS
estimates are shown with e-commerce sales intensity and the second two columns use catalog sales intensity
as IV.

Turning to our differences-in-differences specification, we present the results from

estimating equation (3.16) in Table 3.3. The first column present the results from estimating

equation (3.16) over the period 1992 to 2001. Consistent with what we observed in Figure

3.2, we do not find much of an effect from e-commerce in the first few years after the entry

of Rakuten. However, as one can see in columns 2 and 3, we do see a significant decline in

the relative prices of goods available online as evidenced by the coefficient of -0.09 on the

post-e-commerce e-commerce intensity interaction (xiDt) term. The coefficient implies

that a good at the 90th percentile of internet intensity experienced a 1.3 percent per year

drop in its rate of annual price growth relative to goods not available online.

As we have argued earlier, one possible challenge to our identification strategy is that

e-commerce firms are not likely to have chosen which sectors they are likely to have
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entered randomly. In order to deal with this endogeneity, we construct a variable, catalog

intensity, which is constructed analogously to e-commerce intensity except that we use

catalog sales instead of e-commerce sales. Unfortunately, the earliest year for which we

have catalog sales data is 1999, but since Rakuten was only two-years old in 1999 and

still a small company and major players in the e-commerce market like Amazon Japan had

not even entered the Japanese market, we think it plausible to argue that the distribution

household catalog purchases in 1999 were unlikely very different than those before the

entry of Rakuten.

Table 3.4 reports the results of our instrumental variables estimation. As one can see

from the F-statistic reported in the first two columns of the table, catalog sales intensity

in 1999 is a strong instrument for e-commerce sales intensity in 2009. Sectors that on

average were major channels for catalog sales also became major channels of e-commerce

firms. In the third, column we simply regress the e-commerce intensity of sectors in 2009

on catalog intensity in 1999 to show that the relationship holds in the cross-section. This

establishes that as long as historical catalog sales were not being driven by the anticipation

of e-commerce, we have a powerful instrument for e-commerce sales intensity.
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Table 3.4: Relative Price Changes

(1) (2) (3)
E-Commerce Intensity E-Commerce Intensity E-Commerce Intensity

×Dt ×Dt

Catalog Intensity 0.7363*** 0.7304***
×Dt (0.0972) (0.0957)

Dt 0.0237*** 0.0241***
(0.0043) (0.0043)

Catalog Intensity 0.7457***
(0.0745)

Constant 0.0269***
(0.0051)

Sample Goods Goods Goods
Fixed Effects Product Product None
Estimation Period 1992-2001 1992-2016
Observations 150,417 387,918 306
R2 0.26 0.26 0.25
E-Commerce Intensity Year 2009 2009 2009
First-Stage F-Stat 57.33 58.26
Estimation Method IV-First Stage IV-First Stage OLS

Data source: NSFIE and author’s calculation. Notes: Table shows the first stage regression results.

We report the results from our instrumental variables (IV) estimation in columns 3-

4 of Table 3.3. As before, we do not see much of an effect of e-commerce on national

pricing in the first few years after the entry of Rakuten and the other e-commerce firms,

but we do see strong effects in subsequent years. Overall, our IV estimate of the impact

of e-commerce intensity (xiDt) on price increases doubles in magnitude in the full sample

estimates (columns 2 and 4). The fact that the OLS estimates are attenuated implies that

e-commerce firms tended to enter sectors where prices were rising, perhaps because these

markets were likely to be more profitable. This pattern of behavior would explain why

estimates that do not control for the endogeneity of market entry are likely to underestimate

the the relative impact of e-commerce on pricing. In terms of economic significance, the

results in column 4 imply that a good at the 90th percentile of internet sales intensity had

rates of price increase that were 2.4 percentage points per year lower than goods not sold
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online after the entry of e-commerce firms.

3.4.2 Gains Due to Price Arbitrage

As the last section made clear, while there is strong evidence that the rise of e-commerce

caused the relative prices of goods sold online to decline in Japan, there is little evidence

that this caused the overall price level to fall because the the lower relative rate of price

increase for goods sold intensively by e-commerce firms was in part due to higher rates

of price increase for goods sold principally by physical merchants. However, there is

an alternative mechanism through which e-commerce might affect prices along the lines

suggested by Jensen (2007) and DellaVigna and Gentzkow (2017): namely e-commerce

might force retailers to adopt uniform pricing across regions. This effect would be manifest

in our data by an acceleration of price arbitrage across cities.

In order to visualize whether this is likely to be important, we first consider two

five-year periods. The first five-year period (1991-1996), pre-dates the formation of e-

commerce by at least a year, so we can call this period the “pre-e-commerce period.”

We start the second period in 1996 because we assume that in 1996, the distribution of

prices was reflective of a world without e-commerce but by 2001, Rakuten was already a

prominent, listed company, with tens of millions of hits and thousands of stores selling on

its platform.

It is difficult to compare price changes across goods and cities in their raw form

because different goods exhibit different average price changes in different years. We

therefore normalized the data by regressing ∆pict and pict on product and city fixed effects

and construct normalized price changes (∆5pict − α̂it − β̂ct) and normalized price levels

(pic,t−5 − α̂′it − β̂′ct), where α̂it (α̂′it) and β̂ct (β̂′ct) are the estimated fixed effects from the

regression of ∆pict (pict) on product and city fixed effects. Thus, these normalized prices
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Figure 3.3: Normalized Price Change vs. Normalized Price
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Data source: RPS, NSFIE, and authors’ calculation. Notes: This graph plots normalized price changes against
normalized price levels. The left panel shows normalized price changes before the entry of e-commerce and
the right panel shows them after the entry of e-commerce. The first panel plots for all goods, the second
panel plots for goods with e-commerce intensity lower than the bottom quartile, and the third panel shows for
goods with e-commerce intensity higher than the top quartile.
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remove the effect of any common price movements at the product or city level. Figure

3.3 presents plots of normalized five-year change in prices (∆5pict − α̂it − β̂ct) against the

normalized five-year lag of prices in each city (pic,t−5 − α̂′it − β̂′ct).

The first panel shows how normalized price changes vary with normalized prices before

and after the entry of e-commerce. There is a clear negative relationship between initial

urban price deviations and future price growth, which indicates that goods that had high

prices in cities tended to have lower rates of inflation than goods with low relative prices.

This mean reversion is likely the product of price arbitrage. As one can see from these

two plots, 30 percent of any relative price difference tends to be eliminated within five

years before the advent of e-commerce and this number rose to 38 percent in the five years

after e-commerce firms entered. These plots also speak to the relatively high quality of the

Japanese data. For example, studies using U.S. data (c.f., Parsley and Wei (1996)) find no

evidence of price convergence once one controlled for city fixed effects.9

The next two pictures show what was driving this increase in the intercity rate of price

convergence. Here, we divide the sample into the set of goods with an internet sales

intensity in the lowest first quartile of the distribution in 2009 (xi < 0.076) and the set

of goods in the highest quartile of the distribution (xi > 0.13). As one can see from the

second panel in Figure 3.3, there was almost no change in the rate of convergence for goods

not sold on the e-commerce. The slope of the line for goods not sold intensively online in

the early period is -0.29, which is almost identical to the slope in the pre-e-commerce

period (-0.30). In other words, the entry of e-commerce firms seems not to have affected

the speed at which intercity price differentials converged for goods not sold much online.

However, we see a very different pattern for goods with an e-commerce intensity in the

upper quartile of the distribution. The slope steepens by 66 percent, rising in magnitude

9One plausible reason for the weaker evidence of price convergence in the U.S. is that that the data used
in Parsley and Wei (1996) is not based on purposive sampling, so price changes in cities are based on a
changing mix goods of different qualities across locations (as shown in Handbury and Weinstein (2015)).
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from -0.29 to -0.48. Thus, enabling consumers to shop online seems to have significantly

reduced the ability of merchants to charge different prices in different cities for the same

good. We now turn to exploring this result rigorously in Section 3.2.1.

3.4.2.1 Estimating Convergence Rates

Following Obstfeld and Rogoff (1996) , we can test for whether we observe absolute price

convergence or relative price convergence by estimating equation (3.1) and testing whether

the estimated city-time fixed effects are jointly zero. If they are, then the data suggests that

the prices of goods are converging to the same price across cities. Otherwise, it implies that

the prices of goods converge to different levels in different cities. We can use an F-test to

reject the hypothesis that the city-year fixed effects are zero, which suggests that absolute

price convergence fails, so average price levels of goods do not converge to exactly the

same level in all cities. We therefore city-time fixed effects in our main specifications.

We also report results without city-year fixed effects in an online appendix as a robustness

check to show that their inclusion does not matter qualitatively for our results.

Table 3.5 presents the results of estimating equation (3.1) for five- and one-year

intervals using 1999 catalog sales intensity as an instrument for e-commerce sales intensity.

In the first two columns, we present separate regressions for 1996 and 2001 where we

let the convergence rates vary across the two time periods as we did in the earlier plots.

Comparing the first rows of columns 1 and 2 reveals the convergence rates for goods not

suitable for e-commerce (i.e., those where xi = 0) were almost identical before and after

the entry of e-commerce, which is the result that we saw in Figure 3.3. The coefficient on

e-commerce intensity interacted with lagged prices (xipic,t−5) in column 1 indicates that the

rate of convergence for goods suitable for e-commerce sales was not significantly different

than the convergence rate of other goods prior to to the entry of e-commerce. However,

the negative and significant coefficient on the interaction term (Dtxipic,t−5) in the post-e-
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commerce sample (where we dropped the xipic,t−5 term from the specification because we

do not have any pre-e-commerce observations) indicates significantly faster convergence

rates for goods available online after the entry of e-commerce firms also confirming the

result we saw in we saw in Figure 3.3.

Table 3.5: Estimates Over Period 1991-2001

(1) (2) (3) (4)
Dependent Variable ∆p5

ict ∆p5
ict ∆p5

ict ∆p1
ict

Lagged Price -0.292*** -0.324*** -0.309*** -0.129***
(0.032) (0.037) (0.031) (0.013)

E-Commerce Intensity -0.170 -0.039 0.032
(t=2009) × Lagged Price (0.413) (0.410) (0.151)

E-Commerce Intensity -1.145* -1.292*** -0.509***
× Lagged Price × Post Rakuten (0.592) (0.315) (0.130)

t {1996} {2001} {1996,2001} Annual
1992-2001

Observations 25,848 27,407 51,012 152,416
E-Commerce Intensity Year 2009 2009 2009 2009
First-Stage F-Stat 29.82 33.98 17.81 16.42
Estimation Method 2SLS 2SLS 2SLS 2SLS

Source: RPS, NSFIE, and authors’ calculation. Notes: Table shows regression results of equation (3.1)
using 2SLS: e-commerce sales intensity in 2009 is instrumented using 1999 catalog sales intensity. The first
column uses the five-year log differences in prices from 1991 - 1996 and the second column uses that from
1996 - 2001. The third column uses two five-year periods, 1991 - 1996 and 1996 - 2001. The OLS regression
results are available first three columns OLS regression results are available in Appendix C.1 from Table C1.

In column 3, we estimate our baseline differences-in-differences specification of

equation (3.1) using a five-year difference by letting t take on two values: 1996 and

2001. The most important result for our purposes is the estimate of the coefficient on the

interaction term on the e-commerce intensity coefficient. As one can see from the table, the

coefficient is negative and precisely measured. Not surprisingly, the estimated coefficient

on pic,t−k, γ̂, does not change much, and we continue to get a negative and significant
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coefficient on the e-commerce intensity interaction term (δ̂2 = −1.292). Interestingly, the

estimate of δ1, the differential rate of price convergence for e-commerce intensive goods

remains close to zero, indicating that e-commerce appears to have no impact on intercity

price convergence rates of goods not sold intensively online.

Table 3.6: Estimates Over Alternative Periods

(1) (2) (3) (4) (5)
Dependent Variable ∆5pict ∆5pict ∆5pict ∆5pict ∆1pict

Lagged Price -0.378*** -0.450*** -0.373*** -0.373*** -0.144***
(0.028) (0.032) (0.030) (0.026) (0.013)

E-Commerce Intensity 0.676 1.337*** 0.518 0.519 0.172
(t=2009) × Lagged Price (0.415) (0.439) (0.423) (0.403) (0.165)

E-Commerce Intensity -1.846*** -3.168*** -1.943*** -1.741*** -0.775***
× Lagged Price × Post Rakuten (0.354) (0.316) (0.373) (0.247) (0.102)

t {1996,2006} {1996,2011} {1996,2016} {1996,2001, Annual
2006,2016} 1992-2016

Observations 51,845 43,256 42,555 87,515 393,246
E-Commerce Intensity Year 2009 2009 2009 2009 2009
First-Stage F-Stat 15.03 23.61 19.13 18.02 27.17
Estimation Method 2SLS 2SLS 2SLS 2SLS 2SLS

Source: RPS, NSFIE, and authors’ calculation. Notes: Table shows regression results of equation (3.1) using
1999 catalog sales intensity as an instrument for e-commerce sales intensity. First three columns compare the
five-year period of log price differences before (1991-1996) and after the entry of e-commerce firms (2001-
2006, 2006-2011, and 2011-2016). The last column uses the annual frequency of log price changes. The
OLS regression results are available in Appendix C.1 Table C2.

There are a number of potential problems with the evidence that we have just presented.

A first concern is that these results may understate the impact of e-commerce because e-

commerce firms were relatively small before 2001. In order to deal with this concern,

Table 3.6 presents results in which we use alternative time periods. In the first three

columns, we do a differences in differences based comparing the five years prior to the

entry of e-commerce firms (1991-1996) with three alternative non-overlapping periods:

2001-2006, 2006-2011, and 2011-2016. These results confirm what we saw in Table 3.3;

the estimated effects of e-commerce on pricing are stronger after e-commerce firms has
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a chance to expand operations. The coefficient on the e-commerce triple interaction (δ̂2)

approximately doubles if we compare periods ten or more years after the entry of Rakuten

with the period before. We obtain a similar result when we repeat the estimation over the

full period (1992-2016) at the annual frequency.

Our results are economically significant as well. If we use the estimates in column 5 of

Table 3.6 as a benchmark, we find that the half life for a relative price difference for a good

not traded online is 4.5 years. By contrast, the half life for a good with maximal internet

sales intensity is six months. Similarly, goods at the 90th percentile of e-commerce sales

intensity have a half life of price dispersion of 2.6 years. Thus, our estimates imply that the

advent of e-commerce seems to have significantly altered the ability of retailers to charge

different prices in different cities.

The second concern that one might have with the the results is that we may have

a data measurement problem that is influencing the results. In order to make sure that

some idiosyncratic component of the NSFIE survey method is not driving our results, we

replicate our result using measures of e-commerce intensity based on Rakuten sales data

instead. We report the results from this exercise in Appendix Table ??, which shows that

we obtain very similar results regardless of whether we measure internet sales intensity

using consumer expenditure data or Rakuten e-commerce sales data.

3.4.2.2 Welfare Gain

Aggregate consumer gains due to faster price convergence can be calculated from the

equation (3.15). One of the interesting features of these equations is that the welfare gain

is proportional to the choice of demand elasticity. Since this elasticity has been estimated

in other papers, we calibrate a demand elasticity of −6 and simply note that the welfare

gain using any other elasticity (η) equals the welfare gain in Table 3.7 multiplied by η/6.

In all cases, we base our estimates of the impact of e-retail on the rate of convergence on
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Table 3.6 column 5. All of the data has been converted into 2014 yen. The first columns

shows the estimated welfare gains due to price convergence in 2014 and the second column

gives the counterfactual welfare gain that would have occurred if price convergence for

goods available online had remained at the pre-e-commerce rate (i.e., (Dt = 0)) as given

by equation (3.14). We see that price convergence across regions during this time period

led to a welfare gain of 4,315 billion yen in 2014 (about 38 billion US dollars) for residents

of our sampled cities. In the second column, we compute the counterfactual gain that

would have occurred if the speed of convergence had remained at the pre-e-commerce rate.

This gain is lower: 2,917 billion yen in 2014. Thus, the difference between these two

columns—1,218 billion yen— (approximately 11 billion US dollars) constitutes the annual

welfare gain for consumers in our sample of cities in 2014.

Table 3.7: Counterfactual Welfare Gain

Year ŴR
2014(Dt = 1) ŴR

2014(Dt = 0) ∆ŴE
2014 Total Expenditure Expenditure on Goods

2014 4,135 2,917 1,218 42,262 26,991

Notes: Unit is in billions of yen. The first three columns show welfare gains due to price arbitrage in 2014
with and without e-commerce firms, and their difference.

This number is difficult to interpret because it is only computed for residents in our

sampled cities. To obtain a sense of how much this matters for welfare, we deflate the

number by the total amount of expenditures of our sampled households, which is reported

in the fourth column of Table 3.7. We obtain an estimate of the welfare gain which equals

2.9 percent of consumer expenditures. 10

One feature of the Jensen (2007) approach is that it is possible that certain locations

that had on average low prices might actually lose as a result of more uniform pricing. We

10To get some sense of how large this is, we can compare the gain to Brynjolfsson et al. (2003) estimate
of the gains due to Amazon’s entry into U.S. book market. That paper estimated a gain of less than 1 billion
dollars in 2000—only 0.015 percent of U.S. personal consumption expenditures in that year. In other words,
our estimate is about eight times as large.
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Figure 3.4: Counterfactual Welfare Gain Per Household vs. Log of Population

../Rakuten/Paper/figures/welfare_vs_population_1997_2016_v15.pdf

Data source: NSFIE, JSB, and authors’ calculation. Notes: This plot plots the city-level welfare gain in 2014
per household due to enhanced arbitrage against log population in 2014. The number of observations is 48.

explore this in Figure 3.4, where we plot the per household welfare gain in each Japanese

city against the population of the city. There are two striking features of the plot. First,

there are substantial welfare gains for the largest Japanese cities. The six largest cities in

Japan—Tokyo, Yokohama, Osaka, Nagoya, Sapporo, and Kobe—all experienced welfare

gains as a result of e-commerce’s effect on price arbitrage. However, more than half of the

cities in our sample experienced losses and most of these losses accrued in small cities.

While we do not have data on the share of college graduates or average household

income by city for Japan, we do have it by prefecture, which lets us understand how these

welfare gains are distributed across regions. For prefectures with two or more cities in

them, we assume that the welfare gain is equal to the population weighted average of the

welfare gain in each city. In Figures 3.5 and 3.6, we plot the welfare gains per household

in each prefecture against the share of college-educated people or the average household

income in that prefecture. The data make clear a very strong positive correlation between

our estimated welfare gains and income per household and a less strong, but also positive

correlation between gains per household and the share of the prefecture with college

education. These results suggest that the e-commerce can create winners and loserthrough

pricing effects because new technologies like e-commerce benefit high-income, highly

educated consumers, but it may raise costsfor low-income, less educated households. These

104



Figure 3.5: Counterfactual Welfare Gain Per Household vs. Share of College Education

../Rakuten/Paper/figures/welfare_vs_education_1997_2016_v15.pdf

Data source: NSFIE, JSB, and authors’ calculation. Notes: This plot plots the city-level welfare gain in 2014
per household due to enhanced arbitrage against the share of college education. The number of observations
is 47.

Figure 3.6: Counterfactual Welfare Gain Per Household vs. Household Income

../Rakuten/Paper/figures/welfare_vs_income_1997_2016_v15.pdf

Data source: NSFIE, JSB, and authors’ calculation. Notes: This plot plots the city-level welfare gain in 2014
per household due to enhanced arbitrage against the household income in 2014. The number of observations
is 47.

differences are economically quite significant. Households in Tokyo had gains of ¥200,000

per household (around $1,800), but low-income, low-education prefectures like Miyazaki

(located in the southern tip of the main archipelago) or Akita (located in the north of Japan’s

main island) actually lost comparable amounts as a result of e-commerce.11

3.4.3 Gains in “New Trade Models”

An alternative channel through which e-commerce might affect welfare is by enabling

consumers to access new varieties as in Brynjolfsson et al. (2003). One of the challenges

of estimating the gains from new varieties is that our data does not enable us to see which

11The results are consistent with those of DellaVigna and Gentzkow (2017) who argue that uniform pricing
eliminates the ability of merchants to charge high prices in high-income cities and low prices in low-income
cities.
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varieties became available. Fortunately, we do observe sufficient statistics that enable us to

compute the welfare gain even in a world in which we do not see the underlying varieties. In

order to do this, we adopt the framework of Arkolakis et al. (2012). Suppose that the correct

model of how retail operates is described by a Krugman (1980) or Melitz (2003) model in

which firms in their model correspond to retail merchants who sell locally through physical

stores or at a distance through catalogs or e-commerce operations. In this simple extension

of Melitz (2003), we assume that manufactured goods are produced locally using only labor

using a constant returns-to-scale technology, so the cost of producing a manufactured good

in region j is wja, where wj corresponds the wage in j and a is the unit labor requirement.

Manufacturers sell to local retailers who then can sell these goods locally or at at a distance.

In order for a retailer to sell locally, it needs to pay a fixed cost and incurs a marginal cost

of sales equal to (a/ϕ)wj , where ϕ is the productivity of the retailer. Similarly, in order

to sell in a different location, a retailer needs to pay an addition “export” fixed cost and an

iceberg transportation cost between regions i and j of τij . It is immediately obvious that

this cost structure is exactly that of Melitz (2003). Moreover, we can think of e-commerce

and catalog sales as a technology that reduces the cost of trade between regions (τij). 12

If wethink about e-commerce as a trade-facilitating technology, we can use the result

in Arkolakis et al. (2012) to write the log change in welfare following a trade liberalization

∆Wt = 1
ε

ln (λt/λt−k) where λt ∈ (0, 1] is the share of consumer of expenditures on sales

from retailers other than e-commerce firms in period t, and ε equals the “trade elasticity.”

To understand how this formula works, imagine that in the initial period (t− k) consumers

only purchase products locally, so λt−k = 1, but after the advent of e-commerce, consumers

purchase ten percent of their goods online, so λt = 0.9. If we use a standard estimate of the

12In order for the counterfactual to be exact, we also need to assume that the advent of e-commerce does
not cause labor to move across regions. However, given the abundant evidence of sluggish migration across
regions even in the presence of large shocks and the likely small impact of e-commerce on relative wages, we
think that this assumption is a reasonable approximation.
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trade elasticity of -5, we will obtain a welfare gain of 2.1 percent (=− ln (0.9) /5). Since

we observe e-commerce sales at the prefectural level in Japan, we can also use regional

e-commerce sales shares to compute gains for each prefecture. Moreover, the formula can

easily be adapted to account for catalog sales. In order to account for catalog sales, we

simply define λt to be the share of expenditures on products not sold by catalogs or e-

commerce firms, i.e., local physical stores and use the same formula. This is a very simple

way to incorporate the fact that e-commerce gains may higher or lower once we take into

account catalog sales.

In order to implement these calculations, we need to first adjust the data to take

into account that not all consumer expenditures occur through retailers. Based on the

NSFIE data, we know that the share of household expenditures purchased from all retailers

(χ) was 0.62 in 2014, with the remaining expenditures covering utilities, education, and

other expenditure items that we will assume are not affected by e-commerce’s entry into

the goods sectors. In 2014, e-commerce expenditures on goods as a share of all retail

expenditures, which we denote by s, was 0.0437. The share of household expenditures

from non-e-commerce firms in 2014 is therefore λ = (1− s)χ+ 1−χ = 0.97. Assuming

a trade elasticity of -5, his gives us an estimate of the welfare gain from e-commerce in

Japan in 2014 of 0.5 percent. We report this number in the first column of Table 3.8 along

with a number of alternative estimates based on different plausible estimates of the trade

elasticity. These welfare gains range from 0.4 percent to 1.0 percent in 2014 and from

0.5 percent to 1.2 percent in 2017. The higher numbers in later years reflect the fact that

e-commerce sales have continued to expand rapidly in Japan.
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Table 3.8: National Welfare Change

Epsilon ∆W14 ∆W17 ∆W c
14 ∆W c

17

-3 0.009 0.012 0.010 0.013
-5 0.005 0.007 0.006 0.008
-7 0.004 0.005 0.004 0.006

Data source: NSFIE, JSB, MIETI and authors’ calculation. Notes: The first two column shows welfare gain
due to new varieties from e-commerce in 2014 and 2017 along with plausible trade elasticities. The last two
column shows welfare gain due to the increased variety from e-commerce and catalog sales in 2014 and 2017.

The second two columns make define local sales as total expenditures less expenditures

on products sold over the internet or through catalogs. Interestingly, we see that aggregate

welfare gains appear to be higher when we allow for the fact that consumers purchased and

continue to purchase goods through catalogs. The mechanical reason for this result is that

the share of consumer expenditures through catalogs actually grew slightly between 1996

and 2014. While one might have thought that the growth of e-commerce would have led

to lower catalog sales because e-commerce is a good substitute for catalogs, there are a

number of reasons why they may have grown together. First, the remarkable reduction in

the costs of data transmission through the internet also occurred at a time when it became

significantly cheaper to obtain and use phones. Thus, reductions in telecommunications

costs may have benefited both catalog and e-commerce merchants. Second, e-retailers often

advertise their wares in catalogs, and as e-commerce firms grew, they may have expanded

catalog mailings, which may have caused both to rise. Nevertheless, the rise in catalog

sales was quite small, so adjusting for it raises the welfare gains by around 0.2 percentage

points.

This number is substantially larger than the structural approach we applied in Section

3.4.2.2 and reflects the impact of different modeling assumptions. A major advantage of

the Arkolakis et al. (2012) approach is that it corresponds exactly to the gains implied
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Figure 3.7: ∆W c
pt : ε = −5 vs. Share of College Education

../Rakuten/Paper/figures/acr_welfare_c14_college_edu_v15.pdf

Data source: NSFIE, JSB, MIETI and authors’ calculation. Notes: Figure plots the welfare gain due to
the increased variety including catalog sales in 2014 against the share of college education. The number of
observations is 47.

by “core” trade models and the calculation takes into account general equilibrium effects.

A disadvantage of this approach is that these models impose a number of assumptions

that may not exactly fit the data: iceberg transportation costs, balanced trade, no labor

mobility, monopolistic or perfect competition, aggregate profits being a constant share of

revenues, etcetera. A second potential problem with variety-based approaches to modeling

the internet is that they are “hard-wired” to produce welfare gains as long as e-commerce

shares (or e-commerce and catalog shares) rise everywhere. The major advantage of the

Jensen (2007) approach used in Section 3.4.2.2 is that it not based on all of these identifying

assumptions and as a result produces different estimates and allows for the possibility that

e-commerce may not benefit everyone, but the main disadvantage is that it does not take into

account general equilibrium forces that might also matter for welfare. Since it is difficult

to say which approach is most plausible, we simply note that reasonable estimates of the

percentage welfare gains from e-commerce in 2014 range from 0.5 percent to 2.9 percent.

As in Section 3.4.2.2, it is also interesting to see how these gains have affected

individual prefectures. In order to do this, we computed the welfare gains for each

prefecture. Since there are 47 prefectures in Japan (which are similar in size to U.S.

counties), we do not present for prefectures individually, but instead look for patterns in

the data. One of the strongest patterns arises from the fact that in Japan, the share of online
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purchases is strongly associated with college education, which means that the share of

prefectural expenditures on e-commerce (λp14) has a strong negative correlation with the

share of college educated people in a prefecture. This produces a strong positive correlation

(0.68) between the welfare gain in a prefecture and the share of college-educated people

in the prefecture. We can see this clearly in Figure 3.7, where we plot the welfare gain

(including catalog sales in our definition of non-local sales). This result suggests that our

earlier result about a digital divide in which regions with a large share of highly educated

people benefit more than regions with fewer highly educated people is present even if we

shift our methodology of computing welfare gains.13

Table 3.9: Prefecture Welfare Change

(1) (2) (3) (4) (5) (6)
∆W14 ∆W14 ∆W14 ∆W14 ∆W14 ∆W14

Share of College 0.0195*** 0.0167*** 0.0214*** 0.0180*** 0.0123** 0.0144***
Educated (0.0032) (0.0041) (0.0039) (0.0041) (0.0047) (0.0052)

Population 0.0000 0.0000
(0.0000) (0.0000)

Income per Capita -0.0000 -0.0000
(0.0000) (0.0000)

Average Age -0.0001 0.0000
(0.0001) (0.0001)

Share of Secondary -0.0087** -0.0084
Educated (0.0043) (0.0052)

Constant -0.0001 0.0004 0.0005 0.0034 0.0053* 0.0052
(0.0008) (0.0009) (0.0011) (0.0060) (0.0028) (0.0061)

Observations 47 47 47 47 47 47
R2 0.460 0.474 0.469 0.464 0.506 0.528

Data source: NSFIE, JSB, MIETI and authors’ calculation. The table shows how prefectural welfare gains
due to increased variety relate to characteristics of prefecture - share of the college education, population,
income per capita, and share of secondary education.

13Whether we include or exclude catalog sales does not matter substantively for our prefectural results. If
we define λp14 without counting catalog sales as non-local expenditures, we obtain the same correlation up
to two significant digits, and the plot looks very similar.
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One obvious concern with these results is that the share of college educated people

might be correlated with other factors that matter for internet purchases. For example,

Einav et al. (2017) document that e-commerce in the U.S. is positively associated with

city size. Alternatively, it may be the case that income or age may be associated with e-

commerce intensity. In order to understand the importance of these factors, we regressed

the welfare gain on population (which is a proxy for urban vs. rural prefectures), prefectural

income per capita, and average age and report the results in Table 3.9. We find that none of

these variables are significant once we control for the share of college educated people in

a prefecture. When we include the share of secondary-school graduates, we find that it is

significant in one specification, but it has a negative sign, which reinforces our earlier point

that it is highly educated people that are the main users of e-commerce. In fact, most of the

coefficients are precisely estimated zeros.14 These differences are economically significant.

The gain for Tokyo (the prefecture with the highest share of college-educated people) is

four times that of Aomori, which has the lowest gain and has a share of college-educated

people that is half that of Tokyo.

3.5 Conclusion

This chapter makes use of a unique Japanese data set covering hundreds of products over

close to three decades to examine the impact of the internet on Japanese prices and welfare.

While we find that at the national level the price increases for goods sold intensively online

are lower than those sold principally in physical stores, we show that this result was present

even before the advent of e-commerce. Nevertheless, the entry of e-commerce firms is

associated with a widening of this gap which is consistent with e-commerce affecting
14This may explain why Fan et al. (2018) find no link between education and internet sales intensity.

Chinese education levels are much lower than in Japan, which means that very few people have gone to
college in their sample. The average number of years of education in Fan et al. (2018) is only 8.8 years
whereas the average in our sample of Japanese cities is 11.9 years.
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relative price increases. However, part of the reason for the increasingly different price

trends is due to the fact that the rate of price increase for goods sold intensively in physical

storesonline rose, which underscores the difficulty in interpreting the relatively low rates

of price increase for goods sold online as providing information about how e-commerce

affects aggregate inflation.

At the local level, we find strong evidence that the rate at which intercity price

differences disappear rose significantly for goods sold intensively online after e-commerce

sales became common in Japan. Analyzing the impact of this faster rate of price

convergence through the lens of the Jensen (2007) model indicates that the welfare gains

due to e-commerce were sizable: Japanese welfare in 2014 was 2.9 percent higher as a

result of e-commerce. However, the data also reveals an important digital divide. By

lowering prices in high-income cities with high average relative prices for goods sold

intensively online and raising them in low-income cities which tend to have low prices, the

uniform pricing associated with e-commerce appears to have generated substantial gains to

the richest Japanese cities while reducing the welfare of poorer cities.

When we examine the robustness of these results by calibrating new-trade theory

models which control for general equilibrium forces and consider welfare gains through

variety expansion, we find smaller overall gains from e-commerce—a welfare rise of 0.5

percent—but we find the same pattern of highly educated regions benefiting more than less

educated regions. Although a feature of new-trade theorymodels is that no location can be

made worse off as a result of trade liberalization, the estimated welfare gains in relatively

rich cities like Tokyo are four times higher than in small cities. This result arises from

the fact that higher-educated consumers buy substantially more online than less-educated

consumers. Thus, while the level of the gains varies depending on the modeling framework

adopted, the core result that e-commerce has a differentially positive effect for cities with

a large share of high-income or highly-educated people remains.
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Appendix A

Appendix to chapter 1

A.1 CPS

Table A1 shows the unweighted number of population for age greater than 16 and

the unweighted number of employed workers among the population greater than age

16. Table A1 also shows the imputation ratio for usual weekly earning and the hourly

wage. Since the major revision in the CPS in 1994, about 34 percent of hourly wages

are imputed by the CPS. The CPS imputes unreported data items to fill in based on

the demographic characteristics and residential address.1 Including imputed wages may

amplify measurement error, so this paper drops imputed wages. Although IPUMS-

CPS provides with the individual identifiers, they do not offer imputation flags for wage

variables. Thus, this paper merges IPUMS - CPS data into CPS data to exclude imputed

wages.

Table A2 shows the number of observations for hourly workers whose hourly wage

growth rate is available. The spike at zero and the fraction of hourly workers with wage

cuts and raises are also shown in Table A2.
1https://www.census.gov/programs-surveys/cps/technical-documentation/methodology/imputation-of-

unreported-data-items.html
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Table A1: The unweighted number of observation in the CPS and the imputation ratio

Usual weekly earning Hourly wage

Year Age ≥ 16 Employed Including Excluding Imputation Including Excluding Imputation
Imputation Imputation ratio Imputation Imputation ratio

1979 1,314,693 787,170 171,595 142,839 16.8 101,392 86,323 14.9
1980 1,546,827 918,046 199,290 167,183 16.1 116,941 100,699 13.9
1981 1,456,261 861,395 186,766 157,760 15.5 109,545 95,055 13.2
1982 1,404,030 813,120 175,643 151,075 14.0 102,475 90,129 12.0
1983 1,394,390 808,514 173,763 149,358 14.0 102,126 89,857 12.0
1984 1,374,456 819,764 176,724 150,317 14.9 104,287 90,780 13.0
1985 1,375,158 828,675 179,671 153,633 14.5 106,174 92,556 12.8
1986 1,353,321 821,067 178,586 159,172 10.9 105,861 96,029 9.3
1987 1,348,579 828,009 180,272 155,604 13.7 108,033 95,385 11.7
1988 1,286,466 797,107 172,931 147,658 14.6 104,079 90,836 12.7
1989 1,301,108 814,698 176,411 169,438 4.0 106,594 104,732 1.7
1990 1,355,294 846,099 185,022 176,278 4.7 110,916 110,425 0.4
1991 1,341,040 822,621 179,555 170,083 5.3 108,088 107,590 0.5
1992 1,320,939 808,261 176,833 167,846 5.1 106,996 106,608 0.4
1993 1,302,955 798,202 174,587 164,720 5.7 105,595 105,188 0.4
1994 1,271,347 790,130 160,223 - - 104,915 82,776 21.1
1995 1,251,928 784,129 159,344 39,798 75.0 104,976 25,991 75.2
1996 1,108,899 699,605 141,204 109,604 22.4 93,986 71,087 24.4
1997 1,114,451 708,705 143,999 111,214 22.8 95,571 72,226 24.4
1998 1,116,813 717,245 145,863 111,979 23.2 96,018 71,190 25.9
1999 1,123,666 723,156 147,726 107,929 26.9 96,545 67,801 29.8
2000 1,120,585 723,930 150,128 105,889 29.5 97,335 65,899 32.3
2001 1,236,870 793,912 157,460 110,480 29.8 102,410 68,712 32.9
2002 1,312,304 832,519 171,218 119,592 30.2 110,766 74,092 33.1
2003 1,302,483 818,795 167,393 114,282 31.7 108,915 70,976 34.8
2004 1,283,683 809,185 164,286 112,821 31.3 107,440 70,276 34.6
2005 1,279,052 810,893 165,522 114,632 30.7 108,662 71,531 34.2
2006 1,271,693 810,582 165,913 114,399 31.0 107,615 70,545 34.4
2007 1,260,380 801,226 165,246 115,224 30.3 104,945 70,299 33.0
2008 1,257,619 790,341 163,481 113,608 30.5 103,028 68,438 33.6
2009 1,273,634 766,660 158,331 110,588 30.2 100,010 66,815 33.2
2010 1,277,199 759,458 156,774 104,822 33.1 99,623 63,812 35.9
2011 1,265,607 749,778 155,636 102,360 34.2 98,885 62,345 37.0
2012 1,258,730 749,477 155,224 103,294 33.5 98,333 62,489 36.5
2013 1,253,663 745,840 155,474 99,965 35.7 97,570 60,185 38.3
2014 1,261,811 751,675 156,940 98,865 37.0 98,310 59,167 39.8
2015 1,245,862 739,222 155,734 94,674 39.2 97,108 56,410 41.9
2016 1,244,166 740,071 156,416 95,959 38.7 97,585 57,406 41.2
2017 1,227,127 731,896 154,809 94,638 38.9 95,955 56,385 41.2

Source: CPS and author’s calculation. Sample period: 1979 - 2017
This table shows the unweighted number of observation. The second column shows the unweighted number of individuals greater or
equal to 16 for each year in the CPS. The third column shows the unweighted number of employed workers, greater or equal to age
16. Column 4-5 show the unweighted number of workers whose usual weekly earning is available including imputation (column 4),
excluding imputation (column 5). Column 6 shows the imputation ratio for usual weekly earning. Column 7-8 show the unweighted
number of workers whose hourly wages are available, including imputation (column 7), excluding imputation (column 8). Column
9 shows the imputation ratio for the hourly wage.
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Table A2: Time series spike at zero, the share of wage cuts and raises for hourly workers
in the CPS

Unweighted count of Spike at zero (%) Fraction of Fraction of

year ∆w ∆w = 0 Unweighted Weighted ∆W < 0 ∆W > 0
1980 21,029 1,403 6.67 6.66 14.24 79.11
1981 23,641 1,605 6.79 6.70 14.32 78.98
1982 23,211 2,839 12.23 12.08 18.90 69.01
1983 22,869 3,397 14.85 14.65 20.64 64.71
1984 22,840 3,398 14.88 14.68 20.21 65.11
1985 11,115 1,608 14.47 14.25 20.65 65.10
1986 6,202 956 15.41 15.52 21.48 63.00
1987 24,569 3,807 15.50 15.36 21.41 63.23
1988 23,302 3,414 14.65 14.62 20.38 65.01
1989 24,648 3,293 13.36 13.16 21.26 65.58
1990 29,434 3,327 11.30 11.24 23.58 65.17
1991 30,034 3,549 11.82 11.64 24.91 63.44
1992 29,816 4,057 13.61 13.52 25.52 60.96
1993 29,751 3,989 13.41 13.45 26.42 60.13
1994 22,974 3,255 14.17 14.12 23.89 62.00
1995
1996 6,085 887 14.58 14.50 19.89 65.62
1997 18,058 2,533 14.03 13.66 19.56 66.78
1998 17,866 2,458 13.76 13.50 18.30 68.20
1999 16,880 2,348 13.91 13.47 18.95 67.58
2000 15,796 2,251 14.25 14.18 18.24 67.58
2001 14,721 2,062 14.01 13.98 18.65 67.38
2002 15,789 2,558 16.20 16.12 20.12 63.76
2003 17,336 2,932 16.91 17.46 21.09 61.45
2004 16,243 2,791 17.18 17.55 21.36 61.09
2005 14,991 2,466 16.45 16.91 20.63 62.46
2006 16,374 2,513 15.35 15.80 20.87 63.33
2007 16,249 2,310 14.22 14.25 20.43 65.32
2008 16,437 2,492 15.16 15.49 20.55 63.96
2009 16,077 2,906 18.08 18.30 23.59 58.11
2010 15,620 3,272 20.95 21.14 24.61 54.25
2011 14,776 3,030 20.51 20.88 24.30 54.82
2012 14,463 2,947 20.38 20.45 24.73 54.82
2013 14,467 2,897 20.02 20.46 23.07 56.47
2014 13,342 2,538 19.02 19.50 22.15 58.35
2015 10,758 1,975 18.36 18.86 21.58 59.56
2016 12,125 2,155 17.77 17.55 20.95 61.50
2017 12,676 2,322 18.32 18.41 20.26 61.33

Source: CPS and author’s calculation. Sample period: 1979 - 2017
This table shows the number of observation and the spike at zero, the fraction of workers with
wage cuts and raises for all hourly paid workers. Household identifiers were scrambles in 1995 so
there were no observations available in 1995, and it leads to small observations in 1996.
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Figure A1 and A2 show the nominal year-to-year hourly wage change distribution for

each year from 1980-2017. Nominal hourly wage change distribution is highly asymmetric:

there is an apparent spike at zero and fewer wage cuts compared to raises.

Table A3: The average of the spike at zero, the share of wage cuts and raises by industry,
CPS

% hourly Spike at zero Fraction of Fraction of
workers ∆W = 0 ∆W < 0 ∆W > 0

Agriculture, Forestry, Fishing and Hunting 1.04 23.74 21.00 55.25
Other Services (except Public Administration) 3.69 22.07 22.04 55.90
Administrative, Support, Waste Management, and Remediation Services 1.59 20.65 23.33 56.03
Real Estate and Rental and Leasing 0.95 18.29 20.33 61.38
Arts, Entertainment, and Recreation 1.86 18.21 22.87 58.92
Accommodation and Food Services 7.65 18.15 26.32 55.54
Professional, Scientific, and Technical Services 3.25 17.67 17.63 64.70
Construction 6.43 17.66 21.11 61.23
Wholesale Trade 3.09 16.31 19.68 64.02
Retail Trade 14.51 15.82 20.53 63.65
Educational Services 5.18 14.68 21.73 63.60
Mining, Quarrying, and Oil and Gas Extraction 0.71 14.45 24.05 61.50
Manufacturing 20.91 13.65 20.83 65.52
Transportation and Warehousing 4.53 13.61 22.83 63.57
Health Care and Social Assistance 15.03 13.24 19.57 67.19
Finance and Insurance 2.66 12.72 18.74 68.55
Information 1.43 11.97 20.55 67.48
Utilities 1.69 11.54 20.07 68.39
Public Administration 3.81 11.15 19.93 68.92

Data source: CPS and author’s calculation. Sample Period: 1979-2017 (except 1995). This table shows the average of the spike at zero
and the fraction of workers with wage cuts and raises over time by 2017 2 digit NAICS industry classification.

A.1.1 Time series spike at zero, fraction of wage cuts and raises
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  Hourly-paid workers, CPS, 1980-1994
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Figure A1: Nominal hourly wage growth rates distributions from 1980 to 1994

Data source: CPS and author’s calculation. The red bin shows the spike at zero, the percentage of workers whose hourly wage growth rate is exactly zero.
The width of blue bin is 0.02.
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Figure A2: Nominal hourly wage growth rates distributions from 1997 to 2017

Data source: CPS and author’s calculation. The red bin shows the spike at zero, the percentage of workers whose hourly wage growth rate is exactly zero.
The width of blue bin is 0.02.
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A.1.2 Robustness checks for aggregate time series evidence

Table A4 shows regression results based on (1.1), excluding minimum wage workers. Table

A5 shows regression results based on (1.1) using only working age population from 16 to

64. Main results are robust even if we exclude minimum wage workers and we use only

working age population.

Table A6 shows regression results based on (1.1) by varying the level of education.

Table A7, A8, A9, A10 show regression results based on the level of age, gender, race, and

hourly wage quartiles.Main results: the spike at zero increases when employment declines,

controlling for inflation and the increase in the spike at zero is higher than the increase in the

share of wage cuts when employment declines also hold for different worker characteristics.

Table A4: Exluding minimum wage workers, the spike at zero, the fraction of wage cuts, and raises

(1) (2) (3) (4) (5) (6)
Spike at zero Fraction of Fraction of Size of peak Fraction of Fraction of

∆W = 0 ∆W < 0 ∆W > 0 ∆W = 0 ∆W < 0 ∆W > 0
1-Epop 0.363 0.197 -0.559 0.555∗∗∗ 0.302∗ -0.857∗∗

(0.336) (0.222) (0.532) (0.201) (0.156) (0.316)

Inflation rate -1.237∗∗∗ -0.678∗∗∗ 1.915∗∗∗

(0.133) (0.141) (0.195)

0.555/0.857 = 0.648

Observations 37 37 37 37 37 37
Adjusted R2 0.0150 -0.00620 0.0152 0.675 0.325 0.683
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1980-2017 (except 1995). Inflation rate is calculated
from CPI-U.

There is no asymmetric response of nominal hourly wage change distribution to

employment. Consider the specification, taking into account an asymmetric response of

nominal wage change distribution to the employment, meaning that the response to the

declining employment is different from the response to inclining employment. From the

regression specification (A.1), γ captures asymmetric response to declining employment.
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Table A5: The spike at zero, the fraction of wage cuts, and raises among prime-aged hourly workers
along the business cycles

(1) (2) (3) (4) (5) (6)
Spike at zero Fraction of Fraction of Spike at zero Fraction of Fraction of

∆W = 0 ∆W < 0 ∆W > 0 ∆W = 0 ∆W < 0 ∆W > 0
1-Epop ratio 0.283 0.105 -0.388 0.507∗∗∗ 0.237∗ -0.743∗∗∗

(0.270) (0.210) (0.463) (0.145) (0.140) (0.253)

Inflation rate -1.168∗∗∗ -0.688∗∗∗ 1.856∗∗∗

(0.124) (0.145) (0.214)

0.507/0.743 = 0.68

Observations 37 37 37 37 37 37
Adjusted R2 0.0184 -0.0192 0.00542 0.717 0.318 0.684
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1979-2017 (except 1995). Inflation rate is calculated from
CPI-U. The spike at zero, the share of wage cuts and raises are constructed among prime-aged hourly paid workers.

Table A6: The spike at zero, the fraction of wage cuts and raises by education

High School or less College or more

(1) (2) (3) (4) (5) (6)
Spike at Fraction of Fraction of Spike at Fraction of Fraction of

zero ∆W < 0 ∆W > 0 zero ∆W < 0 ∆W > 0
1 - Epop 0.551∗∗∗ 0.300 -0.851∗∗∗ 0.663∗∗∗ 0.323∗ -0.986∗∗∗

(0.156) (0.187) (0.254) (0.159) (0.180) (0.249)

Inflation -1.189∗∗∗ -0.721∗∗∗ 1.910∗∗∗ -1.232∗∗∗ -0.628∗∗∗ 1.860∗∗∗

(0.134) (0.161) (0.219) (0.137) (0.156) (0.215)

0.551/0.851=0.65 0.663/0.986 =0.67

Observations 37 37 37 37 37 37
Adjusted R2 0.695 0.346 0.687 0.709 0.305 0.691
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Source: CPS and author’s calculation. Sample period: 1979-2017 (except 1995).
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Table A7: The spike at zero, the fraction of wage cuts and raises by age

16≤ age < 40 40≤ age < 64

(1) (2) (3) (4) (5) (6)
Spike at Fraction of Fraction of Spike at Fraction of Fraction of

zero ∆W < 0 ∆W > 0 zero ∆W < 0 ∆W > 0
1-Epop 0.581∗∗∗ 0.247 -0.828∗∗∗ 0.614∗∗∗ 0.359 -0.973∗∗∗

(0.131) (0.167) (0.245) (0.150) (0.223) (0.249)

Inflation -1.093∗∗∗ -0.699∗∗∗ 1.792∗∗∗ -1.178∗∗∗ -0.613∗∗∗ 1.791∗∗∗

(0.113) (0.144) (0.212) (0.129) (0.192) (0.215)

0.552/0.851=0.65 0.664/0.986 =0.67

Observations 37 37 37 37 37 37
Adjusted R2 0.737 0.383 0.675 0.713 0.209 0.676
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Source: CPS and author’s calculation. Sample period: 1979-2017 (except 1995).

Table A8: The spike at zero, the fraction of wage cuts and raises by gender

Male Female

(1) (2) (3) (4) (5) (6)
Spike at Fraction of Fraction of Spike at Fraction of Fraction of

zero ∆W < 0 ∆W > 0 zero ∆W < 0 ∆W > 0
1-Epop 0.516∗∗∗ 0.345∗ -0.861∗∗∗ 0.714∗∗∗ 0.251 -0.964∗∗∗

(0.153) (0.202) (0.251) (0.147) (0.182) (0.256)

Inflation -1.104∗∗∗ -0.510∗∗∗ 1.614∗∗∗ -1.262∗∗∗ -0.876∗∗∗ 2.139∗∗∗

(0.132) (0.174) (0.217) (0.126) (0.157) (0.221)

0.515/0.861=0.60 0.714/0.964=0.74

Observations 37 37 37 37 37 37
Adjusted R2 0.671 0.188 0.622 0.754 0.451 0.731
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Source: CPS and author’s calculation. Sample period: 1979-2017 (except 1995).
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Table A9: The spike at zero, the fraction of wage cuts and raises by race

White Non-White

(1) (2) (3) (4) (5) (6)
Spike at Fraction of Fraction of Spike at Fraction of Fraction of

zero ∆W < 0 ∆W > 0 zero ∆W < 0 ∆W > 0
1-Epop 0.630∗∗∗ 0.333∗ -0.964∗∗∗ 0.554∗∗∗ 0.0862 -0.641∗∗

(0.144) (0.174) (0.242) (0.171) (0.239) (0.250)

Inflation -1.199∗∗∗ -0.678∗∗∗ 1.877∗∗∗ -1.079∗∗∗ -0.598∗∗∗ 1.677∗∗∗

(0.124) (0.150) (0.208) (0.148) (0.206) (0.215)

0.630/0.964=0.66 0.556/0.641 =0.87

Observations 37 37 37 37 37 37
Adjusted R2 0.736 0.359 0.707 0.611 0.152 0.629
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Source: CPS and author’s calculation. Sample period: 1979-2017.

Table A10: The spike at zero, the share of wage cuts and raises by hourly wage quantiles

25th below From 25th to Median

Spike at zero Fraction of Fraction of Spike at zero Fraction of Fraction of
∆W = 0 ∆W < 0 ∆W > 0 ∆W = 0 ∆W < 0 ∆W > 0

1-Epop 0.972∗∗∗ 0.220 -1.192∗∗ 0.624∗∗∗ 0.131 -0.756∗∗

(0.272) (0.271) (0.448) (0.204) (0.247) (0.339)

Inflation -1.250∗∗∗ -0.938∗∗∗ 2.188∗∗∗ -1.218∗∗∗ -0.689∗∗∗ 1.907∗∗∗

(0.235) (0.234) (0.387) (0.176) (0.213) (0.292)

Observations 37 37 37 37 37 37
Adjusted R2 0.491 0.282 0.483 0.584 0.191 0.541

Median to 75th Above 75th

Spike at zero Fraction of Fraction of Spike at zero Fraction of Fraction of
∆W = 0 ∆W < 0 ∆W > 0 ∆W = 0 ∆W < 0 ∆W > 0

1-Epop 0.429∗∗ 0.386∗∗ -0.814∗∗∗ 0.547∗∗∗ 0.439∗∗ -0.986∗∗∗

(0.200) (0.177) (0.283) (0.163) (0.164) (0.234)

Inflation -1.115∗∗∗ -0.405∗∗ 1.521∗∗∗ -1.144∗∗∗ -0.703∗∗∗ 1.847∗∗∗

(0.173) (0.152) (0.244) (0.141) (0.141) (0.202)

Observations 37 37 37 37 37 37
Adjusted R2 0.535 0.191 0.532 0.659 0.427 0.716
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1979-2017 (except 1995). This table shows the cyclicality
of the spike at zero, the share of wage cuts and raises by hourly wage quantiles.
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However, from Table A11, we can see γ is not statistically different from zero, implying

that there is no asymmetric response of nominal wage change distribution to employment.

[Spike at zero]t = α1 + β1(1− et) + γ1(1− et) · I[∆(1− et) > 0] + ε1t

[Fraction of wage cuts]t = α2 + β2(1− et) + γ2(1− et) · I[∆(1− et) > 0] + ε2t

[Fraction of raises]t = α3 + β3(1− et) + γ3(1− et) · I[∆(1− et) > 0] + ε3t
(A.1)

Table A11: The spike at zero, the fraction of wage cuts and raises along the
business cycle

(1) (2) (3)
Fraction of Fraction of

Spike at zero ∆W < 0 ∆W > 0
1-Epop 0.624∗∗∗ 0.280∗ -0.904∗∗∗

(0.159) (0.156) (0.274)

(1-Epop)t · I(∆(1-Epop)t > 0) -0.00792 0.0235 -0.0156
(0.0170) (0.0203) (0.0271)

Inflation rate -1.175∗∗∗ -0.691∗∗∗ 1.866∗∗∗

(0.115) (0.143) (0.227)

Observations 37 37 37
Adjusted R2 0.721 0.341 0.697
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Data source: CPS and author’s calculation. Sample Period: 1979-2017

A.1.3 Comparisons to the previous literature: CPS

Figure A3 compares the spike at zero from the previous literature using the CPS and the

one that this paper constructed. When this paper constructs the spike at zero from nominal

wage change distributions using the CPS, this paper includes all hourly workers including

both job stayers and job switchers, while the previous literature focuses only on job stayers.
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Card and Hyslop (1996) use the CPS of the sample period from 1979 to 1993 to

construct the share of workers with no wage change among hourly rated job stayers. Elsby,

Shin, and Solon (2016) use the CPS from 1980 to 2012 and job tenure supplements to

construct the share of workers with no wage change among hourly rated workers whose

job tenure is more than one year. The San Francisco Federal Reserve Bank publishes the

Wage Rigidity Meter using the CPS from 1980 to 2017 with some gaps, which shows the

fraction of works with a zero wage change among workers who have not changed their

jobs.2

Based on the description, the spike at zero from Card and Hyslop (1996), Elsby, Shin,

and Solon (2016), and the Wage Rigidity Meter should be similar; however, this is not the

case. Although they are highly correlated with each other, there are differences in the level

of the spike at zero. The spike at zero by Card and Hyslop (1996) is higher than the one

from Elsby, Shin, and Solon (2016) and the Wage Rigidity Meter. Instead, the spike at

zero from Elsby, Shin, and Solon (2016) and the Wage Rigidity Meter closely follows the

spike at zero from this paper, which includes both job stayers and job switchers in the CPS.

However, we know that the spike at zero for job stayers is higher than the spike at zero for

job switchers from the SIPP. This may imply that the spike at zero from Elsby, Shin, and

Solon (2016) the Wage Rigidity Meter do not solely come from job stayers.

2For the fair comparison, I used the percent of hourly rated job stayers with a wage change of zero
from SF - Wage Rigidity Meter (here). Other than hourly workers, non-hourly workers and all workers’
(including both hourly and non-hourly workers) Wage Rigidity Meter is also available. Atlanta Fed’s Wage
Growth Tracker (here) also reports the percent of individuals with zero wage changes. However, when they
count individuals with zero wage changes, they include individuals with hourly wage growth rates from -
0.5 percent to 0.5 percent, while this paper and SF - Wage Rigidity Meter count only workers with exact
zero wage changes. Also, Atlanta Fed’s wage growth tracker includes both hourly workers and non-hourly
workers, while this paper considers only hourly rated workers. They impute hourly wages for non-hourly
workers by dividing usual weekly earnings by usual weekly hours worked or actual hours worked. However,
hourly wages calculated in this way tend to suffer from excess volatility, known as the division bias (Borjas
(1980)).
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Figure A3: Comparisons of the spike at zero from the previous literature

Notes: Card and Hyslop (1996) - Data: CPS, Sample Period: 1979 - 1993, Job stayers only
Elsby, Shin and Solon (2016) - Data: CPS, Sample Period: 1980 - 2012 (biannual), Job stayers only
SF Wage Rigidity Meter - Data: CPS, Sample Period: 1980 - 2017, Job stayers only
Jo (2018) - Data: CPS, Sample Period: 1980 - 2017, Both job stayers and job switchers

A.2 SIPP

Table A13 shows the unweighted count of observations of hourly workers whose hourly

wage growth rate is available for each year and the time series of the spike at zero, the

share of wage cuts and raises. Table A14 divides hourly workers into two - job stayer and

jobs switchers - and shows the unweighted count of observations, the spike at zero, the

share of wage cuts and raises, respectively.

Figure A4 shows year-over-year hourly wage change distribution for hourly workers

including both job stayers and job switchers for each year from 1985-2013 with some gaps.

The red bar presents the spike at zero, the share of workers with no wage change and the
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size of blue bin is 0.02. Figure A5 shows year-over-year hourly wage change distribution

for hourly job stayers and Figure A6 shows one for job switchers.

Table A12: The spike at zero, fraction of wage cuts and raises (%), SIPP, by
hourly wage quartiles

Hourly wage Spike at zero Fraction of Fraction of
Quartiles ∆W = 0 ∆W < 0 ∆W > 0

Job-stayer 25th below 36.11 15.45 48.44
25th to Median 28.11 11.21 60.68
Med to 75th 25.83 11.33 62.84
75th and above 24.86 11.10 64.04

Job-switcher 25th below 18.11 45.20 36.69
25th to Med 11.71 29.69 58.60
Med to 75th 9.53 23.08 67.39
75th and above 9.77 19.42 70.81

Data source: SIPP and author’s calculation. Sample Period: 1984-2013 (except 1990,
1996, 2001, 2004, 2008). This table shows the sample average of the spike at zero and
the fraction of workers with wage cuts and raises over time by hourly wage quartiles.

A.2.1 Time series spike at zero, fraction of wage cuts and raises
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Table A13: The spike at zero, the share of wage cuts, and raises in the SIPP

Year Obs Spike at zero Fraction of Fraction of
∆w ∆w = 0 ∆W < 0 ∆W > 0

1985 9,827 16.75 18.76 64.50
1986 13,490 17.26 19.36 63.38
1987 11,171 17.92 20.11 61.97
1988 10,508 14.95 18.12 66.93
1989 10,930 14.63 17.92 67.44
1990
1991 11,820 14.30 18.74 66.96
1992 17,241 17.31 19.32 63.37
1993 16,318 18.58 20.29 61.14
1994 19,430 18.28 20.66 61.07
1995 9,347 18.31 18.58 63.12
1996
1997 16,951 14.02 18.68 67.30
1998 15,877 14.31 16.33 69.37
1999 14,939 16.98 16.91 66.11
2000 5,408 17.52 15.29 67.20
2001
2002 13,727 16.12 21.85 62.04
2003 12,287 19.27 19.51 61.21
2004
2005 20,055 30.13 17.31 52.57
2006 17,621 30.05 14.19 55.76
2007 7,922 31.48 13.64 54.88
2008
2009 13,909 39.85 16.85 43.29
2010 16,080 42.22 16.00 41.77
2011 14,228 45.59 13.24 41.17
2012 13,242 43.84 13.72 42.44
2013 11,943 46.46 12.61 40.93

Source: SIPP and author’s calculation. Sample period: 1984 - 2013
except 1990, 1996, 2001, and 2008
This table shows the unweighted number of observation and the
size of peak, the fraction of workers with wage cuts and raises for
hourly paid workers.
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Table A14: The spike at zero, the share of wage cuts, and raises in the SIPP by job stayers
and job switchers

Job stayers Job switchers

Year Obs Spike at zero Fraction of Fraction of Obs Spike at zero Fraction of Fraction of
∆w ∆w = 0 ∆W < 0 ∆W > 0 ∆w ∆w = 0 ∆W < 0 ∆W > 0

1985 7,724 16.95 16.08 66.97 2,103 15.99 28.52 55.49
1986 9,735 18.58 16.14 65.28 3,755 13.50 28.50 58.00
1987 8,489 19.46 16.80 63.74 2,682 12.88 30.96 56.16
1988 7,593 16.70 14.00 69.30 2,915 10.35 28.92 60.73
1989 7,949 16.45 14.09 69.46 2,981 9.66 28.44 61.90
1990
1991 8,699 16.41 13.70 69.89 3,121 8.43 32.78 58.79
1992 13,226 19.30 15.02 65.67 4,015 10.70 33.52 55.77
1993 12,514 20.97 16.34 62.69 3,804 10.66 33.36 55.98
1994 14,422 20.64 16.54 62.82 5,008 11.54 32.39 56.07
1995 6,935 20.56 14.92 64.52 2,412 11.86 29.03 59.11
1996
1997 11,184 16.20 14.84 68.96 5,767 9.86 26.04 64.11
1998 10,290 17.05 12.05 70.91 5,587 9.30 24.16 66.55
1999 9,851 19.71 12.38 67.91 5,088 11.73 25.61 62.66
2000 3,938 20.00 11.54 68.45 1,470 10.93 25.20 63.87
2001
2002 8,926 18.92 16.34 64.74 4,801 10.91 32.06 57.03
2003 8,491 22.17 14.25 63.57 3,796 12.81 31.25 55.94
2004
2005 13,282 38.87 10.14 50.99 6,773 13.29 31.10 55.61
2006 11,937 38.60 7.42 53.98 5,684 12.75 27.90 59.35
2007 5,339 40.88 6.81 52.31 2,583 12.04 27.78 60.18
2008
2009 10,194 49.10 10.21 40.69 3,715 15.44 34.41 50.16
2010 11,292 53.83 8.44 37.73 4,788 15.92 33.15 50.93
2011 10,076 57.39 6.46 36.15 4,152 18.01 29.08 52.92
2012 9,333 56.21 6.21 37.58 3,909 15.84 30.73 53.43
2013 8,695 58.39 5.07 36.54 3,248 16.18 31.75 52.08

Source: SIPP and author’s calculation. Sample period: 1984 - 2013 except 1990, 1996, 2001, and 2008
This table shows the number of observation and the spike at zero, the fraction of workers with wage cuts and raises for hourly
paid job stayers and job switchers.
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  Hourly paid workers, SIPP, 1985-2013
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Figure A4: Nominal hourly wage growth rates 1985-2013

Data source: SIPP and author’s calculation. The red bin shows the spike at zero, the percentage of workers whose hourly wage growth rate is exactly
zero. Other than red bin, the width of the bin is 0.02.
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  Hourly paid workers, SIPP, 1985-2013

Job stayers
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53.83% 57.39% 56.21% 58.39%

Figure A5: Nominal hourly wage growth rates 1985-2013 for job stayers

Data source: SIPP and author’s calculation. For hourly rated job stayers. The red bin shows the spike at zero, the percentage of workers whose hourly
wage growth rate is exactly zero. Other than red bin, the width of blue bin is 0.02.
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  Hourly paid workers, SIPP, 1985-2013

Job switchers

15.99% 13.5% 12.88% 10.35% 9.66%

8.43% 10.7% 10.66% 11.54% 11.86%

9.86% 9.3% 11.73% 10.93% 10.91%

12.81% 13.29% 12.75% 12.04% 15.44%

15.92% 18.01% 15.84% 16.18%

Figure A6: Nominal hourly wage growth rates 1985-2013 for job switchers

Data source: SIPP and author’s calculation. For hourly rated job switchers. The red bin shows the spike at zero, the percentage of workers whose hourly
wage growth rate is exactly zero. Other than red bin, the width of blue bin is 0.02.
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A.2.2 The nominal wage change distribution for job switchers by

reasons of job switching

This section reports the average spike at zero, the share of wage cuts and increases for job

switchers by reasons of job switching. SIPP asks the reasons why respondents have stopped

working for the previous employer. About 50 percent of job switchers do not respond to

this question. Among the other 50 percent, workers on layoff, or injured, or temporary

workers record the higher spike at zero.

Fired/Discharged workers presents the similar level of the spike at zero compared to

workers who quit the job to take another jobs. However, workers who quit the job to take

the another job tend to have higher fraction of raises and the less share of cuts. Fired or

discharged workers tend to show the higher share of wage cuts. A15

Table A15: The spike at zero, the fraction of wage cuts, and raises for job-switchers by reasons of
switching, SIPP

% of job Spike at zero Fraction of Fraction of
switchers ∆W = 0 ∆W < 0 ∆W > 0

On layoff 11.53 14.06 37.05 48.89
Fired/Discharged 2.35 9.96 43.98 46.07
Quit to take another job 8.27 9.33 22.89 67.78
Contingent worker/temporary employed 4.22 14.38 29.97 55.65
Illness/Injury 1.26 14.26 38.69 47.05
Others 19.54 12.17 32.79 55.04
Missing 52.82 12.23 27.79 59.98

Data source: SIPP and author’s calculation. Sample Period: 1984-2013 (except 1990, 1996, 2001, 2004, 2008).
This table shows the sample average of the spike at zero and the fraction of workers with wage cuts and raises
over time by reasons of job switching. The category others include attending schools, childcare problems,
family/personal obligations, unsatisfactory work arrangements, retirement and so on.

A.3 Counterfactual analysis: Missing mass

Lack of nominal wage cuts compared to nominal wage increases is often suggested as the

existence of DNWR. To measure how absent of nominal wage cuts in the nominal wage
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Figure A7: Conceptual diagram of nominal wage distribution

Left panel shows the nominal wage change distribution under the assumption in the absence of wage rigidity
and the right panel shows how nominal wage change distribution looks like

growth distribution, this paper introduces the concept of missing mass. This concept is

often used to show the asymmetry of wage change distribution in the previous literature,

Card and Hyslop (1996), Lebow et al. (2003), and Kurmann and McEntarfer (2017).

To define missing mass, let us assume that nominal wage growth rate distribution is

symmetric around the median without any types of wage rigidity, which is shown as the

left panel of Figure A7. However, instead of symmetric distribution around the median,

what we can observe in the data is that an apparent peak at zero wage change and shortages

of wage growth rates around the zero compared to nominal wage change distribution above

median, displayed at the right panel of Figure A7. An apparent peak at zero, referred as the

spike at zero in this paper, can be decomposed into two: one is the share of workers with

no wage change who would have otherwise wage cut without wage rigidity and the other

is the share of workers with zero wage change who would have positive wage growth rate

in the absence of wage rigidity. The red colored area left to the zero in Figure A8 shows

the missing share of wage cuts due to wage rigidity, which becomes the part of the spike

at zero. The blue colored area right to the zero in Figure A8 represents the lack of share

of raises due to wage rigidity, which becomes part of the spike at zero. From now on, this

paper refers the red shaded area as the missing mass left to the zero and the blue shaded
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Figure A8: Missing mass left to the zero vs. missing mass right to the zero

area as the missing mass right to the zero.

Formally, we can write the missing mass left to the zero as

Σi1(∆w > 2×Med)− Σi1(∆w < 0)
N

(A.2)

and the missing mass right to the zero can be written as

Σi1(Med < ∆w ≤ 2×Med)− Σi1(0 < ∆w ≤ Med)
N

. (A.3)

Table A16 shows missing masses calculated using the equation A.2 and A.3. We can clearly see the

most of missing mass comes from the left using the CPS and the SIPP. In the CPS, 85 percent of

the spike at zero comes from the left to the zero. In the SIPP, 90 percent of the spike at zero for job

stayers comes from the left to the zero and 87 percent of the spike at zero comes from the left to the

zero for job switchers.
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Table A16: Missing mass from left to the zero vs. right to the zero

CPS

Spike at zero Missing mass Missing mass
from left to zero from right to zero

Hourly workers 15.25 12.97 2.15

SIPP

Spike at zero Missing mass Missing mass
from left to zero from right to zero

Job-stayer 23.74 21.25 2.49
Job-switcher 12.19 10.58 1.61

Data source: CPS, SIPP, ans author’s calculation. Sample period for CPS: 1979
- 2017. Sample period for SIPP: 1984-2013 (except 1990, 1996, 2001, 2004, and
2008)
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Appendix B

Appendix to chapter 2

B.1 Solution Algorithm

• Step 1: Guess a parameterized functional form ofH and choose the initial parameter,

γ0, γ1, and γ2.

Wt+1 = H(Wt,Mt+1)

ln(Wt+1

Wt

) = H(ln(Mt+1

Wt

)) = γ0 + γ1 ln Mt+1

Wt

+ γ2(ln Mt+1

Wt

)2

• Step 2 : Solve the wage setter’s optimization problem Vt(qt(i), Lt, wt−1(i)
Wt

, xt), given

the law of motion H .

• Step 3 : Simulate the dynamics of the cross-sectional distribution for finite

households for T periods using the policy function obtained by step 2.

• Step 4 : Construct a time series for wage inflation. Burn first initial periods and

estimate the parameters γ0, γ1, and γ2.
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– Calculate simulated wage inflation, ln(W
S
t+1
Wt

),

Wt+1

Wt

S

=

{ ∫ [wt+1(i)
qt+1(i)

]1−θ
dj
} 1

1−θ

{ ∫ [wt(i)
qt(i)

]1−θ
dj
} 1

1−θ

≈

Σj

[
wt+1(i)/Wt+1

qt+1(i)

]1−θ

Σj

[
wt(i)/Wt+1

qt(i)

]1−θ

 1
1−θ

– Estimate parameters using the OLS

ln(Wt+1

Wt

S

) = H(ln(Mt+1

Wt

)) = γ0 + γ1 ln Mt+1

Wt

+ γ2(ln Mt+1

Wt

)2

• Step 5: Update γ0, γ1, and γ2 using the OLS. Iterate from Step 2 to Step 5 until the

parameters converge.

• Step 6: Test the goodness of fit for H using R2.

B.2 Sensitiveness

B.2.1 Menu cost model

In the menu cost model, two parameters, the probability of facing the menu-cost to change

their wage (µMenu) and the fixed cost (κ) , are calibrated to match the average spike at zero.

To keep the average spike at zero fixed, as µMenu increases, the fixed cost, κ, decreases, so

does inaction region. In the random menu cost model, the spike at zero is the proportion of

the inaction region. Table B1 shows that menu cost model implies greater responsiveness

of the share of workers with wage cuts by varying µMenu from 0.3 to 1.
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Table B1: The spike at zero, the fraction of wage cuts, and raises along the
business cycles by varing menu cost, K, and µMenu

The responsiveness to employment

The average (1) (2) (3)
Spike at zero Spike at zero Fraction of Fraction of

µMenu K (%) ∆W = 0 ∆W < 0 ∆W > 0
1 0.0010 23.200 -0.120 -0.336 0.456

0.9 0.0012 23.035 -0.165 -0.333 0.498
0.8 0.0015 23.085 -0.187 -0.329 0.516
0.7 0.0020 23.205 -0.210 -0.358 0.568
0.6 0.0003 23.100 -0.210 -0.292 0.502
0.5 0.0004 23.000 -0.142 -0.353 0.495
0.4 0.0075 23.100 -0.164 -0.391 0.555
0.3 0.0190 23.164 -0.037 -0.469 0.506

This table shows the responsiveness of the spike at zero, the share of workers with wage
cuts, and raises by varing parameters of menu-cost model, µMenu and K.

B.2.2 DNWR model

As the parameter governing the degree of DNWR(µDNWR) increases, model predicts the

higher degree of DNWR. When employment declines, the optimal nominal wage change

distributions shift to the left. For those workers whose optimal wages are lower than the

previous wages, µDNWR fraction of workers cannot change their wages and the other (1 −

µDNWR) fraction of workers would experience wage cuts. Thus, we can expect that as µDNWR

increases, the average spike at zero increases and the average share of wage cuts decreases,

which is shown at Table B3 and Figure B1. Similarly, the degree countercylicality of the

spike at zero increases as µDNWR increases, which is shown at Table B2.

Lowering the persistence of idiosyncratic shock to ρq = 0.3 does not make changes

in the average wage change distribution. The second panel of Table B5 shows the similar

level of the average spike at zero and the share of workers with wage cuts and raises. On

the contrary, increasing σq raises the level of spike at zero and the share of wage cuts,

shown at Table B5. Table B4 shows that as long as µDNWR is the same, the degree of higher
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responsiveness of the spike at zero compared to the share of wage cut is the same, the ratio

of two coefficients from the regression of the spike at zero on employment to the that of the

share of wage cuts on employment.

Table B2: The spike at zero, the fraction of wage cuts, and
raises along the business cycle by varying µDNWR

(1) (2) (3)
Spike at zero Fraction of Fraction of

∆W = 0 ∆W < 0 ∆W > 0
Data

Employment -0.616 -0.305 0.921
Inflation -1.181 -0.674 1.855

DNWR (µ = 0.3) model

Employment -0.194 -0.429 0.623
Inflation -1.467 -3.365 4.832

DNWR (µ = 0.5) model

Employment -0.440 -0.373 0.813
Inflation -2.658 -2.517 5.176

DNWR (µ = 0.67) model

Employment -0.712 -0.329 1.041
Inflation -3.699 -1.772 5.470

DNWR(µ = 0.9) model

Employment -1.456 -0.144 1.600
Inflation -5.124 -0.574 5.698

Data source: CPS and author’s calculation. Sample Period: 1979-
2017 (except 1995). Inflation rate is calculated from CPI-U.
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Table B3: Data and model generated moments, varying µDNWR

Wage Employment Spike at zero Fraction of Fraction of
growth rates growth rates ∆W = 0 ∆W < 0 ∆W > 0

DNWR (µ = 0.3) model

Mean 4.373 0.000 10.092 20.290 69.618
SD 1.931 0.677 3.350 6.789 9.729
Skewness 0.204 0.021 - - -

DNWR (µ = 0.5) model

Mean 4.401 0.000 16.681 15.120 68.199
SD 1.769 0.766 5.204 4.757 9.749
Skewness 0.203 -0.017 - - -

DNWR (µ = 0.67) model

Mean 4.381 0.000 23.026 10.531 66.443
SD 1.645 0.812 6.820 3.219 9.902
Skewness 0.320 -0.061 - - -

DNWR (µ = 0.9) model

Mean 4.345 0.000 32.994 3.495 63.510
SD 1.510 1.045 9.303 1.052 10.310
Skewness 0.448 -0.077 - - -

Data source: CPS and author’s calculation. Sample Period: 1980-2017 (except 1995). Wage
growth rate is average of the median hourly wage growth rate for hourly paid workers from 1980
- 2017.
model generated moments are from stat.m

Table B4: The spike at zero, the fraction of wage cuts, and
raises along the business cycle by varying idiosyncratic
shock

(1) (2) (3)
Spike at zero Fraction of Fraction of

∆W = 0 ∆W < 0 ∆W > 0
DNWR (µ = 0.67, ρq = 0.821, σq = 0.17) model

Employment -0.712 -0.329 1.041
Inflation -3.699 -1.772 5.470

DNWR (µ = 0.67, ρq = 0.3, σq = 0.17) model

Employment -1.605 -0.680 2.285
Inflation -3.319 -1.637 4.956

DNWR (µ = 0.67, ρq = 0.821, σq = 0.254) model

Employment -0.447 -0.200 0.647
Inflation -2.740 -1.339 4.079

Data source: CPS and author’s calculation. Sample Period: 1980-
2017 (except 1995). Inflation rate is calculated from CPI-U.
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Figure B1: Staionary wage change distribution by varying µDNWR

Table B5: Data and model generated moments by varying idiosyncratic shock

Wage Employment Spike at zero Fraction of Fraction of
growth rates growth rates ∆W = 0 ∆W < 0 ∆W > 0

DNWR (µ = 0.67, ρq = 0.821, σq = 0.17) model

Mean 4.381 0.000 23.026 10.531 66.443
SD 1.645 0.812 6.820 3.219 9.902
Skewness 0.320 -0.061 - - -

DNWR (µ = 0.67, ρq = 0.3, σq = 0.17) model

Mean 4.380 0.000 23.762 11.166 65.073
SD 1.633 0.920 6.331 3.079 9.364
Skewness 0.288 0.023 - - -

DNWR (µ = 0.67, ρq = 0.821, σq = 0.254) model

Mean 4.382 0.000 29.305 13.693 57.002
SD 1.576 1.119 4.934 2.370 7.153
Skewness 0.230 -0.038 - - -

Data source: CPS and author’s calculation. Sample Period: 1980-2017 (except 1995). Wage
growth rate is average of the median hourly wage growth rate for hourly paid workers from 1980
- 2017.
model generated moments are from stat.m
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Figure B2: Staionary wage change distribution by varying idiosyncratic productivity shock
process
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Appendix C

Appendix to chapter 3

C.1 OLS regression results

Table C1: OLS Estimates Over Period 1991-2001

(1) (2) (3) (4)
Dependent Variable ∆pict ∆pict ∆pict ∆pict
Lagged Price -0.292*** -0.325*** -0.311*** -0.127***

(0.026) (0.027) (0.024) (0.011)

E-Commerce Intensity -0.179 -0.033 -0.040
(t=2009) × Lagged Price (0.269) (0.251) (0.114)

E-Commerce Intensity -1.126*** -1.222*** -0.413***
× Lagged Price × Post Rakuten (0.321) (0.329) (0.101)

t {1996} {2001} {1996,2001} Annual
1992-2001

Observations 25,848 27,407 51,012 152,416
R2 0.52 0.52 0.52 0.51
E-Commerce Intensity Year 2009 2009 2009 2009

Source: RPS, NSFIE, and authors’ calculation. Notes: Table shows regression results of equation (3.1)
using OLS estimation method. The first column uses the five-year log differences in prices from 1991 - 1996
and the second column uses that from 1996 - 2001. The third column uses two-five year period 1991 - 1996
and 1996 - 2001. The 2SLS regression results are available from Table 3.5.
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Table C2: OLS Estimates Over Alternative Periods

(1) (2) (3) (4) (5)
Dependent Variable ∆pict ∆pict ∆pict ∆pict ∆pict
Lagged Price -0.391*** -0.460*** -0.389*** -0.390*** -0.156***

(0.020) (0.026) (0.019) (0.016) (0.009)

E-Commerce Intensity 0.638** 1.076*** 0.477** 0.485** 0.171
(t=2009) × Lagged Price (0.275) (0.277) (0.233) (0.213) (0.109)

E-Commerce Intensity -1.319*** -2.458*** -1.380*** -1.297*** -0.553***
× Lagged Price × Post Rakuten (0.250) (0.270) (0.321) (0.211) (0.086)

t {1996,2006} {1996,2011} {1996,2016} {1996,2001, Annual
2006,2016} 1992-2016

k 5 5 5 5
Observations 51,845 43,256 42,555 87,515 393,246
R2 0.53 0.58 0.63 0.60 0.46
E-Commerce Intensity Year 2009 2009 2009 2009 2009

Source: RPS, NSFIE, and authors’ calculation. Notes: Table shows regression results of equation (3.1)
using OLS estimation method. First three columns compare the five-year period of log price differences
before (1991-1996) and after the entry of e-commerce firms (2001-2006, 2006-2011, and 2011-2016). The
last column uses the annual frequency of log price changes. The 2SLS regression results are available from
Table C2.
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