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ABSTRACT

The Operations and Design of Markets with Spatial and Incentive Considerations

Francisco Castro

Technology has greatly impacted how economic agents interact in various mar-

kets, including transportation and online display advertising. This calls for a better

understanding of some of the key features of these marketplaces and the develop-

ment of fundamental insights for this class of problems. In this thesis, we study

markets for which spatial and incentive considerations are crucial factors for their

operational and economic success. In particular, we study pricing and staffing deci-

sions for ride-hailing platforms. We also consider the contract design problem faced

by Ad Exchanges when buyers’ strategic behavior and inherent business constraints

limit these platforms’ decisions. Firstly, we investigate the pricing challenges of ride-

hailing platforms and propose a general measure-theoretical framework in which a

platform selects prices for different locations, and drivers respond by choosing where

to relocate based on prices, travel costs, and market congestion levels. Our results

identify the revenue-maximizing pricing policy and showcase the importance of ac-

counting for global network effects. Secondly, we develop a queuing approach to study

the link between capacity and performance for a service firm with spatial operations.

In a classical M/M/n queueing model, the square root safety (SRS) staffing rule bal-

ances server utilization and customer wait times. By contrast, we find that the SRS

rule does not lead to such a balance in spatial systems. In these settings, a service

firm should use a higher safety factor, proportional to the offered load to the power of

2/3. Lastly, motivated by the online display advertising market where publishers fre-

quently use transaction-contingent fees instead of up-front fees, we study the classic

sequential screening problem and isolate the impact of buyers? ex-post participation

constraints. We characterize the optimal selling mechanism and provide an intuitive

necessary and sufficient condition under which screening is better than pooling.
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Introduction

Marketplaces are a fundamental part of how agents in society interact. Before the

internet, most of these interactions occurred in a physical fashion. In search for ba-

sic goods consumers would go to a nearby store; for transportation they would take

the bus, subway or a cab; for information they would look in newspapers or maga-

zines. However, technological developments have fostered exciting changes in almost

all marketplaces which, in turn, have forever changed the way economic agents inter-

face with each other. Now people can shop online and have their goods delivered to

their homes within two days. Instead of hailing a cab on the street, consumers can

now “Uber” to anywhere they need to go right from their front door. The search for

information is now at the palm of our hand, easier than ever. These innovations have

impacted virtually every industry, from retail, to transportation, to advertising, and

beyond. There is a great deal of excitement and interest in the academic community

for understanding the new practical challenges these industries face; in turn, there

is equal excitement for designing policies and selling mechanisms to address those

challenges. In this thesis we explore practical economic and operational considera-

tions for a select group of online marketplaces that have recently revolutionized their

industries. In particular, we study ride-hailing systems and aim to understand how to

better design pricing and staffing policies while keeping in mind the spatial nature of

this market. We also explore online advertising through the lens of mechanism design,

considering buyers with rational behavior particular to this market that constrains

the way sellers can sell impressions.
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Ride-hailing services such as Uber, Lyft, and DiDi have changed the way people

move in cities. For example, from 2013 to 2017 the number of average weekday

taxi trips in New York has declined by approximately 100,000, and it has nearly been

matched by on-demand transportation platforms.1 On these platforms, riders can now

seamlessly request rides from their smartphones, while drivers possess information

about the system that helps them make real-time strategic decisions about when

and where to work. This has created an environment of unprecedented complexity

that prompts exciting practical and academic questions. This complexity stems from

both their spatial operational nature and the presence of strategic self-interested

agents. For instance, managing supply-demand imbalances in space entails solving

high-dimensional optimization problems in which complicated network effects have to

be taken into account. Strategic interactions between agents add yet another layer of

complexity, as the right incentives must be in place. In Chapter 1 and 2, we consider

these challenges and bring a new understanding to classical questions in operations

and revenue management.

In Chapter 1 we study how a revenue-maximizing ride-hailing platform should

select prices across city locations while taking into account drivers’ strategic repo-

sitioning behavior. We use a general game-theoretical framework that accounts for

spatial frictions that arise due to congestion and driving costs to elucidate the in-

terplay between local and global price effects. Local changes in price might have a

local effect on demand but, since supply is strategic and can reposition, they might

induce a non-trivial global supply response. To tackle this challenge we first establish

that the platform’s optimization problem can be decoupled into local subproblems

associated with smaller regions of the city, each of which can be solved via a coupled,

bounded knapsack relaxation. Then, by pasting these local solutions together we

obtain the global optimal solution. Our solution showcases a surprising insight that

1Fix, N.Y.C. “Advisory Panel Report” (2018).
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highlights how space impacts the design of optimal prices and drivers’ strategic be-

havior: in order to incentivize the repositioning of drivers to high-demand areas, the

platform can damage regions where drivers are not needed and, by doing so, boost

revenues. These damaged regions are characterized by low prices and high conges-

tion, the combination of which creates enough incentive to steer drivers to locations

that are more profitable for the platform. The framework we develop has applications

in other settings, e.g., where strategic workers must plan their working schedules or

spatial equilibrium models of labor mobility.

Another central matter in operations management is capacity planning. For a tra-

ditional multi-server queueing system it is well known that in heavy traffic a square-

root staffing (SRS) rule can maintain the balance between customers’ waiting time

and servers’ efficiency (QED regime). In systems where customers arrive to ran-

dom locations in space, such as ride-hailing platforms or automated warehouses, and

servers have to spend time not only servicing customers but also reaching them before

service starts, this balance may no longer hold. How should “capacity thinking” be

adapted in such settings? In Chapter 2, we analyze this question. We consider a

Markovian stochastic system that captures the key aspects of a spatial multi-server

system. We establish that, in stark contrast with a standard multi-server system, the

SRS rule brings the spatial multi-server system to the ED (efficiency driven) regime.

The reason is that, because customers have to be reached before service starts, the

time a server spends on them is larger than in a standard queuing setting and, there-

fore, more servers are required to achieve QED performance. In addition, we fully

characterize the system’s performance under a range of scalings, thereby showing how

it shifts from the ED to QD (quality driven) regimes by passing through the QED

regime. Interestingly, reaching the QED regime in our model is more subtle. It can

only happen when the buffer term in the classic SRS staffing formula is raised to

the power of 2/3 instead of 1/2, and for a specific value of the SRS parameter. Our

3



results suggest that in a spatial setting, operating in the QED regime depends not

only on the rate at which we scale the system but also on how we approach such a

rate. The results in this paper imply that common rules of thumb such as the SRS

rule will no longer be valid for firms that operate in space and, therefore, new staffing

rules of thumb are necessary. This has implications for fleets of self-driving cars and

for how to think about trade-offs for this fast-approaching technology.

A market that has drawn a great deal of attention in the Revenue Management

community is online display advertising. The wide adoption of auctions as the pre-

dominant selling mechanism in this market showcases the existence of a type of “busi-

ness constraint”: buyers never pay more than they are willing to pay for impressions.

In addition, it is common that for the same impression multiple auctions are used to

provide different service levels to buyers and, by doing so, to price-discriminate them.

An important practical example are the so-called “waterfall auctions,” in which bid-

ders can decide to participate in one of two auctions: (1) an auction with “first-look”

priority but a high reserve price, or (2) another with access only to the leftover inven-

tory that was not cleared in the first auction, but a low reserve price. The purpose

of this mechanism is screening; high valuation buyers should select the first auction

and low valuation buyers should select the second one. A natural practical question

is whether this is an effective price discrimination device. This brings to the forefront

the question of how to design an optimal screening selling contract assuming that

buyers satisfy ex-post individual rationality; that is, like in typical auctions, buy-

ers are always willing to participate even after learning their valuation. In Chapter

3 we isolate the essential parts of this problem and address it using a mechanism

design formulation. We study the problem faced by a monopolist selling a single

item to a two-type buyer who privately, and sequentially, learns her valuation in two

stages. The distinctive feature of our problem is that after the buyer completely

learns her valuation she is still willing to buy the item. Leveraging a connection with

4



marginal revenues, we obtain a full characterization of the optimal selling mechanism

and establish that its structure depends on an intrinsic economic quantity that we

call profit-to-rent ratio. It measures the change in the seller’s revenue per unit of

information rents given to the buyer. We show that, depending on how this economic

quantity behaves around the optimal posted price, the optimal contract can be either

a simple posted price that pools types or a more elaborate randomized mechanism

that separates types. The latter contract randomizes the low-type buyer and offers

her a low price, while it allocates with certainty the item to the high-type buyer and

offers her a high price. Importantly, despite the fact that we are in a setting with one

buyer and a single item, the presence of ex-post participation constraints makes our

optimal solution different from the classic bang-bang solution in mechanism design.

Moreover, we establish that the randomized contract can outperform the posted price

contract by up to 25%. Finally, we also provide extensions to the setting with an

arbitrary number of types.
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Chapter 1

Surge Pricing and Its Spatial Supply Response

1.1 Motivation and Overview of Results

Pricing and revenue management have seen significant developments over the years

in both practice and the literature. At a high level, the main focus has been to

investigate tactical pricing decisions given the dynamic evolution of inventories, with

prototypical examples coming from the airline, hospitality and retail industries ([64]).

With the emergence and multiplication of two-sided marketplaces, a new question has

emerged: how to price when capacity/supply units are strategic and can decide when

and where to participate. This is particularly relevant for ride-hailing platforms such

as Uber and Lyft. In these platforms, drivers are independent contractors who have

the ability to relocate strategically within their cities to boost their own profits. On

the one hand, this leads to a more flexible supply. On the other hand, one is not

able to simply reallocate supply across locations when needed, but rather a platform

needs to ensure that incentives are in place for a “good” reallocation to take place.

Consider the spatial pricing problem within a city faced by a platform that shares

its revenues with drivers. Suppose there are different demand and supply conditions

across the city. The platform may want to increase prices at locations with high

demand and low supply. Such an increase would have two effects. The first effect

is a local demand response, which pushes the riders who are not willing to pay a

higher price away from the system. The second effect is global in nature, as drivers

throughout the city may find the locations with high prices more attractive than the
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ones where they are currently located and may decide to relocate. In turn, this may

create a deficit of drivers at some locations. In other words, prices set in one region

of a city impact demand and supply at this region, but also potentially impact supply

in other regions. This brings to the foreground the question of how to price in space

when supply units are strategic.

The central focus of this chapter is to understand the interplay between spatial

pricing and supply response. In particular, we aim to understand how to optimally set

prices across locations in a city, and what the impact of those prices is on the strategic

repositioning of drivers. To that end, we consider a short-term model over a given

timeframe where overall supply is constant. That is, drivers respond to pricing and

congestion by moving to other locations, but not by entering or exiting the system.

In our short-term framework, the platform’s only tool for increasing the supply of

drivers at a given location is to encourage drivers to relocate from other places. In

turn, this time scale permits us to isolate the spatial implications on the different

agents’ strategic behavior. In this sense, our model can be thought of as a building

block to better understand richer temporal-dynamic environments.

In more detail, we consider a revenue-maximizing platform that sets prices to

match price-sensitive riders (demand) to strategic drivers (supply) who receive a

fixed commission. In making their decisions, drivers take into account prices, supply

levels across the city, and transportation costs. More formally, we consider a measure-

theoretical Stackelberg game with three groups of players: a platform, drivers and

potential customers. Supply and demand are non-atomic agents, who are initially

arbitrarily positioned. We use non-negative measures to model how these agents are

distributed in the city. All the players interact with each other in two dimensional

city. Every location can admit different levels of supply and demand. The platform

moves first, selecting prices for the different locations around the city. Once prices

are set, the mass of customers willing to pay such levels is determined. Then, drivers
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move in equilibrium in a simultaneous move game, choosing where to reposition based

on prices, supply levels and driving costs. In fact, besides prices and transportation

costs, supply levels across the city are a key element for drivers to optimize their

repositioning. If too many other drivers are at a given location, a driver relocating

there will be less likely to be matched to a rider, negatively affecting that driver’s

utility. The platform’s optimization problem consists of finding prices for all locations

given that drivers move in equilibrium.

Main contributions. Our first set of contributions is methodological. We pro-

pose a general framework that encompasses a wide range of environments. Our

measure-theoretical setup can be used to study spatial interactions in both discrete

and continuous location settings. In this general framework, our main result provides

a structural characterization of the optimal prices, and resulting equilibrium driver

movement in regions of the city where drivers relocate. In particular, we first establish

that the platform’s objective can be reformulated as a function of only the equilib-

rium utilities of drivers and their equilibrium post-relocation distribution. In turn, we

develop structural properties on these two objects. We first characterize properties

of the drivers’ equilibrium utilities and prove that the city admits a form of spatial

decomposition into regions where movement may emerge in equilibrium, “attraction

regions,” and the rest of the city. Furthermore, we establish that the equilibrium

utility of drivers and the local equilibrium post-relocation supply are linked through

a congestion bound. The former admits a fundamental upper bound parametrized by

the latter. Driven by these properties and our objective reformulation, we derive a re-

laxation to the platform’s problem that takes the form of coupled continuous bounded

knapsack problems. Notably, we establish that this relaxation is tight and in turn,

leveraging the knapsack structure, we obtain a crisp structural characterization of an

optimal pricing solution and its supply response.

In our second set of contributions, we shed light on the scope of prices as an
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incentive mechanism for drivers and provide insights into the structure of an optimal

policy. To that end, we study a special family of cases in a linear city environment

in which a central location in the city, the origin, experiences a shock of demand.

To put the optimal policy in perspective, we first characterize an optimal local price

response policy, a pricing policy that only optimizes the price at the demand shock

location. Such a policy increases prices at the demand shock location leading to an

attraction region around the shock in which drivers move toward the origin.

Leveraging our earlier methodological results in conjunction with the derivation

of new results, we characterize in quasi-closed form the optimal pricing policy and its

corresponding supply response. The optimal policy admits a much richer structure.

Quite strikingly, the optimal pricing policy induces movement toward the demand

shock but potentially also away from the demand shock. The platform may create

damaged regions through both prices and congestion to steer the flow of drivers toward

more profitable regions. Compared to the local price response policy, the optimal

solution or global price response incentivizes more drivers to travel toward the demand

shock.

Inner
periphery

Outer
periphery

Inner
periphery

Outer
periphery

Outer
center

Outer
center

Inner
center

Inner
center

damaged regiondamaged region

Supply travels
to shock

Supply travels
away from shock

Supply travels
away from shock

No movement No movement

Figure 1.1: The optimal solution creates six regions.

The optimal pricing policy splits the city into six regions around the origin (Figure

1.1). The mass of customers needing rides at the location of the shock is serviced by

three subregions around it: the origin, the inner center and the outer center. The

origin is the most profitable location and so the platform surges its price, encouraging
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the movement of a mass of drivers to meet its high levels of demand. These drivers

come from both the inner and outer center. In the former, locations are positively

affected by the shock, and some drivers choose to stay in them while others travel

toward the origin. In the latter, drivers are too far from the demand shock and

so the platform has to deliberately damage this region through prices (e.g., to shut

down demand) to create incentives for drivers to relocate toward the origin. However,

drivers in this region have an option: instead of driving toward the demand shock

at the origin, they could drive away from it. This gives rise to the next region,

the inner periphery. Consider the marginal driver, i.e., the furthest driver willing to

travel to the origin. To incentivize the marginal driver to move to the origin, the

platform is obligated to also damage conditions in the inner periphery. The optimal

solution creates two subregions within the inner periphery. In the first, conditions are

degraded through prices that make it unattractive for drivers. Drivers in this region

leave toward the second region. That is, they drive in the direction opposite to the

demand shock. The action of the platform in the second region is more subtle. Here,

the platform does not need to play with prices. The mere fact that drivers from the

first region run away to this area creates congestion, and this is sufficient degradation

to make the region unattractive for the marginal driver. The final region is the outer

periphery, which is too far from the origin to be affected by its demand shock.

We complement our analysis with a set of numerics that highlights that the op-

timal policy can generate significantly more revenues than a local price response. In

other words, anticipating the global supply response and taking advantage of the full

flexibility of spatial pricing plays a key role in revenue optimization.

1.2 Related Literature

Several recent papers examine the operations of ride-hailing platforms from diverse

perspectives. We first review works that do not take spatial considerations into
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account. There is a recent but significant body of work on the impact of incentive

schemes on agents’ participation decisions. [35] study the cost of self-scheduling

capacity in a newsvendor-like model in which the firm chooses the number of agents

it recruits and, in each period, selects a compensation level as well as a cap on

the number of available workers. [22] analyze various compensation schemes in a

setting in which the platform takes into account drivers’ long-term and short-term

incentives. They establish that in high-demand periods all stakeholders can benefit

from dynamic pricing, and that fixed commission contracts can be nearly optimal.

The performance of such contracts in two-sided markets is analyzed by [40] who

derive performance guarantees. [65] considers how uncertainty affects the price and

wage decisions of on-demand platforms when facing delay-sensitive customers and

autonomous capacity. [53] focuses on the effect of market thickness and competition

on wages, prices and welfare and shows that, in some circumstances, more supply

could lead to higher wages, and that competition across platforms could lead to high

prices and low consumer welfare.

In the context of matching in ride-hailing without pricing, [31] compare the waiting

time performance, in a circular city, of on-demand matching versus traditional street-

hailing matching. [39] analyze a dynamic matching problem as well as the structure

of optimal policies. Relatedly, [54] develop a heuristic based on a continuous linear

program to maximize the number of matches in a network. [1] study demand admis-

sion controls and drivers’ repositioning in a two-location network, without pricing,

and show that the value of the controls is large when both capacity is moderate and

demand is imbalanced.

Most closely related to our work are papers that study pricing with spatial con-

siderations. [23] take space into account, but only in reduced form through the shape

of the supply curve. This chapter points out that surge pricing can help to avoid

an inefficient situation termed the “wild goose chase” in which drivers’ earnings are
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low due to long pick-up times. [12] consider a queueing network where drivers do

not make decisions in the short-term (no repositioning decisions) but they do care

about their long-term earning. They prove that a localized static policy is optimal

as long as the system parameters are constant, but that a dynamic pricing policy is

more robust to changes in these parameters. [10] find approximation methods to find

source-destination prices in a network to maximize various long-run average metrics.

Customers have a destination and react to prices, but supply units do not behave

strategically. [17] focus on pricing for steady-state conditions in a network in which

drivers behave in equilibrium and decide wether and when to provide service as well

as where to reposition. They are able to isolate an interesting “balance” property

of the network and establish its implications for prices, profits and consumer sur-

plus. [20] structurally estimates a spatial model to understand the welfare costs of

taxi fare regulations. These papers investigate long-term implications of spatial pric-

ing. In contrast, our work examines how the platform should respond to short-term

supply-demand imbalances given that the supply units are strategic.

From a methodological point of view, our work borrows tools from the literature

on non-atomic congestion games. Our equilibrium concept is similar to the one used

by [58] and [26] to analyze selfish routing under congestion in discrete settings: in

equilibrium, drivers only depart for locations that yield the largest earnings. We

consider a more general measure-theoretical environment that can be traced back to

[61] and [48]. Our work is also related to the literature on optimal transport (see

[18]). Once the platform sets prices, drivers must decide where to relocate. This

creates a “flow” or a “transport plan” in the city from initial supply (initial measure)

to post-relocation supply (final measure). However, in our problem, the final measure

is endogenous.

Finally, some of our insights relate back to the damaged goods literature. [29]

explain that a firm can strategically degrade a good in order to price discriminate. In
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our setting the platform can damage some regions in the city through prices and con-

gestion to steer drivers toward more profitable locations and thus increase revenues.

Our linear city framework relates to the class of Hotelling models [38], which are

typically used to study horizontal differentiation of competing firms. In contrast to

this classical stream of work, we consider a monopolist who can set prices across all

locations. Furthermore, these prices affect the capacity at each location and supply

units can choose among all regions of the city to provide service.

1.3 Problem Formulation

Preliminaries. Throughout the chapter, we will use measure-theoretic objects to

represent supply, demand and related concepts. This level of generality will enable

us to capture the rich interactions that arise in the system through a continuous

spatial model. The continuous nature of space simplifies our solution, enabling us to

express the solution to special cases of interest in quasi-closed form. To that end,

we introduce some basic notation. For an arbitrary metric set X equipped with a

norm ‖ · ‖ and the Borel σ−algebra, we let M(X ) denote the set of non-negative

finite measures on X . For any measure τ , we denote its restriction to a set B by τ |B.

The notation τ � τ ′ represents measure τ being absolutely continuous with respect

to measure τ ′. The notation ess supB corresponds to the essential supremum, which

is the measure-theoretical version of a supremum that does not take into account

sets of measure zero. To denote the support of any measure τ we use supp(τ). The

notation τ − a.e. represents almost everywhere with respect to measure τ . For any

measure τ in a product space B ×B, τ1 and τ2 will denote, respectively, the first and

second marginals of τ . We use 1{·} to denote the indicator function, and So, ∂S, S, Sc

to represent the interior, boundary, closure and complement of a set S respectively.

We denote the close and open line segment between two points by [x, y] and (x, y),

respectively. When x, y are in the same line segment we write x ≤ y or x < y to
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denote the order in the line segment. If F (·) is a cumulative distribution function,

then F (q) = 1−F (q). For consistency, we use masculine pronouns to refer to drivers

and feminine ones to refer to customers.

1.3.1 Model elements

Our model contains four fundamental elements: a city, a platform, drivers and po-

tential customers. We represent the city by a convex, compact subset C of R2, and

a measure Γ in M(C). We refer to this measure as the city measure and it charac-

terizes the “size” of every location of the city. For example, if Γ has a point mass at

some location then that location is large enough to admit a point mass of supply and

demand.

Demand (potential customers) and supply (drivers) are assumed to be infinitesi-

mal and initially distributed on C. We denote the initial demand measure by Λ(·) and

the supply measure by µ(·), with both measures belonging to M(C). For example,

if µ is the Lebesgue measure on C, then drivers are uniformly distributed over the

city. Both the demand and supply measures are assumed to be absolutely continuous

with respect to the city measure, i.e., Λ, µ � Γ. Customers at location y ∈ C have

their willingness to pay drawn from a distribution Fy(·). For all y ∈ C, we assume

the revenue function q 7→ q · F y(q) is continuous and unimodular in q and that Fy is

strictly increasing over its support
[
0, V

]
, for some finite positive V .

We model the interactions between platform, customers and supply as a game.

The first player to act in this game is the platform. The platform selects fares across

locations and facilitates the matching of drivers and customers. Specifically, the

platform chooses a measurable price mapping p : C → [0, V ] so as to maximize its

citywide revenues.

After prices are chosen, drivers select whether to relocate and where to do so.

The relocation of drivers generates a flow/transportation of mass from the initial

measure of drivers µ to some final endogenous measure of drivers. This final measure
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corresponds to the supply of drivers in the city after they have traveled to their

chosen destination. The movement of drivers across the city is modeled as a measure

on C × C, which we denote by τ . Any feasible flow has to preserve the initial mass of

drivers in C. That is, the first marginal of τ should equal µ. Moreover, τ generates

a new (after relocation) distribution of drivers in the city, which corresponds to the

second marginal of τ , τ2. Formally, the set of feasible flows is defined as follows

F(µ) = {τ ∈M(C × C) : τ1 = µ, τ2 � Γ}.

The first condition ensures consistency with the initial positioning of drivers, the

second condition ensures that there is no mass of relocated supply at locations where

the city itself has measure zero. In particular, given the latter, the Radon-Nikodym

derivatives of τ2 and Λ with respect to Γ, dτ2(y)/dΓ and dΛ(y)/dΓ, are well defined

and for ease of notation we let, for any y in C,

sτ (y) ,
dτ2

dΓ
(y), and λ(y) ,

dΛ

dΓ
(y).

Physically, sτ (y) represents the post-relocation supply at location y normalized by the

size of location y, and λ(y) corresponds to the potential demand at location y also

normalized by the size of such location. Here and in what follows, we will refer to sτ (y)

and λ(y) as the post-relocation supply and potential demand at y, respectively. We

use the notation Cλ to represent the set of locations with positive potential demand

in the city, i.e., Cλ = {y ∈ C : λ(y) > 0}.

Given the prices in place, the effective demand at a location y is given by λ(y) ·

F y(p(y)), as at location y, only the fraction F y(p(y)) is willing to purchase at price

p(y). At the same time, the supply at y is given by sτ (y). Therefore, the ratio of

effective (as opposed to potential) demand to supply at y is given by

λ(y) · F y(p(y))

sτ (y)
,

assuming sτ (y) > 0. Since a driver can pick up at most one customer within

the time frame of our game, a driver relocating to y will face a utilization rate of
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min
{

1, λ(y) · F y(p(y))/sτ (y)
}

, assuming sτ (y) > 0. The effective utilization can be

interpreted as the probability that a driver who relocated to y will be matched to a

customer within the time frame of our game. In particular, if sτ (y) > λ(y) ·F y(p(y)),

there is driver congestion at location y, and not all drivers will be matched to a

customer. If sτ (y) = 0 at location y, we say the utilization rate is one if the effec-

tive demand at y is positive and zero if the effective demand is zero. Formally, the

utilization rate at location y is given by

R
(
y, p(y), sτ (y)

)
,


min

{
1, λ(y)·F y(p(y))

sτ (y)

}
if sτ (y) > 0;

1 if sτ (y) = 0, λ(y) · F y(p(y)) > 0;

0 if λ(y) · F y(p(y)) = 0.

When deciding whether to relocate, drivers take three effects into account: prices,

travel distance and congestion. The driver congestion effect (or utilization rate) is

the one described in the paragraph above. We assume that the platform uses a

commission model and transfers a fraction α in (0, 1) of the fare to the driver. As

a result, a driver who starts in location y and chooses to remain there earns utility

equal to

U
(
y, p(y), sτ (y)

)
, α · p(y) ·R

(
y, p(y), sτ (y)

)
. (1.1)

That is, the utility is given by the compensation per ride times the probability of a

match. We model the cost for drivers of repositioning from location x to location y

through the distance between the locations, ‖y − x‖. Therefore, a driver originating

in x who repositions to y earns utility

Π
(
x, y, p(y), sτ (y)

)
, U

(
y, p(y), sτ (y)

)
− ‖y − x‖. (1.2)

When clear from context, and with some abuse of notation, we omit the dependence

on price and the supply-demand ratio, writing U(y) and Π(x, y). We are now ready

to define the notion of a supply equilibrium.
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Definition 1.1 (Supply Equilibrium) A flow τ ∈ F(µ) is an equilibrium if it

satisfies

τ

({
(x, y) ∈ C × C : Π(x, y, p(y), sτ (y)) = ess sup

C
Π
(
x, ·, p(·), sτ (·)

)})
= µ(C),

where the essential supremum is taken with respect to the city measure Γ.

That is, an equilibrium flow of supply is a feasible flow such that essentially no driver

wishes to unilaterally change his destination. As a result, the mass of drivers selecting

the best location for themselves has to equal the original mass of drivers in the system.

The platform’s objective is to maximize the revenues it garners across all locations

in C. From a given location y, it earns (1 − α) · p(y) · min{sτ (y), λ(y) · F y(p(y))}.

The term (1 − α) · p(y) corresponds to the platform’s share of each fare at location

y, and the term min{sτ (y), λ(y) · F y(p(y))} denotes the quantity of matches of po-

tential customers to drivers at location y. If location y is demand constrained, then

min{sτ (y), λ(y) · F y(p(y))} equals λ(y) · F y(p(y)), while if location y is supply con-

strained, then min{sτ (y), λ(y) · F y(p(y))} amounts to sτ (y). The platform’s price

optimization problem can in turn be written as

sup
p(·), τ∈F(µ)

(1− α)

∫
C
p(y) ·min{sτ (y), λ(y) · F y(p(y))} dΓ(y) (P1)

s.t. τ is a supply equilibrium,

sτ =
dτ2

dΓ
.

Remark. Our model may be interpreted as a basic model to understand the

short-term operations of a ride-hailing company. In particular, each driver completes

at most one customer pickup within the time frame of our game and there is not

enough time for the entry of new drivers into the system. In the present model,

we do not account explicitly for the destinations of the rides. We do so in order to

isolate the interplay of supply incentives and pricing. In that regard, one could view
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our model as capturing origin-based pricing, a common practice in the ride-hailing

industry.

1.4 Structural Properties and Spatial

Decomposition

A key challenge in solving the optimization problem presented in (P1) is that the

decision variables, the flow τ and the price function p(·), are complicated objects.

The flow τ , being a measure over a two-dimensional space, is obviously a complex

object to manipulate. The price function will turn out to be a difficult object to

manipulate as well in that the optimal price function will often be discontinuous.

In order to analyze our problem, we will need to introduce a better-behaved object.

This object, which will be central to our analysis, is the (after movement) driver

equilibrium utility.

Drivers’ utilities. For a given price function p and flow τ , we denote by

VB(x| p, τ) the essential maximum utility that a driver departing from location x

can garner by going anywhere within a measurable region B ⊆ C. In particular, the

mapping VB(·| p, τ) : C → R is defined as

VB(x| p, τ) , ess sup
B

Π (x, ·, p(·), sτ (·)) . (1.3)

When B = C, we use V instead of VC. By the definition of a supply equilibrium,

essentially all drivers departing from location x earn V (x| p, τ) utility in equilibrium.

We now show that the equilibrium utility VB(·| p, τ) must be 1-Lipschitz continu-

ous. Intuitively, drivers from two different locations x and y that consider relocating

to B see exactly the same potential destinations. Hence, the largest utility drivers

departing from x can garner must be greater or equal to that of the drivers de-

parting from y minus the disutility stemming from relocating from x to y, that is,
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VB(x) ≥ VB(y)−‖x−y‖. Since this argument is symmetric, we deduce the 1-Lipschitz

property.

Lemma 1.1 (Lipschitz) Consider a measurable set B ⊆ C such that Γ(B) > 0. Let p

be a measurable mapping p : B → R+, and let τ ∈ F(µ). Then, the function VB(·|p, τ)

is 1-Lipschitz continuous.

We now introduce a reformulation of (P1) that focuses on the equilibrium utility

V and the post-relocation supply sτ as the central elements. We then establish

important structural properties of V and establish a spatial decomposition result

that is based on the equilibrium behavior of drivers.

1.4.1 Reformulating the Platform’s problem

In what follows, we define γ , (1 − α)/α. In the next result, we establish that the

platform’s objective can be rewritten in terms of the utility function V (·| p, τ) and

the post-relocation supply sτ , yielding an alternative optimization problem.

Proposition 1.1 (Problem Reformulation) The following problem

sup
p(·) , τ∈F(µ)

γ ·
∫
Cλ
V (x| p, τ) · sτ (x) dΓ(x) (P2)

s.t. τ is an equilibrium flow,

V (x| p, τ) = ess sup
C

Π
(
x, ·, p(·), sτ (·)

)
, sτ =

dτ2

dΓ
,

admits the same value as the platform’s optimization problem (P1), and a pair (p, τ)

that solves (P2) also solves (P1).

The first step in the proof of the proposition above is to rewrite the platform’s

objective in terms of the post-relocation supply sτ (x) and the pre-movement utility

function U (x, p(x), sτ (x)) (see Eq. (1.1)). This transformation is not particularly

useful per se, since the function U (x, p(x), sτ (x)) is not necessarily well-behaved.
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The next step consists of establishing that U (x, p(x), sτ (x)) coincides with V (x| p, τ)

whenever a location has positive post-movement equilibrium supply (see Lemma A.2

in the Appendix). Indeed, whenever the equilibrium outcome is such that a location

has positive supply, the utility generated by staying at that location has to be equal to

the best utility one could obtain by traveling to any other location. This is intuitive

in that if it were not the case, no driver would be willing to stay at or travel to

that location. In turn, one can effectively replace U (x, p(x), sτ (x)) with V (x| p, τ)

in the objective, which yields the alternative problem. The main advantage of this

new formulation is that the equilibrium utility V (x|p, τ) connects our problem to the

theory of optimal problem and it admits significant structure, as we show in the next

two subsections.

1.4.2 Connection to Optimal Transport

Our equilibrium concept is closely related to the notion of optimal transport plan

in the theory of optimal transport. In any equilibrium τ the total mass of drivers

repositions in the most efficient way as to minimize the total transportation cost.

Let τ be an equilibrium flow with second marginal τ2 then

τ ∈ arg min
γ∈M(C×C)

∫
C×C
‖x− y‖dγ(x, y)

s.t γ1 = µ, γ2 = τ2

Indeed, let γ be a feasible transport plan and let us use W(γ) to denote the optimal
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transport objective under the plan γ then

W(γ) = −
∫
C×C

(
U
(
y, p(y), sτ (y)

)
− ‖y − x‖

)
dγ +

∫
C×C

U
(
y, p(y), sτ (y)

)
dγ

= −
∫
C×C

(
U
(
y, p(y), sτ (y)

)
− ‖y − x‖

)
dγ +

∫
C
U
(
y, p(y), sτ (y)

)
dτ2(y)

≥ −
∫
C
V (x| p, τ)dµ(x) +

∫
C
U
(
y, p(y), sτ (y)

)
dτ2(y)

= −
∫
C×C

V (x| p, τ)dτ +

∫
C
U
(
y, p(y), sτ (y)

)
dτ2(y)

= −
∫
C×C

(
U
(
y, p(y), sτ (y)

)
− ‖y − x‖

)
dτ +

∫
C
U
(
y, p(y), sτ (y)

)
dτ2(y)

=W(τ)

This establishes that given the final supply of drivers τ2 then an equilibrium flow with

second marginal τ2 minimizes the total transportation cost. In our problem, τ2 is an

endogenous object that we need to find via optimization.

1.4.3 Indifference and Attraction Regions

A key feature of the problem at hand is that, in equilibrium, conditions at different

locations are inherently linked as drivers select their destination among all locations.

An important object that will help capture the link across various locations is the

indifference region of a driver departing location x. The indifference region of x rep-

resents all the destinations to which drivers from x are willing to travel to. Formally,

the indifference region for a driver departing from x ∈ C under prices p and flow τ is

given by

IR(x| p, τ) ,
{
y ∈ C : lim

δ↓0
VB(y,δ)(x|p, τ) = V (x|p, τ)

}
,

where B(y, δ) is the open ball in C of center y and radius δ. Intuitively, the definition

above says that if y ∈ IR(x| p, τ), then drivers departing from x maximize their

utility by relocating to y.

Indifference regions describe the set of best possible destination for a given loca-

tion. The converse concept which will turn out to be fundamental in our analysis is
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the attraction region of a location z. The attraction region of z represents the set of

all possible sources for which location z is their best option. In addition, location z

is called a sink if it is not willing to travel to any other location. These regions are

rich in the sense that they enjoy several appealing properties and, as we will see in

Section 1.5, we can solve for the platform’s optimal solution within them. Below we

provide a formal definition for an attraction region and a sink location.

In line with the literature on optimal transport, see e.g [5], it will be useful in our

analysis to study the behavior of drivers along rays around a particular location z.

We use Rz to denote the set of all rays originating from z (excluding z) and index

the elements of Rz by a. The advantage of this is that now we can disintegrate the

city measure into a family of measures concentrated along the rays, {Γa}, which we

can integrate with respect to another measure Γp in Rz to obtain Γ, that is,

Γ(B) = Γ({z})1{z∈B} +

∫
Rz

Γa(B)dΓp(a). (1.4)

In what follows we will use interchangeable Γ and Eq. (1.4).

Definition 1.2 (Attraction Region) Let (p, τ) be a feasible solution of (P2). For

any location z ∈ C, its attraction region A(z| p, τ) is the set of locations from which

drivers are willing to relocate to z, i.e.,

A(z| p, τ) , {x ∈ C : z ∈ IR(x| p, τ)}.

We call a location z ∈ C a sink if its attraction region A(z| p, τ) is non-empty and

z /∈ A(z′| p, τ) for all z′ 6= z. When z is a sink, we represent the endpoints of its

attraction region along a ray a ∈ Rz by

Xa(z| p, τ) , sup{x ∈ Aa(z| p, τ)},

where Aa(z| p, τ) is the restriction of A(z| p, τ) in the direction of ray a.
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Definition 1.3 (In-demand location) We say a location z is in-demand whenever

∀Q ⊂ Rz such that Γp(Q) > 0

Γ({z})1{λ(z)>0} +

∫
Q

∫
(z,z+δ]

1{λ(x)>0}dΓa(x)dΓp(a) > 0, ∀δ > 0.

The next result characterizes the shape of attraction regions.

Lemma 1.2 (Attraction Region) Let (p, τ) be a feasible solution of (P2). For any

sink z ∈ C, its attraction region A(z| p, τ) is a closed set containing z, Aa(z| p, τ) =

[z,Xa(z| p, τ)] and

A(z| p, τ) =
⋃
a∈Rz

Aa(z| p, τ).

The lemma above establishes an intuitive but important transitivity result. Let

x < y < z be such that x is in the attraction region of z. Then, y must also be in the

attraction region of z.

The structure of the utility function V at a supply equilibrium will play a central

role in our analysis. The following lemma establishes the shape of V within attraction

regions.

Lemma 1.3 (Utility Within an Attraction Region) Let (p, τ) be a feasible so-

lution of (P2), then for any z ∈ C the equilibrium utility satisfies

V (x| p, τ) = V (z| p, τ)− ‖z − x‖, for all x ∈ A(z| p, τ).

This result is closely related to the Envelope Theorem, which is widely used in

mechanism design (see [49]). If a driver originating from x is indifferent to relocating

to z, then V (z| p, τ)− V (x| p, τ) must be equal to the relocation cost ‖z − x‖.

Importantly, attraction regions emerge as soon as drivers move in the city, as

formalized in the next proposition.

Proposition 1.2 (Existence of attraction regions) Let (p, τ) be a feasible solu-

tion of (P2) and suppose that y ∈ IR(x| p, τ) for some x 6= y. Then, there exists a

sink location z ∈ C such that x, y ∈ A(z| p, τ) and x, y, z are collinear points.
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In other words, as soon as there is potential for movement, in the sense that drivers

at some location weakly prefer to travel to another location, necessarily an attraction

region exists.

1.4.4 Spatial Decomposition

Next, we show that attraction regions lead to a natural decoupling of the platform’s

problem, as they provide a natural way of segmenting the city. The next result

establishes a flow separation property induced by attraction regions.

Proposition 1.3 (Flow Separation) Let (p, τ) be a feasible solution of (P2), and

let z ∈ C be a sink. Then, there is no flow crossing the endpoints of the attraction

region, and there is no flow crossing the sink, z. Formally, with some abuse of

notation, let L(z| p, τ) denote
⋃
a∈Rz{Xa(z| p, τ)} then

(i) τ(A(z| p, τ)c × A(z| p, τ)) = 0 and

τ(
⋃
a∈Rz [z,Xa(z| p, τ)×

(
A(z| p, τ)c ∪ L(z| p, τ) \ {z}

)
) = 0.

(ii) Let R1, R2 ⊂ Rz with R1 ∩R2 = ∅ then

τ
( ⋃
a∈R1

(z,Xa(z| p, τ)]×
⋃
a∈R2

(z,Xa(z| p, τ)]
)

= 0.

The first part of this result characterizes attraction regions as flow-isolated sets.

There is no flow of drivers traveling to an attraction region from outside of it. And

drivers in the interior of an attraction region do not travel outside the region.1 In

this sense, attraction regions are flow-separated subsets of C. This will enable us to

“decouple” the platform’s problem in an attraction region from the rest of the city

in Section 1.5.2. The second part of the proposition establishes that in an attraction

region, no flow crosses between rays. However, there could be flow stemming from

1We clarify here that Proposition 1.3 does not impose anything on the direction of flow emerging
from the end points Xa(z| p, τ) for a ∈ Rz. That is, if there is a mass of drivers starting from one
of these boundary points, these drivers could move either into or out of the attraction region.
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any ray that travels to the sink. That is, the segments {(z,Xa(z| p, τ ]}a∈Rz of the

attraction region are flow-separated regions coupled by the sink location. Figure 1.2

illustrates this proposition.

C

A(z| p, τ )

z

Xa(z| p, τ )

ray a

Xa′(z| p, τ )
ray a′

×
×

××

×No flow crossing

Figure 1.2: Flow separation. Illustration of the result in Proposition 1.3. No flow
crosses the boundaries of A(z| p, τ).

This flow separation result will enable us to geographically decompose the plat-

form’s problem into multiple weakly coupled local problems. To that end, we intro-

duce some additional notation that will allow us to “localize the analysis”. Formally,

for any measurable B ⊂ C and measure µ̃ ∈M(B), we define the set of feasible flows

restricted to B to be

FB(µ̃) = {τ ∈M(B × B) : τ1 = µ̃, τ2 � Γ|B}.

In addition, we define local equilibria as follows.

Definition 1.4 (Local Equilibrium) For any B ⊂ C such that Γ(B) > 0 and µ̃ ∈

M(B), a flow τ ∈ FB(µ̃) is a local equilibrium in B if it satisfies

τ

({
(x, y) ∈ B × B : Π(x, y, p(y), sτ|B(y)) = ess sup

B
Π
(
x, ·, p(·), sτ|B(·)

)})
= µ̃(B).

That is, a local equilibrium in B is a feasible flow such that no driver wishes to

unilaterally change his destination when restricting attention to the set B. With this

definition in hand, we may now state our next result. Informally, this result states the
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following “pasting” property. Suppose we start from a price-equilibrium pair (p, τ)

and a sink z and its attraction region A(z| p, τ). Then, we can replace the flow that

occurs within A(z|p, τ) with any other local equilibrium within that attraction region

as long as we maintain the same conditions at the boundary ∂A(z| p, τ).

Proposition 1.4 (Pasting) Let (p, τ) be a feasible solution of (P2), and let z ∈ C

be a sink. Denote A = A(z| p, τ) and L =
⋃
a∈Rz{Xa(z| p, τ)}. Let µ̃ ∈ M(A) be

the measure representing drivers that stay within A according to flow τ , i.e., µ̃(B) ,

τ(B × A) for any measurable set B ⊆ A. Suppose there exists a measurable price

mapping p̃ : A → [0, V ] and a flow τ̃ ∈ FA(µ̃) such that τ̃ is a local equilibrium in A

under pricing p̃. Furthermore, suppose VA(·| p̃, τ̃) equals V (·| p, τ) in ∂A. Define the

pasted pricing function p̂ : C → [0, V ],

p̂(x) ,


p̃(x) if x ∈ A;

p(x) if x ∈ Ac,

and the pasted flow τ̂ ∈ F(µ), where for any measurable B ⊆ C × C

τ̂(B) , τ(B ∩ ((Ac ∪ L)×Ac)) + τ̃(B ∩ (A×A)).

Then, the pasted solution (p̂, τ̂) is a feasible solution of problem (P2) such that

sτ̂ =


sτ̃ (x) if x ∈ A;

sτ (x) if x ∈ Ac,
and V (x| p̂, τ̂) =


VA(x| p̃, τ̃) if x ∈ A;

V (x| p, τ) if x ∈ Ac.

Propositions 1.3 and 1.4 suggest a natural structure for the induced flows by any

pricing policy. For a given sink z, Proposition 1.3 establishes that the attraction

region of z and its complement are flow separated. Now Proposition 1.4 applies

this flow separation result and shows how to make local deviations to a feasible

solution while maintaining feasibility. More precisely, an equilibrium in C can be

locally modified in the attraction region of z, without losing feasibility, as long the
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equilibrium utilities of drivers in the boundaries of the attraction region are not

modified. The new solution (p̂, τ̂) in C merges the old solution (p, τ) in A(z|p, τ)c

with the modified solution (p̃, τ̃) in the attraction region A(z|p, τ).

1.5 Congestion Bound and Optimal Flows

In the prior section, we showed that the platform’s optimization problem can be re-

formulated as a problem over equilibrium utilities V and post-relocation supply sτ .

We also showed that V is a well-behaved function: it is 1-Lipschitz continuous and

it has derivative equal to +1 or -1 over attraction regions. Furthermore, we demon-

strated how to use attraction regions to decompose the platform’s global problem

into localized problems. In this section, we focus on the optimal relocation of drivers

within attraction regions. That is, we will prove that, without loss of optimality, we

can restrict attention to flows within attraction regions that take a very specific form.

In order to do so, we first need to formalize the notion of congestion level of a given

location.

1.5.1 Congestion Bound

We first introduce some quantities that will be useful throughout our analysis. These

quantities emerge from a classical capacitated monopoly pricing problem. Let us

consider any location x ∈ C and ignore all other locations in the city. The problem

that a monopolist faces when supply at x is s and demand is λx can be cast as

Rloc
x (s) , max

q∈[0,V ]
q ·min{s, λx · F x(q)}, (1.5)

with the price ρlocx (s) being defined as the argument that maximizes the equation

above. Since q · F x(q) is assumed to be unimodular in q, the optimal price ρlocx (s) is

uniquely determined and is characterized as follows

ρlocx (s) = max{ρbalx (s), ρux}, where s = λx ·F x(ρ
bal
x (s)), ρux ∈ arg max

ρ∈[0,V ]
{ρ·F x(ρ)}.

(1.6)
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That is, the optimal local price either balances supply and demand or maximizes the

unconstrained local revenue.

For a given local supply s, the maximum revenue that can be generated at location

x is Rloc
x (s), with a fraction α of that revenue being paid to the drivers. Therefore,

α · Rloc
x (s)/s is the maximum revenue a driver staying at this location can earn. To

capture this notion, we introduce for every location x the supply congestion function

ψx : R+ → [0, α · V ], which is defined as:

ψx(s) ,


α ·Rloc

x (s)/s if s > 0;

α · V if s = 0, λ(x) > 0;

0 if s = 0, λ(x) = 0.

The congestion function ψx must be decreasing since more drivers (in a single location

problem) imply lower revenues per driver.

Lemma 1.4 For any x ∈ Cλ the congestion function ψx(·) is a strictly decreasing

function.

More importantly, the congestion function ψx yields an upper bound for the utility

of drivers at almost any location with respect to the city measure.

Proposition 1.5 (Congestion Bound) Let (p, τ) be a feasible solution of (P2).

Then the equilibrium driver utility function is bounded as follows:

V (x| p, τ) ≤ ψx (sτ (x)) Γ− a.e. x in Cλ.

When there is a single location, the inequality above is an equality by the definition of

ψx. For multiple locations, drivers may travel to any location and there is no a priori

connection between the utility that drivers originating from x can garner, V (x| p, τ),

and ψx(s
τ (x)). The result above establishes that the latter upper bounds the former.

The bound captures the structural property that as equilibrium supply increases at

28



a location, and hence driver congestion increases, the drivers originating from that

location will earn less utility.

1.5.2 Optimal Supply Reallocation in Attraction Regions

We now consider the problem of how to optimize flows within an attraction region.

The key idea is to use the structural properties about the equilibrium utility function

as well as the pasting result developed in Section 1.4, in conjunction with a relaxation

to the platform’s problem within an attraction region that leverages the congestion

bound established in Proposition 1.5.

Consider a feasible solution (p, τ) of (P2). Let z ∈ C be a sink and A(z| p, τ) its

corresponding attraction region. We will now show how to construct a second feasible

solution of (P2) for which the revenue is weakly larger and we can fully characterize

its prices and flows within the attraction region A(z| p, τ) as defined by the original

solution (p, τ).

Theorem 1.1 (Optimal Supply Within an Attraction Region) Consider a feasible

solution (p, τ) of (P2), and let z ∈ C be an in-demand sink. Then, there exists

another feasible solution (p̂, τ̂) that weakly revenue dominates (p, τ), and is such that

V (·| p̂, τ̂) coincides with V (·| p, τ) in A(z| p, τ) and its supply sτ̂ in A(z| p, τ) is given

by:

sτ̂ (x) =


ψ−1
x (V (z| p, τ)− ‖x− z‖) · 1{λ(x)>0} if x ∈ ⋃a∈Rz [z, ra);

si if x = ra, a ∈ Rz;

0 otherwise,

for a set of values {ra} such that ra ∈ [z,Xa(z|p, τ)] and sa ≥ 0, a ∈ Rz. Furthermore,

p̂(x) =


ρlocx (sτ̂ (x)) if x ∈ A(z| p, τ) \⋃a∈Rz{ra};

pi if x = ra, a ∈ Rz,

where pa is such that U(ra, pa, sa) = V (ra| p, τ) · 1{λ(ra)>0} for a ∈ Rz.
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The theorem above characterizes an optimal solution, including both prices and

flows, within an attraction region. In particular, the optimality of a pricing policy

implies that it is sufficient to focus on solutions that have post-movement equilibrium

supply around the sink z in
⋃
a∈Rz [z, ra] while potentially creating regions with zero

equilibrium supply away from the sink, in the segments {(ra, Xa]}a∈Rz . These regions

“feed” the region around the sink z with drivers. Furthermore, the optimal prices are

fully characterized in any attraction region through the post-relocation supply. We

will highlight the main implications of Theorem 1.1 through a prototypical family of

instances in Section 1.6, where we will characterize the optimal solution across the

city in quasi-closed form.

Key ideas for Theorem 1.1. The key idea underlying the proof of the result is

based on optimizing the contribution of the attraction region A(z| p, τ) to the overall

objective by reallocating the supply around the sink, and then showing that this

reallocation of supply constitutes an equilibrium flow in the original problem.

In order to optimize the supply around the sink we consider the following opti-

mization problem which, as explained below, is a relaxation of (P2) within A(z| p, τ):

max
s̃(·)≥0

∫
A(z| p,τ)

V (x| p, τ) · s̃(x) dΓ(x) (PKP (z))

s.t s̃(x) ≤ ψ−1
x (V (x)) Γ− a.e. x in Cλ, (Congestion Bound)∫

A(z| p,τ)

s̃(x)dΓ(x) = τc, (Flow Conservation)∫
(z,Xa]

s̃(x)dΓa(x) ≤ τa, Γp − a.e. a ∈ Rz. (No Flow Crossing Rays)

where τc corresponds to the total flow that τ transports from A(z| p, τ) to A(z| p, τ),

and τa correspond to the total flow in A(z|p, τ) that is transported to ray a, excluding

z. Recall that given the post-relocation supply, s̃, the quantity∫
B
s̃(x) dΓ(x),
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represents the post-relocation supply induced by s̃ in B. Thus, the last three con-

straints in (PKP (z)) stand for consistency of the total post-relocation supply in each

one the relevant subregions of A(z| p, τ). The key is to observe that this is a relax-

ation of the original problem in the attraction region. In particular, the equilibrium

constraint implies the conservation constraint (see Proposition 1.3(i)), and the no-

flow-crossing constraints (see Proposition 1.3(ii)). The congestion bound is also a

consequence of the equilibrium constraint (see Proposition 1.5). In words, in this

formulation, we relax the equilibrium constraint but impose implications of it. We

constrain the amount of mass that we can allocate on each direction around z but we

fix the total amount of mass in A(z| p, τ).

In (PKP (z)), we fix the driver utilities and ask what should be the optimal al-

location of drivers while satisfying flow balance in the regions {[z,Xa]}z∈Rz and im-

posing the congestion bound. Clearly selecting s̃ = sτ is feasible for the problem

above and hence the optimal value upper bounds the value generated by the initial

price-equilibrium pair (p, τ) in the region A(z| p, τ). In the proof, we show that this

relaxation is tight. Namely, it is possible to construct prices and equilibrium flows

achieving the value of Problem (PKP (z)). The proof consists of two main steps: 1)

solving problem (PKP (z)) and 2) showing that the post-relocation supply that solves

the relaxation can actually be obtained from appropriate prices and flows. For step

1), the main idea relies on recognizing that Problem (PKP (z)) is a measure-theoretical

instance of a coupled collection of Continuous Bounded Knapsack Problems. In par-

ticular, the congestion constraint corresponds to the availability constraint in the

classical knapsack problem. The solution to (PKP (z)) is obtained by allocating as

much as possible at locations where we can make the most revenue per unit of vol-

ume, i.e., we would like to make s̃(x) as large as possible at locations where V (x|p, τ)

is the largest. Hence the solution starts by allocating as much supply as possible

at location z. The challenge here is that flow-crossing conditions need also to be
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satisfied and hence whether flow is sent to z from one ray or another is key and needs

to be tracked. For step 2), we explicitly construct prices, and the flow correspond to

the integration of the solution of a collection of optimal transport problems. Along

each segment (z,Xa] we solve an optimal transport problem with cost function equal

to the distance between any two points, initial measure equal to the reminder mass

that was not sent to z, and final measure equal to the restriction of the solution of

Problem (PKP (z)) in (z,Xa]. Finally, we apply the pasting result (Proposition 1.4)

to obtain a feasible price-equilibrium in the whole city C.

1.6 Response to Demand Shock: Optimal

Solution and Insights

The results derived in the previous sections characterize the structure of an optimal

pricing policy and the corresponding supply response in attraction regions for general

demand and supply conditions in a two dimensional region. In this section, to crisply

isolate the interplay of spatial supply incentives and spatial pricing, we focus on a

special family of instances that will be rich enough to capture spatial supply-demand

imbalances while isolating the interplay above.

In particular, to simplify exposition we focus on a one dimensional city and a fam-

ily of models that captures a potential local surge in demand. Namely, we specialize

the model to the case where the city measure is supported on the interval [−H,H]

and is given by

Γ(B) = 1{0∈B} +

∫
B
dx, for any measurable set B ⊆ [−H,H]2

that is, the origin may admit point masses of supply and demand while the rest of

the locations in [−H,H] only admit infinitesimal amounts of supply and demand. In

what follows, without loss of generality we will use C to denote [−H,H], that is, the

2Observe that thanks to the generality of our measure theoretical framework, all the theoretical
results develop thus far apply to this one dimensional setting.
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city now corresponds to the one dimensional interval over which the city measure is

supported. We fix the city measure throughout, but we parametrize the supply and

demand measures.

Supply is initially evenly distributed throughout the city, with a density of drivers

equal to µ1 everywhere. Potential demand will be also assumed to have a uniform

density on the line interval, except potentially at the origin.

We analyze what happens when a potential demand shock at the origin (the

potential high demand location) materializes and, in particular, we investigate the

optimal pricing policy in response to such a shock. We represent the demand shock

by a Dirac delta at this location. Therefore, for any measurable set B ⊆ C, the

potential demand measure (after the shock) is given by

Λ(B) = λ0 · 1{0∈B} +

∫
B
λ1dx,

where λ0 ≥ 0 and λ1 > 0. In particular, we refer to the case λ0 = 0 as the pre-demand

shock environment and the case λ0 > 0 as the demand shock environment.

For this family of models, we assume that customer willingness to pay is drawn

from the same distribution F (·) for all locations in the city (and this function is

assumed to satisfy the regularity conditions of Section 3.3). Figure 1.3 provides a

visual representation of this family of cases.

This special structure will enable us to elucidate the spatial supply response in-

duced by surge pricing and the structural insights on the optimal policies that emerge.

Throughout this section we will use short-hand notation to present the optimal

solution in a streamlined fashion. Let (p, τ) be a price equilibrium pair we use A(0), Xl

and Xr to denote A(0| p, τ), and the end points of the left and right rays around z,

respectively. Moreover, when clear from context, we write V (·) instead of V (·| p, τ).
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Demand Shock

Figure 1.3: Prototypical family of models with demand surge. The supply
is initially uniformly distributed in the city with density µ1, and potential demand
is uniformly distributed in the city with density λ1, with a sudden demand surge at
location 0.

1.6.1 The Pre-demand Shock Environment

We start by analyzing the pre-shock environment. In this environment, there is no

demand shock, λ0 = 0, and both demand and supply are uniformly distributed along

the city, with respective densities λ1 and µ1. If one were to look at each location in

isolation, the optimal local price at a location x with demand density λ1 and supply

density µ1 is ρlocx (µ1), as defined in Eq. (1.6). Note that in the current environment

ρlocx (µ1) is not location dependent and we denote it by ρ1 throughout, we do the same

with ψx(µ1) which we denote by ψ1.

Proposition 1.6 (Pre-demand Shock Environment) Suppose λ0 = 0. Then,

the optimal policy and corresponding supply equilibrium and flows can be characterized

as follows.

(i) (Prices) The optimal pricing policy is given by p(x) = ρ1, for all x in C.

(ii) (Flow) All supply units stay at their original locations.

Furthermore, the optimal revenue equals γ · ψ1 · µ1 · 2H.

This result simply says that if the initial demand-supply conditions are identical across

the city, then the optimal price policy does not induce any movement for supply, and
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the optimal price at each location is simply that of a single location capacitated

pricing problem. In such a solution, the expected utilization of all drivers is equal

to 1 if µ1 ≤ λ1 · F (ρu), and otherwise is strictly below 1. In the latter case, there

is oversupply and driver congestion at all locations. The optimal revenue, recalling

the reformulation in Proposition 1.1, is given by the equilibrium utility of drivers

ψ1, times the density of equilibrium supply, integrated across all locations (times a

scaling factor).

1.6.2 Benchmark: Local Price Response to a Demand

Shock

We next start our analysis of the demand shock environment. Before turning our

attention to an optimal policy in Section 1.6.3, we first focus on a simple type of

pricing heuristic which responds to changes in demand conditions through changes in

prices only where these changes occur. In particular, in the context of the demand

shock model, this corresponds to responding to a shock in demand at the origin by

only adjusting the price at the origin; we call this policy the local price response.

This provides a benchmark to better understand the structure and performance of

an optimal policy. We next characterize an optimal local price response, when prices

are fixed everywhere at the pre-demand shock environment solution, except at the

origin.

Proposition 1.7 (Local Price Response to a Demand Shock) Fix λ0 > 0. Sup-

pose that p(x) = ρ1 for all x in C \ {0} and that the firm optimizes for the price p(0).

Then,

(i) (Prices) The optimal price at the origin is given by p(0) = ρloc0 (sτ (0)), and

p(0) ≥ ρ1.

(ii) (Movement) There exists two thresholds Xr ≥ X0
r ≥ 0, such that Xr > 0 and:
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• for all x in [−X0
r , X

0
r ], all of the supply units move to the origin,

• for all x in [−Xr,−X0
r ] and all x in [X0

r , Xr], a fraction of the supply units

move to the origin and the other fraction does not move,

• for all x in C \ [−Xr, Xr], no supply unit moves.

Furthermore, the platform’s revenue is strictly larger than in the pre-demand shock

environment.

−H H

Center

Xr−Xr

sτ

X0
r−X0

r

Figure 1.4: Optimal local price response: induced supply response for a
case with µ1 > λ1 · F (ρu).

The result above characterizes the structure of an optimal local price response

as well as the structure of the supply movement it induces. Figure 1.4 depicts the

structure of the supply response. In particular, the optimal local price response leads

to a higher price at the origin to respond to the surge of demand at that location.

In turn, this higher price attracts drivers from a symmetric region around the origin.

In that region, for locations close to the origin, all supply units move to the origin.

After a given threshold X0
r , only a fraction of the drivers will move to the origin.

Intuitively, as one gets further from the origin, traveling to the origin becomes a less

attractive option, compared to staying put or traveling elsewhere. As that becomes

the case, a smaller and smaller fraction of units travels to the origin. Furthermore, we

establish that supply units have no incentive to travel anywhere else in the city and,

as a result, units that do not travel to the origin stay put and serve local demand.
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Beyond the threshold Xr, no supply units move in the equilibrium induced by the

optimal local price response.

The threshold Xr corresponds to the location of the last drivers willing to travel

to the origin. In the current environment, prices are not flexible and, therefore, Xr

must equals V (0)− ψ1 since drivers who are further than that will prefer to earn ψ1

by staying put compared to driving to the origin to earn V (0) minus driving costs.

If we are in a supply constrained regime, µ1 ≤ λ1 · F (ρu), then all drivers within

[−Xr, Xr] drive to the origin, i.e., X0
r = Xr. However, in a supply unconstrained

regime, µ1 > λ1 · F (ρu), the two thresholds are different, X0
r < Xr, as depicted in

Figure 1.4. This occurs because in locations further from the origin but still within

[−Xr, Xr], as underutilized drivers drive toward the origin, conditions at the departing

point improve and in equilibrium, staying put becomes competitive with driving to

the origin.

1.6.3 Optimal Solution

The previous subsection provided an optimal local price response to a demand shock

and the supply movement it induces. In this subsection, we focus on the optimal

global price response across all locations in the city. To that end, we will leverage the

results developed for the general model to obtain a quasi-closed form solution to the

platform’s problem in this specialized setting.

We begin by showing that the origin is an in-demand sink location and, therefore,

the results from Sections 1.4 and 1.5 apply to the attraction region of the origin.

By leveraging structural properties of the equilibrium utility function, the con-

gestion bound, and a novel flow-mimicking technique, we next fully characterize in

Theorem 1.2 the optimal equilibrium utility of supply units V (·), not only in the

attraction region of the origin, but across the entire city. In particular, this char-

acterization yields a spatial separation of the city into three attractions regions and

regions of no-movement. Leveraging Theorem 1.1 and a symmetry argument, we solve
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for the optimal sτ and the corresponding prices in each attraction region. The solu-

tion for the no-movement regions reduces to the pre-shock environment. Leveraging

the pasting result (cf. Proposition 1.4) yields the optimal solution to the platform’s

problem as presented in Theorem 1.3.

Our first result in this section demonstrates that we can focus on price-equilibrium

pairs such that the high demand location is a sink that has drivers coming towards

it from left and right.

Lemma 1.5 (Origin is in-demand sink) Without loss of optimality, one can re-

strict attention to price-equilibrium pairs (p, τ) such that the origin is an in-demand

sink such that Xl < 0 < Xr.

The intuition behind this proposition harks back to the fact that the performance of

the pre-shock environment is dominated by that of the local price response solution.

Solutions for which the origin is not an in-demand sink have revenues capped by that

of the pre-demand shock environment. At a high-level, in those solutions, there is

no positive mass of drivers willing to travel to the demand shock location and, thus,

the city resembles a city without a demand shock. However, the local price response

solution incentivizes drivers from both sides to travel to the demand shock and has a

strictly larger revenue. This implies that at optimality we must have drivers coming

from both sides to the origin, that is, Xl < 0 < Xr.

−H H

λ1µ1

λ0

Left periphery Center Right peripheryXrXl

Figure 1.5: Three region-decomposition.
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In what follows we solve for the key objects of the platform’s optimization problem

(P2). To make our exposition clear and highlight the solution’s spatial aspects, we

call the interval [Xl, Xr] the center region, and the region outside of it will be referred

to as the periphery (see Figure 1.5).

1.6.3.1 Equilibrium Utilities

In this subsection we characterize V (·) throughout C. We begin by stating the main

result of this subsection. We then we discuss some of the implications and associated

intuition.

Theorem 1.2 (Equilibrium utilities) Under an optimal price-equilibrium pair (p, τ),

the equilibrium utility function V (·) is fully parametrized by the three values V (0) and

Xl, Xr as follows:

V (x) =


V (0)− |x| if x ∈ [Xl, Xr],

min{V (0)− 2Xr + x, ψ1} if x > Xr,

min{V (0)− 2|Xl|+ |x|, ψ1} if x < Xl.

Moreover, V (0) > ψ1 and V (Xl), V (Xr) ≤ ψ1.

−H H0 XrXl WrWl YrYl

V (0)

V (Xr)V (Xl)

ψ1ψ1

Figure 1.6: Drivers’ equilibrium utility under an optimal pricing policy. The
equilibrium utility is fully characterized up to V (0), Xl and Xr.
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The first main implication of this result is that we know exactly how much utility

each supply unit garners under optimal prices throughout the entire city. Quite

strikingly, the characterization of V (·) is “independent” of the flows. That is, in order

to characterize the equilibrium utility we did not need to pin down the distribution

of after-movement supply.

The second implication is that the city has at most three types of regions. Figure

1.6 depicts the equilibrium utility function. The center [Xl, Xr] is by definition an

attraction region. Let Wr and Yr be defined as the points to the left and to the

right of Xr where the driver’s equilibrium utility function equals the pre-shock utility

level ψ1. To the right of the origin (and similarly to the left), we can observe three

main regions. We first have the interval [0,Wr], where drivers’ utilities are above

the pre-shock utility level. Drivers in this region are positively impacted by the

shock of demand at the origin (and the global optimal prices). The second region

[Wr, Yr] is notable. Here, drivers garner strictly less utility compared to the pre-shock

environment. In [Wr, Xr] drivers are “too far” from the origin so their utilities are

negatively affected by the cost of driving to the origin. Drivers in [Xr, Yr] are outside

the origin’s attraction region and, thus, do not relocate to the origin. Interestingly,

drivers in [Xr, Yr] suffer because the platform has to make sure that drivers in [0, Xr]

stay within the attraction region of the origin. For the marginal drivers at Xr to be

willing to travel to the origin, the conditions to the right of Xr should not be too

attractive. The final region corresponds to [Yr, H]; this region is not affected by the

shock of demand as it is effectively too far from the origin.

Key ideas for the proof of Theorem 1.2. We now present the main arguments

that enable us to establish Theorem 1.2. At a high level, we focus on each region

separately, center and periphery, and solve for V (·) in each of these regions.

We start by considering the center region, which is easy to analyze. Lemma

1.5 establishes that we can focus on solutions such that A(0) = [Xl, Xr] is a non-
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empty interval that strictly contains the origin. Our envelope result (Lemma 1.3)

characterizes the equilibrium utility function in any attraction region. In turn, this

implies that

V (x) = V (0)− |x|, for all x ∈ [Xl, Xr].

Importantly, the characterization of V (·) in this region only depends on three pa-

rameters, namely, V (0), Xl and Xr. In Section 1.7, we will leverage this fact to

numerically compute the optimal value for these parameters.

We now switch our attention to the periphery. Consider the right periphery

(Xr, H]. We first argue that, in this region, the drivers’ equilibrium utility has a

non-trivial upper bound, and then establish that this upper bound is achieved. The

treatment for the left periphery is analogous.

Lemma 1.6 (Upper bound) An optimal price-equilibrium pair (p, τ) satisfies

V (x) ≤ min{V (Xr) + x−Xr, ψ1}, for all x ∈ (Xr, H]. (1.7)

The upper bound above follows from two bounds. A first upper bound can be derived

using the 1-Lipschitz property of V (Lemma 1.1), which ensures that V can grow at

a rate of at most 1. Thus, V (x) is bounded by V (Xr) +x−Xr. A second bound may

be obtained by leveraging the congestion bound (Proposition 1.5). One may show

that that drivers from almost any location that do not have an incentive to travel

to the origin have their utilities capped by the pre-demand shock utility level ψ1.

Locations different than the origin that receive supply increase their driver congestion

with respect to the initial congestion level which, in turn, reduces the driver utility

at that location. In addition, drivers traveling to these locations have to incur a

transportation cost further decreasing their utilities. Thus V (·) has to be bounded

by ψ1 in (Xr, H].

The core of the argument toward characterizing the equilibrium utilities in the

periphery resides in establishing that the upper bound in Eq. (1.7) is always binding
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for any x in (Xr, H], a result we will present in Proposition 1.9. We show this result

in two steps: we first establish that the value function has to be non-decreasing in

[Xr, H] and then leverage this to establish that the upper bound is achieved under

an optimal pricing policy.

By our characterization of a driver’s utility in an attraction region (see Lemma

1.3), the upper bound would not be binding if there were drivers willing to move left in

(Xr, H]. That would imply the existence of an attraction region (see Proposition 1.2)

inside of which V (·) is decreasing. Our first proposition proves this cannot happen

by establishing that, in an optimal solution, V (·) is a non-decreasing function in the

right periphery.

Proposition 1.8 (Monotonicity in the periphery) Without loss of optimality, we can

focus on price-equilibrium pairs (p, τ) such that V (·) is non-decreasing in (Xr, H].

Furthermore, if V (Xr) = ψ1, then V (x) = ψ1 for all x ≥ Xr.

We first observe that the attraction region around the origin of the demand shock

location is always wider under the optimal solution than under the local best response.

That is, Alr(0) ⊂ Aopt(0). In particular, this means that more locations are affected

by a demand shock in the optimal solution than under the local price response. Hence,

the largest interval in which both solutions differ corresponds to [−Y opt
r , Y opt

r ]. We

denote this interval by Cdiff.

The key argument behind the proof of Proposition 1.8 is to construct a (strictly)

profitable deviation whenever V (·) is decreasing in some region. We illustrate the

main idea of the argument in Figure 1.7. Suppose the value function is decreasing

in some interval as illustrated in Figure 1.7(a). We will construct a deviation over

a superset of that interval, denoted by [y0, y1] in the figure. The construction of a

deviation contains three main ideas.
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Figure 1.7: Illustration of the main argument in the proof of Proposition 1.8.

First, the interval [y0, y1] is constructed in such a way that it is flow separated.

That is, there is no flow of drivers leaving this interval and no drivers coming in

(τ − a.e). This separation permits us to analyze this region as an individual sub-

problem, where the behavior of drivers is relatively “controlled”. In particular, we

construct the interval [y0, y1] in such a way there is at most one maximal subinterval

where V (·) decreases at rate -1, and at most one maximal subinterval where where V

increases at rate 1. Where V (·) decreases at rate -1 drivers can only move left, and

where V (·) increases at rate 1 drivers can only move right.

Second, the best incentive compatible deviation that ensures a non-decreasing

value function coincides with the dashed blue line. Because V can increase at most

at a rate of 1, after y0 the best deviation equals V (y0) + (x − y0) (recall Eq. (1.7)).

Moreover, since the interval ends at y1 and we want the deviation to be a non-

decreasing function, it has to be bounded by V (y1).

The final idea is a subtle, but critical one. We know from Proposition 1.1 that

the platform earns revenues from a location x proportionally to V (x) · sτ (x). As a

result, one needs to focus on both V (·) and the post-movement supply sτ to establish

a profitable deviation. We need to argue that overall the platform will earn higher

revenues after the drivers move. Our argument, which relies on judicious price setting

as well as a proper mapping of revenue contributions in different space regions between
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the old and new flows, is illustrated in Figure 1.7(b). We set prices in such a way that

it is incentive compatible for drivers not to move within the interval [y0, y1], except

for the region we denote by I near y0. In this region, we set prices to incentivize the

drivers to behave as they did in region I ′ in the old (non-monotone) solution. This

enables us not only to achieve the upper bound constructed, but also to obtain a

strict revenue improvement for the platform.

In brief, at the optimal solution, V (·) must be a non-decreasing function in

(Xr, H]. This implies that drivers only move right (or do not move) in the right

peripheral region. Our next result shows that Eq. (1.7) is indeed binding.

Proposition 1.9 (Tight upper bound) Without loss of optimality, we can focus on

price-equilibrium pairs (p, τ) such that the upper bound in Eq. (1.7) is tight.

The proof of Proposition 1.9 relies on the monotonicity in the periphery of V (·)

to construct a strict improvement whenever we have a solution (p, τ) for which the

upper bound in Eq. (1.7) is not tight. We start by separating intervals that form

maximal attraction regions, that is, attraction regions with a sink at an end point.

In these regions, V (·) is differentiable and has slope equal to 1. Such intervals can be

mapped onto the interval where the upper bound in Eq. (1.7) also has slope 1. This

mapping in represented by dashed lines and arrows in Figure 1.8.

We can then use a flow mimicking argument similar to the one used in Figure

1.7(b). The solutions in the initial intervals in the mapping can be replicated in the

new intervals, which we illustrate in Figure 1.8. Thus, this mapping preserves the

platform’s revenue in the intervals being mapped. The regions that are left after

the mapping (thick black lines in the figure) are given prices such that drivers in

them prefer not to relocate, and V coincides with the upper bound. By pasting the

solutions in the intervals we obtain then a solution for which the upper bound is tight

and whose revenue is strictly larger than that of (p, τ).
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Xr

V (Xr)

ψ1

H0

Figure 1.8: Illustration of the main idea underlying the proof of Proposition 1.9. The
dashed lines in V (x) correspond with interval where dV (x)/dx = 1. These intervals
are mapped onto the intervals in [Xr, H] where the upper bound in Eq. (1.7) has
slope 1. The thick black lines correspond to both the intervals and parts of the upper
bound that are left after the mapping.

1.6.3.2 From Equilibrium Utilities to Supply Distribution and Optimal

Prices

Given that we pinned down the equilibrium utility function across the city, the natural

next step as prescribed by the problem reformulation in Proposition 1.1 is to solve

for prices and supply.

Theorem 1.3 (Optimal prices and flows) An optimal price-equilibrium pair (p, τ) is

such that V (·) is as in Theorem 1.2, Xr = −Xl, and prices and flows are characterized

as follows.

1. (Prices) The optimal prices are given by p(x) = ρlocx (sτ (x)), where sτ (x) is as

below.

2. (Post-relocation supply) There exists unique βc ∈ [0,Wr] and βp ∈ [Xr, Yr] such

that∫ βc

−βc
ψ−1
x (V (x))dΓ(x) = µ1 ·2 ·Xr and

∫ Yr

βp

ψ−1
x (V (x))dΓ(x) = µ1 · (Yr−Xr),
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and the optimal post-relocation supply is given by

sτ (x) =


0 if x ∈ (βc, βp) ∪ (−βp, βc),

ψ−1
x (V (x)) otherwise.

3. (Movement)

• for all x in [−βc, βc], drivers move in the direction of the origin,

• for all x in [−Xr,−βc) ∪ (βc, Xr], all drivers move to [−βc, βc],

• for all x in [Xr, βp), all drivers move to [βp, Yr].

• for all x in (−βp,−Xr], all drivers move to [−Yr,−βp].

• for all x in [βp, Yr], drivers move in the direction of Yr,

• for all x in [−Yr,−βp], drivers move in the direction of −Yr,

• for all x in [−H,−Yr) ∪ (Yr, H], drivers do not relocate.

The key idea underlying Theorem 1.3 is to recognize the structure of the regions.

The center [Xl, Xr] is by definition an attraction region. The other two attraction

regions correspond to the intervals [Yl, Xl] and [Xr, Yr] (to recall the definitions of

these terms, please revisit Figure 1.6). Consider the last of these intervals. In it,

V (·) increases at a rate of 1 and drivers only move towards Yr but not beyond it.

The shape of V (·) then ensures that all drivers in this region are willing to travel to

Yr and, therefore, this location has to be a sink with its associated attraction region

being [Xr, Yr]. We can thus leverage Theorem 1.1 to characterize the flow structure

within attraction regions and then paste solutions appropriately. Finally, we show

that the optimal solution has to be symmetric around the origin. In particular, now

all the relevant quantities that characterize the optimal solution depend only on two

values: V (0) and Xr.

Discussion. We depict in Figure 1.9 the structure of the solution obtained in

Theorem 1.3. The main feature of the optimal solution is that it separates each side
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Figure 1.9: Supply response (solid-blue line) induced by optimal prices
(dashed-red line).

of the city, with respect to the origin, into six regions. Without loss of generality, we

focus our discussion on the right side of the city.

The origin receives a mass of supply equal to ψ−1
0 (V (0)). This mass of drivers

comes from two regions, the inner and the outer center, which we now define. The

first corresponds to the interval (0, βc]. Some drivers in this region choose to stay put

while others, attracted by the favorable conditions at the center of the city, choose to

drive to the origin. In equilibrium, drivers staying or traveling to the origin garner the

same utility. The outer center is the interval (βc, Xr]. Here, the platform sets prices

to V (or 0) and therefore supply is equal to zero. That is, the platform chooses prices

to shut down demand, giving no incentive for drivers to stay there (or alternatively

sets prices at zero to again give no incentive for drivers to stay there). In turn, this

incentivizes all drivers in this region to move somewhere else. In order to incentivize

these drivers to move towards the origin, the platform creates one more region: the

inner periphery.

The inner periphery corresponds to the interval (Xr, Yr]. The platforms “arti-

ficially” degrades the conditions for drivers in this interval in two different ways,

leading to the two sub regions, (i) and (ii) in Figure 1.9. In region (i), the platform

sets prices equal to V (or 0) in (Xr, βp], shutting down demand, so no drivers want

to either travel to or stay in this region. As a result the interval (βp, Yr] receives all
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drivers from (Xr, βp]. This creates driver congestion and, thus, endogenously worsens

driver conditions in the interval (βp, Yr]. The reason the platform selects these inner

periphery prices is to discourage drivers in the outer center from driving towards the

periphery. Quite strikingly, the optimal global price response to a demand shock

at the origin induces supply movement away from the origin in the inner periphery.

The final region is the outer periphery. All drivers in this region stay put, leading to

sτ (x) = µ1. Here, drivers collect the same utility they would make if there was no

demand shock at the origin.

In sum, the optimal global price response to a demand shock, while correcting the

supply-demand imbalance at the origin, also creates significant imbalances across the

city. This is driven by the self-interested nature of capacity units and the need to

incentivize them through spatial pricing. In particular, we observe that the structure

of the optimal pricing policy is very different from that of the local price response

(cf. Proposition 1.7).

1.7 Local Price Response versus Optimal

(Global) Prices

In this section, we will use the optimal local price response solution as a benchmark

for comparison to put the optimal solution in perspective. The objective is to illus-

trate through several metrics the different features of the optimal solution as well

as its performance in terms of revenue maximization and welfare. Throughout this

section, we use superscripts lr and opt to label relevant quantities associated with

the local price response and optimal solution, respectively (except when obvious from

the context).

We first observe that the attraction region around the origin of the demand shock

location is always wider under the optimal solution than under the local best response.

That is, Alr(0) ⊂ Aopt(0). In particular, this means that more locations are affected
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by a demand shock in the optimal solution than under the local price response. Hence,

the largest interval in which both solutions differ corresponds to [−Y opt
r , Y opt

r ]. We

denote this interval by Cdiff.

Next, we illustrate and discuss through a set of numerics the differences between

the two policies. We consider a range of instances that includes various levels of

supply availability. We fix the city to be characterized by H = 1 and assume that the

demand is uniformly distributed across locations with λ1 = 4. The origin experiences

a shock of demand ranging from low to high: λ0 ∈ {3, 6, 9}. We vary the initial

supply µ1 ∈ {1, 1.5, 2, . . . , 4.5, 5} so that when low, the city (excluding the origin)

is supply constrained, and when high, the city is supply unconstrained. Consumer

valuation is uniformly distributed in the unit interval. Note that the city (excluding

the origin) is supply constrained whenever µ1 < λ1 · F (pu) = 2. To eliminate any

strong dependence on the choice of H, for each instance, we compare the local price

response performance and optimal solution performances within the sub-region of the

city corresponding to the largest interval in which both solutions differ, Cdiff. Given

the symmetry of the solutions, in all that follows we focus on the right side of the

city [0, H].

Policy structure. Figure 1.10 depicts the core spatial thresholds characterizing

the optimal pricing policy and the local price response as the supply conditions µ1

changes (on the y-axis). In particular, we track the changes in Xr, βp, βc and Yr for

the optimal solution (cf. Theorem 1.3) and the changes in Xr and X0
r for the local

price response (cf. Proposition 1.7).

The first thing to note is that the structure of supply in the attraction region

of 0 differs significantly between the local price response and the optimal policy. In

the local price response, there are no drivers who stay put around the origin; and

post-relocation, drivers are either at the origin or in [X0,lr
r , X lr

r ]. In contrast for the

the optimal policy, there are no drivers in a region separated from the origin [βc, X
opt
r ]
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Figure 1.10: Policy structure. Spatial thresholds characterizing the optimal pricing
policy and the local price response as the the supply conditions change. The shaded
regions have no supply in equilibrium. The figure assumes λ0 = 9 and λ1 = 4.

but there are drivers in [0, βc]. This contrast can be better understood through the

reformulation of the objective in Proposition 1.1, in conjunction with the shape of

the equilibrium utility function in the attraction region of 0 (cf. Lemma 1.3). Given

the objective, the platform would ideally like to have supply as close to the origin

as possible (subject to the congestion bound constraint) as it maximizes the integral

of V (x) · sτ (x). With a local price response, as a result of the lack of flexibility in

setting prices throughout the city, the platform is unable to “optimize” the supply in

the attraction region and ends up with drivers at locations with low V in [X0,lr
r , X lr

r ]

while locations with higher V ’s have no drivers in (0, X lr
r ]. Meanwhile, the optimal

policy is able to set prices so as to induces the best possible distribution of supply in

the attraction region.

In the periphery of the optimal solution, which is outside the origin’s attrac-

tion region under pricing policy, the local price response behaves exactly as in the

pre-demand shock environment. In stark contrast, the optimal solution incentivizes
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movement of drivers from the periphery away from the demand shock. In particular,

the region [Xr, Yr], which has a non-trivial size, is artificially damaged. This region

is needed for the optimal solution to steer more drivers towards the origin, an issue

we address in more detail in the revenue improvement discussion below.

Revenue Improvement. The revenue performance of the optimal solution with

respect to our benchmark in Cdiff is shown in Table 1.1.

Table 1.1: Revenue improvement (in %) of optimal solution over optimal local prices
response solution in Cdiff.

µ1 1 1.5 2 2.5 3 3.5 4 4.5 5

λ0 = 3 2.05 4.64 9.59 13.02 13.87 12.92 11.00 8.60 5.91
λ0 = 6 2.17 3.11 4.99 8.73 9.96 10.01 9.56 8.92 8.21
λ0 = 9 2.69 3.51 4.69 8.75 10.16 10.30 9.81 9.10 8.29

For any level of demand shock, we observe that the revenue improvement reaches

its maximum value for medium to high levels of supply, and can be significant, above

10%.

In order to appreciate where the revenue gains stem from, consider Figure 1.10

and Table 1.2 below, which summarizes some key quantities for the case µ1 = 3,

λ0 = 9 (so that ψ1 equals 0.27). Let us analyze the various contributions to revenues

V opt(0) sopt(0) popt(0) Xopt
r Y opt

r V lr(0) slr(0) plr(0) X lr
r X0,lr

r

0.62 1.97 0.78 0.46 0.57 0.65 1.66 0.81 0.38 0.25

Table 1.2: Metrics for the local response and optimal solution for the case µ1 = 3,
λ0 = 9.

under both policies. We start by noticing that the drivers’ equilibrium utility at the

shock location is lower under the optimal solution than under the local price response,

V opt(0) = 0.62 and V lr(0) = 0.65. However, since Xopt
r = 0.46 and X lr

r = 0.38, the

optimal solution is able to incentivize the movement of a larger mass of drivers towards

the demand shock, leading to a mass sopt(0) = 1.97 and slr(0) = 1.66. Focusing on

the objective reformulation in Proposition 1.1, this extra mass of drivers delivers
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0.14 units (0.62× 1.97− 0.65× 1.66) of extra revenue to the platform. The revenue

difference is further increased by the fact that the remainder 0.79 units of drivers

in the attraction region of zero (2 × 3 × 0.46 − 1.97) in the optimal solution travel

to locations nearby the demand shock, where V (·) is close to 0.62. In contrast, the

benchmark solution has the remainder 0.62 drivers (2×3×0.38−1.66) staying within

[X0,lr
r , X lr

r ] where V (·) is below 0.37 (V lr(0)−X0,lr
r ). Through these two mechanisms,

the optimal policy garners more revenue than the benchmark solution in the region

[−Xopt
r , Xopt

r ].

However, the benefits come at a cost. In particular, to induce the “right” in-

centives in the shock’s attraction region, the platform has to alter conditions to the

right of the attraction region. In order to incentivize the movement of drivers in

[−Xopt
r , Xopt

r ] towards the demand shock, the region [Xopt
r , Y opt

r ] is damaged by hav-

ing the 0.22 units of drivers in it (2× (0.57−0.46)) contributing values strictly below

ψ1 = 0.27 to the platform’s objective. The same units of drivers in the benchmark

solution contribute exactly 0.27 per unit to the platform’s revenue. This cost is offset

by the proceeds that incentivizing the movement of a larger amount of drivers toward

the demand shock generates.

Welfare Implications. The revenue improvement of the optimal solutions relies

on creating a special region in which drivers’ utilities are below of what they could

earn if the platform responded only locally to the demand shock. This raises the

question of whether revenue-optimal pricing leads to lower or higher surpluses for

drivers and consumers compared to the benchmark solution.

The social welfare (SW ) equals the sum of the platform’s revenue, and the driver

(DS) and consumer surpluses (CS), as given by

DS =

∫
Cdiff

V (x)dµ(x), CS =

∫
Cdiff

E[(v−p(x))|v ≥ p(x)]·min
{
sτ (x), λx·F (p(x))

}
dΓ(x).

Driver surplus corresponds to nothing more than the integral of driver equilibrium

utilities across all locations in Cdiff. Similarly, consumer surplus corresponds to the
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gains enjoyed across Cdiff by all those consumers who are willing to pay and are

matched to some driver.

In Table 1.3 we display the percentage differences of driver and consumer sur-

pluses, as well as social welfare between the optimal and benchmark solutions. We

note that there are instances where the optimal solution is a Pareto improvement

over the local price response, in the sense that it is better for the platform, drivers

and consumers. There are also instances where the platform’s revenue gain is at the

expense of both drivers and consumers.

Table 1.3: Driver surplus, consumer surplus and social welfare difference (in %) of
optimal solution over optimal local prices response solution in Cdiff.

µ1 1 1.5 2 2.5 3 3.5 4 4.5 5

DS
λ0 = 3 -0.67 3.09 11.3 13.64 14.6 12.44 10.00 7.53 4.92
λ0 = 6 -4.15 -3.99 -1.62 -2.01 -0.82 0.74 3.00 5.35 7.80
λ0 = 9 -6.22 -7.35 -7.48 -9.45 -9.72 -9.02 -8.14 -6.36 -4.32

CS
λ0 = 3 -10.96 -14.1 -18.48 -7.24 -3.15 -0.44 1.01 1.57 1.58
λ0 = 6 -12.03 -10.58 -17.15 -6.32 1.18 4.18 4.24 2.85 0.69
λ0 = 9 -14.33 -11.94 -22.43 -12.58 -1.39 5.77 9.73 10.98 10.44

SW
λ0 = 3 -1.04 0.81 4.26 8.28 9.70 8.83 7.44 5.8 3.96
λ0 = 6 -3.60 -3.56 -3.49 -1.05 1.50 3.16 4.43 5.29 5.87
λ0 = 9 -5.24 -5.95 -8.16 -6.84 -4.40 -2.32 -0.86 0.51 1.58

For a given level of supply, the driver surplus degrades with respect to the bench-

mark as the demand shock becomes more intense. We also find that, independently

of the size of the demand shock, the optimal solution performs better than the bench-

mark in terms of consumer surplus when the supply level is high. More drivers in the

city imply more matches and lower prices and, thus, higher consumer surplus.
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Chapter 2

Spatial Capacity Planning

2.1 Motivation and Overview of Results

Many traditional service systems are characterized by static servers and customers

that arrive stochastically and line up in a queue before receiving service. These include

call centers, health-care facilities, and amusement parks, among others. In designing

such systems, one faces a tradeoff between the cost of servers and the quality of service

as measured through the characteristics of wait time. The prevalence of such systems

has led to an extensive literature on capacity sizing that has provided important

practical guidelines about how to set capacity levels in service systems. Typically,

there is a fine balance between the two objectives. A central rule, the so-called

square root safety (SRS) staffing rule, emerges naturally from different performance

considerations. In the SRS rule, the capacity is set at the nominal offered load plus

a safety factor proportional to the square root of the offered load. If one considers

a social planner’s problem attempting to minimize the system’s total cost measured

by the aggregate of capacity and waiting costs, the SRS rule is optimal in large

systems. Another central metric in the literature and in practice is the probability

that a customer waits before being attended by a server, which has led to the coining

of various terms to describe the regimes of interest. Quality driven (QD) is the

regime where customer quality is paramount and, thus, the probability of waiting is

vanishingly small. Efficiency driven (ED) refers to the regime where cost concerns

prevail. In ED, a customer’s probability of having to wait approaches one. Quality
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and Efficiency driven (QED) is the intermediate regime, where the probability that a

customer waits is separated from both zero and one, leading to a fine balance between

utilization and quality of service. The latter is achieved through the SRS staffing rule.

The latter capacity is sufficient to ensure that a positive fraction of customers do not

wait at all before receiving service.

However, there are other service systems in which customers arrive to random

locations in space and servers have to spend time not only servicing customers, but

also reaching them before service starts. This includes, for example, ride-hailing

systems such as Uber, Lyft, Via and DiDi. On these platforms, a customer requests a

ride from a given location and a driver is then dispatched by the platform to pick him

up and take him to his desired destination.1 Automated warehouses powered by Kiva

robots (Amazon robotics) or the Ocado smart platform provide another example. In

these warehouses, products are arranged in a grid. As orders for different products

arrive, robots are dispatched to collect the products and transport them to picking

stations. In these spatial multi-server systems, workload is larger than in traditional

systems because servers must reach customers before starting to service them, making

it unclear whether the SRS rule of thumb is still valid. The central question of this

chapter is the following: How should “capacity thinking” be adapted to spatial settings,

where servers need to reach customers before service can start?

We anchor our analysis around a spatial multi-server system in which arrivals to

a two-dimensional region follow a Poisson process. A customer draws an origin and

a destination uniformly and independently in the region. From a pool of n servers, a

central platform dispatches a server that must reposition to the origin of her assigned

customer and then take him to his desired destination. This spatial multi-server

system is different from a traditional queueing M/M/n service system in at least

1For consistency, we refer to customers as males and servers/drivers as females throughout the
chapter.
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two dimensions. First, servers must “pick up” customers by repositioning to a cus-

tomer location before starting service. This translates into extra workload added to

the system compared to a traditional system. Second, as the imbalance of servers

and customers increases, spatial economies of scale can make the system operate at

a faster pace. For example, the larger the spatial density of idle servers, the more

opportunities for better matches and the shorter the time it takes a server to pick up

an arriving customer. Similarly, the larger the spatial density of waiting customers,

the more opportunities for better matches and the shorter the time it takes an idling

server to reach a customer. That is, in a spatial multi-server system, service rate is

state-dependent and might improve with large supply-demand imbalances. This is

illustrated in Figure 2.1. In order to shed light on the capacity sizing question of in-

customers
in system

average service
time

0

En-Route
time

factor of
En-Route

time

number
of servers

low supply
density

high supply
density

⇓
potential for

efficient matches

equilibrium (QD)

low demand
density

high demand
density

⇓
potential for

efficient matches

equilibrium (ED)

Figure 2.1: Illustration of the potential for matches and the impact on pickup times.

terest, we take a macro view of the spatial system by focusing on the key features that

dictate its dynamics. More concretely, we consider a Markovian stochastic model that

captures the key characteristics of input and output rates in the spatial multi-server

system. Our Markovian model is a standard queueing system with n servers, but

with a state-dependent service rate that adequately reproduces the spatial economies

of scale of spatial systems. We analyze this queueing model in heavy traffic. On the
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one hand, the queueing setting provides guidelines for how the spatial system will

behave. On the other hand, the spatial setting provides a physical interpretation of

the queueing model results.

Main contributions. Our first contribution lies in the modeling domain. We

develop a Markovian model that captures fundamental aspects of capacity planning in

dynamic spatial environments. The system we analyze features both service speedups

and service slowdowns that emerge due to the presence of spatial economies of scale.

In addition, we ground our analysis on near-optimal dispatch rules derived from the

vehicle routing literature.

Our second contribution lies in the set of insights and fundamental results we

obtain for this class of problems. We first analyze a fluid model that highlights some

of the key properties of such systems. We characterize in closed form the two possible

stable equilibria of this deterministic model. These equilibria correspond to two types

of potential operating regimes: the first one with a high density of waiting customers

and the second one with a high density of idle servers. These equilibria are depicted in

Figure 2.1. In both of these operating points, the system is able to match customers

to servers efficiently since supply and demand are fairly imbalanced.

We then analyze the stochastic system in heavy traffic. In this setting we first

establish that, in stark contrast with a standard multi-server system, the SRS rule will

always bring the spatial multi-server system to the efficiency-driven (ED) regime, in

which customers will wait for a server to be dispatched with probability approaching

one. In other words, the added workload due to pickups is substantial enough and

cannot be compensated by simply increasing capacity levels on the order of the square

root of the offered load.

In turn, we fully characterize the asymptotic system’s performance under a range

of scalings. If the capacity buffer is of lower order than the offered load to the power

of 2/3, then the system is in the efficiency-driven (ED) regime. The system operates
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around the ED equilibrium depicted in Figure 2.1. If the capacity buffer is of higher

order than the offered load to the power of 2/3, then the system is in the quality-

driven (QD) regime. The system operates around the QD equilibrium depicted in

Figure 2.1. Hence, in a spatial environment, the QED regime may only emerge if

the safety capacity is of order the offered load to the power of 2/3. We furthermore

establish that the QED regime can indeed be achieved. The QED regime does not

correspond to a new stable operating point of the system, but to a system that

oscillates stochastically between the ED and QD equilibrium points. Reaching the

QED regime is more subtle in a spatial environment, as now it does not only depend

on the order of the safety capacity but also on second order terms. Furthermore, as

a by-product of this analysis, we can approximate the system cost and establish that

the power of 2/3 scaling is optimal in the sense that it minimizes a sum of server

costs and waiting costs, which is a natural social planner’s objective.

We show that the approximation method used, which greatly simplifies the anal-

ysis of an otherwise highly non-tractable system, captures the fundamental features

of the true system. We validate our approach via a series of numerical simulations

that show that the heavy-traffic behavior of our Markovian system closely captures

that of a simulated spatial multi-server system.

In sum, our model and results imply that common rules of thumb such as the

SRS rule will no longer be valid for spatial operations and, therefore, new staffing

rules of thumb are necessary. This has implications for how to think about such trade

offs in automated warehouses and, with the advent of fleets of self-driving cars, in

ride-hailing platforms. Our results derive new rules of thumb for the implications of

capacity levels on the type of service regime they induce.
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2.2 Related Literature

This chapter relates to several streams of literature.

Staffing. Our goal is to analyze the performance of a system with customers

arriving and being served in a spatial setting as measured by the steady-state prob-

ability of waiting in heavy traffic. The seminal work of [36] introduces the so-called

Halfin-Whitt regime in which the system is taken to heavy traffic by scaling the num-

ber of servers as R + β ·
√
R where R is the offered load. This is also known as

the square root staffing (SRS) rule. Under this regime, the authors show that in an

M/M/n or GI/M/n, the system the probability of delay is strictly between zero and

one–the QED regime. [34] and [68] study the Erlang-A case. For more on the QED

regime with applications to call centers, we refer the reader to the survey papers by

[33] and [3]. We also refer the reader to [69] for related work, and [56] for the more

general case of the G/GI/n system. [13] study the capacity sizing problem in an envi-

ronment in which there is also parameter uncertainty for mean arrival rate, deriving

new prescriptions for such settings and articulating how to operate depending on

whether one is in an uncertainty-dominated or a variability-dominated regime. Our

work is complementary to this literature in the sense that we also analyze the perfor-

mance of the system as measured by the probability of delay. In our model, however,

the presence of spatial frictions affects dynamics and introduces state-dependencies,

leading to fundamental changes in how capacity should be scaled to achieve QED

performance. For an in depth discussion about limiting regimes (ranging from the

conventional heavy traffic regime to the Halfin-Whitt regime and passing through the

slowdown regime) and their implications for diffusion approximations in non-spatial

environments we refer the reader to [67] and [8].

State-dependent service rate. The general spatial system we aim to under-

stand is complex and generally intractable. To gain insight we consider a simpler

Markovian version of it that can be regarded as an M/MQ/n system. Our work is
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thus related to the broad literature on Markovian system and birth and death pro-

cesses, and in particular to the works that study service systems with state-dependent

processing rates; for some examples we refer the reader to [45], [46] and [55]. [25]

study an Erlang-R service system in which the service rate can be sped up whenever

congestion is above a certain threshold . Using a fluid analysis they show that, de-

pending on system parameters, speeding up service can lead to both desirable and

undesirable system congestion levels. In related work, [30] study a service system

in which agents are sensitive to individual future work load and reduce their service

rate as the system’s workload increases. They show that depending on load sensitiv-

ity, the system’s slowdowns can take it from moderate to substantial deterioration.

Our work can be considered as a combination of both speedups and slowdowns, and

the exact form of these in our context is driven by spatial economies of scale. As

the number customers in our system increases beyond n, the density of waiting cus-

tomers increases and, therefore, the next idling servers can spend less time picking

up customers, i.e., service rate speeds up. Similarly, when the number of customer

is increasing but below n, the density of idle cars decreases and, therefore, arriving

customers may experience larger pickup times, i.e., service rate is slowed down. These

effects are a result of the physical nature of our system. Related to the above papers,

and in particular [30], our system features some form of bi-stability in an underlying

tightly related deterministic model. In contrast, however, the equilibria emerge on

different scales in our setting and asymptotically in the stochastic system, these can

survive jointly.

Stochastic vehicle routing. Another related stream of related work is that

of dynamic routing problems. Routing is a highly complex class of problems and

measuring the performance of routing algorithms is challenging. [14, 15] show that

the scaling of queues in space is fundamentally different to the one when space is

ignored. In particular, [14, 15] obtain a lower bound for the minimum expected total
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time in the system under any dispatching policy given by Θ (λ/(n2(1− ρ)2)) + Θ(1)

in heavy traffic, as the offered load converges to 1. This is a remarkable result that

provides a lower bound for all dispatching policies and in turn sets a target for the

optimal expected time in the system which can be used as a guideline to measure the

performance of policies. Interestingly, the size of the system scales with 1/(1 − ρ)2

and not with 1/(1 − ρ) as happens in the standard M/M/n system. Thus the fact

that we are taking into account space fundamentally changes how the system scales

with traffic intensity.

Ride-hailing. In the young but quickly growing literature on ride-hailing sys-

tems, customers arrive in a spatial region and a platform matches them to drivers

who, in turn, take the customers to their desired destinations. For the important

problem of spatial incentives in ride-hailing system we refer the reader to [12], [17],

[23], [1] and [16].

Closer to this work are the studies that investigate the problem of matching to

optimize certain performance metrics. Using a fluid approach in a closed queueing

network, [19] study how to route empty cars in order to maximize network utility. In

related work, [54] use a fluid approach to derive policies that maximize the number

of matches. [11] study matching in a closed queueing network, and show that for a

Scaled MaxWeight policy, the proportion of dropped demand in steady state decays

exponentially fast as the number of servers in the system grows large. In a circular

city framework, [31] analyze the waiting time performance of different matching mech-

anisms. The focus of this chapter, in contrast, is to understand how to think about

capacity planning in spatial environments. Rather than optimizing over the space of

dispatching policies, we anchor the analysis around a near-optimal dispatching policy.

Closest to the present setting is [23]. There, the authors also analyze inefficiencies

stemming from additional workload in a spatial system, and study the possible use

of surge pricing to alleviate these. This study focuses on a different question, that of
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capacity planning. The two papers utilize different dispatch policies. The framework

in this chapter can be used to analyze the type of dispatching considered there, in

which the additional capacity needed would be of order the offered load. In contrast,

in this chapter, we focus on a class of provably near-optimal dispatch rules based on

the vehicle routing literature mentioned above, which, as we establish, enables one to

only need a safety capacity of the order the offered load to the power of 2/3.

2.3 Spatial Queueing Model

We introduce a stochastic model for spatial capacity planning within a bounded

region of a plane. Our model is an M/MQ/n queueing system (in Kendall’s notation

MQ stands for state-dependent service time) that captures the fundamental aspects

of a spatial system that experiences arrivals and dispatches servers to attend to those

arrivals.

2.3.1 Model

Motivation. We consider two models in this chapter. The first is what we call the

general system, where spatial elements such as origin-destination pairs of customers

are explicitly modeled. The second is a Markovian system, which is a queueing

system that approximates the general system. In the Markovian system, the spatial

frictions are captured in reduced form via a state-dependent service time. All of

the mathematical results in the chapter establish properties of the Markovian system

that can be regarded as qualitative prescriptions for the general system. Indeed, in

Section 6, we use simulation to demonstrate that the Markovian system approximates

the behavior of the general system quite well.

We are interested in gaining insights on the following general system. There is a

central platform, customers and servers that interact in a bounded connected subset
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C of R2 (the city). Customers arrive according to a Poisson process in the city at

uniformly distributed locations in the city. Each customer wishes to travel from the

point they arrive to some other point also drawn uniformly at random among all

locations in C. Customers are patient and will remain in the system until served.

There is a fixed number of servers in the system, and each one can serve one

customer at a time at a constant velocity. A server first repositions to the arrival

location of a customer, and then she transports that customer to his destination.

Upon arrival to his final destination, the customer leaves the system and the server

becomes idle and waits until the platform relocates her. The repositioning of servers

occurs according to some state-dependent dispatching algorithm and is controlled by

the platform.

Any given customer experiences a total time in the system that is composed of

three components: waiting time, pickup time and en-route time:

Time in the system = Waiting + Pickup + En-route. (2.1)

The waiting time corresponds to the time a customer spends in the system before he

is assigned a server to pick him up. The pickup time represents the time it takes for

the server to relocate from where she currently is to the customer’s origin location.

The en-route time is the time it takes to transport a customer from his origin to his

destination.

The system described at a high level above is complex and intractable to analyze

in its full generality, given the stochasticity of the system, the high-dimensional state-

space, and the complexity of the space of possible dispatching policies.

Queueing model. In this chapter we study what we call the Markovian system,

which is a simpler queueing model that still captures the spatial features of the general

system. In setting up our model, we deliberately forego the complex interactions

among agents that make the general system intractable, and focus on the overall
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physical dynamics that dictate the processing performance of the system. We further

discuss our modeling assumptions in Section 2.3.2.

We focus on a model in which customers arrive to the system according to a

Poisson process with rate λ, and stay until served. There is a total of n identical

servers that provide service to one customer at a time in a first come, first serve

fashion. We assume that the time between the assignment of a server to a customer

and the end of the service is exponentially distributed with state-dependent rate µ(·).

Upon arrival, if a customer finds a server idle, he is immediately assigned a server;

otherwise, he waits in line. This leads to an M/MQ/n queueing system. We use Q(t)

to denote the total number of customers in the system at time t, which includes both

customers waiting and in service.

The distinctive feature of the system we analyze and what makes it depart from a

traditional multi-server queue is that servers must be repositioned to serve customers.

As a result, the total time a server spends on a single customer corresponds to pickup

time plus en-route time as opposed to just en-route time—the analogue to service time

in a traditional queueing system. In turn, in order to capture the overall processing

performance of the general system, the key is to select an appropriate function µ(·)

that isolates spatial frictions through the combination of both pickup and en-route

times as highlighted in Eq. (2.1).

Any sensible choice of the service rate must be such that its inverse, 1/µ(·), has

two components: one reflecting pickup times and the other en-route times. En-route

times are simple. They correspond to the distance between two random locations in C

(properly scaled by the velocity) and do not depend on the state of the system. If we

let s̄t to denote the expected time to move between two random points in C (for some

nominal velocity), then it follows that one of the components of 1/µ(·) will be equal to

s̄t. The remaining component has to relate to pickup times. These are more involved

as they depend on how, based on the state of the system, the platform decides to do
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the assignment of servers to customers—the dispatching algorithm. To overcome this

difficulty it is convenient to look at the physics of the spatial system under a particular

dispatching algorithm. In the present study, we anchor the analysis around the

asymptotic behavior of one notable dispatching algorithm: nearest-neighbors dispatch

(NN). This algorithm is simple, intuitively appealing, and it is also near-optimal.2 If

there are more servers than customers, NN assigns the next arriving customer to its

closest available servers. If there are less servers than customers, NN assigns the next

idling server to its closest waiting customer.

The asymptotic behavior of NN, which we discuss in Section 2.3.2, leads to a

particular form of the expected service time which, in turn, motivates the following

expression for the state-depend rate of our queueing system when its state is q

1

µ(q)
,

s̄p√
|q − n| ∨ 1

+ s̄t, q ≥ 0, (2.2)

for two given positive constants s̄p and s̄t, where s̄p represents the average pickup

time when there is one server available and one passenger request. The form in Eq.

(2.2) captures spatial frictions in the following way. Consider the queueing system.

If Q(t) � n, then |Q(t) − n| is large and many servers are available, and thus,

1/µ(Q(t)) is close to s̄t, the expected en-route time. The pickup time should be

negligible given the high density of free servers in space. Similarly, if Q(t)� n, then

many customers are waiting and a match with a low pickup time could be found

given the high density of customers in space. Indeed, we also have that 1/µ(Q(t)) is

close to s̄t in this scenario. The important point is that whenever there is a critical

idle/waiting mass at either side of the market, the physical nature of the system allows

it to process customers efficiently. When Q(t) ≈ n, we expect the match between

server and customer to lead to a significantly higher pickup time. In our model, a

customer’s total expected service time will be close to s̄p + s̄t when Q(t) ≈ n. For

2Among the policies that minimize customers’ expected total system time, NN achieves near
optimal performance (see e.g., [14]) .
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notational simplicity, we assume s̄t = s̄p throughout the next few sections, and denote

this quantity simply by s̄. When we simulate the system in Section 2.6, we allow s̄t

and s̄p to take distinct values.

Performance Metrics. The main objective of this chapter is to understand

the implications of spatial frictions on performance metrics of the service system. In

particular, we analyze these in an asymptotic regime in which the number of servers

and the arrival rate grow large. We analyze the system in heavy traffic and consider

a sequence of M/MQ/n queues indexed by n, with arrival rate λn such that

ρn < 1, lim
n→∞

λn =∞, lim
n→∞

(1− ρn)nα = β, for some β ∈ R+, α ∈ (0, 1), (2.3)

where ρn equals s̄ · λn/n. Thus, ρn approaches 1 from below at rate 1/nα. Under

these different scalings (as α varies), our goal is to study key performance metrics

associated with the system. We let {Qn(t)}t≥0 denote the number of customers in the

n-system. The dynamics of Qn(t) can be written as follows. Let A = {A(t) : t ≥ 0}

and S = {S(t) : t ≥ 0} be two independent unit rate Poisson processes. The path-

wise construction of Qn is

Qn(t) = Qn(0)+A(λt)−S
(∫ t

0

µn(Qn(u)) ·min(n,Qn(u))du

)
, Qn(0) = Q0. (2.4)

The term Q0 corresponds to the initial state of the system, the second term captures

the cumulative arrivals up to time t, and the third term refers to the cumulative

departures up to t. In the latter, µn(Qn(t)) ·min(n,Qn(t)) corresponds to the service

rate of the system, with µn(Qn(t)) representing the service rate per server at time t

and min(n,Qn(t)) the number of non-idle servers at time t.

We use Qn(∞) to denote a random variable representing the number of customers

in the system in steady-state. One key central metric we are interested in quantifying

is the steady-state limiting delay probability

P∞(W ) , lim
n→∞

P[Qn(∞) ≥ n],
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in order to assess the system performance. As in classical multi-server queues (see,

e.g., [36]), if P∞(W ) = 1, the system is said to be operating in the efficiency-driven

(ED) regime, if P∞(W ) = 0 the system is said to be operating in the quality-driven

(QD) regime, and if P∞(W ) ∈ (0, 1), the system is said to be in the quality- and

efficiency-driven (QED) regime. In the coming sections, we characterize how P∞(W )

changes as the values of α and β change. In turn, we will also analyze implications

on various other metrics such as, e.g., total system cost.

2.3.2 Discussion of the Modeling Assumptions

We now provide an asymptotic grounding for Eq. (2.2), based on the NN dispatching

algorithm that is studied in the vehicle routing literature ([14]). Recall that for this

policy, when there are more servers than customers, the closest idle server is assigned

to a new arrival (see Figure 2.2 (a)). In the case when there are more customers than

servers, as soon as a server becomes idle, we assign her to the closest customer (see

Figure 2.2 (b)).

C

i

j

(a)

C

i

j

(b)

Figure 2.2: Nearest neighbor policy (NN). In (a) we have Q(t) < n, in (b) we have
Q(t) > n.

The connection between µ(·) and NN comes from the following argument. Consider

a general system operating under NN. Suppose that at time t there is a total of Q(t)

customers, and that server j was matched to customer i. Depending on the state of

the system, the assignment could have happened in two different ways. If Q(t) < n,

67



server j must be the closest idle server to customer i among n − Q(t) idle servers

(see Figure 2.2 (a)). If Q(t) ≥ n, customer i must be the closest waiting customer

to server j among Q(t) − n waiting customers (see Figure 2.2 (b)). In either case

customer i’s pickup time can be computed by comparing the distance of the closest

of |Q(t) − n| ∨ 1 random variables uniformly distributed in C to a single point. We

can then use the following standard result from probability to obtain an asymptotic

approximation for a customer’s expected pickup time under NN.

Lemma 2.1 Let X1, X2, . . . be a sequence of independent uniformly distributed ran-

dom points in C . Then, the expected minimum distance to any x0 in the interior of

C satisfies

E

[
min
i=1,...,k

‖Xi − x0‖
]

= Θ

(
1√
k

)
, as k ↑ ∞.

Conditioning on Q(t) and ignoring any dependencies among the involved random

variables, Lemma 2.1 suggests the following approximation for a customer’s expected

pickup time

E[Pickup|Q(t)] ≈ s̄p√
|Q(t)− n| ∨ 1

,

for some positive s̄p. The first term in Eq. (2.2) incorporates this approximation.

We note that the particular approximation we use in µ(·) discussed above is not

the only simplifying assumption we use in the Markovian system. We also assume

that server travel times, including both pickup and en-route times, are exponentially

distributed. We argue in Section 2.6 using simulation that our approximations are

reasonable, in the sense that the Markovian system approximates well the behavior

of the general system.

First-dispatch. Another dispatching protocol that has received attention in the

literature is first-dispatch (FD). Under FD, an arriving customer is assigned as soon as

possible to the closest idle server. Consider again Figure 2.2. In the situation depicted

on the left panel (a), NN and FD operate according to the same rules. However, in
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the situation represented by the right panel (b) of Figure 2.2, the two dispatch rules

operate quite differently. In this case, the FD dispatching algorithm assigns the next

idling server to the longest waiting customer. As pointed out by [23], the FD dispatch

rule can lead the system to a bad equilibrium they call the Wild Goose Chase in

which servers spend long times picking up customers. Our framework can be used to

analyze the systems’ performance under the FD dispatch policy. Using Lemma 2.1 we

can derive the following expression for an approximate service rate under FD:

1

µFD(q)
=

s̄p√
(n− q)+ ∨ 1

+ s̄t, q ≥ 0.

Unlike the NN policy, the FD policy does not make use of spatial economies of scale

when the system is heavily loaded with customers (q > n); instead, it serves customers

on a first come first serve basis. This gives rise to the Wild Goose Chase phenomenon.

Under this inefficient dispatching protocol, the number of servers required to escape

ED performance equals the offered load plus a buffer term that is of the same order

of the offered load, as opposed to a buffer of the order of the offered load to the power

of 2/3 under NN. The NN dispatching protocol avoids this bad equilibrium outcome

by exploiting spatial economies of scale even when the system is heavily loaded with

customers.

2.4 Dynamics of a Related Deterministic System

Before we study the stochastic limiting properties of the Markovian system in Section

2.5, we analyze the properties of a deterministic version of it that will provide natural

candidate focal points for the former system and initial insights on its behavior. In

particular, we focus on a natural deterministic counterpart of Eq. (2.4).

Deterministic dynamics. Consider the dynamics of Q̃n(·) described by

Q̃n(t) = Q̃n(0) + λnt−
∫ t

0

µn

(
Q̃n(u)

)
·min

(
n, Q̃n(u)

)
du, Q̃n(0) = Q̃0,
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where Q̃0 is a non-negative constant. This dynamical system has a simple interpreta-

tion. A fluid of customers joins the system at rate λn and departs at state-dependent

rate µn(Q̃n(t)) · min(n, Q̃n(t)). This dynamical system is a deterministic version of

the one presented in Eq. (2.4). From the equation above, we can write Q̃n as the

solution of the ordinary differential equation

dQ̃n(t)

dt
= fn(Q̃n(t)), Q̃n(0) = Q̃0, (2.5)

where

fn(q) , λn − µn(q) ·min{n, q}.

Since µn(·) is a Lipschitz continuous function, so is fn(·). Therefore, by the Picard-

Lindelof theorem, the ODE in Eq. (2.5) has a unique solution, which we denote by

Φ(q0, t) for a given Q̃n(0) = q0. In what follows, we study the equilibrium points of

this solution.

Definition 2.1 (Equilibria) We say that a point q∗ is an equilibrium point of the

dynamic system presented in Eq. (2.5) if

Φ(q∗, t) = q∗, for all t ≥ 0.

An equilibrium point q∗ is such that if the systems starts at q∗, then the systems

remains at q∗ for all t ≥ 0. Observe that we can compute an equilibrium by solving

fn(q∗) = 0. In general, a dynamical system can have multiple equilibria but these

may have different properties. We classify the equilibria according to the following

definition.

Definition 2.2 (Stability of Equilibria) An equilibrium q∗ of Eq. (2.5) is said

to be stable if for any ε > 0, there exists δ > 0 such that if |q − q∗| < δ, then

|Φ(q, t) − q∗| < ε for all t ≥ 0. Otherwise, q∗ is unstable. If q∗ is stable and there

exists δ > 0 such that if |q − q∗| < δ, then limt→∞Φ(q, t) = q∗, we say that q∗ is
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locally asymptotically stable. If limt→∞Φ(q, t) = q∗ for any q ≥ 0, we say that q∗ is

globally asymptotically stable.

Informally, an equilibrium q∗ is stable if whenever the system is slightly perturbed

from q∗, it remains near q∗. An equilibrium q∗ is unstable if small perturbations of

the system around q∗ take the system away from q∗. If for any starting point q, the

dynamic Φ(q, t) converges to q∗ then q∗ is globally asymptotically stable. If the latter

is true but only in a neighborhood of q∗ then q∗ is locally asymptotically stable. Next

we study the equilibria of the dynamical system from Eq. (2.5).

Equilibria characterization. Recall that the equilibrium points of Eq. (2.5)

can be found by solving fn(q∗) = 0. The next theorem provides a complete description

of the solutions to this equation for n large.

Theorem 2.1 (Equilibrium Points) Suppose limn→∞(1 − ρn)nα = β and ρn ↑ 1,

and let β∗1 = 3/(41/3).

(i) Then, there exists n0 such that for all n ≥ n0, the system from Eq. (2.5) admits

an equilibrium given by

qn = n+
ρ2
n

(1− ρn)2
.

Furthermore, this equilibrium is unique and globally asymptotically stable if α >

1/3 or if α = 1/3 and β < β∗1 .

(ii) Suppose α < 1/3 or α = 1/3 and β > β∗1 . Then, there exists n0 such that for

all n ≥ n0, the system from Eq. (2.5) admits three equilibria given by

qn = n+
ρ2
n

(1− ρn)2
, (2.6)

q = n− n · (1− ρn) · r0,n(ρn), (2.7)

q̃n = n− n · (1− ρn) · r1,n(ρn), (2.8)
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where

ri,n(ρn) =
4

3
· cos

(
1

3
arccos

(
−
√

27ρ2
n

4n · (1− ρn)3

)
− 2πi

3

)2

, i ∈ {0, 1}.

Furthermore, qn and q are locally asymptotically stable and q̃n is an unstable

equilibrium.

The result establishes that there are two fundamentally different regimes where

the system from Eq. (2.5) can operate. When the system is heavily loaded, in the

sense that α > 1/3 or α = 1/3 and β < β∗1 , then the queue length converges to a

point qn > n as t grows to ∞, independently of the initial condition. Furthermore

the exact characterization of qn provides additional insights. We have

qn = n+
ρ2
n

(1− ρn)2
≈ n+

1

β2
n2α.

Hence, in such a system, asymptotically, there are always order n2α customers waiting

in the system to be served.

As the load decreases (α decreases) and when the system is such that α < 1/3 or

α = 1/3 and β > β∗1 , then the behavior of the system is more subtle. There are two

locally stable equilibria and one unstable equilibrium. Now the same equilibrium qn

still exists and is locally stable, but a new locally stable equilibrium emerges, q. It is

possible to show that this new equilibrium is such that3

q ≈ n− c n1−α,

for an appropriate constant c. In other words, in such an equilibrium, there are always

idle servers, and there is order n1−α such idle servers. Hence, there are two locally

stable equilibria, one with all servers busy and customers waiting (qn) and one with

idle servers and no customers waiting (q).

3This can be seeing by analyzing the Taylor expansion of the term r0,n(ρn).
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Proof sketch and intuition. The proof of Theorem 2.1 relies on analyzing

both equilibrium points and their stability properties. To establish the equilibria, we

determine the zero crossings of fn(·). With some slight rewriting,

fn(q) = λn − µn(q) ·min{n, q} = λn

1−
(

1√
|q − n| ∨ 1

+ 1

)−1

· min{n, q}
λns̄


= λn

[
1− g2,n(q)

g1,n(q)

]
,

with g1,n(q) = 1 +
1√

|n− q| ∨ 1
, g2,n(q) =

min(n, q)

λns̄
.

The function g1,n(q) is proportional to the amount of work a system with n servers

needs to do per customer when there are q customers in the system. Analogously,

g2,n(q) is proportional to the amount of work the system with n servers is capable of

doing per customer when there are q customers in the system. Hence, determining

the sign of fn(q) amounts to comparing the sizes of g1,n(q) and g2,n(q). When the

former is larger than the latter, we have fn(q) > 0 and the queue size grows. When

the inverse is true, fn(q) < 0, the queue size shrinks. When they are equal, we obtain

an equilibrium point by solving for q. Figure 2.3 depicts the two functions for the

two different regimes.

q0

1

2

nq q̃n qnq0 n

1

2

qn

g1,n(q) g2,n(q)

(b)(a)

Figure 2.3: Equilibria points for system from Eq. (2.5). Plots (a) and (b) correspond
to regimes (i) and (ii) from Theorem 2.1, respectively. The points where the functions
g1,n(q) and g2,n(q) cross correspond to equilibria points.

As for stability, the queue length tends to grow when g1,n(q) > g2,n(q) since the

amount of work the system needs to perform per customer is greater than its ability to
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do work per customer. Similarly, g1,n(q) < g2,n(q) implies the system can handle the

current workload and that the queue size is decreasing. Therefore, the two equilibrium

points in regime (ii) where g1,n(q) > g2,n(q) to their left and g1,n(q) < g2,n(q) to their

right, q and qn, are stable, while q̃n is not.

An important observation is about what drives the differences between the regimes.

From the heavy traffic scaling (see Eq. (2.3)) we have that g2,n(q) ≈ q/(n− β · n1−α)

for all q < n. It follows that for q < n the slope of g2,n(q) is determined by both α

and β. The theorem establishes that when α is large enough the slope of g2,n(q) is

not steep enough to cross g1,n(q) and, therefore, the only possible equilibrium is qn

(See Figure 2.3 (a)). Similarly, if α is small enough then g2,n(q) is steep enough to

cross g1,n(q); thus, the two extra equilibria q and q̃n emerge (See Figure 2.3 (b)). The

transition point occurs when α equals 1/3. In this case, depending on the choice of

β, the two extra equilibria may or may not exist. As β increases, the slope of g2,n(q)

increases until it reaches a point from which on g2,n(q) is steep enough so that the

two equilibria to the left of n materialize.

Interpretation in terms of the queueing system. In terms of the queuing

model, when the number of customers is much larger than n, service times become

shorter. In turn, the system processes customers more efficiently, which brings the

total number of customers down. In addition, when the number of customers is

close to n, service times are not as short as in the previous situation. This implies

that the system is not as effective in processing customer, bringing the total num-

ber of customers up. That is, the queueing system (and also the general system)

has a self-regulating property that is captured by the deterministic system through

the equilibrium qn. When the number of customers is low (when q < q), despite

the fact that each customer experiences a “short” pickup time, there are just not

enough customers in the system so that the arrival rate dominates departure rate,

which increases the number of customers in the system. For a medium number of
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customers (when q ∈ (q, q̃n)), there are enough idle servers so that we are processing

customer efficiently, but also there are enough customers in the system so that ar-

rivals can be dominated by departures. This brings the number of customers in the

system down. For a large number of customers (q ∈ (q̃n, n)), there are not enough

idle servers. Therefore, the service time of customers becomes large and, as a con-

sequence, so does the number of customers in the system. That is, for states below

n, the queueing system also has a self-regulating property that is captured by the

deterministic dynamics through the equilibrium q. Therefore, one might expect q

and qn to play focal roles in the queueing system, which they indeed do when we

analyze the stochastic version of the system in Section 2.5.

2.5 Limiting Regimes

In this section, we first investigate the properties of the Markovian system in steady

state, where the equilibria derived in the previous section for the deterministic system

from Eq. (2.5) will play a central role. We then analyze the system in the asymptotic

regime from Eq. (2.3), parametrized by α and β. In turn, our results lead to a

parametrization of the system’s regimes: QD, ED and QED. We also discuss some

managerial implications of the results.

2.5.1 Steady-State Analysis

Before we provide our main results, observe that for a given scale n, the process

Qn(t) is a birth and death process with birth rate λn and state-dependent death rate

µn(Qn(u)) · min(n,Qn(u)). Letting πn(k) be the steady-state probability that the

n-system is in state k, the detailed balance equations yield

πn(k) · fn(k)

λn
= πn(k)− πn(k − 1), k ≥ 1. (2.9)
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We first characterize the shape of the steady-state distribution πn(·) for systems

with large scale.

Proposition 2.1 (Steady-state Probability Distribution) Suppose that limn→∞(1−

ρn)nα = β, ρn ↑ 1, and let β∗1 = 3/(41/3). Then the following holds.

(i) If α > 1/3 or if α = 1/3 and β < β∗1 , then for n sufficiently large, the steady

distribution πn(·) is unimodular with a mode at bqnc.

(ii) If α < 1/3 or if α = 1/3 and β > β∗1 , then for n sufficiently large, the steady

distribution πn(·) admits two modes, one at bqc and one at bqnc.

This result leverages Eq. (2.9) and the intuition obtained from Figure 2.3 to link

the equilibria of the deterministic system from Eq. (2.5) with the modes of πn(k).

From Eq. (2.9), we note that the monotonicity of πn(·) can be determined by looking

at the sign of fn(·). In turn, Proposition 2.1 establishes that πn(·) has at most two

modes and that those modes are close to the equilibrium points. There is always one

at bqnc, and, depending on the scaling parameters, there may or may not be another

one at bqc. We represent the two possibilities in Figure 2.4.

Q̃n0

πn(·)

n

bqc bq̃nc bqncQ̃n0

πn(·)

n

bqnc
(b)(a)

Figure 2.4: Steady-state probability πn(·). In (a), which corresponds to regime (i)
in Proposition 2.1, the state distribution is unimodal with a peak at bqnc. In (b),
which corresponds to regime (ii) in Proposition 2.1, the state distribution is bimodal
with peaks at
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Whenever α > 1/3, πn(·) is unimodal and it peaks once to the right of n, see

Figure 2.4(a). If α < 1/3, πn(·) is bimodal and it also peaks to the left of n, see

Figure 2.4(b). If α = 1/3 these two cases are possible depending on the parameter

β. This is in line with the intuition we obtained from the deterministic analysis in

Section 2.4.

In steady-state, one expects that the system spends most of the time around the

modes of the distribution. However, when assessing the performance of the system in

terms of probability of having to wait for a server to be assigned, one needs to analyze

the steady-state distribution beyond its modes to evaluate how mass is distributed.

We do so next.

2.5.2 Service Regimes

We start our analysis of service regimes by analyzing the quality-driven (QD) and

effiency-driven (ED) regimes.

2.5.2.1 QD and ED regimes.

We first establish sufficient conditions for the ED and QD regimes to emerge.

Theorem 2.2 (Limiting Regimes) Fix α ∈ (0, 1) and β > 0. Suppose that limn→∞ n
α(1−

ρn) = β. Then, there exists β∗2 > β∗1 such that

(i) (ED Regime) if α ∈ (1/3, 1) or if α = 1/3 and β < β∗2 , then

P∞(W ) = 1,

(ii) (QD Regime) if α ∈ (0, 1/3) or if α = 1/3 and β > β∗2 , then

P∞(W ) = 0.

Theorem 2.2 provides a crisp characterization of the domains in which the ED

and QD regimes emerge. If α ∈ (1/3, 1) or if α = 1/3 and β < β∗2 , then recall
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from Proposition 2.1 that the steady-state probability of the number of customers

in the system admits only one mode at bqnc, which is higher than n, the number

of servers. Part (i) of Theorem 2.2 establishes that the mass is concentrated to

the right of n and hence servers are almost always either en route to customers or

transporting customers and almost never idle. In turn, customers, will have to wait

with probability close to 1 before being assigned a server.

If α ∈ (0, 1/3) or if α = 1/3 and β > β∗2 , then the the steady-state probability

of the number of customers in the system admits two modes (cf. Proposition 2.1

part (ii)), one at bqnc which is higher than n and one at bqc which is lower than n.

Part (ii) of Theorem 2.2 establishes that the mass is concentrated to the left of n

and hence there is almost always a fraction of servers that idle and customers almost

never wait before being assigned a server. In other words, the mode to the right of n

plays little role in this parameter regime.

Discussion of Capacity Planning. To further appreciate the result, recall that

since nα(1− ρn)→ β we have

n− λns̄
(λns̄)1−α → β, that is, n ≈ λns̄ + β · (λns̄)1−α. (2.10)

The term λns̄ corresponds to the standard offered load of the system as defined for

standard M/M/n multi-server systems. In heavy traffic, this quantity determines

how the capacity of the system should be scaled with the arrival rate of customers.

First, there is a nominal term, which is simply λns̄, that accounts for the expected

amount of work requested by customers. The second term β ·(λns̄)1−α is a buffer term

that accounts for stochastic variations of the system. In a classical M/M/n setting,

when α < 1/2, the system is in the QD regime, when α > 1/2, the system is in the

ED regime, and when α = 1/2 the system is in the QED regime. In contrast, in our

setting when the buffer term is β · (λns̄)1/2, the system is in the ED regime no matter

the choice of β. Since our model captures spatial frictions, this result highlights that

in a setting where servers need to reach customers before the start of effective service,
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the capacity needed to achieve QED performance is fundamentally different than in

a standard setting. Moreover, spatial frictions create the need for more servers than

in a standard setting for the system to operate in the QD regime. Indeed, in our

model the buffer term must be β · (λns̄)m with m ≥ 2/3. The transition between ED

and QD occurs when the buffer term is β · (λns̄)2/3, that is, the QED regime can only

happen with a scaling of 2/3 which is orders of magnitude larger than the traditional

SRS rule of thumb.

Proof sketch of Theorem 2.2. The proof of Theorem 2.2 consists on bounding

above the terms P[Qn(∞) < n] and P[Qn(∞) ≥ n], respectively, and then using

asymptotic relations between the mode probabilities as established in the following

result.

Proposition 2.2 Fix α ∈ (0, 1) and β > 0. Suppose that limn→∞ n
α(1 − ρn) = β

then

(i)

lim
n→∞

1

nα
log
(πn(bqnc)

πn(n)

)
=

1

β
,

(ii) if α < 1/3 then

lim
n→∞

1

n1−2α
log
(πn(bqnc)
πn(bqc)

)
= −β

2

2
,

(iii) if α = 1/3 then there exists a function g(·) such that

lim
n→∞

1

n1/3
log
(πn(bqnc)
πn(bqc)

)
= g(β).

And there exists β∗2 > β∗1 such that g(β∗2) = 0 and if β∗1 < β < β∗2 then g(β) > 0,

whereas if β > β∗2 then g(β) < 0.

Proposition 2.2 shows how the peak of the modes of πn(·) compare to each other

as n grows large. When α > 1/3, for large n, there is only one peak given by bqnc.

From part (i), its steady-state probability satisfies

πn(bqnc) ≈ πn(n) · enα/β,
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that is, πn(bqnc) is exponentially larger than πn(n). Since πn(·) is increasing to the

left of bqnc (see Proposition 2.1), this suggests that, in the limit, the number of

customers in the system will be above n with high probabilty. In other words, the

system will be in the ED regime.

For the case when α < 1/3, Proposition 2.1 states that πn(·) is bimodal and, there-

fore, there could be mass around both peaks. However, part (ii) of the proposition

establishes that πn(bqc) is exponentially larger than πn(bqnc),

πn(bqc) ≈ πn(bqnc) · e
1
2
β2n1−2α

.

This suggests that when α > 1/3, the tail of πn(·) to the right of n vanishes as n

becomes large. In turn, the number of customers in the system should be below n

with high probability. In other words, while the distribution πn(·), has two modes,

only one mode “matters” and we expect the system to be in the QD regime.

The threshold case is α = 1/3. In this case whether πn(bqnc) dominates πn(bqc)

(or vice-versa) is governed by β. When β < β∗1 , from Proposition 2.1, we know that

bqnc is the only mode and, therefore, πn(bqnc) dominates. If β ∈ (β∗1 , β
∗
2) then bqc

is also a mode; however, part (iii) of the proposition establishes that πn(bqnc) is

exponentially larger than πn(bqc). That is, in this case bqc transitions into becoming

a mode, but the mass it contributes is not large enough and it vanishes as n increases.

Therefore, for β < β∗2 , the system will be in the ED regime. In contrast, when β > β∗2 ,

the roles of πn(bqnc) and πn(bqc) reverse. This indicates that for β > β∗2 , the system

will be in the QD regime.

2.5.2.2 QED regime

Theorem 2.2 implies that the QED regime, in which the asymptotic probability that

customers have to wait for a server to be assigned is such that P∞(W ) ∈ (0, 1), may

only occur if α = 1/3 and β = β∗2 as for all other values, the system is either in the

ED or QD regimes. It is already apparent that the QED regime is much more subtle
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in our Markovian system than in classical M/M/n systems as both the buffer order of

magnitude (determined by α) and the constant in front of the buffer size (determined

by β) need to be pinned down. The transition from QD to ED regimes does not occur

through the constants in front of the buffer order of magnitude, leaving the question

open of whether the QED regime exists at all in our Markovian system and, if so,

how may it be reached. The next result establishes that there exists a QED regime

and provides a characterization of it.

Theorem 2.3 (QED Regime) Let pH ∈ (0, 1). There exists a sequence {γn : n ≥

1} with γn → 0 as n ↑ ∞ and a function pL(pH) ∈ (0, 1), such that if n1/3(1− ρn) =

β∗2 + γn then

pL(pH) ≤ lim inf
n→∞

P[Qn(∞) ≥ n] ≤ lim sup
n→∞

P[Qn(∞) ≥ n] ≤ pH ,

with pL(·) strictly increasing in pH and such that

lim
pH→1

pL(pH) = 1 and lim
pH→0

pL(pH) = 0.

This result establishes a regime such that for n large enough the probability of

waiting to be assigned a server is in (0, 1). In turn, the probability of not waiting

also belongs to (0, 1). That is, the system is in the QED regime. We have not pinned

down an exact expression for these probabilities but, instead, we have provided a

range. As one varies pH ∈ (0, 1), one can achieve the extreme regimes. If pH ≈ 1

then from the theorem we can deduce that P[Qn(∞) ≥ n] ≈ 1; if pH ≈ 0 then we

can deduce that P[Qn(∞) ≥ n] ≈ 0.

Capacity Planning for the QED Regime. From a practical perspective,

Theorem 2.3 provides two important insights. First, it shows that QED performance

is achieved at a different scaling than in traditional multi-server systems. Typically, in

those system a SRS rule can balance the trade-off between waiting times and service

efficiency. In a spatial setting this is no longer enough because servers must reach
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their customers before starting service. Our results suggest that the right scaling is

2/3 instead of 1/2. Second, notice that since n1/3(1− ρn)− γn → β∗2 we have

n− λns̄
(λns̄)1−α − γn → β∗2 , that is, n ≈ λns̄ + β∗2 · (λns̄)2/3 + γn · (λns̄)2/3. (2.11)

From this equation we observe that, in addition to the traditional buffer term of the

form β · (λns̄)m, our result establishes that an extra lower order term is needed for

QED performance. In particular, in our Markovian system, it is necessary to add the

term γn · (λns̄)2/3. Because γn → 0 this term is of lower order than the second term

in Eq. (2.11). Hence, the QED regime requires a very fine balance involving second

order terms compared to the buffer size in this spatial setting, in stark contrast with

the classical M/M/n setting.

Proof sketch of Theorem 2.3. A necessary condition to achieve the QED

regime is that the peaks of πn(·) be in a constant proportion; otherwise, one would

dominate the other and the system would be in the QD or ED regime. According to

Proposition 2.2 part (iii), this can only happen when α = 1/3 and β = β∗2 . In this

case

lim
n→∞

1

n1/3
log
(πn(bqnc)
πn(bqc)

)
= 0,

that this, the log(·) term is o(n1/3). In turn, the ratio πn(bqnc)/πn(bqc) does not

necessarily converge to a constant. To have it so, one would have to look at lower

order terms for log(πn(bqnc)/πn(bqc)) and try to disentangle the exact rate at which

n1/3(1 − ρn) has to approach β∗2 so that the log(·) converges to a constant. Instead

of pursuing this, in the next result we show the existence of a sequence converging to

zero, {γcn : n ≥ 1}, such that if n1/3(1 − ρn) approaches β∗2 as β∗2 + γcn, the peaks of

πn(·) will be in a constant proportion.

Proposition 2.3 Fix c ∈ R. Then, there exists a sequence {γcn : n ≥ 1} with γcn → 0

such that if n1/3(1− ρn) = β∗2 + γcn, then

lim
n→∞

log
(πn(bqnc)
πn(bqc)

)
= c.
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In the proof of the proposition we provide a detailed explanation of how to construct

the sequence {γcn : n ≥ 1}. In turn, the proposition is not just an existence result,

but it also provides the exact sequence that enables us to maintain the peaks in a

constant proportion. It also establishes that, for any constant c ∈ R, if n1/3(1 − ρn)

approaches β∗2 at an appropriate rate then

πn(bqnc) ≈ πn(bqc) · ec.

In particular, as we vary c we can achieve any desired proportion. For example, if

c < 0 then πn(·) might look as depicted in Figure 2.4(b).

Even though there is a way to scale the system such that that the peaks are in

constant proportion, this does not guarantee that the probability of being around

each of them will be positive at the same time. It is possible, for example, that the

dispersion of πn(·) around bqnc diminishes to zero while the proportion with the other

peak remains constant. Therefore, we need to assess how the peaks compare to the

mass around them. The next lemma provides a characterization of this.

Lemma 2.2 Fix α ∈ (0, 1) and β > 0. Suppose that limn→∞ n
α(1− ρn) = β, then

(i)

P[Qn(∞) ≥ n]

πn(bqnc)
= Θ(n

3
2
α).

(ii) if α ∈ (0, 1/3), or α = 1/3 and β > β∗1 , then

P[Qn(∞) < n]

πn(bqc) = Θ(
√
n).

This result establishes that the ratio of the mass to the right of n, to the peak in

that region is Θ(n
3
2
α). That is, with respect to πn(bqnc) the mass to the right of n is

not negligible and, in fact, is approximately n
3
2
α larger than πn(bqnc). Similarly, with

respect to πn(bqc), the mass to the left of n is non-trivial and, in fact, is approximately

√
n larger than πn(bqc).
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Observe that in part (i) of the lemma, the order of the ratio depends on α. When

α < 1/3 then this ratio is not as big as the one for πn(bqc) (which is Θ(
√
n)). This

coincides with Theorem 2.2 in that for these values of α the mass to the left of n

dominates the mass to the its right. Similarly, when α > 1/3, the mass to the right

of n dominates. For α = 1/3, both ratios are of the same order. In turn, we have

P[Qn(∞) ≥ n]

P[Qn(∞) < n]
= Θ

(
πn(bqnc)
πn(bqc)

)
.

Therefore, if the ratio of the peaks is constant, then the total mass to the left and

to the right of n can be both (asymptotically) positive and separated away from

zero. That is, both sides can be “balanced” whenever the peaks are in constant

proportion. We can thus combine the results in Proposition 2.3 and Lemma 2.2 to

find lower and upper bounds for P[Qn(∞) ≥ n]. In the proof of Lemma 2.2 we find

exact expressions to control for the ratios as n increases, which we then leverage to

provide explicit bounds for P[Qn(∞) ≥ n] that can be mapped to probability values,

pH and pL(pH), which satisfy the properties of Theorem 2.3.

2.5.3 Orders of Magnitudes of Queues and Wait Times

The results so far provide an understanding of the different regimes the system can

operate in as a function of its load. Next, we quantify queue sizes and waiting

times in our system as a function the scaling parameter α. The discussion in this

section underlines the differences of a spatial server system with a traditional queueing

system.

Let Ls and W s denote respectively the steady-state expected queue length (ex-

cluding customers in service) and expected wait time. Similarly, let Lc and W c denote

the corresponding quantities in the classical M/M/n system. From standard queueing

theory, we have that

Lc =
ρn

(1− ρn)
· C(n, λn/s̄t),
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where C(n, λn/s̄t) satisfies the Erlang’s C formula, and represents the probability of

waiting (see, e.g., [4]). Assuming that nα(1− ρn)→ β we have that

C(n, λn/s̄t)→


1 if α > 1/2,

constant if α = 1/2,

0 if α < 1/2.

In turn, using standard arguments, one can show that for α < 1/2, we have that Lc

is o(1). Meanwhile, for α ≥ 1/2, Lc is Θ(nα). This implies that for α < 1/2, W c is

o(1), while for α ≥ 1/2, W c is Θ(nα−1). In particular, in the Halfin-Whitt regime

(α = 1/2), we have that Lc is Θ(
√
n) and W c is Θ(1/

√
n). Next, we compare these

classic results with the results obtained from our Markovian system.

We first provide a rigorous statement about the order of magnitude of the size of

our Markovian system around the equilibria, in the sense of deriving the subset of

the real line where the queue lengths fluctuations are constrained to, assuming n is

sufficiently large. We use this result to provide approximate expressions for Ls and

W s.

Proposition 2.4 Suppose limn→∞ n
α(1− ρn) = β. Then,

(i) If α ∈ (1/3, 1) or if α = 1/3 and β < β∗2 then there exists C > 0 such that

lim
n→∞

P
[
− C ≤ Qn(∞)− bqnc√

log(n) · n 3
2
α
≤ C

]
= 1.

(ii) If α ∈ (0, 1/3) or if α = 1/3 and β > β∗2 then there exists C > 0 such that

lim
n→∞

P
[
− C ≤

Qn(∞)− bqc√
log(n) · √n

≤ C
]

= 1.

Let’s consider first part (i) of the proposition. In this case we can use Eq. (2.6)

to deduce that

Ls ≈ r2 ρ2
n

(1− ρn)2
± C · n 3

2
α ·
√

log(n) = Θ(n2α),
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Little’s law delivers

W s ≈ r2 ρ2

λn(1− ρ)2
± C

λn
· n 3

2
α ·
√

log(n) = Θ(n2α−1).

There are several interesting observations. First, for α = 1/2, the queue size is

approximately Θ(n) and the wait time is approximately Θ(1). Note the contrast to

a classical M/M/n system, where Lc = Θ(
√
n) and W c = Θ(1/

√
n). This makes

precise how much more work we are adding to the system by including pickups. It

also highlights that for α = 1/2, the Markovian system is in the ED regime, with

its long queues. Second, note that α = 1/2 is the largest value for which W s does

not explode. In contrast, in the M/M/n system, for any α ∈ (1/2, 1), the expected

waiting time approaches zero.

If we focus on pickup times, we can gain further intuition about how the QED

regime works in our system. Let P s denote the expected pickup time. Then, from

part (i) of the proposition,

P s ≈ s̄√
|Qn(∞)− n| ∨ 1

≈ Θ(1/nα).

For α = 1/3, pickup times are of order 1/nα and W s is of order n2α−1. This showcases

the interplay between wait times and pickup times. When the load of the system

increases (as measured by α), wait times increase because of the greater number of

customers in the system, while pickup times decrease due to the increased spatial

density of customers. If one attempts to minimize expected customer system times,

we therefore need to balance W s and P s. For the regime where α ≥ 1/3, this occurs

at α = 1/3.

For the regime from part (ii) of the proposition, we have that Ls ≈ 0 and W s ≈ 0.

Moreover, we can use the fact that q ≈ n − Θ(n1−α) to deduce that the expected

number of idle server is Θ(n1−α) and P s ≈ Θ(1/(n
1−α

2 )). As we increase the load in

the system (as measured by α), we reduce the number of idle servers. However, at

the same time, pickup times increase due to the decreased spatial density of servers.
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2.5.4 A Social Planner’s Perspective

An alternative approach to determining the proper safety staffing level is to start

from a social planner’s objective, and then find the staffing level that optimizes it.

A natural social planner’s objective is one that incurs a cost per server of building

capacity plus a waiting (and pick-up time) cost per customer. We now show that this

objective function also leads us to the conclusion that a safety staffing that is equal

to the offered load to the power of 2/3 is optimal.

Let us consider a service provider that pays cs per unit of capacity and customers

that incur a waiting cost of cw per unit of waiting. That is, a social planner would

like to select the level of capacity n that solves the following optimization problem

min
n

cs · n+ λ · cw · E[Pn +Wn]. (2.12)

The first term in Eq. (2.12) corresponds to the cost of having n servers in the system.

The second, to the cost experienced by customers while they wait to be assigned a

server, Wn, and to be picked up, Pn.

Notice that from Eq. (2.3) we can write n as λ · s̄+ β(λ · s̄)1−α. Now, depending

on our choice of α we can have one of two cases. When α ≥ 1/3, the average pick up

times are of order Θ((λ · s̄)−α) while average waiting times are of order Θ((λ · s̄)2α−1).

Replacing this in Eq. (2.12) delivers the following expression for the objective

cs · (λ · s̄+ β(λ · s̄)1−α) + cw · ((λ · s̄)1−α + (λ · s̄)2α).

Among all values α > 1/3 the term that dominates in the expression above is the

total waiting times, that is, (λ · s̄)2α. This is increasing in α. Hence, α = 1/3 leads

to lower (asymptotic) costs compared to all values of α > 1/3.

For the case α ≤ 1/3, let πλ be the steady state probability the number of cus-

tomers being below n and let πλ be 1 − πλ. Similar to the case when α > 1/3, we

can rewrite the objective in Eq. (2.12) to obtain

cs · (λ · s̄+β(λ · s̄)1−α) + cw ·
(
{πλ · (λ · s̄)

1+α
2 +πλ · (λ · s̄)1−α}+ {πλ · 0 +πλ(λ · s̄)2α}

)
.
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When α < 1/3 the term that dominates is of order (λ · s̄)1−α. This term is decreasing

in α. In this case, α = 1/3 leads to lower (asymptotic) costs compared to all values

of α ≤ 1/3.

In conclusion, in a large system, the system total social cost measured by capacity

cost and waiting cost will be minimized by selecting the number of servers n according

to λ · s̄+ β(λ · s̄)2/3, where β should be tuned.

2.6 Numerical Experiments and General

Simulation

In this section, we aim at (i) illustrating the results in the Markovian system (§2.6.1),

and also to (ii) compare the behavior obtained in the Markovian system to that of

the actual physical system that motivated the Markovian system (§2.6.2).

Simulation setup. We consider a square city C = [0, 2]×[0, 2] and assume v = 1,

implying that s̄t · v ≈ 1.0428. The time horizon will be T = 4, 000. We simulate the

general system introduced in Section 3.3 and the Markovian system under several

different conditions, starting from Qn(0) = 0, in order to capture the ED, QD and

QED regimes. We scale the number of servers in the system according to

n = dλs̄t + β · (λs̄t)1−αe. (2.13)

For α ∈ {1/4, 1/2}, we consider β = 2.1. For α = 1/3, we vary β ∈ {2.1, 2.4, 2.7}.

2.6.1 Markovian System

We begin by numerically illustrating our theoretical results for the Markovian system.

We consider the rate

1

µ(q)
=

s̄p√
|q − n| ∨ 1

+ s̄t, q ≥ 0, (2.14)
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with s̄p = s̄t = 1.0428, that is, the coefficient in front of the pickup times coincides

with the expected travel time between two points. Recall from §2.3.1 that these two

parameters need not to be the same because s̄p comes from an asymptotic approxi-

mation. In the next section we consider more realistic values for s̄p that we estimate

from simulation.

In Figures 2.5-2.6, we depict sample paths of the the number of customers in

the system minus the number of servers for the various parameters and superimpose

a corresponding histogram (taken from the path between periods 500 and 4,000).

Furthermore, the two modes bqnc and bqc (when they exist) minus n are depicted.

In Figure 2.5(a), α = 0.25 and we depict the system for three different scales.

In line with Theorem 2.2, one observes that the system spends almost all its time

around bqc and as the scale increases, the probability of wait approaches zero. The

system is in the QD regime.

In Figure 2.5(b), α = 0.5 and we depict the system for three different scales. Note

that in this case, there is only one mode, bqnc. In line with Theorem 2.2, one observes

that the system spends almost all its time around bqnc and as the scale increases, the

probability of wait approaches 1. The system is in the ED regime.

In Figure 2.6, α = 1/3 and we depict the system for three values of β. This is

the only setting where, asymptotically and depending on β, the system can oscillate

between the two equilibria and asymptotically, a positive fraction of the customers

(separated from 0 and 1) will wait before being assigned a server. Indeed, we observe

that for small values of β, the system operates most often with Q > n, as in the ED

regime. As β increases (center plot), the fraction of time the system spends in states

such that Q < n increases, in which case, the system is in the QED regime. When β

increases further, the system enters the QD regime.
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Figure 2.5: Simulation of the Markovian system. We consider β = 2.1 and from left
to right λ ∈ {100, 400, 800}. The bottom x−axis corresponds to the simulation time,
while the top x−axis corresponds to probabilities. In the figure we observe both a
sample path and πn(·). The dashed lines correspond to the modes bqc and bqnc as
given by Theorem 2.1.
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Figure 2.6: Simulation of the Markovian system. We consider α = 1/3 and λ = 800
and from left to right β ∈ {2.1, 2.4, 2.7}. The bottom x−axis corresponds to the
simulation time, while the top x−axis corresponds to probabilities. In the figure we
observe both a sample path and πn(·). The dashed lines correspond to the modes bqc
and bqnc as given by Theorem 2.1.

2.6.2 Comparing the General and Markovian Systems

Next we simulate the general system and compare it the Markovian system. Our

purpose in this section is two-fold. First, we illustrate the system’s behavior under
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the different scalings. In particular, we test whether for α < 1/3 and α > 1/3 the

general system oscillates around the equilibria to the left and right of n, respectively.

For α = 1/3, we also test how by varying β the general system can, as predicted by

the Markovian system, oscillate around both equilibria.

Second, we provide numerical evidence for the quality of the Markovian system

as an approximation to the general system. To ensure an appropriate comparison,

we proceed as follows:

• We fix λ, α and β, and use Eq. (2.13) to obtain the number of servers.

• We simulate the general system for the computed value of n.

• We estimate s̄p, see Eq. (2.14). Then we simulate the Markovian system with

rate given by Eq. (2.14), and compute the theoretical modes/equilibria.

• We compare the system behavior for both the Markovian and general systems.

In Figures 2.7-2.8, we depict sample paths of the queue lengths in the general

system (right column) and compare it to the Markovian system (left column). For

the sake of exposition we fix λ = 800 throughout, but all the simulations are consistent

for large values of λ.

We observe that for low α (α = 0.25, Figure 2.7(a)), the general system queue

admits a behavior very similar to the proposed Markovian approximation. In par-

ticular, the general system also admits a mode exactly around bqc (as predicted by

the theory for the Markovian system) and this behavior is consistent across different

scales.

For high α (α = 0.5, Figure 2.7(b)), the general system queue admits again a

behavior very similar to the proposed Markovian approximation. Again, the general

system also admits a mode exactly around bqnc (as predicted by the theory for the

Markovian system).
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(a) α = 0.25, n = 1161, s̄p = 1.531, bqc − n = −248, bqnc − n = 14
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(b) α = 0.5, n = 895, s̄p = 1.518, bqnc − n = 399

Figure 2.7: Simulation for Markovian (left) and General (right) systems. We consider
β = 2.1. The bottom x−axis corresponds to the simulation time, while the top x−axis
corresponds to probabilities. In the figure we observe both a sample path and πn(·).
The dashed lines correspond to the modes bqc and bqnc as given by Theorem 2.1.

For the critical value of α (α = 1/3, Figures 2.7(a) and 2.8(b)), the general system

queue admits again a behavior very similar to the proposed Markovian approximation.

For low values of β (Figure 2.8(a)), both systems operate in the ED regime. As β

increases (Figure 2.8(b)), both systems move into the QED regime, as the queue

oscillates between the two equilibria.

Across values of α and β and across scales, this simulation highlights the usefulness

of the Markovian system in capturing some of the key features and predicting some

of the behavior of the general system.
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(a) α = 1/3, β = 2.1, n = 1021, s̄p = 1.256, bqnc − n = 28
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Figure 2.8: Simulation for Markovian (left) and General (right) systems. We consider
α = 1/3. The bottom x−axis corresponds to the simulation time, while the top
x−axis corresponds to probabilities. In the figure we observe both a sample path and
πn(·). The dashed lines correspond to the modes bqc and bqnc as given by Theorem
2.1.
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2.7 Conclusion

In the present chapter, we have proposed a framework for studying how spatial fric-

tions affect capacity planning. In particular, we propose a reduced-form Markovian

system that captures spatial economies of scale, leading to a crisp characterization of

the trade-offs at play in such environments.

We have established a mapping from load to types of regimes in heavy traffic. In

particular, recalling Eq.(2.3), we have focused on regimes parametrized by α and β,

where

lim
n→∞

(1− ρn)nα = β, for some β ∈ R+, α ∈ (0, 1).

Figure 2.9 summarizes some of the main findings. The ED regime emerges whenever

α

β

0

β∗2

11/3

QD

ED

QD ED

QED

Figure 2.9: Regimes for different values of α and β.

α > 1/3 and the QD regime emerges whenever α < 1/3. When α = 1/3, the three

regimes QD, ED and QED can emerge and the latter can only emerge for one critical

value of β, which we label β∗2 . We have further demonstrated through simulations

that the Markovian approximation provides a reliable guideline for the behavior of a

general system.

This chapter opens up various avenues of potential research, from both method-

ological and modeling perspectives. Analyzing the case when customers are impatient

and might abandon the system if not served after some time is a natural extension. On

the one hand, abandonment decreases the workload of the system as fewer customer
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have to be processed; on the other hand, it increases the system’s workload as having

fewer customers implies that spatial economies of scale become less advantageous.

The important question in this case is whether, in order to achieve QED perfor-

mance, abandonment necessitates just a change in β or more fundamental change in

α. Another interesting extension is to study how the results in this study can be

generalized to cases where origin-destination demand patterns generate imbalances

in the system. In this case, the additional workload stemming from pickups might

be even larger. How would this impact capacity sizing? An additional important

practical question is to consider time-varying demand patterns that might require

alternatives to steady-state analysis.

From a methodological perspective, an interesting extension would be to establish

some of form of convergence of the processes in the general system to those in the

Markovian approximation. More generally, there is potential to generalize the main

result of this chapter to any near optimal dispatching protocol by directly studying

the spatial system. A simple back-of-the-envelope calculation serves to enlighten the

latter claim. From [15] we can deduce that the expected number of customers in the

system in steady state is bound below by

n

2
− n · (1− ρn) + C · ρ2

n

(1− ρn)2
.

The second term in this expression represents the number of idle server in the system,

n−nρn; while the third term maps to the number of customers waiting or being picked

up. These two terms are opposing forces that push the system to have less and more

customers, respectively. Using the heavy traffic scaling from Eq. (2.3), we can deduce

that the second term scales as Θ(n1−α), while the third term as Θ(n2α). Observe that

these scalings relate to those of the equilibria in Theorem 2.1. Intuitively, quality

and efficiency should balance when the two opposing forces balance each other. This

occurs when 1 − α equals 2α or, equivalently, when α equals 1/3, as our results

prescribe. Note that this derivation does not rely on a specific dispatching protocol,
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but only on one that is optimal or “near optimal” compared to the lower bound.

Deriving the 2/3-scaling result at a full level of generality is an exciting direction for

future work.

96



Chapter 3

The Scope of Sequential Screening With Ex-Post

Participation Constraints

3.1 Motivation and Overview of Results

Sequential screening models have been used extensively in economics and revenue

management to study optimal contract design when buyers learn their valuations over

time. In the classic formulation of sequential screening pioneered by [27], a profit-

maximizing seller faces buyers that have initial partial-private information about

their valuation, for example the mean, and privately learn their full valuation after

some time. In the classic setting, buyers are required to participate from an interim

perspective: their expected gains at the time of contracting have to offset their outside

option. A salient example discussed by [27] is the airline industry in which, for

example, travelers purchase tickets in advance, but may only realize their actual

valuation once the date of the trip approaches.

Even though the optimal contracts that arise may offer partial refunds, the initial

advanced price is large enough such that some travelers experience negative ex-post

utility while still being willing to participate interim. This situation arises in other

industries as well, such as hotels, theaters or even railroads where advanced pric-

ing/refunds type contracts are also offered.

In many new markets, however, sellers are constrained to sell products in such

a way that buyers obtain a non-negative net utility once they have realized their

valuation, that is from an ex-post perspective. For example, in online shopping buyers
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may have the chance to return a purchased item after delivery, usually at no or low

cost ([42]). In the online display advertising market typical business constraints

impose that publishers cannot use up-front fees ([9]) and instead run auctions, for

example second-price. Thus, the seller needs to guarantee participation not only

initially – at the interim level – but also after the buyers have completely learned

their valuation – at the ex-post level.

Motivated by these new markets, we study the sequential screening problem as

described by [27] and in order to match our previous narrative we incorporate ex-

post participation constraints. Ex-post participation constraints rule out the optimal

contracts derived by [27] with up-front fees. As pointed out by [42] because different

up-front fees cannot be used to price discriminate the different buyers, it may be

that a static contract, one that does not screen the buyers interim, becomes optimal

under ex-post participation constraints. Building on the work by [42], our objective

is to understand when in fact the optimal selling mechanism is static (buyers are

not screened interim) or sequential (buyers are screened interim) and obtain a full

characterization of such contracts. Our work highlights the significant revenue im-

provements that can be attained by using a sequential contract relative to a static

one, even in the presence of ex-post participation constraints.

Our model considers a seller who is selling one unit of an object at zero marginal

cost to a buyer who has an outside option of zero. The sequence of events unfolds in

two periods. In the first, the buyer privately learns her interim type, for example the

mean of her valuation distribution, and the parties contract—important parts of our

analysis are done for binary interim types of buyers, low and high. The high type

has a distribution of ex-post values that dominates the distribution of the low type

in some stochastic order. The contract specifies allocation and payment functions.

In the second period, the buyer privately learns her valuation, and allocations and

transfers are realized. At this point, the buyer only accepts the contracting terms if
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her realized net utility is weakly larger than her outside option. This model aligns

with our aforementioned examples. In online shopping, the first period corresponds

to the purchasing time. At this time the buyer possesses private information about

her valuation but can only know her valuation with certainty after inspecting the

purchased item. In the second period, the buyer is delivered the item and has the

option to return it, at low or no cost. In the case of display advertising, some

publishers use a sequence of auctions known as “waterfall auctions” that implicitly

impose different priorities over participants.1 Commonly, higher-priority auctions

have higher reserve prices. The first period can be thought of as the time at which

the buyer decides in which auction (priority/reserve) to participate in. The second

period is when the auctions are actually run.

Main contributions. One of our main contributions is to characterize when

a static contract—that is, a contract that does not sequentially screen buyers—is

optimal. We provide a necessary and sufficient condition for the optimality of the

aforementioned contract, we refer to it as the average profit-to-rent condition. The

characterization we provide is intuitive. At the static contract the seller offers a

single price to both low and high type buyers. This price is too large for low types

and too low for high types relative to what the seller would set if he were to know

the types. To increase his revenue with respect to the static contract, the seller could

try to increase the price for high type buyers, however, this would incentivize them

to imitate the low types. Another option the seller has is to decrease the price for

low type buyers, but this would again incentivize the high types to mimic the low

types. In order to increase revenue and to deter high type buyers from imitating

the low types, the seller can reduce the price for a portion of low types thus serving

more of them and, at the same time, randomize their allocation so that high types

1See, for example, https://adexchanger.com/the-sell-sider/the-programmatic-waterfall-mystery.
A similar dynamic occurs when sellers offer “preferred deals” to advertisers (see, for example, [50]).
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do not take the low types’ contract. The profit-to-rent condition establishes that

this deviation is not profitable for the seller; hence, the profit-to-rent condition is

necessary for the optimality of the static contract. Notably, we also show that it is

sufficient. Our characterization is a weighted average monotonicity condition of the

virtual valuations around the optimal static threshold that in some settings encodes

information about the similarity of the interim types. For example, in the case of

exponential valuations, the static contract is optimal if and only if the means of the

distributions of the low and high type are appropriately close.

Our second main contribution characterizes the optimal mechanism when the

condition mentioned above does not hold and a static contract is no longer optimal.

We prove that the optimal sequential contract randomizes the low type and gives

a deterministic allocation to the high type. Randomization occurs to prevent the

high type buyer from taking the low type’s contract. More specifically, the optimal

contract is characterized by an allocation probability x ∈ (0, 1), and three thresholds

θ1, θ2, and θH with θ1 ≤ θH ≤ θ2. In this contract, the seller allocates the object to a

low type buyer with probability x whenever her valuation is between θ1 and θ2, and

asks for a payment of θ1 · x. When the valuation of this type is above θ2, the object

is always allocated to her and the seller demands a payment of θ2 − (θ2 − θ1) · x.

The high type buyer gets the object with certainty and only when her valuation is

above θH , at which point the payment she has to make to the seller is θH . These

parameters are set in such a way that the interim incentive compatibility constraints

are satisfied.

A salient feature of this type of contract is that it discriminates the low type in two

dimensions. First, we establish that θ1 is above the optimal threshold a seller would

set if she was selling exclusively to low type buyers. That is, the low type buyer is

being allocated the object less often in the presence of high type buyers. The opposite

holds for high type buyers, they are being allocated the object more often than if they
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were alone. Second, there is a range of values for which the object is sold to the low

type with some probability strictly below one, which further reduces the chances of

a low type to receive the object compared to a case in which there are no high type

buyers. We illustrate these results with the example of the exponential distribution

for which we have explicit solutions. We find that for exponential valuations the

sequential contract can exhibit revenue improvements of up to 16-27% with respect

to the static contract.

Towards the end of the chapter, we consider the case of many interim types. We

generalize the profit-to-rent condition to a setting with an arbitrary number of interim

types. We also discuss directions on how to expand our analysis and results to this

setting, as well as the challenges that arise.

3.2 Related Literature

Our model builds on the sequential screening literature as pioneered by [27], with an

interim participation constraint.2 In contrast, in this chapter we impose an ex-post

participation constraint. The closest paper to ours that studies sequential screening

with ex-post participation constraints is [42]. They establish that the static contract

is optimal under a monotonicity condition regarding the cross-hazard rate functions.

This condition rules out some common distributions for values such as the exponen-

tial distribution. Furthermore, the condition is only sufficient, and therefore, does

not provide a complete characterization of the space of primitives for which the static

contract is optimal. We close this gap by providing a necessary and sufficient condi-

tion under which the static contract is optimal. Our condition leverages the economic

intuition that lies behind a potential profitable deviation from the optimal static con-

tract. Further and importantly, when the condition fails we characterize the optimal

2See [2] for a recent adaptation of the [27] formulation to study advanced purchase contracts in
revenue management settings.
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sequential mechanism and show that randomization of one of the interim types is

required for optimality.3

In terms of approaches, [42] relax both the low to high incentive constraint and

monotonicity constraint and then show that, under their condition, the contract that

maximizes the Lagrangian is deterministic and that as a result the static contract is

optimal. In contrast, we also relax the incentive constraint but maintain the mono-

tonicity constraint. For the relaxed problem, we perform a first-principle analysis, in

the style of [59] and [32] that leads us to identify the right structure of the optimal

contract. In turn, this permits us to characterize the optimal sequential contract

when our condition breaks. In related recent work, [37] considers a setting in which

a seller can design the screening mechanism as well as the information disclosure

mechanism with ex-post participation constraints.

The sequential nature of our model and the presence of ex-post participation con-

straints is related to the work of [7] and [9]. These authors consider a model in which

a seller, constrained by ex-post participation (also motivated by the display adver-

tising market), repeatedly sells objects to a buyer whose valuations are independent

across periods. Both papers provide characterizations for a nearly optimal mecha-

nism. They are different from ours because we consider a single sale and construct

the exactly optimal mechanism in a sequential screening model.

Our optimal mechanism is related to the BIN-TAC auction derived in the context

of online display advertising by [24]. This is a static auction that offers two options to

advertisers: a buy-it-now (BIN) option in which buyers can purchase the impression

at a posted high price, and a take-a-chance (TAC) option in which the highest bidders

are randomly allocated the impression (if no bidder went for the BIN). This auction

3See also [47] and [28] for examples of multi-good environments in which stochastic allocations
can improve over deterministic ones. In a related note, [43] establish that with multiple, as opposed
to a single good, generically, the static contract is not optimal for the sequential screening problem
with ex-post participation constraints.

102



is tailored to approximate ironing in the classic static Myerson setting for non-regular

distributions that commonly arise in display advertising settings. This mechanism is

similar in spirit to ours as it randomizes low valuation buyers to separate them from

high valuations ones. However, with one bidder the BIN-TAC auction reduces to a

posted price which corresponds to the static contract in our setting. In contrast to

their static setting, we study a two-period model in which the buyer is sequentially

screened and randomization occurs even with one bidder.

3.3 Model

3.3.1 Payoffs and Private Information

We consider a seller (he) who is selling one unit of an object at zero cost to a buyer

(she) with an outside option of zero value. Both parties are risk-neutral and have

quasilinear utility functions. The sequence of events unfolds in two periods.

In the first period, the buyer privately learns her type and then the parties con-

tract. The type provides information about the distribution of the ex-post values of

the buyer, her true willingness-to-pay for the object. The contract specifies allocation

and payment functions.

In the second period, the buyer privately learns her valuation, and allocations and

transfers are realized. We refer to the type realized in period 1 as the interim type

and the valuation realized in period 2 as the ex-post type.

There are finitely many types, denoted k ∈ {1, . . . , K}, and the prior probability

of type k is given by αk with αk > 0 and
∑K

k=1 αk = 1. In the second period, a buyer

of type k privately learns her valuation θ which we assume to have a continuously

differentiable c.d.f. Fk(·) and pdf fk(·), with full support in Θ ⊆ [0,∞]. We assume

that Θ is a connected interval of the form [0, θmax]. It will be convenient to denote
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the upper c.d.f. by

F k(·) , 1− Fk(·).

All the distributions are common knowledge. We denote the virtual valuation µk(·)

of interim type k by

µk(θ) , θ − 1− Fk(θ)
fk(θ)

, ∀k ∈ {1, . . . , K}, ∀θ ∈ Θ.

For the rest of the chapter we make the standard assumption that:

1− Fk(θ)
fk(θ)

, is non-increasing in θ, ∀k ∈ {1, . . . , K}. (DHR)

This assumption facilitates our discussions. However, for our formal results we will

need a weaker assumption that we introduce later.

The terms of trade are specified in the first period by the seller. For a payment

t ∈ R and a probability of receiving the object x ∈ [0, 1], a buyer with valuation θ

receives a utility of θ · x− t, while the seller gets paid t.

We assume that the buyer agrees to purchase the object only if she is guaranteed a

non-negative net utility for any possible valuation of the object she might have. That

is, we require θ · x− t to be non-negative for all θ. The seller’s problem is to design

a contract that maximizes his expected payment, satisfying the ex-post participation

constraint together with incentive compatibility.

3.3.2 Mechanism Design Formulation

By means of the revelation principle (see, e.g., [51]) we can focus on incentive com-

patible direct revelation mechanisms, with allocations xk : Θ → [0, 1] and transfers

tk : Θ → R, that depend on the types (k, θ) reported to the mechanism. Then, for

a buyer reporting an interim type k′ and an ex-post type θ′ the mechanism allocates

the object with probability xk′(θ
′) and charges the buyer tk′(θ

′).
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We define the ex-post utility of a buyer who reported k in the first period and θ′

in the second period while her true valuation is θ as

uk(θ; θ
′) , θ · xk(θ′)− tk(θ′),

with the understanding that uk(θ) equals uk(θ; θ) . Similarly, we define the interim

expected utility of a buyer whose true interim type is k but reported to the mechanism

k′ as

Ukk′ ,
∫

Θ

max
θ′∈Θ
{uk′(z; θ′)} · fk(z)dz,

where the maximum is included because double deviations are in principle allowed.

Note, however, that with distributions with common support and under ex-post in-

centive compatibility, the maximum will always be achieved at θ′ equal to z, and we

can restrict attention to single deviations.

There are two kinds of incentive compatibility constraints that must be satisfied

by our mechanism. The first one is the ex-post incentive compatibility or (ICxp)

constraint which requires that for any report in the first period, truth-telling is optimal

in the second period, that is,

uk(θ) ≥ uk(θ; θ
′) ∀k ∈ {1, . . . , K},∀θ ∈ Θ. (ICxp)

The second one is the interim incentive compatibility or (ICi) constraint which re-

quires that truth-telling is optimal in the first period, that is,

Ukk ≥ Ukk′ ∀k, k′ ∈ {1, . . . , K}. (ICi)

Also, we require the mechanism to satisfy an ex-post individual rationality constraint

or (IRxp)

uk(θ) ≥ 0, ∀k ∈ {1, . . . , K}, ∀θ ∈ Θ. (IRxp)
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Then, the seller’s problem is

max
K∑
k=1

αk ·
∫

Θ

tk(z) · fk(z)dz (P)

s.t (ICi), (ICxp), (IRxp)

0 ≤ x ≤ 1 ,

where we use boldfaces to denote vectors. Observe that (IRxp) implies interim in-

dividual rationality. In fact, if we were to relax (P) by considering only interim

individual rationality we would be in the setting of [27] for discrete interim types.

In general, two types of contract can arise as a solution to the seller’s problem

(P) : static and sequential. A static solution to problem (P) corresponds to the case

when the allocations and transfers (xk, tk) do not depend on the interim type k. In

this case we have a unique menu (x, t) that is offered to the buyer and the contract

does not screen among interim types. We use (Ps) to denote the constrained version

of (P) to static contracts, which we refer to as the static program. In contrast, a

sequential solution allows for different menus that depend on the interim type k, and

each type of buyer self-selects into one of the menus. The problem (P), referred as

the sequential program, allows for such solutions.

The main focus of this chapter is two-fold. First, to study when the optimal

solutions to the static and sequential programs, (Ps) and (P), coincide. Second,

when they do not coincide, we aim to characterize the optimal solution to (P).

3.4 A Classic Example of Sequential Screening

We use the motivating example of [27] to illustrate the power of sequential screening

in the presence of an ex-post participation constraint. We show that a sequential

contract outperforms the static contract.
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There are two types of potential buyers, low type and high type. One-third of

potential buyers are low type whose valuation is uniformly distributed in [1, 2], two-

thirds are high type buyers with valuation uniformly distributed in [0, 1]∪ [2, 3]. [27]

think of the low type as a leisure traveler and of the high type as a business traveler

with the same mean but larger variability in her valuation. The seller has a production

cost equal to 1.

The optimal static contract sets the optimal monopoly price, p̂, equal to 2, which

yields a profit of 1/3. The static contract only serves the high types with high realized

valuations. [27] in their setting with an interim participation constraint show that

the seller can significantly increase its profits with sequential screening by offering

a menu of advanced payments/partial refund contracts. They establish that the

optimal contract for their setting offers an advanced payment of 1.5 and no refund to

the leisure traveler, and an advanced payment of 1.75 and 1 of refund to the business

traveler. In this contract a buyer can have a negative realized net utility. For example,

the leisure traveler initially pays 1.5 but her actual valuation can be any value within

[1, 2] and, therefore, half of the time she will obtain negative net utility after learning

her valuation.

Because of the advanced payments these contracts typically will not satisfy an

ex-post participation constraint, which we study next.

Let us consider the following sequential contract as a simple deviation from the

optimal static contract. The seller offers a menu of two quantities and prices, (xL, pL)

and (xH , pH). The second contract is set equal to the optimal static contract, that

is, (xH , pH) = (1, 2). Hence, the selling price for the high type is 2 and high types

that buy receive the full quantity.

Now, we find the optimal quantity and price for the low type buyer. Given the

contract for the high type, the seller’s profit is given by:

1

3
× xL × (pL − 1)× (2− pL) +

2

3
× 1

2
× (2− 1),
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where xL ∈ [0, 1] and pL ∈ [1, 2]. We need to ensure that the menus are interim

incentive compatible. The low to high incentive constraint is always satisfied (pH

equals 2), and the high to low incentive constraint is given by:

1

2
×
(5

2
− 2
)
≥ 1

2
× xL ×

(5

2
− pL

)
.

Profit maximization implies that this constraint must be binding, and therefore, the

seller’s profit becomes:

1

3
× (pL − 1)× (2− pL)

5− 2pL
+

1

3
.

The first order condition yields an optimal price equal to
(
5−
√

3
)
/2 which, in turn,

delivers a profit of 2/3−1/(2
√

3). The improvement of the sequential contract versus

the optimal static contract is then 1−
√

3/2 ≈ 13%.

From this simple exercise we learn an important lesson: even in a simple setting

a sequential contract can have substantial benefits over a static contract. In this

chapter we study more generally when a sequential contract outperforms a static

contract and what drives this revenue improvement.

3.5 Optimality of Static Contract

First, we start by characterizing conditions under which it is optimal not to screen

the interim types. In the main theorem of this section we provide a necessary and

sufficient condition for the static contract to be optimal. We begin with a reformula-

tion of the problem based on standard techniques that use the envelope theorem, and

enables us to solve for the allocation and utilities of the lowest ex-post types instead

of both allocations and transfers. Using the reformulation we characterize the optimal

static contract. In Section 3.5.2, we use the optimal static contract together with a

simple deviation analysis to obtain an intuitive necessary condition for its optimality.

In Section 3.5.3, we show that this condition is both necessary and sufficient.
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3.5.1 Problem Reformulation and Static Solution

We obtain a more amenable characterization of the constraints by eliminating the

transfers from the them as in the classical Myersonian analysis.

Lemma 3.1 (Necessary and Sufficient Conditions for Implementation)

The mechanism (x, t) satisfies (ICi),(ICxp) and (IRxp) if and only if

1. xk(·) is a non-decreasing function for all k in {1, . . . , K} and

uk(θ) = uk(0) +

∫ θ

0

xk(z)dz, ∀k ∈ {1, . . . , K}, ∀θ ∈ Θ. (3.1)

2. uk(0) ≥ 0 for all k in {1, . . . , K}.

3. uk(0) +
∫

Θ
xk(z)F k(z)dz ≥ uk′(0) +

∫
Θ
xk′(z)F k(z)dz for all k, k′ in {1, . . . , K}.

All proofs are provided in the Appendix. The first condition in the lemma is the

standard envelope condition and it comes from the ex-post incentive compatibility

constraint. The second condition is derived from the ex-post individual rationality

constraint and the fact that uk(θ) is non-decreasing. The third condition is the

envelope formula inserted into the interim incentive compatibility constraint.

Lemma 3.1 enables us to obtain a more compact formulation for the seller’s prob-

lem. Specifically, we can use equation (3.1) and integration by parts to write down the

objective of (P) in terms of the allocation rule x and the indirect utilities {uk(0)}Kk=1

of the lowest ex-post types. To this end, we denote each uk(0) as a new variable by

uk. The new formulation is then:

max
0≤x≤1

−
K∑
k=1

αkuk +
K∑
k=1

αk

∫
Θ

xk(z)µk(z)fk(z)dz (P)

s.t xk(θ) non-decreasing, ∀k ∈ {1, . . . , K}

uk ≥ 0, ∀k ∈ {1, . . . , K}

uk +

∫
Θ

xk(z)F k(z)dz ≥ uk′ +

∫
Θ

xk′(z)F k(z)dz, ∀k, k′ ∈ {1, . . . , K},
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Note that in (P) the variables are the allocation rule x and the vector of the indirect

utilities of the lowest ex-post types u. Once we solve for these variables the transfers

are determined by equation (3.1).

As we mentioned before, a solution to (P) that screens the interim types is a

sequential contract. In contrast, a static solution to (P) pools the interim types.

Formally, we say that a solution to (P) or contract is static when xk(·) ≡ x(·) and

uk ≡ u for all k in {1, . . . , K}.

We earlier defined the virtual valuation µk(·) of interim type k. Given (DHR)

the virtual valuation for each type k has exactly one zero which we denote by θ̂k.

Without loss of generality we assume for the remainder of the chapter that we can

order the interim types:

θ̂1 ≤ · · · ≤ θ̂K .

It turns out that solving (P) over the space of static contracts is a simpler problem.

The (ICxa) constraints disappear from the problem because in this case there is

effectively only one interim type. Also, it is clear that any optimal solution sets

uk = 0 for all k in {1, . . . , K}. So, the static version of the seller’s problem is given

by

max
0≤x≤1

∫
Θ

x(z) ·
( K∑
k=1

αkµk(z)fk(z)
)
dz (Ps)

s.t x(θ) non-decreasing,

where a simple calculation shows that the term in parenthesis is equal to the virtual

value function of the mixture distribution times the density function of the mixture.

Hence, this problem corresponds to the classic optimal mechanism design problem

applied to the mixture distribution over types.

From this formulation we see that the relevant quantity that shapes the alloca-

tion x(·) is µ̄(θ) ,
∑K

k=1 αkµk(θ)fk(θ). In general, because there is only one buyer,

independent of any regularity assumptions imposed over µ̄(θ), one can show that an
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optimal way to choose a non-decreasing allocation x(·) that maximizes∫
Θ

x(z)µ̄(z)dz, (3.2)

is a threshold allocation, that is, a single posted price (see, e.g., [52] or [57]). We

summarize this in the following lemma.

Lemma 3.2 (Threshold Allocation)

A solution to (Ps) is a threshold allocation characterized by θ̂ in [θ̂1, θ̂K ] that maxi-

mizes (3.2).

3.5.2 A Necessary Condition

In the rest of this Section and the next Section 3.6 we provide our results for the

setting with binary interim types. We denote the low type by L and the high type by

H. In Section 3.7 we return to the general setting with finitely many interim types.

The static optimal solution is characterized by a threshold allocation θ̂. In this

section, we leverage this characterization, and perform an analysis in the style of [21],

to deduce an intuitive necessary condition for the optimality of the static contract.

As we will show later in Section 3.5.3 this condition turns out to be not only necessary

but also sufficient.

For ease of exposition, we assume that the high type dominates the low type in

the hazard rate order sense:

1− FH(θ)

fH(θ)
≥ 1− FL(θ)

fL(θ)
, ∀θ ∈ Θ. (3.3)

We note that we do not need this assumption for the formal arguments.

Suppose now that a static contract is optimal, that is, setting a single posted price

equal to θ̂ for both types solves (P). Consider Figure 3.1, where we have plotted the

virtual value function weighted by the density function for each type.4 If the types

4We needly represent the virtual valuation weighted by fk(·). This does not change the signs in
the figure but gives a convenient geometric representation.
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µk(·)fk(·)

valuation

µH(·)fH(·)
µL(·)fL(·)

θ̂θ̂L θ̂H

Figure 3.1: Weighted virtual valuations for low type (dotted line) and high type

(dashed line) buyer around θ̂. The shaded areas correspond to the virtual revenue
that the seller leaves on the table when using a static contract with respect to the
case in which the interim types are public information.

were public, the seller would optimally set posted prices equal to θ̂L and θ̂H for types

L and H, respectively. In this way, the seller would serve buyers if and only if they

have positive virtual values. In contrast, when selecting a single posted price θ̂, there

is surplus that the seller is not extracting; the shaded area shows the regions of the

virtual valuations for each type that the static contract is not capturing. For the high

type, the static contract serves too many buyers, some of them with negative virtual

values; hence, the seller would be better off by offering a higher price. For the low

type, the static contract serves too few buyers, leaving positive virtual value buyers

unserved; hence, the seller would prefer to choose a lower price. A challenge, though,

is that the seller faces incentive compatibility constraints that restrict this type of

possible deviations/improvements:

1. Selling to fewer high types implies increasing the price for high types; but then

the high types have an incentive to accept the low type contract and such a

deviation is not feasible.

2. Selling to more low types amounts to reducing the price from θ̂ to some value θ1.
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Figure 3.2: Weighted virtual valuations for low type (dotted line) and high type

(dashed line) buyer around θ̂. The shaded areas correspond to the virtual revenue
that the seller leaves on the table when using a static contract with respect to the
case in which the interim types are public information. We show deviation from the
static contract for the low type (solid line). If A−B ≥ 0 the deviation is profitable.

However, to prevent the high types from taking the low type contract the seller

must decrease the quantity offered to the low types (or equivalently, randomize

their allocation).

This second improvement is feasible by choosing a quantity (probability) 0 < xL <

1 to all low types inside an interval [θ1, θ2] with θ1 ≤ θ̂ ≤ θ2, see Figure 3.2.

Formally these allocations correspond to the following menu:

xL(θ) =


0 if θ < θ1,

xL if θ1 ≤ θ ≤ θ2,

1 if θ2 < θ;

xH(θ) =


0 if θ < θ̂,

1 if θ̂ ≤ θ;

(3.4)

with uL = uH = 0. We refer to this deviation as an interior variation or improvement.

The interior improvement is feasible only if it satisfies both incentive compatibility

constraints. Inserting the menu (3.4) into the incentive constraints in (P) we obtain

for the low type:

xL

∫ θ2

θ1

(1− FL(θ))dθ +

∫ θmax

θ2

(1− FL(θ))dθ ≥
∫ θmax

θ̂

(1− FL(θ))dθ,
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and for the high type:

∫ θmax

θ̂

(1− FH(θ))dθ ≥ xL

∫ θ2

θ1

(1− FH(θ))dθ +

∫ θmax

θ2

(1− FH(θ))dθ,

and/or in a more compact form as a bracketing inequality:∫ θ2
θ̂

(1− FL(θ))dθ∫ θ2
θ1

(1− FL(θ))dθ
≤ xL ≤

∫ θ2
θ̂

(1− FH(θ))dθ∫ θ2
θ1

(1− FH(θ))dθ
, (3.5)

which contains both incentive compatibility constraints. The monotone hazard rate

condition (3.3) guarantees that xL as in given by (3.5) always exists. The interior

variation is thus feasible and we can select xL so as to maximize the seller’s revenue.

Indeed, evaluating the interior variation in the seller’s objective yields:

xL ·
∫ θ2

θ1

µL(θ)fL(θ)dθ +

∫ θmax

θ2

µL(θ)fL(θ)dθ,

and since µL(θ) ≥ 0 in [θ1, θ2] (c.f Figure 3.2) the right hand side inequality in (3.5)

must be tight.

With the interior variation, the seller serves more low-value buyers in [θ1, θ̂] at the

level of xL. This comes at the expense of offering a lower quantity, a loss of 1−xL to

buyers with values in [θ̂, θ2]. In Figure 3.2 the area A corresponds to the additional

revenue the seller can make due to the variation because he is serving more low type

buyers, and region B is the efficiency loss due to the incentive constraints.

If the static contract is optimal then this variation cannot be profitable. In terms

of Figure 3.2 this means the areas must satisfy A ≤ B. Hence, if the static contract

is optimal then

A = xL ·
∫ θ̂

θ1

µL(θ)fL(θ)dθ ≤ (1− xL) ·
∫ θ2

θ̂

µL(θ)fL(θ)dθ = B.

In turn, since the optimal choice of xL always equals the right hand side of (3.5), we

can insert xL in terms of the ratio, and after some re-arranging we get∫ θ̂
θ1
µL(θ)fL(θ)dθ∫ θ̂

θ1
(1− FH(θ))dθ

≤
∫ θ2
θ̂
µL(θ)fL(θ)dθ∫ θ2

θ̂
(1− FH(θ))dθ

. (3.6)
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To better understand this inequality consider a monopolist who faces a consumer with

valuation distributed according to Fk(·). Observe that at some price θb the expected

profit Πk(θb) the monopolist makes and the expected consumer’s informational rents

Ik(θb) are given by

Πk(θb) , θb·(1− Fk(θb)) =

∫ θmax

θb

µk(θ)fk(θ)dθ and Ik(θb) ,
∫ θmax

θb

(1− Fk(θ)) dθ.

If the monopolist considers lowering the price from θb to θa then the change in profit

is Πk(θa) − Πk(θb). The lower price positively impacts the information rents which

increase by Ik(θa) − Ik(θb). The ratio (Πk(θa) − Πk(θb))/(Ik(θa) − Ik(θb)) then is

a measure of the average impact in profits per unit of consumer rents the seller

experiences due to the price variation. In condition (3.6) we have a cross version of

this ratio. In the numerator we take k = L and in the denominator k = H. In light

of this observation condition (3.6) suggests the following definition.

Definition 3.1 (Average Profit-to-Rent Ratio)

The average profit-to-rent ratio is defined by:

Rjk(θa, θb) ,
Πj(θa)− Πj(θb)

Ik(θa)− Ik(θb)
, ∀j, k ∈ {L,H}, 0 ≤ θa ≤ θb ≤ θmax.

The average profit-to-rent ratios measure changes in the seller’s profit normalized

by the information rents he gives away to the consumer due to a price deviation. The

ratio Rjk compares the impact on profit for type j with the increase in the information

rent for type k. This cross ratio arises as the incentive compatibility constraint for

type k implies that a modification in the contract for type j affects type k as well.

This was clear from our discussion regarding the internal variation above. There, a

price θ1 (smaller than θ̂ ) for the type L creates a profit improvement for the seller

measured by the numerator of R. Since the seller has to make sure that type H does

not take the type L contract (by reducing quantity), this price decrease generates a

loss to the seller quantified by the denominator of R.
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Back to (3.6) we notice that the numerator in either ratio refers to the revenue

that the seller is making from the low type over some interval, and the denominator

refers to the information rent of the high type over the same interval. Now, since the

choice of θ1, θ2 was arbitrary, we obtain the following necessary condition by taking

minimum and maximum at both sides of the inequality in (3.6). If the static contract

is optimal then

max
θ1≤θ̂

RLH(θ1, θ̂) ≤ min
θ̂≤θ2

RLH(θ̂, θ2), (3.7)

The above condition establishes that if the static contract is optimal then any

extra revenue the seller can garner from low type buyers is offset by the efficiency

loss due to the incentive compatibility constraints: A−B ≤ 0 for any possible choice

of θ1 and θ2.

3.5.3 A Necessary and Sufficient Condition

We now establish that condition (3.7) is in fact a necessary and sufficient condition

for the optimal static solution to coincide with the optimal solution to (P). Before we

provide the main theorem, we introduce some notation for the quantities of interest

that will help us to further refine our intuition. While we maintain the binary type

framework here; we note that all definitions naturally extend to finitely many types

as we will see in Section 6.

The local version of the average profit-to-rent ratio, when θa < θ̂ < θb are close

to θ̂, gives raise to the profit-to-rent ratio.

Definition 3.2 (Profit-to-Rent Ratio)

The profit-to-rent ratio between type j and k is defined by:

rjk(θ) ,
µj(θ)fj(θ)

1− Fk(θ)
, ∀j, k ∈ {L,H},∀θ ∈ Θ.
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The ratio rjk(θb) is obtained by limθa↑θb R
jk(θa, θb). Observe that condition (DHR)

is stronger than and implies that rkk(θ) is non-decreasing for each k ∈ {L,H}. The

latter is the condition we use for our formal results.

Now, we are ready to state and discuss the main result of this section.

Theorem 3.1 (Optimality of Static Contract)

Suppose rkk(θ) is non-decreasing for each k ∈ {L,H}. The static contract is optimal

if and only if

max
θ≤θ̂

RLH(θ, θ̂) ≤ min
θ̂≤θ

RLH(θ̂, θ). (APR)

This results completes the necessity condition given in Section 3.5.2 by showing

that it is also sufficient. We showed in Section 3.5.2 that condition (APR) established

that the specific deviation that increases the sales to the lower type with a lower

quantity is not profitable relative to the static contract.

Theorem 3.1 now establishes that in fact this is not only a necessary but in

fact a sufficient condition. The sufficiency condition is noteworthy as it arises from

“simple” deviations, namely, those that assign the low type an interior allocation in

a small interval around the static optimal price. In particular, we do not need to

be concerned either with more elaborate deviations which offers the low type several

options in his menu, nor do we need to trace simultaneous changes to the offers to

the high type. The present theorem confirms that this type of interior improvement

for the low type is sufficient to study changes in the seller’s revenue. In fact, we

will establish in Section 3.6 that the family of allocations suggested by the interior

variation completely describes the optimal sequential mechanism as well.

To prove the sufficiency in Theorem 3.1 we rely a on dualization-type of argument.

For the necessity, we assume that condition (APR) is not satisfied and show that in

that case there is a profitable deviation as given by the following proposition.
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Proposition 3.1 (Revenue Improvement)

Suppose rLL(θ) is non-decreasing. Assume condition (APR) does not hold. Then

there exists θ1, θ2 such that θ1 < θ̂ < θ2 and RLH(θ1, θ̂) > RLH(θ̂, θ2), for which the

allocation in (3.4) with

xL =

∫ θ2
θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

,

yields a strict improvement in (P) over the static contract.

In the proof of Proposition 3.1 we can see that as soon as condition (APR) breaks

two things happen. First, a non-static contract becomes feasible as it does not violate

the incentive compatibility constraints. Note that the proposition is similar to the

discussion in Section 3.5.2; however, it is more general because it does not assume

hazard rate order to guarantee feasibility. The mere fact that (APR) breaks implies

the feasibility of the new allocation. Second, the same contract obtains a larger

expected revenue than the static one. So, from this we see that (APR) is preventing

both the feasibility and optimality of a sequential contract.

3.5.4 The Exponential Example

Before we move to the study of the optimal sequential contract it might be helpful to

build some more intuition for the results. We shall consider the case of exponentially

distributed values. The main result of this section establishes that the static contract

is optimal if and only if the mean of the interim types are sufficiently close.

We consider the exponential density functions

fk(θ) = λke
−λkθ, k = {L,H} θ ≥ 0.

We assume λL > λH , so L and H stand for low and high type respectively. Note that

H has a higher mean (1/λH) than L (1/λL) and that H dominates L in the sense of

the hazard rate stochastic order and in first order stochastic dominance. In addition,

for the interim probabilities we have αL + αH = 1 with αL, αH > 0.
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We begin by studying the optimal solution to the static formulation. The optimal

static contract is given by a threshold allocation. Thus, in the exponential case the

seller’s expected revenue for any given threshold θ is

Πstatic(θ) ,
∫ 1

θ

(αLµL(z)fL(z) + αHµH(z)fH(z))dz = αLθe
−λLθ + αHθe

−λHθ.

In order to find the optimal threshold we just need to maximize the expression above.

The first order condition yields

αL(θ − 1

λL
)λLe

−λLθ + αH(θ − 1

λH
)λHe

−λHθ = 0, (3.8)

that is, the optimal threshold is a zero of the mixture virtual valuation. Notice that

equation (3.8) cannot be explicitly solved; however, we can (as we do in the forth-

coming results) provide comparative statics. Interestingly, in Proposition 3.3 below,

we show that we can obtain explicit expressions for the thresholds characterizing the

optimal sequential contract. The following lemma provides some initial properties of

the optimal static contract.

Lemma 3.3

The optimal solution to (Ps) is a threshold allocation characterized by θ̂ in [ 1
λL
, 1
λH

],

solving (3.8). Also, θ̂ is a non-increasing function of αL with θ̂(0) = 1
λH

and θ̂(1) =

1
λL
.

Next, we state a necessary and sufficient condition for the static contract to be

optimal.

Proposition 3.2 (Necessity and Sufficiency for the Exponential Model)

The static contract is optimal if and only if

λL − λH ≤
1

θ̂
(3.9)
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The result follows from Theorem 3.1, but it requires some effort to determine the

max and min in (APR) in closed form. We note that in the right hand side, θ̂, is

a solution to equation (3.8) and, therefore, it also depends on the parameters λL

and λH . Subsequent corollaries provide sharper characterizations that only depend

on model primitives. We highlight that (3.9) corresponds to a particular case of

condition (APR).

Proposition 3.2 provides an intuitive characterization for when the seller is better-

off screening the interim types than not. In terms of equation (3.9), when λL and

λH are sufficiently close, then equation (3.9) should hold, in which case the static

contract is optimal. Conversely, when λL and λH are sufficiently apart from each

other, the static contract may not be optimal.

Intuitively, when the interim types are similar any contract that screens the types

would be close in terms of expected revenue to the static contract because for each

type it could get at most what it would get by setting thresholds 1/λL and 1/λH

respectively, but θ̂ ∈ [ 1
λL
, 1
λH

]. However, when screening, the seller has to pay an

extra cost to prevent the types from mimicking each other and, since the contracts’

revenue will be similar, it is likely that this cost offsets the earnings from screening.

On the other hand, when interim types are sufficiently apart in their mean valuation

then the seller can tailor the contract to each type and in this way extract more from

them than in the static contract.

Corollary 3.1 Assume λL ∈ (λH , 2λH ], then for any αL ∈ [0, 1] the static contract

is optimal.

This result establishes that when the distributions of the low and high type buyers

are sufficiently close to each other then no matter in which proportion the types are,

the static contract is always optimal.
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Corollary 3.2 Assume λL > 2λH , then there exists ᾱ ∈ (0, 1) such that for all

αL ∈ (0, ᾱ) the sequential contract is strictly optimal and for all αL ∈ [ᾱ, 1] the static

contract is optimal.

Corollary 3.2 asserts that when the mean of the low and high type buyers are

sufficiently different then both contracts can be optimal. If the proportion of low

type is low enough (but not zero) then the seller is better-off screening the types.

On the other hand, if there is a very large proportion of low type buyers then the

static contract is optimal. This follows because as αL increases, one can show that θ̂

decreases, and at some point condition (3.9) holds. This discussion suggests our final

corollary.

Corollary 3.3 For λH and αH fixed, there exists λ̄L larger than 2λH such that for

all λL ∈ [λ̄L,∞) the sequential contract is strictly optimal.

3.5.5 Discussion

We introduced earlier the condition (DHR) which establishes that the hazard rates

hjk(θ) =
1− Fk(θ)
fj(θ)

are non-increasing when j equals k. A related condition is about the cross-hazard

rate functions,

hjk(θ) are non-increasing in θ, ∀j, k ∈ {L,H}. (R)

To the best of our knowledge condition (R) was first introduced in the context of

sequential screening by [42]. In that paper the authors show that under condition

(R) the optimal solution to (P) and to (Ps) coincide, that is, the static contract

is optimal. In fact, they show this result for multiple interim types. We discuss

our generalization of condition (APR) to multiple types in Section 3.7. However,
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is no longer optimal.

Kramer and Strausz
Necessity

Kramer and Strausz
Sufficiency

This paper
Sufficiency and Necessity

rLH(·) non-decreasing at θ̂

(APR)

(DHR)

(R)
Outside this set the static contract

Figure 3.3: Optimality of the static contract for (DHR) distributions, with K = 2
and a single buyer.

condition (R) is rather restrictive and is not satisfied by some common distributions.

For example, the condition is not satisfied by any pair of exponential distributions,

because in this case the cross-hazard rate is given by:

hjk(θ) =
e−(λk−λj)θ

λj
, j, k = L,H.

If, without loss of generality, we consider λL > λH then hLH(θ) is an increasing

function and, therefore, it violates conditions (R). However, notice (DHR) is satisfied

because the simple hazard rate functions are constant and equal to 1/λk.

We can also compare Theorem 3.1 with Lemma 12 in [41]. In that Lemma they

assume hHH(θ) > hLL(θ), which implies θ̂L < θ̂H , and establish that a necessary

condition for the static contract to be optimal is to have the profit- to-rent ratio

rLH(θ) being increasing at θ̂. Our result also contains this lemma, because if rLH(·)

was decreasing at θ̂ we can always find θ1 < θ̂ and θ2 > θ̂ such that

RLH(θ1, θ̂) > RLH(θ̂, θ2),

so (APR) does not hold and, therefore, the static contract would not be optimal.

Figure 3.3 illustrates how our condition (APR) closes the gap between the ones by

Krähmer and Strausz.

We can compare condition (R) and (APR). Note that condition (R) implies the
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monotonicity of the profit-to-rent ratios, and therefore condition (APR) holds as

RLH(θ, θ̂) =

∫ θ̂
θ
FH(z)rLH(z)dz∫ θ̂
θ
FH(z)dz

≤ rLH(θ̂), ∀θ ≤ θ̂,

and

RLH(θ̂, θ) =

∫ θ
θ̂
FH(z)rLH(z)dz∫ θ
θ̂
FH(z)dz

≥ rLH(θ̂), ∀θ ≥ θ̂.

Hence, the result by [42] that if condition (R) holds then the static contract is optimal

follows as a corollary of Theorem 3.1. We highlight that while condition (R) implies

the profit- to-rent ratios are increasing, our condition (APR) only implies a type

of monotonicity over an appropriate weighted average of the profit-to-rent ratios.

This is sensible as we are dealing with interim expected seller’s revenues and interim

incentive compatibility constraints.

In terms of methodology, our approach differs from that of [42]. Their approach

consists of relaxing the low to high interim IC constraint and then – by using their

condition (R) – they relax the monotonicity constraint and prove that the solution

must be a threshold schedule for each type. From there, they show that the threshold

for both types must be equal and, therefore, the static contract is optimal.

In our approach we do not use a relaxation of the general formulation nor do we

impose conditions on the primitives besides that rkk(θ) are non-decreasing. For the

sufficiency we construct a Lagrangian relaxation with multipliers for the incentive

compatibility constraints, but we do not relax the monotonicity constraints. The

multipliers relate to the profit-to-rent ratios at the static threshold θ̂; they measure

the change in the objective per unit of change in the constraints. Then by leveraging

a result from [57] that the optimal contract must involve a threshold allocation we

prove that under (APR) the solution to the relaxation is the static contract.
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3.6 Sequential Contract

We now proceed to provide the complete characterization of the optimal sequential

contract when the necessary and sufficient condition associated with the static con-

tract fails. As hinted in Section 3.5.2 and by Proposition 3.1 the optimal sequential

contract gives a deterministic allocation to the high type and, for mid-range values,

it randomizes the low type buyer (or equivalently reduces the quantity allocated).

3.6.1 The Structure of the Sequential Contract

Our analysis consists in studying the following relaxation to (P)

max
0≤x≤1

−
∑

k∈{L,H}

αkuk +
∑

k∈{L,H}

αk

∫
Θ

xk(z)µk(z)fk(z)dz (PR)

s.t xk(θ) non-decreasing, ∀k ∈ {L,H}

uk ≥ 0, ∀k ∈ {L,H}

uH +

∫
Θ

xH(z)FH(z)dz ≥ uL +

∫
Θ

xL(z)FH(z)dz.

The difference between (PR) and the original problem (P) is the omission of the

incentive constraint for the low type to report truthfully. Importantly, we do not relax

the monotonicity constraint. We obtain a characterization of the optimal solution to

(PR) as stated by the following theorem.

Theorem 3.2 (Relaxed Solution)

Suppose rkk(θ) is non-decreasing for each k ∈ {L,H}. Consider problem (PR), the

optimal solution has allocations

x?L(θ) =


0 if θ < θ1,

xL if θ1 ≤ θ ≤ θ2,

1 if θ2 < θ;

x?H(θ) =


0 if θ < θH ,

1 if θH ≤ θ.
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The threshold values θ1, θH , θ2 satisfy θ̂L ≤ θ1 ≤ θH ≤ θ2, θH ≤ θ̂H and

xL =

∫ θ2
θH
FH(z)dz∫ θ2

θ1
FH(z)dz

.

Note that if θ1 = θH we recover the static contract. Importantly, the optimal

contract of (PR) has the same structure as the profitable deviation to the static

contract presented in Proposition 3.1. The only difference is that in the former the

threshold for the high type may not necessarily equal to θ̂ as in the latter. With this

generalization one can show that the proposed profitable deviation is indeed optimal

for (PR). The associated transfers are given by:

t?L(θ) =


0 if θ < θ1,

θ1 · xL if θ1 ≤ θ ≤ θ2,

θ2 − (θ2 − θ1) · xL if θ2 < θ;

t?H(θ) =


0 if θ < θH ,

θH if θH ≤ θ.

Our optimality proof adapts arguments by [32] to our setting. We use an im-

provement argument to show that the optimal contract of (PR) only requires a simple

threshold allocation without randomization for the high type. Finally, we use another

improvement argument to show that the low type allocation only requires a single

interval of randomization.

More specifically, consider a low type allocation that randomizes between an in-

terval [θa, θb]. Recall the argument in Section 3.5.3 where we found a revenue im-

provement while keeping feasibility, in particular, while maintaining the high to low

IC constraint. Using a similar reasoning, we can show that feasibly improving upon

the random allocation requires the following condition to hold for some θ̃:

RLH(θa, θ̃) =

∫ θ̃
θa
FH(z)rLH(z)dz∫ θ̃
θa
FH(z)dz

≤
∫ θb
θ̃
FH(z)rLH(z)dz∫ θb
θ̃
FH(z)dz

= RLH(θ̃, θb). (3.10)

In general this condition is not satisfied, because the profit-to-rent ratio rLH(·) does

not need to be a non-decreasing function. Therefore, we cannot find a feasible im-
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provement over the random allocation contract, and hence, we cannot restrict at-

tention to deterministic contracts for the low type. In contrast, a similar argument

for the high type yields the expression RHH(θa, θ̃) ≤ RHH(θ̃, θb), which always holds

when rHH(·) is non-decreasing. Hence, we can restrict attention to a deterministic

threshold contract for the high type.

In addition, the low type allocation only requires a single interval of randomiza-

tion. To see this, suppose for example that x?L(θ) equals xa in (θa, θ̃) and xb in (θ̃, θb)

with 0 < xa < xb < 1 , and also assume (3.10) does not hold. Then, it is possible to

show that we can increase xa and decrease xb (maintaining feasibility) and obtain an

improvement to the objective function. We can do this until xa and xb collapse into

a single value.

The discussion above highlights again the importance of the average profit-to-

rent ratios in our analysis, as they quantify revenue improvements while maintaining

incentive compatibility. Now, the next result characterizes the optimal sequential

contract and it also provides conditions that allow to compute the optimal thresholds.

Theorem 3.3 (Optimal Sequential Contract)

Suppose rkk(θ) is non-decreasing for each k ∈ {L,H}. The optimal sequential contract

coincides with the optimal solution of (PR) as given by Theorem 3.2.

In Theorem 3.2 we provided the characterization of the optimal solution to (PR).

In the proof of Theorem 3.3 we argue that the optimal solution to (PR) is feasible

for (P) and thus optimal. In turn, we obtain a full characterization of the optimal

sequential contract up to three parameters.

In terms of solving for the optimal sequential contract, Theorems 3.2 and 3.3

imply that we can ignore the IC constraints and do a search over three parameters

to maximize seller’s revenues over the proposed contract structure, θ1, θ2 and θH . In
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the proof of Theorem of 3.3 we show that the optimality conditions for the thresholds

θ1 ≤ θH ≤ θ2 are:

1. RLH(θ1, θ2) ≤ minθ2≤θ R
LH(θ2, θ);

2. maxθ≤θ2 R
LH(θ, θ2) ≤ RLH(θ1, θ2);

3. αL ·RLH(θ1, θ2) + αHr
HH(θH) = 0.

Conditions (1) and (2) put together are similar to (APR) where θ2 plays the role

of θ̂. Similarly to the case of the static contract, one can show that any allocation

that randomizes beyond θ2 is never profitable. In turn, randomization should only

occur for valuations below θ2. Condition (2) by itself also implies that among all the

intervals that can be randomized, the interval (θ1, θ2) is the most profitable. To see

this let us compare the seller’s revenue when it randomizes the low type buyer over

some interval (θ, θ2) and (θ1, θ2) (and it gives a deterministic allocation to the high

type). Using Theorem 3.2 the allocation xL that satisfies incentive compatibility in

each case is:

xL(θ) =

∫ θ2
θH
FH(z)dz∫ θ2

θ
FH(z)dz

and xL(θ1) =

∫ θ2
θH
FH(z)dz∫ θ2

θ1
FH(z)dz

.

Hence, doing a revenue comparison, we conclude that randomizing the low type buyer

over (θ1, θ2) is better than over (θ, θ2) if and only if∫ θ2
θH
FH(z)dz∫ θ2

θ
FH(z)dz

·
∫ θ2

θ

µL(z)fL(z)dz ≤
∫ θ2
θH
FH(z)dz∫ θ2

θ1
FH(z)dz

·
∫ θ2

θ1

µL(z)fL(z)dz,

equivalently, RLH(θ, θ2) ≤ RLH(θ1, θ2) for arbitrary θ ≤ θ2 which is exactly condition

(2). Finally, condition (3) is simple a first order optimality condition on θH .

It is interesting to note that in the optimal solution the low type buyers are

allocated the object over a larger interval (θ1 ≤ θH) but they are randomized. This

is done as a way to prevent the buyers from mimicking each other. Specifically, we

must have θ1 ≤ θH ; otherwise, the low type buyers would have an incentive to pretend
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being the high type since that would get them allocated the object more often and

at a lower price. Similarly, θH ≤ θ2 otherwise high type buyers would choose the low

type contract for a better allocation and a lower price.

It is worth noting that the sequential contract makes the low type worse-off and

the high type better-off with respect to the contract the seller would offer if he could

perfectly screen each type. For the low type, that contract would set a threshold equal

to θ̂L and would always allocate the object when her value is above the threshold.

However, the sequential contract allocates the object to the low type whenever her

valuation is above θ1 ≥ θ̂L with positive probability. So the low type is worse-off in

two dimensions, it is allocated the object less often and with less probability. On

the other hand, the high type buyer gets allocated the object more often and with

certainty since θH ≤ θ̂H .

3.6.2 The Exponential Example Continued

In Section 3.5.4 we studied the properties and structure of the optimal static contract

for exponential valuations. In particular, we applied our necessary and sufficient

condition to this family of distributions and obtained an intuitive characterization.

Proposition 3.3

Assume condition (3.9) does not hold, then the optimal allocation is

x?L(θ) =


0 if θ < θ1,

x if θ1 ≤ θ;

and x?H(θ) =


0 if θ < θH ,

1 if θH ≤ θ;

The thresholds are given by:

θ1 =
1

λL − λH
and θH =

1

λH
− αL
αH

e−1

λL − λH
,

with θ1 ≤ θH . The probability of receiving the object for the low type is:

x = exp
(
− λH

[ 1

λH
− αL
αH

e−1

λL − λH
− 1

λL − λH

])
. (3.11)
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This result follows from Theorem 3.3 and the characterization of the three free

parameters that follow. We note that in the exponential case we only have two

intervals for the low type’s allocation as we can show that θ2 =∞.

We now illustrate our findings with numerical results where we vary the difference

in the mean between the low and the high type. Specifically, we fix αL to be 0.7 and

λH to be 0.5, that is, the high type has mean 2. Since we are assuming λL > λH , we

consider λL = λH + δ with δ > 0. Figure 3.4 shows how the different thresholds vary

as δ increases or, equivalently, as the mean of the low type decreases to zero. As we

can see, there is a value of δ (δ =0.93) to the left of which the static contract is optimal

and to its right the sequential contract is optimal. This aligns with Proposition 3.2

because as δ increases, (λL − λH) increases, and therefore, we expect it to be larger

than 1/θ̂ (see Corollary 3.2 and Corollary 3.3). At a more intuitive level as δ increases

both distribution become more and more different from each other with one of them

having a larger average value than the other. Thus, there is gain in screening the

types.

Static optimal Dynamic optimal

θ̂ = 1
λL−λH

δ0.93

2
θ

0.2

θH

θL̂

θ

Figure 3.4: Optimal thresholds for static and sequential contracts when setting λL =
λH + δ, with αL = 0.7 and λH = 0.5.

In terms of thresholds, for the static contract we observe that θ̂ is decreasing

at the beginning and then it increases getting closer to 1/λH = 2. This happens
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because as we increase δ we are making 1/λL smaller; however, at some point this

value is too small and, therefore, the probability of allocating the object to a low type,

P (value low type > θ̂) = e−λLθ̂, is going to be so low that the seller will be better

off by choosing a threshold tailored for the high type, that is, close to 1/λH = 2.

For the sequential thresholds, the one for the low type is decreasing while the one

for the high type is increasing. This makes sense because in the sequential case the

seller can adjust the threshold for each type; hence, as δ increases the distributions

become more and more different and, therefore, is optimal to set thresholds closer

and closer to the threshold a seller would set if he knew the types in advance, that is,

1/λL and 1/λH . Also, note that from equation (3.11) we see that x is a decreasing

function of δ because as the mean of the low type goes to zero we are less and less

constrained to offer a high probability of allocation; however, in the limit x(δ) ≈ e−1,

hence even though the low type buyers will have values concentrated at zero we still

need to reduce their quantity so that high types do not take their low price contract.

We can also compare the different mechanism in terms of revenue. Note that with

the contracts from Proposition 3.3, the optimal revenue for the sequential contract

Πseq can be shown to be equal to:

Πseq = αL · x · θ1 · e−λLθ1 + αH · θH · e−λHθH .

Then, we can plot the different revenues as we vary δ. Figure 3.5 (left panel and thick

line in right panel) depicts the results. For values of δ above 0.93 the sequential con-

tract dominates the static. Further the sequential contract can achieve a significant

improvement over the static contract, getting as high as 16.5%. Note that when δ

grows large the improvement of the sequential over the static decreases because both

contracts set the thresholds to maximize what they can extract from the high type

buyer. Actually, with some abuse of notation, we have that

lim
δ→∞

Πseq(δ) = lim
δ→∞

Πstatic(δ) = αH
e−1

λH
,
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which equals the optimal revenue a seller could make if he was only selling to the high

type buyer. The right panel in Figure 3.5 shows the revenue improvement for different

instances as we vary αL. Consistent with Corollary 3.3, given αH and λH , there exists

λL large enough such that the sequential contract is strictly better than the static

one. The figure also shows that the larger αL the larger has to be the difference

between the types for the sequential and static contracts to differ. When αL is large

θ̂ is tailored for low types and so (3.9) holds for more values of λL. However, screening

occurs when the mean of the low type is sufficiently small (δ large) in which case,

due to the low values and high fraction of the low type, the revenue improvement can

achieve better percentage performance (e.g., 27% for αL = 0.9).

Revenue

θ̂ = 1
λL−λH

0.22

0.58

0.93 2.5δ

Sequential (Πseq)

Static (Πstatic)
%

0

16.5

27

3.17

7.29

δ5

αL = 0.3
αL = 0.5

αL = 0.7

αL = 0.9100× (Πseq−Πstatic)

Πstatic

Figure 3.5: Left: Optimal expected revenue for static and sequential. Right: Per-
centage improvement of the sequential over the static contract. In both figures we
set set λL = λH + δ with λH = 0.5. In the left figure we set αL = 0.7 while in the
right figure αL takes values in {0.3, 0.5, 0.7, 0.9}.

3.6.3 Menu Implementation

Next, we discuss how the optimal sequential contract can be implemented in practice.

By means of the taxation principle we can verify that the following menu of contracts

is an indirect implementation of our optimal mechanism:

• contract H: there is a single posted price of pH = θH ;
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• contract L: the buyer can choose between two items:

(a) buy at a price of pL = θ1 · xL and be allocated with probability xL.

(b) buy at a price of pL = θ2− (θ2− θ1) · xL and be allocated with probability

1.

The prices in the above menu of contracts are set using the values in Theorems

3.2 and 3.3. This implementation offers a posted price to the high type buyer, and

gives to the low type buyer two options. In option (a) the low type buyer can pay

a low price but it can potentially not acquire the item or equivalently, get a reduced

quantity; in (b), the low type buyer pays a high price and always gets the object.

An appealing feature of the implementation is that if we think of allocations as

quantities, then we can order the per unit prices. In contract L, the per unit prices

are θ1 and θ1 · xL + θ2 · (1 − xL) for (a) and (b), respectively. Hence, the per unit

price in (a) is less than or equal to the one in (b). That is, the low type in (a)

receives less of the good but at a discounted price compare to the low type in (b).

For contract H, the per unit price is θH and, since θ1 is less than or equal to θH ,

the low type in (a) receives less of the good at a discounted price compared to the

high type buyer. Comparing the per unit prices of the low type in (b) and the high

type is less straightforward. Even-though θH is between θ1 and θ2 we are not able

to compare it to θ1 · xL + θ2 · (1 − xL). However, intuitively, even if the high type

puts a large mass in values larger than θ2 we expect the per unit price of the high

type to be below the one of the low type in (b) because, otherwise, the high type

buyer would have an incentive to take contract L. Equivalently, the high type or

the low type in (b) have to pay a premium for the additional quantity. We can also

refer back to the exponential case of Section 3.5. From Proposition 3.3, the premium

the high type has to pay is given by θH − θ1 = log(1/xL)/λH and, therefore, the

larger the quantity the lower is the premium. Finally, note that this implementation

132



accommodates the case in which the static contract is optimal. In that case, we have

xL = 1 and θ1 = θH = θ2 thus both contracts are the same.

3.7 Multiple Types

Until now, we have studied the optimality of the static contract and the optimal

sequential mechanism for two types of interim buyers. In this section, we consider an

arbitrary number of interim types {1, . . . , K} and investigate some properties of the

solution to (P). In particular, we provide a generalized version of condition (APR).

Then, we provide numerical evidence and highlight the challenges associated with the

characterization of the optimal sequential mechanism when K > 2.

3.7.1 A Necessary and Sufficient Condition

Our generalized necessary and sufficient condition relies on a characterization of the

changes in the objective around the static solution when considering allocation devi-

ations. With this purpose, consider the following set:

A ,
{

(λij)i,j∈{1,··· ,K}2 ≥ 0 :
∑
j 6=k

λjk · F j(θ̂) = αk · µk(θ̂) · fk(θ̂) + F k(θ̂) ·
∑
j 6=k

λkj,

αk ≥
∑
j 6=k

λkj −
∑
j 6=k

λjk, ∀k ∈ {1, . . . , K}
}
.

The set A contains the multipliers associated with the IC constraints that encode the

change in the objective as we deviate from the static allocation. Roughly speaking,

when the static contract is optimal, allocation perturbations in the contract of each

type should equal the dualized costs associated to such perturbations in the IC con-

straints. In other words, the derivative of the Lagrangian with respect to allocations

around the static solution equals zero. This is captured by the set of equalities in the

definition of A. In addition, the set of inequalities ensures that the optimal ex-post

utilities of the lowest valuation buyers are zero. Note that multipliers being in the set
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A are necessary for optimality. The next result provides a necessary and sufficient

condition.

Theorem 3.4 (Necessary and Sufficient Conditions for Finitely Many Types)

The set A is non-empty. Furthermore, if there exists a feasible solution to (P) which

strictly satisfies all the IC constraints then the static contract is optimal if and only

if there exist (λij)i,j∈{1,··· ,K}2 ∈ A such that

max
θ≤θ̂

{
αk·Rkk(θ, θ̂)−

∑
j 6=k

λjk·
∫ θ̂
θ
F j(z)dz∫ θ̂

θ
F k(z)dz

}
≤ min

θ̂≤θ

{
αk·Rkk(θ̂, θ)−

∑
j 6=k

λjk·
∫ θ
θ̂
F j(z)dz∫ θ

θ̂
F k(z)dz

}
,

(APRM)

for all k ∈ {1, . . . , K}.

The strict feasibility to (P) corresponds to a standard Slater condition. Condition

(APRM) is obtained by studying the Lagrangian when the static contract is optimal

and disentangling the key conditions it must satisfy. To obtain a better understanding

of this condition it is helpful to see how it generalizes the necessary and sufficient

condition provided in Theorem 3.1 for two types. The general condition of Theorem

3.4 in the binary case becomes

max
θ≤θ̂

{
α1 ·R11(θ, θ̂)− λ21 ·

∫ θ̂
θ
F 2(z)dz∫ θ̂

θ
F 1(z)dz

}
≤ min

θ̂≤θ

{
α1 ·R11(θ̂, θ)− λ21 ·

∫ θ
θ̂
F 2(z)dz∫ θ

θ̂
F 1(z)dz

}
,

(3.12)

for the low type, and

max
θ≤θ̂

{
α2 ·R22(θ, θ̂)− λ12 ·

∫ θ̂
θ
F 1(z)dz∫ θ̂

θ
F 2(z)dz

}
≤ min

θ̂≤θ

{
α2 ·R22(θ̂, θ)− λ12 ·

∫ θ
θ̂
F 1(z)dz∫ θ

θ̂
F 2(z)dz

}
,

(3.13)

for the high type, where λ12 and λ21 belong to A. We next argue that condition

(APR) holds if and only if there exist λ12, λ21 ∈ A such that conditions (3.12) and

(3.13) hold. Suppose (APR) holds. Since we expect the low to high IC constraint not
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to be binding we take λ12 equal to zero. Because λ must belong to A this necessarily

implies that λ21 is equal to α1r
12(θ̂). For this choice of multipliers inequality (3.13)

follows directly from rkk being increasing. At the same time, the choice of multipliers

together with (APR) imply that both the max and the min in (3.12) are equal to

zero. To see this consider the maximum in (3.12) and take θ = θ̂, since λ21 equal to

α1r
12(θ̂) the expression inside the brackets is zero. Hence, the maximum in (3.12) is

bounded below by zero. It is also bounded above by zero,

α1 ·R11(θ, θ̂)− λ21 ·
∫ θ̂
θ
F 2(z)dz∫ θ̂

θ
F 1(z)dz

≤ 0⇔ R12(θ, θ̂) ≤ r12(θ̂), ∀θ ≤ θ̂.

When (APR) holds the right hand side inequality above always holds. A similar ar-

gument applies to the min. Therefore, the condition provided in Theorem 3.1 implies

APRM for the binary case. The converse implication follows from a contradiction

argument which for the sake of brevity we omit.

The two type case is amenable to this simplification because one can readily

solve for the multipliers: λ12 equal to zero is a natural choice (the low to high IC

constraints can be relaxed c.f Section 3.6), and λ21 equal to α1r
12(θ̂) then follows

from the definition of A. Unfortunately, when K > 2 the space of deviations is richer

and so is the possible selection of multipliers; in turn this precludes such a clear

characterization as in the two type case.

We stress that by judiciously choosing the multipliers it is straightforward to verify

that as in the two type case, condition (R) of [42] implies our condition (APRM) also

in the case of multiple types, and thus the optimality of the static contract.

By contrast, a complete characterization of the sequential contract seems substan-

tially more complex with finitely many types. Next, in the context of exponentially

distributed ex-post types, we briefly describe partial results and highlight the chal-

lenges associated with multiple types that already appear in the numerical analysis.
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3.7.2 The Exponential Example Continued

Despite the challenges that we discuss below, we are able to provide the following

characterization

Proposition 3.4 For exponential valuations the optimal allocations have at most

one randomized interval.

Proposition 3.4 establishes that for exponentially distributed valuation the opti-

mal contract is simple in the sense that each interim type’s allocation is randomized

at most in one interval. The proof consists on noticing that the monotonicity con-

straints form a cone, and then using duality and complementary slackness. It is worth

mentioning that the proof method applies more generally but the structure of the con-

tract in general depends on the values of the dual variables values corresponding to

the IC constraints. In the exponential case, the argument can be simplified to show

that the simple structure in the result arises independent of these variables’ values.

The characterization in Proposition 3.4 only establishes the structure of the opti-

mal allocations but it does not provide information on the number of contracts that

the optimal solutions will ultimately feature. For example, if K = 4 Proposition 3.4

does not say whether the optimal solution will pool the interim types creating either

one, two, three or four different contracts. In general, the full range of contracts from

static to fully sequential (K different contracts ) is possible.

To further explore the structure of optimal contracts we provide numerical results.

In Figure 3.6 we show the optimal allocations when K = 4 and all interim types

have exponentially distributed valuations. A first observation is that for different

proportions αk of interim types the optimal contract can feature different levels of

separation. Panel (a) in the figure corresponds to an optimal static contract (no

separation), and panel (d) in the figure corresponds to an optimal sequential contract

that features a different contract for each interim type (full separation). As a second
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Figure 3.6: Optimal allocations for K = 4, types have exponential distribution with
means (2.2, 5.0, 12, 50) respectively (for numerical simplicity, we use truncated ver-
sions of these distributions in the interval [0,60]). In each panel the vertical axis corre-
sponds to buyers’ valuations and the horizontal axis corresponds to the interim type.
Each bar represents the allocation for each type, lighter grey indicates lower proba-
bility of allocation while darker grey indicates higher probability of allocation. White
represents no allocation and black full allocation. From panel (a) to (d) the fractions,
αk, for each type are: (0.7, 0.2, 0.05, 0.05), (0.4, 0.1, 0.4, 0.1), (0.3, 0.2, 0.4, 0.1) and
(0.25, 0.25, 0.1, 0.4), respectively.

observation note that out of the four instances depicted in Figure 3.6 only one, (d),

has four contracts in the optimal solution. Finding the minimal number of contracts

that give a good approximation to the optimal multiple type sequential contract is a

question outside the scope of this chapter but that may be of interest to study in the

future.

Observe that across the instances in Figure 3.6 each optimal contract has at most

one interval of valuation for which randomization occurs (c.f Proposition 3.4). This

simple structure of the optimal contract appears however not to be robust to other

specifications of the value distributions. When we consider the case of normally dis-

tributed valuations (using truncated normal random variables), the optimal contract

might exhibit several different intervals of randomization for a given type. In general,

richer contract features may arise when we combine exponential, normal, uniform or

other distributions. As a consequence, generally speaking, it is challenging to analyt-
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ically characterize the optimal solution. The challenge here is that classic relaxation

approaches used in the mechanism design literature do not apply in our setting.

For example, relaxing all the upward incentive constraints and leaving only the local

downward incentive constraints does not work because in general global downward in-

centive constraints bind. Moreover, binding constraints are highly sensitive to model

primitives. Improving our understanding of this setting may be an interesting avenue

for future research.

3.8 Conclusion

We considered the scope of sequential screening in the presence of ex-post participa-

tion constraints. The ex-post participation constraints limit the ability of the seller

to extract surplus. As the buyer has to be willing to participate in the contractual ar-

rangement following every realization of his valuation, the surplus has to be extracted

ex-post rather than at the interim level.

Despite these restrictions sequential screening generally allows the seller to in-

crease his revenue beyond the statically optimal revenue. The gains from sequential

screening become more pronounced to the extent that the interim types differ in their

willingness to pay. A natural implementation of the optimal mechanism simply offers

the buyer the choice among different menus in the first stage. The choice of menu in

the first period merely restricts the possible choices in the second period. In partic-

ular, it is not necessary to ask the buyer for any transfer before the final transaction

occurs. Moreover, the buyer only has to make a transfer if she receives the object.

In contrast to the static solution where the optimal policy is always to sell the

largest possible quantity, the sequential screening policy offers intermediate quanti-

ties. This departure from the bang-bang policy in a linear utility setting arises due to

the presence of the ex-post participation constraint in conjunction with the incentive
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compatibility constraints.

There are several natural directions to extend the present work. Our stronger

results were for the case of binary interim types while allowing for a continuum of

valuations for each type. We also presented an extension of Theorem 3.1 to multiple

types as well as a characterization and numerical results for exponential valuations.

We would like to further explore the characterization of the optimal sequential con-

tract to multiple types and general valuation distributions. An interesting question

here concerns the number of randomization intervals per type and whether the num-

ber of intermediate allocations increases with the number of interim types. Also, is

there a fixed number of intermediate allocations that yield a good approximation to

the optimal solution for an arbitrary number of interim types? Similarly, is there a

fixed number of contracts that yield a good approximation to the optimal solution

for an arbitrary number of interim types?

We might also be interested in analyzing how the number of competing buyers

may affect the nature of the optimal mechanism. This has important practical con-

sequences particularly in industries that use market mechanisms like auctions, such

as display advertising alluded at the beginning of the chapter. We note that this ex-

tension is not direct, because with multiple buyers we lose the threshold structure of

the optimal static allocation when the mixture distribution is not regular and ironing

may be required. However, we conjecture that in this case an approximately optimal

market design would consist of running a series of “waterfall auctions” with different

priorities across participants.
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Appendix A

Surge Pricing and Its Spatial Supply Response

A.1 Proofs for Section 1.4

Proof of Lemma 1.1. Consider any z, y ∈ C. Then, for essentially any w ∈ B,

we have

VB(y) ≥ U(w)− ‖w − y‖ = U(w)− ‖z − w‖+ ‖z − w‖ − ‖w − y‖

≥ U(w)− ‖z − w‖ − ‖z − y‖,

where the second inequality follows from the triangular inequality. This implies, by

the definition of the essential supremum, that

VB(y) + ‖z − y‖ ≥ VB(z).

Next, we would like to subtract VB(y) from both sides of the previous inequality. This

operation can be done only if VB(y) is finite for any y in C, but this is guaranteed

by Lemma A.1 (stated and proved right after this proof). Hence, we obtain VB(z)−

VB(y) ≤ ‖z − y‖. Since we can interchange the roles of z and y, we have proved that

|VB(z)− VB(y)| ≤ ‖z − y‖, for all z, y ∈ C.

�

Lemma A.1 Consider a measurable set B ⊆ C such that Γ(B) > 0, let p be a

measurable mapping p : B → R+, and let τ ∈ F(µ). Then, VB(x| p, τ) ∈
[
−H,α · V

]
for all x ∈ C, where H = maxx,y∈C ‖x − y‖. Furthermore, V (x| p, τ) ≥ 0 for all

x ∈ supp(Γ).

Proof of Lemma A.1. Fix x ∈ C, we show that VB(x| p, τ) ∈
[
−H,α · V

]
.

For the lower bound, note that for any y ∈ B, we have U(y) − ‖y − x‖ ≥ −H.
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Since Γ(B) > 0, the definition of essential supremum implies that VB(x| p, τ) ≥ −H.

Similarly, for the upper bound, note that for any y ∈ B, α · V ≥ U(y)− ‖y − x‖ and

hence the definition of essential supremum yields VB(x| p, τ) ≤ α · V .

Finally, we show that V (x| p, τ) ≥ 0 for all x ∈ supp(Γ). Since x ∈ supp(Γ) we

have that Γ(B(x, δ)) > 0 for all δ > 0, where B(x, δ) is an open ball of radius δ. For

any y ∈ B(x, δ) we have U(y)−‖y−x‖ > −δ, and since Γ(B(x, δ)) > 0 we deduce that

VB(x,δ)(x| p, τ) > −δ for all δ > 0. In turn, we have V (x| p, τ) ≥ VB(x,δ)(x| p, τ) > −δ

for all δ > 0 and, therefore, V (x| p, τ) ≥ 0.

�

Proof of Proposition 1.1. We show how to reformulate the platform’s objec-

tive as in the statement of the proposition. The key step is to establish that

U (x, p(x), sτ (x)) = V (x| p, τ) τ2 − a.e. x ∈ C, (A.1)

namely, whenever there is post-relocation supply at a given location in equilibrium,

the drivers originating at such a location can achieve maximum utility by staying

at that location. We state and prove this result in Lemma A.2 (stated and proved

following this proof). Note that this result holds τ2 − a.e so if we want to inter-

change U (x, p(x), sτ (x)) with V (x| p, τ) we have to do it under the measure τ2. We

next analyze the main term in the platform’s objective function which we denote by

Rev(p, τ)

Rev(p, τ)
(a)
=

∫
Cλ
p(y) ·min

{
sτ (y), F y(p(y))λ(y)

}
1{sτ (y)>0}dΓ(y)

=
1

α

∫
C
α p(y) ·min

{
1,
F y(p(y))λ(y)

sτ (y)

}
1{sτ (y)>0}s

τ (y)dΓ(y)

=
1

α

∫
C
U(y, p(y), sτ (y))1{sτ (y)>0}s

τ (y)dΓ(y)

(b)
=

1

α

∫
C
U(y, p(y), sτ (y))1{sτ (y)>0}dτ2(y)

(c)
=

1

α

∫
C
V (y)1{sτ (y)>0}dτ2(y),
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where (a) holds because whenever λ(y) = 0 or sτ (y) = 0, the minimum term in the

integral becomes zero; (b) follows from the fact that U(y, p(y), sτ (y))1{sτ (y)>0} is a

measurable function with values in [0, α ·V ] and from recalling that sτ = dτ2/dΓ; and

(c) is a consequence of Eq. (A.1) since we are integrating over the measure τ2. In

turn, focusing on the platform’s objective function, this yields

(1− α) ·Rev(p, τ) = γ

∫
Cλ
V (y)1{sτ (y)>0}dτ2(y)

(a)
= γ

∫
Cλ
V (y)1{sτ (y)>0}s

τ (y)dΓ(y)

= γ

∫
Cλ
V (y)sτ (y)dΓ(y),

where (a) holds because V (y)1{sτ (y)>0} is measurable with values in [0, α · V ] and we

recall again that sτ = dτ2/dΓ. This completes the proof.

�

Lemma A.2 (Equilibrium Utilities) For any price mapping p and corresponding

equilibrium τ , let B ⊆ C such that Γ(B) > 0, then

U (y, p(y), sτ (y)) = VB(y| p, τ) = V (y| p, τ) τ2 − a.e. y ∈ B.

Furthermore,

U (y, p(y), sτ (y)) ≤ VB(y| p, τ) Γ− a.e. y ∈ B.

Proof of Lemma A.2. We prove that

U (y, p(y), sτ (y)) = VB(y| p, τ) τ2 − a.e. y ∈ B.

The proof for V (y| p, τ) instead of VB(y| p, τ) follows the same steps and is, thus,

omitted. Let A ⊆ B be a set defined by

A , {y ∈ B : U(y) = VB(y)}. (A.2)

We want to prove τ2(Ac) = 0, where the complement is taken with respect to B.

Consider the sets

A− , {y ∈ B : U(y) < VB(y)}, A+ , {y ∈ B : U(y) > VB(y)}.
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We will establish that τ2(A−) = 0 and τ2(A+) = 0. We begin with A− and note that

τ2(A−) = τ(C × A−)

(a)
= τ({(x, y) ∈ C × A− : U(y)− ‖y − x‖ = V (x))

(b)

≤ τ({(x, y) ∈ C × A− : U(y) ≥ V (y))

(c)

≤ τ({(x, y) ∈ C × A− : U(y) ≥ VB(y))

(d)

≤ τ({(x, y) ∈ C × B : VB(y) > U(y) ≥ VB(y))

= 0,

where (a) follows from the equilibrium definition, and (b) from the fact that V (x) +

‖x−y‖ ≥ V (y) (see Lemma 1.1). In (c) we have used V (y) ≥ VB(y), while (d) follows

from y ∈ A− and A− ⊆ B.

To show that τ2(A+) = 0, it suffices to show that show Γ(A+) = 0 (this will also

show the last statement of the lemma). For any n ∈ N define the set A+
n , {y ∈

B : U(y) ≥ VB(y) + 1
n
}, and note that A+ =

⋃
n∈NA

+
n . It is enough to show that

Γ(A+
n ) = 0 for all n ∈ N. We proceed by contradiction. Suppose there exists n ∈ N

such that Γ(A+
n ) > 0. Let ε > 0 be such that ε < 1

2n
, and consider a finite partition

{Iεi }K(ε)
i=1 of C, where for any x, y ∈ Iεi we have ‖x− y‖ ≤ ε. Observe that

0 < Γ(A+
n ) = Γ(A+

n ∩
K(ε)⋃
i=1

Iεi ) =

K(ε)∑
i=1

Γ(A+
n ∩ Iεi ),

therefore, there exists i ∈ {1, . . . , K(ε)} such that Γ(A+
n ∩ Iεi ) > 0. Take x ∈ Iεi , then

for any y ∈ A+
n ∩ Iεi

U(y) ≥ VB(y) +
1

n
≥ VB(x)−‖y− x‖+

1

n
> VB(x)−‖y− x‖+ 2ε ≥ VB(x) + ‖y− x‖,

where the second inequality comes from the Lipschitz property (see Lemma 1.1). The

last two inequalities hold because of our choice of ε and x, y ∈ Iεi . We conclude that

A+
n ∩ Iεi ⊆ {y ∈ B : Π(x, y) > VB(x)}.
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This would therefore imply that Γ({y ∈ B : Π(x, y) > VB(x)}) > 0. However, this

contradicts the definition of VB(x). Hence we must have Γ(A+
n ) = 0 for all n ∈ N,

and in turn Γ(A+) = 0.

�

Proof of Lemma 1.2. For ease of notation let us use xa to denote Xa(z| p, τ).

We also denote A(z|p, τ) by A(z).

Closure: Let the sequence {xn}n∈N ⊂ A(z) be such that xn → x. We show that

x ∈ A(z), that is,

lim
δ↓0

VB(z,δ)(x) = V (x). (A.3)

Since xn ∈ A(z), z ∈ IR(xn) for all n ∈ N, i.e.,

lim
δ↓0

VB(z,δ)(x
n) = V (xn), ∀n ∈ N. (A.4)

Note that Eq. (A.4) implies that Γ(B(z, δ)) > 0 for all δ > 0; otherwise, VB(z,δ)(·)

would be −∞ and so the limit would not be well defined. We next establish Eq.

(A.3) from first principles. Fix ε > 0. Since xn converges to x we can find n0 ∈ N

such that for all n ≥ n0 we have ‖xn− x‖ ≤ ε
3
. In particular, from Eq. (A.4) applied

to n0 we deduce that

∃δ0 > 0, such that ∀δ ≤ δ0,
ε

3
+ VB(z,δ)(x

n0) ≥ V (xn0). (A.5)

Using the Lipchitz property of VB(z,δ)(·) and V (·) (see Lemma 1.1), and that ‖xn0 −

x‖ ≤ ε
3

yields

VB(z,δ)(x
n0)− VB(z,δ)(x) ≤ ‖xn0 − x‖ ≤ ε

3
and V (xn0)− V (x) ≥ −‖xn0 − x‖ ≥ − ε

3
.

In turn, using Eq. (A.5), we have that for all δ ≤ δ0,

V (x)− ε ≤ V (xn0)− 2ε

3
≤ VB(z,δ)(x) ≤ V (x).

Since ε was arbitrary, we deduce that Eq. (A.3) holds, and therefore, x ∈ A(z).
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Interval: We show that Aa(z) = [z, xa]. The definition of xa immediately implies

that Aa(z) ⊆ [z, xa], so we only need to prove the reverse inclusion. First, since we

can always construct a sequence {xn}n∈N ⊂ A(z), with xn → xa, the closure property

implies that xa ∈ A(z). Second, we make use of Lemma A.3 (stated and proved right

after this proof). Consider x ∈ [z, xa] then Lemma A.3 implies that z ∈ IR(x| p, τ)

or, equivalently, x ∈ Aa(z).

Union: Since for every a ∈ Rz we have Aa(z) ⊂ A(z), the same is true for the

union. In the opposite direction, if we take x ∈ A(z) then there exists a ∈ Rz such

that x ∈ [z, xθ] = Aa(z).

�

Lemma A.3 For any price mapping p and corresponding equilibrium τ , if y ∈

IR(x| p, τ) then y ∈ IR(z| p, τ) for all z ∈ [x ∧ y, x ∨ y].

Proof of Lemma A.3. Let y ∈ IR(x| p, τ). If x = y there is nothing to prove.

Without loss of generality, suppose x < y. Since y ∈ IR(x| p, τ) we have that

limδ↓0 VB(y,δ)(x) = V (x). Observe that this implies that Γ(B(y, δ)) > 0 for all δ > 0;

if this is not true, VB(y,δ)(x) = −∞ and the limit would not be well defined. Next,

fix z ∈ [x, y], we want to prove that y ∈ IR(z| p, τ), i.e., limδ↓0 VB(y,δ)(z) = V (z) or

equivalently we need to show that

∀ε > 0, ∃δ0 > 0 such that ∀δ ≤ δ0, VB(y,δ)(z) + ε ≥ V (z). (A.6)

Consider ε > 0 and δ1 > 0 such that x /∈ B(y, δ1) (x < y), and note that since

y ∈ IR(x| p, τ) we can find δ0 > 0 such that

V (x) ≤ VB(y,δ)(x) +
ε

3
, ∀δ ≤ δ0.

Consider δ ≤ min{δ1, δ0,
ε
6
}, then the previous inequality implies

U(w)− ‖w − x‖ ≤ VB(y,δ)(x) +
ε

3
, Γ− a.e. w in C. (A.7)

Note that since z ∈ [x, y], for any y′ ∈ B(y, δ) we have

‖y′ − x‖ − ‖y′ − z‖ ≥ −2δ + ‖z − x‖,
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and, therefore,

min
y′∈B(y,δ)

{‖y′ − x‖ − ‖y′ − z‖} ≥ −2δ + ‖z − x‖.

This and Lemma A.4 (which we state and prove after the present proof) deliver

VB(y,δ)(z) ≥ VB(y,δ)(x)− ε

3
− 2δ + ‖z − x‖.

This inequality together with Eq. (A.7) yield:

VB(y,δ)(z) +
ε

3
+ 2δ − ‖z − x‖ ≥ U(w)− ‖w − x‖ − ε

3
, Γ− a.e. w in C.

Then, Γ− a.e. w in C we have

VB(y,δ)(z) +
2

3
ε+ 2δ ≥ U(w)− ‖w − x‖+ ‖z − x‖

= U(w)− ‖w − z‖+ ‖w − z‖ − ‖w − x‖+ ‖z − x‖

≥ U(w)− ‖w − z‖ − ‖z − x‖+ ‖z − x‖

= U(w)− ‖w − z‖,

implying that VB(y,δ)(z) + 2
3
ε+ 2δ ≥ V (z). Since 2δ ≤ ε

3
we conclude that VB(y,δ)(z) +

ε ≥ V (z).

�

Lemma A.4 Let ε, δ > 0 and x, y, z ∈ C. If Γ(B(y, δ)) > 0 then

VB(y,δ)(z) ≥ VB(y,δ)(x)− ε+ min
y′∈B(y,δ)

{‖y′ − x‖ − ‖y′ − z‖},

Proof of Lemma A.4. Define the following set

R ,
{
y′ ∈ B(y, δ) : Π(x, y′) ≥ VB(y,δ)(x)− ε

}
.

Note that Γ(R) > 0. If not, we could find a lower essential upper bound in B(y, δ).
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Let y′ ∈ R

Π(z, y′) = U(y′)− ‖y′ − z‖ − ‖y′ − x‖+ ‖y′ − x‖

= Π(x, y′)− ‖y′ − z‖+ ‖y′ − x‖

≥ VB(y,δ)(x)− ε− ‖y′ − z‖+ ‖y′ − x‖

≥ VB(y,δ)(x)− ε+ min
y′∈B(y,δ)

{‖y′ − x‖ − ‖y′ − z‖}.

Since Γ(R) > 0 we must have that

VB(y,δ)(z) ≥ Π(z, y′) Γ− a.e y′ ∈ R.

Putting the last two inequalities together yields the desired result.

�

Proof of Lemma 1.3. Consider x ∈ A(z), that is, z ∈ IR(x| p, τ). We next

establish that V (x) = V (z)− ‖z − x‖. First, by the Lipschitz property of V we have

V (z) ≤ V (x) + ‖z− x‖. So we only need to prove the opposite inequality. Fix ε > 0.

Since z ∈ IR(x) we can find δ1(ε) > 0 such that

ε

2
+ VB(z,δ)(x) ≥ V (x), ∀δ ≤ δ1(ε), (A.8)

and VB(z,δ)(·) takes finite values. Define the set

Rx,δ,ε , {y′ ∈ B(z, δ) : U(y′)− ‖y′ − x‖ > V (x)− ε} .

Suppose there exists δ ≤ δ1(ε) such that Γ(Rx,δ,ε) = 0. This would imply that

V (x) − ε ≥ VB(z,δ)(x), which together with Eq. (A.8) yields a contradiction. Hence

for all δ ≤ δ1(ε), Γ(Rx,δ,ε) > 0.

Fix δ ≤ δ1(ε). Next we verify that VRx,δ,ε(z) ≥ V (x)− ε + ‖z − x‖ − 2δ. For any

y′ ∈ Rx,δ,ε

U(y′)− ‖y′ − z‖ = U(y′)− ‖y′ − x‖+ ‖y′ − x‖ − ‖y′ − z‖

≥ V (x)− ε+ ‖y′ − x‖ − ‖y′ − z‖

≥ V (x)− ε+ ‖z − x‖ − 2δ,
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were the last inequality follows from the triangular inequality. From the definition

of the essential supremum we deduce that VRx,δ,ε(z) ≥ V (x) − ε + ‖z − x‖ − 2δ.

Because V (z) ≥ VRx,δ,ε(z) we must have V (z) ≥ V (x) + ‖z−x‖− ε− 2δ. We selected

δ ≤ δ1(ε), and ε arbitrarily. So we can let δ ↓ 0 and then ε ↓ 0 to obtain that

V (z) ≥ V (x) + ‖z − x‖. This concludes the proof.

�

Proof of Proposition 1.2. Consider the segment [x, y] and define the set

L , {y′ ∈ C : ∃t ≥ 0 such that y′ = x+ t · (y − x)},

that is L is the set of point along the ray that starts at x and contains the segment

[x, y]. Since y ∈ L and y ∈ IR(x| p, τ) the following quantity is well defined

z , sup{y′ ∈ L : y′ ∈ IR(x| p, τ)}.

We prove that z is a sink location such that x, y ∈ A(z| p, τ). First, we show that

z ∈ IR(x|p, τ). Consider a sequence {zn} ⊂ L such that zn ∈ IR(x|p, τ) and zn → z.

Fix ε > 0, δ̂ > 0 and choose n such that ‖zn − z‖ < δ̂/2. Since zn ∈ IR(x|p, τ) then

there exists δ0(n, ε) > 0 such that for all δ ≤ δ0(n, ε) we have VB(zn,δ)(x) ≥ V (x)−ε. In

particular, for any δ ≤ min{δ0(n, ε), δ̂/2} we have B(zn, δ) ⊆ B(z, δ̂) and, therefore,

VB(z,δ̂)(x) ≥ VB(zn,δ)(x) ≥ V (x)− ε.

Since the choice of ε and δ̂ was arbitrary we conclude that limδ̂↓0 VB(z,δ̂)(x) = V (x).

That is, z ∈ IR(x| p, τ) which also shows that A(z) 6= ∅.

Next, to show that z is a sink location we argue that we cannot have z ∈ A(z′)

for some z′ 6= z. If we did then z′ ∈ IR(z| p, τ) for some z′ 6= z. First suppose that

z′ ∈ L. If z′ > z this would contradict the definition of z as being maximal. If z′ < z

then by Lemma 1.3 the function V (·) would be decreasing in (z′, z), and by the same

lemma it would be increasing in (x, z). This is a contradiction.
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Second, suppose that z′ /∈ L. That is the vectors z′−x and z−x are not collinear.

Fix ε > 0, since z′ ∈ IR(z| p, τ) we can find δ(ε) > 0 such that VB(z′,δ)(z) ≥ V (z)− ε

for all δ ≤ δ(ε). Moreover, from z′ 6= z and the no collinearity property we have that

‖x− z′‖+ γ ≤ ‖x− z‖+ ‖z− z′‖ for some γ > 0 sufficiently small. Hence, if we take

δ ≤ min{δ(ε), γ/3} we deduce that

VB(z′,δ)(x) ≥ U(w)− ‖w − x‖

= U(w)− ‖w − z‖+ ‖w − z‖ − ‖w − x‖
(a)

≥ U(w)− ‖w − z‖+ ‖w − z‖ − ‖w − z′‖ − ‖z′ − x‖
(b)

≥ U(w)− ‖w − z‖+ ‖w − z‖ − γ

3
− ‖x− z‖ − ‖z − z′‖+ γ

(c)

≥ U(w)− ‖w − z‖ − ‖x− z‖+
γ

3
Γ− a.e w ∈ B(z′, δ),

where in (a) we use the triangular inequality, in (b) we use that ‖w − z′‖ ≤ γ/3 and

that ‖x − z′‖ + γ ≤ ‖x − z‖ + ‖z − z′‖, and in (c) we use that ‖w − z′‖ ≤ γ/3 and

the triangular inequality. Therefore, VB(z′,δ)(x) + ‖x − z‖ − γ
3
≥ VB(z′,δ)(z). In turn,

this yields VB(z′,δ)(x) + ‖x− z‖− γ
3
≥ V (z)− ε. Since V (x) ≥ VB(z′,δ)(x) and because

x ∈ A(z) this implies that V (x) = V (z) − ‖x − z‖ (see Lemma 1.3) we deduce that

V (x) + ‖x − z‖ − γ
3
≥ V (x) + ‖x − z‖ − ε. Taking ε > 0 small enough yields a

contradiction. We conclude that z is a sink location. Moreover, because x ∈ A(z)

(z ∈ IR(x| p, τ)) and x < y ≤ z (recall these three points are collinear) Lemma A.3

guarantees that y ∈ A(z).

�

Proof of Proposition 1.3. With some abuse of notation let

Ao(z| p, τ) =
⋃
a∈Rz

(z,Xa(z| p, τ).

This result is based on the following properties:

a) For all (x, y) ∈ A(z| p, τ)c × A(z| p, τ), y /∈ IR(x| p, τ).
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b) For all (x, y) ∈ (Ao(z|p, τ)∪{z})×
(
A(z|p, τ)c∪L(z|p, τ)\{z}

)
, y /∈ IR(x|p, τ).

Before we provide a formal proof of these properties, we use them to show the state-

ment of the proposition. We will also make use of Lemma A.5 which we prove and

state after the present proof.

We begin with the first part of (i), that is, we show that τ(A(z|p, τ)c×A(z|p, τ)) =

0. If this is not true then by Lemma A.5 we can find (x, y) ∈ A(z|p, τ)c×A(z|p, τ) such

that y ∈ IR(x| p, τ). We obtain a contradiction with property a) above. Therefore

it must be the case that τ(A(z| p, τ)c × A(z| p, τ)) = 0.

Next, we show the second part of (i), namely, τ((Ao(z|p, τ)∪{z})×
(
A(z|p, τ)c∪

L(z| p, τ) \ {z}
)

) = 0. If this is not true then by Lemma A.5 we can find (x, y) ∈

(Ao(z| p, τ)∪ {z})×
(
A(z| p, τ)c ∪L(z| p, τ) \ {z}

)
such that y ∈ IR(x| p, τ) but this

contradicts property b) above. Therefore it must be the case that τ((Ao(z| p, τ) ∪

{z})×
(
A(z| p, τ)c ∪ L(z| p, τ) \ {z}

)
) = 0.

Now we provide a proof for (ii). Let R1, R2 ⊂ Rz with R1 ∩R2 = ∅ we show that

τ
( ⋃
a∈R1

(z,Xa(z| p, τ)]×
⋃
a∈R2

(z,Xa(z| p, τ)]
)

= 0.

Suppose by contradiction that this is not true then by Lemma A.5 we can find (x, y) ∈⋃
a∈R1

(z,Xa(z| p, τ)] ×⋃a∈R2
(z,Xa(z| p, τ)] such that y ∈ IR(x| p, τ). This implies

that x ∈ A(y| p, τ). Moreover, since z is a sink location we have x ∈ A(z| p, τ) and

y ∈ A(z| p, τ). We use Lemma 1.3 to infer that

V (x) = V (y)− ‖y − x‖, V (x) = V (z)− ‖z − x‖, and V (y) = V (z)− ‖z − y‖.

In turn, we can use the first to equalities to obtain V (y) = V (z) + ‖y− x‖−‖z− x‖.

Plugging this into the last equality yields ‖z−x‖ = ‖y−x‖+‖z−y‖; however, because

R1 ∩ R2 = ∅ we have that x ∈ (z,Xa1(z| p, τ)] and y ∈ (z,Xa2(z| p, τ)] with a1 6= a2.

In other words, x and y belong to different rays around z. In turn, the latter equality

cannot hold and we must have that τ
(⋃

a∈R1
(z,Xa(z|p, τ)]×⋃a∈R2

(z,Xa(z|p, τ)]
)

=

0.
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Next we verify properties a) and b). We start with a). We argue by contradiction.

Suppose there exists x ∈ A(z| p, τ)c and y ∈ A(z| p, τ) such that y ∈ IR(x| p, τ).

Let a index the ray that contains the vector (x − z). Recall that by Lemma 1.2

we have that Aa(z| p, τ) = [z,Xa(z| p, τ)]. Since x ∈ A(z| p, τ)c we must have that

x /∈ [z,Xa(z| p, τ)]. In particular ‖x − z‖ > |Xa(z| p, τ) − z|. Hence if we show that

z ∈ IR(x| p, τ) we would contradict the maximality of Xa(z| p, τ). Fix ε > 0, then

from z ∈ IR(y| p, τ) we can always find δ0 > 0 such that for all δ ≤ δ0

ε+ VB(z,δ)(y) ≥ V (y). (A.9)

By the Lipschitz property VB(z,δ)(x) + ‖y − x‖ ≥ VB(z,δ)(y). Hence, from Eq. (A.9)

we can deduce that VB(z,δ)(x) + ‖y − x‖ ≥ V (y) − ε. Also, because y ∈ IR(x| p, τ)

or, equivalently, x ∈ A(y| p, τ) Lemma 1.3 yields V (x) = V (y) − ‖y − x‖. Hence,

VB(z,δ)(x) ≥ V (x)− ε, that is, z ∈ IR(x| p, τ).

Now we show b). Let x ∈ (Ao(z|p, τ)∪{z}) and y ∈
(
A(z|p, τ)c∪L(z|p, τ)\{z}

)
.

We look into two cases: x 6= z and x = z. In both cases we proceed by contradiction

assuming that y ∈ IR(x| p, τ). Let us start with x 6= z. Let a index the ray that

contains the vector (x − z). Recall that by Lemma 1.2 we have that Aa(z| p, τ) =

[z,Xa(z|p, τ)]. Since, x ∈ Ao(z|p, τ) and x 6= z we must have that x ∈ (z,Xa(z|p, τ)).

Lemma 1.3 delivers

V (x) = V (y)− ‖y − x‖ and V (Xa(z| p, τ)) = V (x)− ‖x−Xa(z| p, τ)‖,

that is,

V (y)− V (Xa(z| p, τ)) = ‖y − x‖+ ‖x−Xa(z| p, τ)‖. (A.10)

If y = Xa(z| p, τ) the previous equality implies x = Xa(z| p, τ), but since x ∈

(z,Xa(z| p, τ)) this is not possible. If y 6= Xa(z| p, τ) then since y ∈
(
A(z| p, τ)c ∪

L(z| p, τ) \ {z}
)

we must have that y /∈ (z,Xa(z| p, τ)). Also, y cannot be equal to

some point x + t(z − x) for some t > 1 because that would contradict the fact that
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z is a sink location. Therefore, Eq. (A.10) together with the triangular inequality

deliver V (y) − V (Xa(z| p, τ)) > |y − Xa(z| p, τ)|, but this contradicts the Lipschitz

property of V (·).

To conclude, consider the case x = z. In this case we would have z ∈ A(y| p, τ)

but this contradicts the fact that z is a sink location.

�

Lemma A.5 Let L1,L2 ⊂ C. If τ(L1 × L2) > 0 then there exists (x, y) ∈ L1 × L2

such that y ∈ IR(x|p, τ).

Proof of Lemma A.5. Suppose τ(L1 × L2) > 0. We first argue that there

exists a pair (x, y) ∈ L1 × L2 such that for all δ > 0

τ(B(x, δ)×B(y, δ)) > 0. (A.11)

If this is not true then for any (x, y) ∈ L1 × L2 we can find δx,y > 0 such that Eq.

(A.11) does not hold when we replace δ with δx,y, that is, τ(B(x, δx,y)×B(y, δx,y)) = 0

for all (x, y) ∈ L1 × L2. The collection I defined by

I = {B(x, δx,y)×B(y, δx,y)}(x,y)∈L1×L2

is an open cover of L1 × L2. Moreover the set L1 × L2 is separable because C × C is

separable. This implies that we can find a countable sub-cover of L1 ×L2 in I, that

is, there exists {B(xn, δxn,yn)×B(yn, δxn,yn)}n∈N such that

L1 × L2 ⊂
⋃
n∈N

B(xn, δxn,yn)×B(yn, δxn,yn).

The existence of the sub-cover is guaranteed by the Lindelöf property of separable

metric spaces, see e.g., [63] Theorem 69, p. 116. Since τ is a measure we have

τ(L1 × L2) ≤ τ
( ⋃
n∈N

B(xn, δxn,yn)×B(yn, δxn,yn)
)

≤
∑
n∈N

τ(B(xn, δxn,yn)×B(yn, δxn,yn))

= 0,
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a contradiction. Therefore, for some (x, y) ∈ L1×L2, Eq. (A.11) holds for any δ > 0.

We next show that y ∈ IR(x), that is,

∀ε > 0,∃δ0 > 0 such that ∀δ < δ0 ε+ VB(y,δ)(x) ≥ V (x).

Let ε > 0 and let δ0 = ε
2
. Consider δ < δ0, from Eq. (A.11) and the equilibrium

definition we have

0 < τ(B(x, δ)×B(y, δ))

= τ
({

(x′, y′) ∈ B(x, δ)×B(y, δ) : Π(x′, y′) = V (x′)
})

≤ τ2

({
y′ ∈ B(y, δ) : ∃x′ ∈ B(x, δ) such that Π(x′, y′) = V (x′)

}
︸ ︷︷ ︸

,Rx,y,δ

)
,

since τ2 � Γ this implies that Γ(Rx,y,δ) > 0. Now we argue that Rx,y,δ ⊂ {y′ ∈

B(y, δ) : Π(x, y′) ≥ V (x) − ε}. Indeed, let y′ ∈ Rx,y,δ then there exists x′ ∈ B(x, δ)

for which

U(y′) = V (x′) + ‖y′ − x′‖

≥ V (x)− ‖x′ − x‖+ ‖y′ − x′‖

= V (x)− ‖x′ − x‖+ ‖y′ − x′‖ − ‖y′ − x‖+ ‖y′ − x‖

≥ V (x)− ‖x′ − x‖ − ‖x′ − x‖+ ‖y′ − x‖,

where in the first inequality we used the Lipchitz property of V (see Lemma 1.1),

and in the second we use triangular inequality. Since ‖x′− x‖ ≤ δ0 = ε
2

we have that

U(y′) ≥ V (x) − ε + ‖y′ − x‖, that is, Rx,y,δ ⊂ {y′ ∈ B(y, δ) : Π(x, y′) ≥ V (x) − ε}.

Therefore, Γ({y′ ∈ B(y, δ) : Π(x, y′) ≥ V (x)−ε}) > 0, which implies that VB(y,δ)(x) ≥

V (x)− ε.

�

Proof of Proposition 1.4. For ease of notation we useXa to denoteXa(z|p, τ).

We show that τ̂ belongs to FC(µ) and that it is an equilibrium in C. First we argue

that τ̂ ∈ FC(µ). Since τ̂ is the sum of two non-negative measures we have that
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τ̂ ∈M(C ×C). In order see why τ̂1 coincides with µ, let B be a measurable subset of

C then

τ̂1(B) = τ̂(B × C)

= τ((B ∩ (Ac ∪ L))×Ac) + τ̃((B ∩ A)×A)

(a)
= τ((B ∩ (Ac ∪ L))×Ac) + µ̃(B ∩ A)

= τ((B ∩ (Ac ∪ L))×Ac) + τ((B ∩ A)×A)

(b)
= τ((B ∩ Ac)×Ac) + τ((B ∩ L)×Ac) + τ((B ∩ A)×A)

(c)
= τ((B ∩ Ac)× C) + τ((B ∩ A)× C)

= µ(B),

where (a) comes from the fact that τ̃ belongs to FA(µ̃). In (b) we use the fact that A

is a closed set. Equality (c) comes from Proposition 1.3 part (i). That is, τ̂1 coincides

with µ. Now, we show that τ̂2 � Γ. Let B be as before and suppose Γ(B) = 0 then

τ̂2(B) = τ̂(C ×B) = τ((Ac ∪ L)× (B ∩ Ac)) + τ̃(A× (B ∩ A))

≤ τ2(B ∩ Ac) + τ̃2(B ∩ A)

= 0,

where the last equality holds because τ2 � Γ and τ̃2 � Γ|A. Now we show that τ̂ is

an equilibrium. We need to verify that τ̂(Ê) equals µ(C), where

Ê ,
{

(x, y) ∈ C × C : Π(x, y, p̂(y), sτ̂ (y)) = ess sup
C

Π
(
x, ·, p̂(·), sτ̂ (·)

)}
.

In order to verify this we compute first sτ̂ and V (x| p̂, τ̂). First we show that Γ−a.e

we have

sτ̂ (x) =


sτ (x) if x ∈ Ac

sτ̃ (x) if x ∈ A.
Let B be a measurable subset of Ac then

τ̂2(B) = τ((C ×B) ∩ ((Ac ∪ L)×Ac)) = τ((Ac ∪ L)×B)
(a)
= τ(C ×B) = τ2(B),
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where (a) comes from Proposition 1.3 part (i). Therefore, sτ̂ (x) equals sτ (x) Γ −

a.e. x in Ac. Similarly, for B a measurable subset of A we have

τ̂2(B) = τ̃(A×B) = τ̃2(B),

where the second equality holds because from Proposition 1.3 we have τ(Ac×A) = 0,

and also because τ̃ is an equilibrium in A.

Second, we show that V (x| p̂, τ̂) equals VA(x| p̃, τ̃) for all x ∈ A. Let x ∈ A, by

definition

V (x| p̂, τ̂) ≥ Π(x, y, p̂(y), sτ̂ (y)), Γ− a.e. y in C.

In particular, from our choice of p̂ and sτ̂ in A we have

V (x| p̂, τ̂) ≥ Π(x, y, p̃(y), sτ̃ (y)), Γ− a.e. y in A,

implying that V (x| p̂, τ̂) ≥ VA(x| p̃, τ̃). Therefore, we only need to show V (x| p̂, τ̂) ≤

VA(x| p̃, τ̃). To prove this we have to verify that VA(x| p̃, τ̃) is a Γ− a.e upper bound

of Π(x, y, p̂(y), sτ̂ (y)) for y ∈ C. From the definition of VA(x| p̃, τ̃) this upper bound

is true in A, so we just need to check

VA(x| p̃, τ̃) ≥ Π(x, y, p(y), sτ (y)), Γ− a.e. y in Ac. (A.12)

For the sake of contradiction suppose this is not true. Then,

Γ(y ∈ Ac : Π(x, y, p(y), sτ (y)) > VA(x| p̃, τ̃)) > 0

For any y ∈ Ac consider the segment [x, y]. Since x ∈ A there must exists xy ∈

[x, y]∩ ∂A. From the Lipschitz property (see Lemma 1.1) we have that VA(x| p̃, τ̃) ≥

VA(xy| p̃, τ̃) − ‖xy − x‖, and since VA(·| p̃, τ̃) coincides with V (·| p, τ) in ∂A we can
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infer that VA(x| p̃, τ̃) ≥ V (xy| p, τ)− ‖xy − x‖. Then,

0 < Γ(y ∈ Ac : Π(x, y, p(y), sτ (y)) > VA(x| p̃, τ̃))

≤ Γ(y ∈ Ac : Π(x, y, p(y), sτ (y)) > V (xy| p, τ)− ‖xy − x‖)

= Γ(y ∈ Ac : U(y, p(y), sτ (y))− ‖x− y‖ > V (xy| p, τ)− ‖xy − x‖)
(a)
= Γ(y ∈ Ac : U(y, p(y), sτ (y)) > V (xy| p, τ) + ‖xy − y‖)
(b)

≤ Γ(y ∈ Ac : U(y, p(y), sτ (y)) > V (y| p, τ))

(c)
= 0,

a contradiction. In (a) we use that x, y and xy are collinear points. In (b) we use the

the Lipschitz property, and (c) follows from Lemma A.2. Thus Eq. (A.12) holds. In

conclusion, V (x| p̂, τ̂) equals VA(x| p̃, τ̃) for all x ∈ A.

We next show that V (x| p̂, τ̂) equals V (x| p, τ) for all x ∈ Ac. We proceed by

contradiction. Let x ∈ Ac and suppose that V (x| p̂, τ̂) 6= V (x| p, τ). If V (x| p̂, τ̂) >

V (x| p, τ) then we must have that

0 < Γ(y ∈ C : Π(x, p̂(y), sτ̂ (y), y) > V (x| p, τ))

= Γ(y ∈ A : Π(x, p̃(y), sτ̃ (y), y) > V (x| p, τ))

+ Γ(y ∈ Ac : Π(x, p(y), sτ (y), y) > V (x| p, τ))

(a)
= Γ(y ∈ A : U(p̃(y), sτ̃ (y), y)− ‖x− y‖ > V (x| p, τ))

(b)

≤ Γ(y ∈ A : U(p̃(y), sτ̃ (y), y)− ‖x− y‖ > VA(xy| p̃, τ̃)− ‖xy − x‖)
(c)
= Γ(y ∈ A : U(p̃(y), sτ̃ (y), y) > VA(xy| p̃, τ̃) + ‖xy − y‖)
(d)

≤ Γ(y ∈ A : U(p̃(y), sτ̃ (y), y) > VA(y| p̃, τ̃))

(e)
= 0,

where (a) follows from that the definition of V (x| p, τ) implies that the second term

in the previous line is zero. Similarly to what we did before, in (b) we take xy ∈

[x, y]∩ ∂A and then apply the Lipschitz property together with the assumption that

163



VA(xy| p̃, τ̃) = V (xy| p, τ). In (c) we made use of the collinearity of x, y and xy, and

in (d) we applied once again the Lipschitz property. The last line (e) follows from

Lemma A.2.

Now suppose that V (x| p̂, τ̂) < V (x| p, τ) then

0 < Γ(y ∈ C : Π(x, p(y), sτ (y), y) > V (x| p̂, τ̂))

= Γ(y ∈ A : Π(x, p(y), sτ (y), y) > V (x| p̂, τ̂))

+ Γ(y ∈ Ac : Π(x, p(y), sτ (y), y) > V (x| p̂, τ̂))

(a)
= Γ(y ∈ A : U(p(y), sτ (y), y)− ‖x− y‖ > V (x| p̂, τ̂))

(b)

≤ Γ(y ∈ A : U(p(y), sτ (y), y)− ‖x− y‖ > VA(xy| p̃, τ̃)− ‖xy − x‖)
(c)
= Γ(y ∈ A : U(p(y), sτ (y), y) > V (xy| p, τ) + ‖xy − y‖)
(d)

≤ Γ(y ∈ A : U(p(y), sτ (y), y) > V (y| p, τ))

(e)
= 0,

where (a) follows from that the definition of V (x| p̂, τ̂) implies that the second term

in the previous line is zero. Similarly to what we did before, in (b) we take xy ∈

[x, y] ∩ ∂A and then apply the Lipschitz property together with what we proved

before, VA(xy| p̃, τ̃) = V (xy| p̂, τ̂) (xy ∈ A because this set is closed). In (c) we made

use of the collinearity of x, y and xy, and that VA(xy| p̃, τ̃) = V (xy| p, τ). In (d) we

applied once again the Lipschitz property. The last line (e) follows from Lemma A.2.

Therefore, V (x| p̂, τ̂) equals V (x| p, τ) in Ac.

Lastly, we verify that τ̂(Ê) equals µ(C). Define the sets

E1 ,
{

(x, y) ∈ (Ac ∪ L)×Ac : Π(x, y, p̂(y), sτ̂ (y)) = V (x| p̂, τ̂)
}

E2 ,
{

(x, y) ∈ A×A : Π(x, y, p̂(y), sτ̂ (y)) = V (x| p̂, τ̂)
}

then τ̂(Ê) = τ(E1) + τ̃(E2). We can replace the definition of p̂ and what we have
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proved about sτ̂ and V (x| p̂, τ̂) in the expressions above to obtain

τ(E1) = τ
({

(x, y) ∈ (Ac ∪ L)×Ac : Π(x, y, p(y), sτ (y)) = V (x| p, τ)
})
,

τ̃(E2) = τ̃
({

(x, y) ∈ A×A : Π(x, y, p̃(y), sτ̃ (y)) = VA(x| p̃, τ̃)
})

= µ̃(A),

where the second line comes from the fact that τ̃ is an equilibrium in A. Let E be

defined analogously to Ê but with (p̂, τ̂) replaced by (p, τ), then

τ̂(Ê) = τ(E1) + µ̃(A)

(a)
= τ(E1) + τ(A×A)

(b)
= τ(E ∩ ((Ac ∪ L)×Ac)) + τ(E ∩ (A×A))

(c)
= τ(E)

(d)
= µ(C),

where in (a) we use the definition of µ̃. In (b) and (d) we use the fact that τ only

puts mass in E , and in (c) we use Proposition 1.3 part (i).

�

A.2 Proofs for Section 1.5

Proof of Lemma 1.4. Suppose λ(x) > 0 and recall that the price achieving

the maximum in the definition of Rloc
x (s) is ρlocx (s) = max{ρbalx (s), ρux}. Let su be

equal to λ(x) · F x(ρ
u
x), that is, ρbalx (su) = ρux (here we are using that q 7→ q · F y(q)

is continuous and unimodular in q). Then, since ρbalx (·) is decreasing we have that

ρlocx (s) = ρbalx (s) for all 0 < s ≤ su and, therefore,

Rloc
x (s)

s
= ρbalx (s) = F−1(1− s

λ(x)
), for all 0 < s ≤ su.

Since F is strictly increasing, the quotient above is strictly decreasing for s ∈ (0, su].

Moreover, since F−1(1) = V , the point just made also includes s = 0. Now, for s > su
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we have ρlocx (s) = ρux, thus

Rloc
x (s)

s
= ρux ·

λ(x) · F x(ρ
u
x)

s
,

which is strictly decreasing. In any case, we conclude that ψx(·) is strictly decreasing

when λ(x) > 0.

�

Proof of Proposition 1.5. Define the set B , {x ∈ Cλ : V (x) > ψx(s
τ (x))}.

We want to show that Γ(B) = 0. First we argue that B ⊆ {x ∈ C : U(x) 6= V (x)},

indeed, let x ∈ B then

V (x) > ψx(s
τ (x)) ≥ U

(
x, p(x), sτ (x)

)
,

that is, V (x) > U(x) as desired. By Lemma A.2 we know that τ2({x ∈ C : U(x) 6=

V (x)}) = 0 and, therefore, τ2(B) = 0. This yields,

0 = τ2(B) =

∫
B

sτ (x) dΓ(x). (A.13)

If Γ(B) = 0 then we are done. Suppose Γ(B) > 0, from equation (A.13) we can

conclude that sτ (x) = 0, Γ − a.e. x ∈ B. Since in B we have λ(x) > 0 this implies

that Γ− a.e in B we have that ψx(s
τ (x)) equals α ·V . Because α ·V is the maximum

value that V (·) can attain (see Lemma A.1), we conclude that

α · V ≥ V (x) > ψx(s
τ (x)) = α · V Γ− a.e. x ∈ B.

But since we are assuming that Γ(B) > 0, this yields a contradiction. �

Proof of Theorem 1.1. The proof of this theorem consists of several parts. In

the first part we specialize the upper bound derived in Proposition 1.5 to account for

the case when λ(x) = 0. Next, we pose an optimization problem which is a relaxation

of platform’s optimization problem restricted to the attraction region A(z). Then

we introduce some notation. Given this, the relaxation has a similar structure to

a continuous bounded knapsack problem, and we characterize the structure of the
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optimal solution as stated in the statement of the theorem. Next we construct a

local price-equilibrium pair (p̂, τ̂) in A(z) that implements the relaxation’s solution.

We conclude by applying the pasting result of Proposition 1.4 to globally extend our

price-equilibrium pair (p̂, τ̂) in C as in the statement of the theorem. In summary the

parts of the proof are: Upper bound specialization, Relaxation, Notation, Knapsack,

Implementation and Conclusion. We enumerate all these parts from 1 to 6, and

present them in boldface to make the presentation clearer.

Part 1: Upper bound specialization. For ease of notation we use Xa and

A(z) to denote Xa(z|p, τ), and A(z|p, τ), respectively. Recall z ∈ C is a sink location,

so the following is well defined

Xsupp
a , inf{x ∈ [z,Xa] ∩ supp(Γ)}.

We use Asupp(z) to denote ∪a∈Rz [z,Xsupp
a ], and (with abuse of notation)

Lsupp(z) =
⋃
a∈Rz

{Xsupp
a }, and Asupp(z)o =

⋃
a∈Rz

[z,Xsupp
a ).

We define the function

Hx(V ) ,



ψ−1
x (V ) if λ(x) > 0;

0 if λ(x) = 0, x ∈ Asupp(z)o;

dµ
dΓ

(x) if λ(x) = 0, x ∈ Lsupp(z);

0 if x ∈ A(z) \ Asupp(z)o.

(A.14)

In this part of the proof we will show that

sτ (x) ≤ Hx(V (x| p, τ)), Γ− a.e. x in A(z). (A.15)

In order to prove Eq. (A.15) first note that from Proposition 1.5 we have

sτ (x) ≤ Hx(V (x| p, τ)), Γ− a.e. x in A(z) ∩ Cλ,

so we only need to show that the set

B , {x ∈ A(z) : λ(x) = 0, sτ (x) > Hx(V (x| p, τ))},
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satisfies Γ(B) = 0. From the definition of Xsupp
a we have that Γ(A(z)\Asupp(z)) equals

zero (beyond these Xsupp
a the city measure does not put mass). Hence, showing that

Γ(B) equals zero is equivalent to showing that Γ(B1 ∪B2) equals zero, where

B1 , {x ∈ Asupp(z)o : λ(x) = 0, sτ (x) > 0},

B2 , {x ∈ Lsupp(z) : λ(x) = 0, sτ (x) >
dµ

dΓ
(x)}.

For the sake of contradiction assume that Γ(B1) > 0 then τ2(B1) =
∫
B1
sτ dΓ > 0.

This, together with Lemma A.2, yields that τ2(B1 ∩ {x : U(x) = V (x)}) > 0, which

in turn implies the existence of x ∈ B1 ∩ {x : U(x) = V (x)}. Such an x satisfies

that x ∈ Asupp(z)o and V (x) = 0 and, therefore, V (x′) < 0 for some x′ ∈ Lsupp(z)

(recall that by Lemma 1.3, V (·) is linear on any ray [z,Xa] around z). However, any

x′ in Lsupp(z) belongs to supp(Γ) and, hence, Lemma A.1 guarantees that V (x′) ≥ 0,

yielding a contradiction. Thus, Γ(B1) = 0.

If Γ(B2) > 0 then by the definition of B2 we must have that τ2(B2) > µ(B2). We

will also argue that µ(B2) ≥ τ2(B2) to obtain a contradiction. Indeed,

µ(B2) ≥ τ(B2 ×B2)

= τ2(B2)− τ(C \B2 ×B2)

= τ2(B2)− τ(A(z) \B2 ×B2)

(a)
= τ2(B2)− τ(Asupp(z) \B2 ×B2)

(b)
= τ2(B2)− τ(Lsupp(z) \B2 ×B2)

= τ2(B2),

where (a) comes from τ(Asupp(z)o × Lsupp(z)) = 0 (recall that by Lemma 1.3, V (·) is

linear and decrease on any ray [z,Xa] around z). And (b) holds because τ does not

send mass across rays, so the mass can only me sent to from in the pairs (Xsupp
a , Xsupp

a );

but this pairs do not belong to Lsupp(z) \ B2 × B2. In conclusion, Γ(B) = 0 and Eq.

(A.15) is proven.
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Part 2: Relaxation. We consider the attraction region A(z). In it, the upper

bound we just proved in Eq. (A.15) must be satisfied. Moreover, due to our flow

separation result in Proposition 1.3 part (i) we have τ2(A(z)) = τ(A(z) × A(z)).

Also, since flow is not transported across rays (see Proposition 1.3 part (ii)), the

total supply in the ray (z,Xa] cannot be larger than its initial supply. Therefore, in

A(z) the platform’s problem is bounded above by

max
s(·)

∫
A(z)

V (x) · s(x) dΓ(x) (PKP (z))

s.t s(x) ≤ Hx(V (x| p, τ)), Γ− a.e. x in A(z) (CB)∫
A(z)

s(x) dΓ(x) = τ(A(z)× A(z)) (FC)∫
(z,Xa]

s(x) dΓa(x) ≤
∫

(z,Xa]

sτ (x) dΓa(x), Γp − a.e. a ∈ Rz. (FRa)

Observe that sτ (which defines τ2) is a feasible solution for (PKP (z)). The supply

density sτ̂ (as in the statement of the present theorem) will be shown to be an optimal

solution for this relaxation.

Part 3: Notation.

1. Next we rename the quantities on the RHS of equations (FC) and (FRa).

τtotal = τ(A(z)× A(z)),

τa =

∫
(z,Xa]

sτ (x) dΓa(x),

τc = τ(A(z)× {z}).

2. For any measurable set B ⊆ Az we define the measure

SH(B) ,
∫
B

Hx(V (x)) dΓ(x),

SH(·) is the measure with density Hx(V (x)) (see Eq. (A.14)) with respect to

the Γ measure. Moving forward we will use sH(x) to denote its density.
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Part 4: Knapsack. We show that any optimal solution to (PKP (z)) is as sτ̂ in

the statement of the theorem. There are two cases.

Case 1. First suppose that 0 < τtotal ≤ SH({z}) (so that there is an atom at z).

Then, we define ra = z for all a ∈ Rz, and let the solution to (PKP (z)) be

s?(x) =
τtotal

Γ({z}) · 1{x=z},

which is feasible, and optimal because for any feasible s we have∫
A(z)

V (x) · s(x)dΓ(x) ≤ V (z) ·
∫
A(z)

s(x) dΓ(x) = V (z) · τtotal,

which is equal to the objective function at s?. So in this case the optimal solution

coincides with the description of sτ̂ as in the statement of the theorem.

Case 2. Now let us assume that τtotal > SH({z}). We start by showing that

in this case we have s?(z) = sH(z). If z is not a point with positive Γ- mass then

setting s?(z) in this way is without loss of generality. If the point z has positive mass

then we argue by contradiction that s?(z) must be choose in this way. Let s? be an

optimal solution to (PKP (z)) such that s?(z) < sH(z). Then,

τtotal =

∫
A(z)\{z}

s?dΓ + s?(z) · Γ({z}) <
∫
A(z)\{z}

s?dΓ︸ ︷︷ ︸
K

+sH(z) · Γ({z}). (A.16)

Let ε ∈ (0, 1) be such that (τtotal− ε ·K)/Γ({z}) = sH(z), this is well defined because

we are assuming τtotal > SH({z}). Next define a new solution s̄ by

s̄(x) =


sH(z) if x = z,

ε · s?(x) if x 6= z.

Note that s̄ is feasible: it satisfies (FRa) for all a ∈ Rz and (CB), and for (FC) we

have ∫
A(z)

s̄dΓ = ε ·K + sH(z) · Γ({z}) = τtotal.
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Furthermore, s̄ yields an strictly larger objective than s?,∫
A(z)

V (x) · s?(x) dΓ(x) =

∫
A(z)\{z}

V (x) · s?(x) dΓ(x) + V (z) · s?(z) · Γ({z})

= ε ·
∫
A(z)\{z}

V (x) · s?(x) dΓ(x)

+ (1− ε) ·
∫
A(z)\{z}

V (x) · s?(x) dΓ(x)

+ V (z) · s?(z) · Γ({z})
(a)
<

∫
Ap(z)\{z}

V (x) · s̄(x) dΓ(x) + (1− ε) · V (z) ·K

+ V (z) · s?(z) · Γ({z})

=

∫
A(z)\{z}

V (x) · s̄(x) dΓ(x) + V (z) · (τtotal − ε ·K)

(b)
=

∫
A(z)

V (x) · s̄(x) dΓ(x),

where (a) comes from Eq. (A.16), and (b) holds because (τtotal−ε·K)/Γ({z}) = sH(z).

Hence, whenever τtotal > SH({z}), we can assume that s?(z) = sH(z). We assume

this for the reminder of the proof.

Let s?(z) be an optimal solution. We show how to build ŝ with the properties

described in the theorem’s statement. Next we construct ra. First, note that∫
A(z)\{z}

s?(x)dΓ =

∫
A(z)\{z}

s?(x)1{s?≤sH}dΓ =

∫
Rz

∫
(z,Xa]

s?(x)1{s?≤sH}dΓa(x)︸ ︷︷ ︸
qa

dΓp(a)

define ra by

ra , inf
{
r ∈ (0, Xa] :

∫
(0,r]

sH(x)1{s?≤sH}dΓa(x) ≥ qa

}
.

Observe that for r = Xa the integral in the definition of ra is larger or equal than qa.

Therefore, ra is well defined. Let us define (with some abuse of notation)

Ar(z) ,
⋃
a∈Rz

[z, ra], and Lr(z) ,
⋃
a∈Rz

{ra}.
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Let’s define a new solution ŝ by

ŝ(x) ,



s?(z) = sH(z) if x = z

sH(x) if x ∈ Ar(z) \ (Lr(z) ∪ {z}),

1{Γa({x})>0}

(
qa−

∫
(0,x) s

H(y)1{s?≤sH}dΓa(y)

)
Γa({x}) if x ∈ Lr(z),

and ŝ(x) = 0 otherwise. We show that ŝ weakly revenue dominates s? and that

is feasible. Let us do first the revenue dominance. Note that the objective in {z}

of both solutions coincide; thus, we only need to compare the objective in the set

Q , A(z) \ {z}. Note that Ar(z) \ {z} ⊂ Q, then∫
Q

V (x) · s?(x) dΓ(x) =

∫
Ar(z)\{z}

V (x) · s?(x) dΓ(x) +

∫
Q\(Ar(z)\{z})

V (x) · s?(x) dΓ(x)

=

∫
Ar(z)\{z}

V (x) · ŝ(x) dΓ(x) +

∫
Ar(z)\{z}

V (x) · (s? − ŝ)(x) dΓ(x)

+

∫
Q\(Ar(z)\{z}))

V (x) · s?(x)1{s?≤sH} dΓ(x)︸ ︷︷ ︸
I

,

for the last term above we have

I ≤
∫
Rz

V (ra)
[ ∫

(ra,Xa]

s?(x)1{s?≤sH} dΓa(x)
]
dΓp(a)

=

∫
Rz

V (ra)
[
qa −

∫
(z,ra]

s?(x)1{s?≤sH} dΓa(x)
]
dΓp(a)

=

∫
Rz

V (ra)
[ ∫

(z,ra)

(sH − s?)(x)1{s?≤sH} dΓa(x) + (ŝ− s?1{s?≤sH})(ra)Γa(ra)
]
dΓp(a)

≤
∫
Rz

[ ∫
(z,ra)

V (x)(sH − s?)(x)1{s?≤sH} dΓa(x)

+ V (ra)(ŝ− s?1{s?≤sH})(ra)Γa(ra)
]
dΓp(a)

=

∫
Ar(z)\{z}

V (x)(ŝ− s?)(x)dΓ(x),

hence ∫
Q

V (x) · s?(x) dΓ(x) ≤
∫
Ar(z)\{z}

V (x) · ŝ(x) dΓ(x).

Since the right hand side above equals the objective under ŝ in Ar(z) we conclude

that ŝ is an optimal solution.
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For the feasibility of ŝ, by construction and the definition of ra we have that ŝ

satisfies (CB). Furthermore, because s? satisfies (FRa) and since ŝ only redistributes

the mass of s? across rays but no between rays that originate in z, ŝ also satisfies

(FRa). In order to verify (FC) note that∫
A(z)

ŝ(x) dΓ(x) = ŝ(z) · Γ({z}) +

∫
Ar(z)\{z}

ŝ(x) dΓ(x)

= s?(z) · Γ({z}) +

∫
Ar(z)\{z}

ŝ(x) dΓ(x)

= s?(z) · Γ({z})

+

∫
Rz

[ ∫
(z,ra)

sH(z)1{s?≤sH} dΓa(x) + ŝ(ra)Γa({ra})
]
dΓp(a)

= s?(z) · Γp({z}) +

∫
Rz

[
qa

]
dΓp(a)

= s?(z) · Γp({z}) +

∫
Rz

[ ∫
(z,Xa]

s?(x)1{s?≤sH}dΓa(x)
]
dΓp(a)

= s?(z) · Γp({z}) +

∫
A(z)\{z}

s?(x) dΓ(x)

= τtotal.

In conclusion, the solution ŝ constructed is as defined in the statement of the theorem.

Next, we use this solution to define prices and flows. We use Ŝ to denote the measure

induced by ŝ. Observe that Ŝ has support in Ar(z).

Part 5: Implementation. We construct a price-equilibrium pair (p̂, τ̂) in A(z)

with τ̂ ∈ FA(z)(µ̃) and

µ̃(B) , τ((B ∩ A(z))× A(z)), B ⊆ C measurable.

• Prices. Define p̂ : A(z)→ [0, V ] by

p̂(x) =


ρlocx (ŝ(x)) if x ∈ Ar(z) \ Lr(z);

pa if x = ra, a ∈ Rz;

V otherwise,
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where pa is such that U(ra, pa, ŝ(ra)) = V (ra| p, τ) · 1{λ(ra)>0} for a ∈ Rz. By the

way we constructed ŝ(ra), it is bounded by Hra(V (ra)) and, therefore, the value pa

is always well defined (Γ-a.e).

• Flows: We define τ̂ as a transport plan between µ̃ and Ŝ. We start by defining

the flow that τ̂ sends to z and then the flow along rays.

Flow to the center. Next we define the flow that τ̂ sends to {z}. We define

µ̃a(B) ,
∫
B∩(z,Xa]

dµ̃

dΓ
(y)dΓa(y) and Ŝa(B) ,

∫
B∩(z,Xa]

dŜ

dΓ
(y)dΓa(y).

Then,

µ̃(B) = τ({z} × {z})1{z∈B} +

∫
Rz

µ̃a(B)dΓp(a),

and

Ŝ(B) = Ŝ({z})1{z∈B} +

∫
Rz

Ŝa(B)dΓp(a).

We define the quantities

∆a , µ̃a((z,Xa])− Ŝa((z,Xa]),

note that because of (FRa), ∆a ≥ 0, Γp − a.e a in Rz. Further define

ha , z + inf{δ ≥ 0 : µ̃a((z, z + δ]) ≥ ∆a}.

For any set B ⊆ A(z) we define the mass going to the center from ray a ∈ Rz by

the measures

µca(B) , µ̃a(B ∩ (z, ha)) + 1{ha∈B∩(z,Xa]} · (∆a − µ̃a(z, ha)),

observe that by the definition ha, the atoms above have non-negative mass, Γp−a.e

a in Rz . LetQz , {z}×{z}. For any measurable setR ⊆ A(z)×A(z), the measure

that sends flow to the origin is defined by

τ c(R) , τ(R∩Qz) +

∫
Rz

µca(π1(R∩ A(z)× {z}))dΓp(a),
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where π1 is the mapping that to each pair (x, y) assigns the first component x.

Using Lemma A.6 (which we state and prove after the present proof) we can verify

that τ c ∈M(A(z)× A(z)).

Flow along rays. For any ray a ∈ Rz define the flow γ̃a along that ray to be the

solution to the following optimal transport problem:

min

∫
(z,Xa]×(z,Xa]

‖x− y‖ dγa(x, y)

s.t γa ∈ Π(µ̃ra, Ŝa),

where

µ̃ra(B) , µ̃a(B ∩ (ha, Xa]) + 1{ha∈B∩(z,Xa]} · (µ̃a(z, ha]−∆a),

where Π(µ̃ra, Ŝa) is the set of transport plans between µ̃ra and Ŝa. Any solution to

this problem satisfies:

γ̃a

(
{(x, y) ∈ (z,Xa]× (z,Xa] : y > x}

)
= 0, Γp − a.e. a ∈ Rz. (A.17)

We provide a proof Eq. (A.17) after Part 6.

We will argue that τ̂ defined by

τ̂(R) = τ c(R) +

∫
Rz

γ̃a(R)dΓp(a)

yields an equilibrium, that is, for the set

Ẽ ,
{

(x, y) ∈ A(z)× A(z) : U(y, p̂(y), sτ̂ (y))− |y − x| = VA(z)(x| p̂, τ̂)
}
,

we have that τ̂(Ẽ) equals µ̃(A(z)). Note that with this definition of τ̂ there is

not flow being transported across rays but only within rays. Before verifying the

equilibrium condition we check that τ̂ ∈ FA(z)(µ̃). Clearly τ̂ is a non-negative

measure in A(z) × A(z) because is the sum of non-negative measures. Now we
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check that τ̂1 = µ̃. Consider a measurable set B ⊆ A(z) then

τ̃1(B) = τ̃(B × A(z))

= τ c(B × A(z)) +

∫
Rz

γ̃a(B × A(z))dΓp(a)

= τ(Qz)1{z∈B} +

∫
Rz

µca(B)dΓp(a) +

∫
Rz

µ̃ra(B ∩ (z,Xa])dΓp(a)

= τ(Qz)1{z∈B} +

∫
Rz

[
µ̃a(B ∩ (z, ha)) + 1{ha∈B∩(z,Xa]} · (∆a − µ̃a(z, ha))

+ µ̃a(B ∩ (ha, Xa]) + 1{ha∈B∩(z,Xa]} · (µ̃a(z, ha]−∆a)
]
dΓp(a)

= τ(Qz)1{z∈B} +

∫
Rz

µ̃a(B)dΓp(a)

= µ̃(B)

and from the definition of µ̃ we also have τ̂1 � Γ. For the second marginal of τ̂ we
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have

τ̂2(B) = τ̃(A(z)× B)

= τ(Qz)1{z∈B} +

∫
Rz

µca(A(z))1{z∈B}dΓp(a) +

∫
Rz

Ŝa(B)dΓp(a)

= τ(Qz)1{z∈B}

+ 1{z∈B}

∫
Rz

[
µ̃a((z, ha)) + 1{ha∈(z,Xa]} · (∆a − µ̃a(z, ha))

]
dΓp(a)

+

∫
Rz

Ŝa(B)dΓp(a)

= τ(Qz)1{z∈B} + 1{z∈B}

∫
Rz

∆adΓp(a) +

∫
Rz

Ŝa(B)dΓp(a)

= τ(Qz)1{z∈B} + 1{z∈B}

∫
Rz

[µ̃a((z,Xa])− Ŝa((z,Xa])]dΓp(a)

+

∫
Rz

Ŝa(B)dΓp(a)

= τ(Qz)1{z∈B} + 1{z∈B}

∫
Rz

[µ̃a(A(z))− Ŝa(A(z))]dΓp(a) +

∫
Rz

Ŝa(B)dΓp(a)

= τ(Qz)1{z∈B} + 1{z∈B}

[
µ̃(A(z))− τ(Qz)− Ŝ(A(z)) + Ŝ({z})

]
+

∫
Rz

Ŝa(B)dΓp(a)

= Ŝ({z})1{z∈B} + 1{z∈B}

[
µ̃(A(z))− Ŝ(A(z))

]
︸ ︷︷ ︸

=0

+

∫
Rz

Ŝa(B)dΓp(a)

= Ŝ(B).

Since Ŝ is such that Ŝ � Γ, we conclude that τ̂ ∈ FA(z)(µ̃). Also, sτ̂ coincides with

ŝ Γ almost everywhere. Before we move to verify that τ̂ is an equilibrium, we next

compute VA(z)(x| p̂, τ̂) and U(y, p̂(y), sτ̂ (y)).

• Equilibrium utilities: We show that VA(z)(x| p̂, τ̂) equals V (z| p, τ)− |z − x| for

all x ∈ A(z). First, from the definition of p̂ and the value of sτ̂ we have that

Γ− a.e. y in A(z)

U(y, p̂(y), sτ̂ (y)) =


(V (z| p, τ)− |z − y|) · 1{λ(y)>0} if y ∈ Ar(z),

0 if y ∈ A(z) \ Ar(z).
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Second, for any x ∈ A(z) we argue that V (x| p, τ) = V (z| p, τ) − |z − x| ≥

VA(z)(x| p̂, τ̂). It is enough to show that

Γ(y ∈ A(z) : U(y, p̂(y), sτ̂ (y))− |y − x| > V (x| p, τ)) = 0.

Suppose this is not true. Lemma A.1 implies that V (y|p, τ) is non-negative Γ−a.e.

Also V (y| p, τ) equals V (z| p, τ)− |z − y| for any y ∈ A(z). Hence it must be true

that V (y| p, τ) is larger or equal than U(y, p̂(y), sτ̂ (y)) Γ−a.e (see the value of this

expression above). Thus our current assumption implies

Γ(y ∈ A(z) : V (y| p, τ)− |y − x| > V (x| p, τ)) > 0,

but this contradicts the Lipschitz property of V (·| p, τ).

Third, we show that the upper bound we just proved is tight, that is, for all ε > 0

Γ(y ∈ A(z) : U(y, p̂(y), sτ̂ (y))− |y − x| > V (x| p, τ)− ε) > 0. (A.18)

Recall that z is an in-demand sink if ∀Q ⊂ Rz such that Γp(Q) > 0 then

Γ({z})1{λ(z)>0} +

∫
Q

∫
(z,z+δ]

1{λ(x)>0}dΓa(x)dΓp(a) > 0, ∀δ > 0. (A.19)

Next, define r̄ as the essential supremum of {‖ra−z‖} with respect to the measure

Γp

r̄ , inf{c ∈ R : Γp
(
a ∈ Rz : ‖ra − z‖ > c

)
= 0}.

Let us analyze two cases. First, assume that r̄ > 0. In this case there exists δ0 > 0

such that r̄ > δ0 and the set Qδ0 = {a ∈ Rz : ‖ra − z‖ > δ0} has Γp positive

measure. Choose 0 < δ ≤ min{ε/2, δ0} then from Eq. (A.19) we have

Γ({z})1{λ(z)>0} +

∫
Qδ0

∫
(z,z+δ]

1{λ(x)>0}dΓa(x)dΓp(a) > 0, (A.20)
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but this implies that

0 < Γ(y ∈ B(z, δ) ∩ Ar(z) : λ(y) > 0)

= Γ(y ∈ B(z, δ) ∩ Ar(z) : λ(y) > 0, 2δ + ‖z − x‖ ≥ ‖y − x‖+ ‖y − z‖)

≤ Γ(y ∈ B(z, δ) ∩ Ar(z) : λ(y) > 0, ε+ ‖z − x‖ > ‖y − x‖+ ‖y − z‖)

≤ Γ(y ∈ Ar(z) : λ(y) > 0, ε+ ‖z − x‖ > ‖y − x‖+ ‖y − z‖)

= Γ(y ∈ Ar(z) : λ(y) > 0, U(y, p̂(y), sτ̂ (y))− ‖y − x‖ > V (x)− ε)

≤ Γ(y ∈ A(z) : U(y, p̂(y), sτ̂ (y))− ‖y − x‖ > V (x)− ε),

this shows that Eq. (A.18) holds. For the other case suppose that assume that

r̄ = 0. This implies that ra = z for Γp almost all a ∈ Rz. Then, we must have

0 < τ(A(z)× A(z)) =

∫
Ar(z)

sτ̂ (x) dΓ(x)

= sτ̂ (z) · Γ({z}) +

∫
Rz

∫
(z,ra]

sτ̂ (x) · dΓa(x)dΓp(a)

= sτ̂ (z) · Γ({z})

Thus both sτ̂ (z) and Γ({z}) are strictly positive. If λ(z) > 0 then the same

series of inequalities that we used for the previous case applies to this case, and

so the desired Eq. (A.18) holds. If λ(z) = 0 then since by feasibility we have

0 < sτ̂ (z) ≤ Hz(V (z| p, τ)), it must be the case that z belongs to Lsupp(z). WLOG

suppose that z = Xsupp
a for some a ∈ Rz then by the previous inequality we have

that 0 < sτ̂ (Xsupp
a ) ≤ dµ

dΓ
(Xsupp

a ). In turn, this implies that µ({Xsupp
a }) > 0. This

means that z has and initial mass of supply. Since z is a sink location, it does not

belong to the indifference region of any other location and, therefore, by Lemma

A.5 it does not send flow to any other location. Hence, τ2({z}) > 0 and by Lemma

A.2 we deduce that U(z, p(z), sτ (z)) = V (z| p, τ). Since, λ(z) = 0 this implies that
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V (z| p, τ) = 0. To conclude, note

Γ(y ∈ A(z) : Π(x, y, p̂(y), sτ̂ (y)) > V (x| p, τ)− ε) ≥ Γ(y ∈ {z} : −|y − x|

> −|z − x| − ε)

= Γ({z})

> 0,

hence Eq. (A.18) holds.

• Equilibrium condition: Consider the equilibrium set

Ẽ ,
{

(x, y) ∈ A(z)× A(z) : U(y, p̂(y), sτ̂ (y))− |y − x| = VA(z)(x| p̂, τ̂)
}
,

we need to verify that τ̂(Ẽ) equals µ̃(A(z)). First, for τ̂(Ẽ) we have

τ̂(Ẽ)
(a)
= τ̂

({
(x, y) ∈ A(z)× Ar(z) : λ(y) > 0, |z − y|+ |y − x| = |z − x|

})
+ τ̂
({

(x, y) ∈ A(z)× Ar(z) : λ(y) = 0, −|y − x| = V (x| p, τ)
})

In (a) we use what we have just proved about VA(z)(x| p̂, τ̂), that U(y, p̂(y), sτ̂ (y)) =

0 when λ(y) = 0 and that τ̂2 only puts mass in Ar(z). Denote by Z the second
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term above, then

Z = τ̂
({

(x, y) ∈ A(z)× Ar(z) \ {z} : λ(y) = 0, −|y − x| = V (x| p, τ)
})

+ τ̂
({

(x, y) ∈ A(z)× {z} : λ(z) = 0, −|z − x| = V (z| p, τ)− |z − x|
})

(a)
=

∫
Rz

γ̃a

({
(x, y) ∈ (z,Xa]× (z, ra] : λ(y) = 0, −|y − x| = V (x| p, τ)

})
dΓp(a)

+ τ̂2({z}) · 1{V (z)=0,λ(z)=0}

(b)
=

∫
Rz

γ̃a

({
(x, y) ∈ [ra, Xa]× {ra} : λ(y) = 0, −|y − x| = V (x| p, τ)

})
1{ra 6=z}dΓp(a)

+ Ŝ({z}) · 1{V (z)=0,λ(z)=0}

=

∫
Rz

γ̃a

({
(x, y) ∈ [ra, Xa]× {ra} : λ(y) = 0, V (ra| p, τ) = 0

})
1{ra 6=z}dΓp(a)

+ Ŝ({z}) · 1{V (z)=0,λ(z)=0}

(c)
=

∫
Rz

Ŝa({ra})1{λ(ra)=0, V (ra)=0}1{ra 6=z}dΓp(a) + Ŝ({z}) · 1{V (z)=0,λ(z)=0}

= Ŝ((∂Ar ∪ {z}) ∩ {y : λ(y) = 0, V (y| p, τ) = 0})

where (a) comes from the fact that γ̃a only puts mass in (z,Xa] × (z,Xa]. The

equality in (b) follows from the congestion bound in Eq. (A.15) which makes ŝ(y)

equal to zero when λ(y) = 0 and y ∈ (z, ra), and also the fact that γ̃a only sends

flows towards z and not in the opposite direction, that is, γ̃a((z, ra) × {ra}) = 0

(see Eq. (A.17)). The last equality, (c), uses the latter fact once again.

Consider the sets

Ẽc , A(z)× {y ∈ {z} : λ(y) > 0},

and

Ẽa ,
{

(x, y) ∈ (z,Xa]× (z, ra] : λ(y) > 0, y ≤ x
}
.

Then,

τ̂(Ẽ) = τ̃(Ẽc) +

∫
Rz

γ̃a(Ẽa)dΓp(a) + Z.

For the first term we have

τ̂(Ẽc) = τ̂2({y ∈ {z} : λ(y) > 0}) = τ̂2({z}) · 1{λ(z)>0}.
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For the second term we have that for any ray a, γ̃a(Ẽa) equals Ŝa((z, ra] ∩ {y :

λ(y) > 0}). This is true because the plan γ̃a only sends mass to (z, ra](this is the

support of Ŝa) and it does not send mass in the opposite direction of z, see Eq.

(A.17). Therefore,

τ̂(Ẽ) = τ̂2({z}) · 1{λ(z)>0} +

∫
Rz

Ŝa((z, ra] ∩ {y : λ(y) > 0})dΓp(a) + Z

= Ŝ({y ∈ Ar(z) : λ(y) > 0}) + Ŝ((Lr(z) ∪ {z}) ∩ {y : λ(y) = 0, V (y| p, τ) = 0})

Now, recall that µ̃(A(z)) = Ŝ(Ar(z)) and

Ŝ(Ar(z)) = Ŝ(Ar(z) ∩ {y : λ(y) > 0}) + Ŝ(Ar(z) ∩ {y : λ(y) = 0})
(a)
= Ŝ({y ∈ Ar(z) : λ(y) > 0}) + Ŝ({z})1{λ(z)=0}

+

∫
Rz

Ŝa(Ar(z) ∩ {y : λ(y) = 0})dΓp(a)

(b)
= Ŝ({y ∈ Ar(z) : λ(y) > 0}) + Ŝ({z})1{λ(z)=0}

+

∫
Rz

Ŝa({ra})1{λ(ra)=0}1{ra 6=z}dΓp(a)

= Ŝ({y ∈ Ar(z) : λ(y) > 0}) + Ŝ((∂Ar ∪ {z}) ∩ {y : λ(y) = 0})

For the second term in (a) we use the disintegration of Ŝ, and in (b) we use the

congestion bound in Eq. (A.15). Hence, if we show that

Ŝ((Lr(z)∪{z})∩{y : λ(y) = 0, V (y|p, τ) = 0}) = Ŝ((Lr(z)∪{z})∩{y : λ(y) = 0}),

the proof will be complete. Let Q = (∂Ar ∪ {z}) ∩ {y : λ(y) = 0, V (y| p, τ) > 0}

then

Ŝ(Q) = Ŝ
(

(∂Ar ∪ {z}) ∩ {y : λ(y) = 0, V (y| p, τ) > 0}
)

= Ŝ
(

(∂Ar ∪ {z}) ∩ {y ∈ Lsupp(z) : λ(y) = 0, V (y| p, τ) > 0}︸ ︷︷ ︸
Q2

)
.
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Assume that Ŝ(Q2) > 0 then

τ2(∪Xsupp
a ∈Q2

(z,Xsupp
a )) ≤ Ŝ(∪Xsupp

a ∈Q2
(z,Xsupp

a ))

< Ŝ(∪Xsupp
a ∈Q2

(z,Xsupp
a )) + Ŝ(Q2)

= Ŝ(∪Xsupp
a ∈Q2

(z,Xsupp
a ])

≤ τ2(∪Xsupp
a ∈Q2

(z,Xsupp
a ])

where the first inequality comes from the congestion bound in Eq. (A.15) and

the definition of Q2, the second from Ŝ(Q2) > 0 and the last from the feasibility

of ŝ. Hence τ2(Q2) > 0 and, therefore, Lemma A.2 implies that in Q2 we have

U(y, p(y), sτ (y)) = V (y| p, τ). Since, λ(y) = 0 for y ∈ Q2 we conclude that in this

case we cannot have Ŝ(Q2) > 0. This completes the proof.

Part 6: Conclusion. We conclude by applying Proposition 1.4. The price-

equilibrium pair (p̂, τ̂) satisfies the hypothesis in Proposition 1.4, so we can create a

global price-equilibrium pair which we still denote by (p̂, τ̂) in C. This new solution

has the same objective that (p, τ) in A(z)c, but it dominates the platform revenue in

A(z). Therefore, (p̂, τ̂) revenue dominates (p, τ).

Proof of Eq. (A.17): We show that

γ̃a

(
{(x, y) ∈ (z,Xa]× (z,Xa] : y > x}

)
= 0, Γp − a.e. a ∈ Rz.

First we show that both measures µ̃ra and Ŝa satisfy:

µ̃ra((z, ba]) ≤ Ŝa((z, ca]) ∀ba, ca ∈ (z,Xa], ba ≤ ca, Γp − a.e. a ∈ Rz, (A.21)

where ba and ca lie in the ray indexed by a ∈ Rz. To see why this is true let us proceed

by contradiction. Let us denote by Q de set where Eq. (A.21) is not satisfied, we

have that Γp(Q) > 0. Note that for any a ∈ Q we can find ba and ca for which the

inequality in Eq. (A.21) is not satisfied, so let us thus fix such collection of ba and ca.

Moreover, from the definition of µ̃ra we deduce that for any a ∈ Q we have ha ≤ ba
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(otherwise µ̃ra((z, ba]) = 0 and, as a consequence, a could not belong to Q). Then,∫
Q

µ̃ra((z, ba])dΓp(a) =

∫
Q

µ̃a((z, ba] ∩ (ha, Xa]) + 1{ha∈(z,ba]} · (µ̃a(z, ha]−∆a)dΓp(a)

(a)

≤
∫
Q

µ̃a((z, ba] ∩ (ha, Xa]) + 1{ha≤ba} · (µ̃a(z, ha]−∆a)dΓp(a)

=

∫
Q

(µ̃a((ha, ba]) + µ̃a((z, ha])−∆a)dΓp(a)

=

∫
Q

(µ̃a((z, ba])−∆a)dΓp(a)

=

∫
Q∩{a:ra≤ba}

(µ̃a((z, ba])−∆a)dΓp(a)︸ ︷︷ ︸
(∗)

+

∫
Q∩{a:ra>ba}

(µ̃a((z, ba])−∆a)dΓp(a)︸ ︷︷ ︸
(∗∗)

,

where (a) follows from µ̃a(z, ha] ≥ ∆a. For (∗) we have

(∗) =

∫
Q∩{a:ra≤ba}

(µ̃a((z, ba])− µ̃((z,Xa]) + Ŝa((z,Xa]))dΓp(a)

=

∫
Q∩{a:ra≤ba}

(−µ̃((ba, Xa]) + Ŝa((z,Xa]))dΓp(a)

≤
∫
Q∩{a:ra≤ba}

Ŝa((z,Xa])dΓp(a)

=

∫
Q∩{a:ra≤ba}

Ŝa((z, ca])dΓp(a),

the last inequality holds because

Now we analyze (∗∗). Denote by Qr the set of rays a ∈ Rz such that ra > ba and
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a ∈ Q. Then∫
Qr
µ̃a((z, ba])dΓp(a) = µ̃

( ⋃
a∈Qr

(z, ba]
)

= τ
( ⋃
a∈Qr

(z, ba]×
⋃
a∈Qr

(z,Xa]
)

+ τ
( ⋃
a∈Qr

(z, ba]× {z}
)

︸ ︷︷ ︸
,`r

= τ
( ⋃
a∈Qr

(z, ba]×
⋃
a∈Qr

(z, ba]
)

+ τ
( ⋃
a∈Qr

(z, ba]×
⋃
a∈Qr

(ba, Xa]
)

+ `r

= τ
( ⋃
a∈Qr

(z, ba]×
⋃
a∈Qr

(z, ba]
)

+ `r

≤ τ2

( ⋃
a∈Qr

(z, ba]
)

+ `r

≤ Ŝ
( ⋃
a∈Qr

(z, ba]
)

+ `r

=

∫
Qr
Ŝa((z, ca])dΓp(a) + `r,

the first equality comes from the definition of µ̃a and then integrating this disinte-

gration of measures. The second and fourth equality come from Proposition 1.3 part

(ii). The last inequality comes from the congestion bound. For ∆a we have∫
Qr

∆adΓp(a) = µ̃
( ⋃
a∈Qr

(z,Xa]
)
− Ŝ

( ⋃
a∈Qr

(z,Xa]
)

= τ
( ⋃
a∈Qr

(z,Xa]×
⋃
a∈Qr

(z,Xa]
)

+ τ
( ⋃
a∈Qr

(z,Xa]× {z}
)

− Ŝ
( ⋃
a∈Qr

(z,Xa]
)

≥ τ
( ⋃
a∈Qr

(z,Xa]×
⋃
a∈Qr

(z,Xa]
)

+ `r − Ŝ
( ⋃
a∈Qr

(z,Xa]
)

= τ2

( ⋃
a∈Qr

(z,Xa]
)

+ `r − Ŝ
( ⋃
a∈Qr

(z,Xa]
)

≥ `r,
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where the last inequality comes from Eq. (FRa). As a consequence we deduce that

(∗∗) =

∫
Q∩{a:ra>ba}

(µ̃a((z, ba])−∆a)dΓp(a) ≤
∫
Q∩{a:ra>ba}

Ŝa((z, ba])dΓp(a)

Putting together the bounds for (∗) and (∗∗) we deduce that∫
Q

µ̃ra((z, ba])dΓp(a) ≤
∫
Q

Ŝa((z, ca])dΓp(a),

since Γp(Q) > 0 the previous inequality yields a contradiction. We conclude that Eq.

(A.21) holds.

To finalize the proof of Eq. (A.17). Consider the set where Eq. (A.21) holds (the

complement of this set has Γp measure equal to zero). for any ray a in this suppose

that

γ̃a

(
{(x, y) ∈ (z,Xa]× (z,Xa] : y > x}

)
> 0.

From the proof of Lemma A.5 we deduce that there exists (x, y) ∈ (z,Xa] × (z,Xa]

such that y > x and γ̃a((z, x+ δ]× (y − δ,Xa)) > 0, where δ > 0 can be taken small

enough such that x+ δ < y − δ. Then,

Ŝa((z, x+ δ]) ≥ µ̃ra((z, x+ δ])

= γ̃a((z, x+ δ]× (z,Xa])

= γ̃a((z, x+ δ]× (z, x+ δ]) + γ̃a((z, x+ δ]× (x+ δ,Xa])

> γ̃a((z, x+ δ]× (z, x+ δ])

= Ŝa((z, x+ δ])− γ̃a((x+ δ,Xa]× (z, x+ δ]),

Thus,

γ̃a((x+ δ,Xa]× (z, x+ δ]) > 0, and we also have γ̃a((z, x+ δ]× (y − δ,Xa)) > 0,

but this is not possible because γ̃a is an optimal transport and, therefore, it is concen-

trated on a c-cyclically monotone set where c(x, y) = ‖x−y‖, see [66]. This concludes

the proof of Eq. (A.17).

�
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Lemma A.6 Let ν be a non-negative measure in C, and π1 a mapping be such that

π1(x, y) = x. Consider any measurable subset K of C and some z ∈ C then the

mappings ν(π1( · ∩ D) ∩K) and ν(π1( · ∩ (K × {z}))), defined on the Borel sets of

C × C, belong to M(C × C).

Proof of Lemma A.6. For any Borel set L ⊂ C × C define

τa(L) , ν(π1(L ∩ D) ∩K) and τb(L) , ν(π1(L ∩ (K × {z}))).

We show that τa, τb ∈M(C ×C). Note that because ν ∈M(C) for i ∈ {a, b} we have

that τi(∅) = 0, and for any Borel set L ⊆ C × C that τi(L) ∈ [0,∞). To verify σ−

additivity consider a countable partition {Ln}n∈N ⊆ C × C, we need to show that

τi

(⋃
n∈N

Ln
)

=
∑
n∈N

τi(Ln).

Note that from the definition of D and the fact the set K×{z} has second component

equal to 0, both collections {π1(Ln ∩ D)}n∈N and {π1(Ln ∩ (K × {z}))}n∈N form a

partition. Given this we can verify σ− additivity, we do it for both τa and τb at the

same time

τa

(⋃
n∈N

Ln
)

+ τb

(⋃
n∈N

Ln
)

= ν(π1(
⋃
n∈N

Ln ∩ D) ∩K) + ν(π1(
⋃
n∈N

Ln ∩K × {z}))

= ν(
⋃
n∈N

π1(Ln ∩ D) ∩K) + ν(
⋃
n∈N

π1(Ln ∩K × {z}))

=
∑
n∈N

ν(π1(Ln ∩ D) ∩K) +
∑
n∈N

ν(π1(Ln ∩K × {z}))

=
∑
n∈N

τa(Ln) +
∑
n∈N

τb(Ln),

where the third line comes from the σ−additivity of the ν measure. Thus τ ∈

M(C × C).

�
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A.3 Proofs for Section 1.6

A.3.1 Preliminars

We use m ∈M(C) denotes the Lebesgue measure in C. We use D to denote the subset

of C×C with equal first and second components, that is, D = {(x, y) ∈ C×C : x = y}.

For any measurable set B ⊆ C and a price-equilibrium pair (p, τ) we denote the

platform’s revenue in B under (p, τ) by RevB(p, τ). In case that B is C we simply

use Rev(p, τ).

Proof of Proposition 1.6. Let (p, τ) be any feasible price-equilibrium pair by

Lemma A.7 (which state and prove after this proof) we have V (x|p, τ) ≤ ψ1, Γ almost

everywhere in Cλ = C \ {0}. This yields the following upper bound for the platform’s

objective ∫
Cλ
V (x| p, τ) · sτ (x) dx ≤ ψ1 ·

∫
Cλ
sτ (x) dx ≤ ψ1 · µ1 ·m(C).

The maximum revenue the platform can achieve in this case is bounded above by

γ ·ψ1 ·µ1 ·m(C). Next, we show that the solution given in the statement of the lemma

is feasible and achieves the upper bound.

Flow feasibility. We show that τ ∈ F(µ). A complete definition of the

measure τ is τ(L) = µ(π1(L∩D). From the definition of τ it is clear that τ ∈M(C).

Furthermore, τ1 coincides with µ and so does τ2. Since µ is the Lebesgue measure

times a constant and Γ is the Lebesgue measure plus an atom, we have τ1, τ2 � Γ.

From this we can deduce that m− a.e in Cλ, sτ (x) equals µ1.

Equilibrium utilities. We show that V (x| p, τ) equals ψ1. Note that

U(y, p(y), sτ (y)) = ψ1, Γ− a.e. y in Cλ.

Fix x ∈ C, we have that

Γ({y ∈ C : U(y, p(y), sτ (y))− |y − x| > ψ1}) = 1{0−|0−x|>ψ1}

+ Γ({y ∈ C \ {0} : −|y − x| > 0}) = 0.
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Moreover, for any ε > 0

Γ({y ∈ C : U(y, p(y), sτ (y))− |y − x| > ψ1 − ε}) ≥ Γ({y ∈ Cλ : −|y − x| > ε}) > 0,

where the last inequality comes from the fact that Γ corresponds to the Lebesgue

measure (plus an atom). That is, V (x| p, τ) equals ψ1.

Equilibrium condition. Consider the equilibrium set

E ,
{

(x, y) ∈ C × C : U(y, p(y), sτ (y))− |y − x| = V (x| p, τ)
}
.

Then,

τ(E) = τ
({

(x, y) ∈ C × {0} : −|y−x| = ψ1

})
+τ
({

(x, y) ∈ C × Cλ : −|y−x| = 0
})

= µ(C).

We have proven that the solution is the statement is feasible, and because of the

values of V (·|p, τ) and sτ (·) we conclude that this solution achieves the upper bound.

�

Lemma A.7 Let p be any price mapping and τ a corresponding equilibrium flow.

Then for any measurable set B ⊆ Cλ such that 0 /∈ B and τ(B × Bc) = 0 we have

V (x|p, τ) ≤ ψ1, Γ− a.e. x in B.

Furthermore, in the pre-shock environment we can replace B with Cλ in the inequality

above.

Proof of Lemma A.7. Define the set

L , {x ∈ B : V (x|p, τ) ≤ ψ1}.

We would like to show that Γ(Lc) = 0 where the complement is taken with respect

to B. Suppose this is not the case, and note that

µ1 ·m(Lc) = µ(Lc) = τ(Lc × C) = τ(Lc × B) + τ(Lc × Bc),
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since Lc ⊆ B and τ(B × Bc) = 0, the second term in the expression above is zero.

This yields,

µ1 ·m(Lc) = τ(Lc × B)

= τ(Lc × B ∩ Lc) + τ(Lc × B ∩ L)

= τ(Lc × Lc) + τ(Lc × L)

There are two cases. First, if τ(Lc × L) > 0 then by Lemma A.5 there exists a pair

(x, y) ∈ Lc × L such that y ∈ IR(x|p, τ). Therefore, by Lemma 1.3 we have

V (y|p, τ) = V (x|p, τ) + |x− y|.

However, since (x, y) ∈ Lc × L

V (y|p, τ) ≤ ψ1 and V (x|p, τ) > ψ1.

Using the previous equation we can deduce that ψ1 > ψ1, which is not possible. The

second case is τ(Lc × L) = 0. Note that

τ2(Lc) = τ(C × Lc) ≥ τ(Lc × Lc) = µ1 ·m(Lc).

We also have that

τ2(Lc) =

∫
Lc
sτ (x)dΓ(x) ≤

∫
Lc
ψ−1
x (V (x| p, τ))dΓ(x) < µ1 · Γ(Lc),

where the first inequality comes from Proposition 1.5, and the second from the fact

that ψx(·) is a strictly decreasing function, the definition of Lc and Γ(Lc) > 0. Note

that this inequality holds in both of the cases in the statement of the lemma. In both

cases we have 0 /∈ B so Γ(Lc) equals m(Lc), yielding

µ1 ·m(Lc) ≤ τ2(Lc) < µ1 · Γ(Lc) = µ1 ·m(Lc).

�
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A.3.2 Proofs for Section 1.6.2

Proof of Proposition 1.7. The proof of this proposition consists of several

steps. In the first step we establish that the origin is an attraction region, characterize

some properties of it and compute the value of the equilibrium utility function outside

the attraction region. After this step, the drivers utility function will be pinned down

in the entire city as a function of its value in the origin, V (0| p, τ). The second step

supplies us with a full characterization, up to V (0|p, τ), of the post-relocation supply

τ2 in the entire city. Finally, in step three we show how to solve for the optimal value

of V (0| p, τ) and, therefore, we pin down both V (·| p, τ) and τ2. We further show how

to find the optimal p(0) and the corresponding optimal flow τ .

Step 1: We show that we can restrict attention to solutions (p, τ) such that

Xl < 0 < Xr, Xr = V (0) − ψ1 and Xl = −Xr. Furthermore, such solutions have

V (x| p, τ) = ψ1 for all x ∈ C \ [Xl, Xr].

Proof of Step 1: Let (p, τ) be a feasible solution. First, we show that at any

optimal solution we must have Xl < 0 < Xr. By Lemma A.8 (which we state and

prove after the proof of the present proposition) we have that if either of the sets

{x ∈ (0, H] : 0 ∈ IR(x|p, τ)} or {x ∈ [−H, 0) : 0 ∈ IR(x|p, τ)} is empty then the

revenue the platform makes satisfies

1

γ
·Rev(p, τ) ≤ ψ1 · µ1 · 2 ·H.

Now we construct a new feasible solution (p̃, τ̃) for which both sets are non-empty

and such that

1

γ
·Rev(p̃, τ̃) > ψ1 · µ1 · 2 ·H, (A.22)

where p̃ equals ρ1 in C\{0} and p(0) is appropriately chosen. This will imply that any

optimal solution must satisfy {x ∈ (0, H] : 0 ∈ IR(x|p, τ)} 6= ∅ and {x ∈ [−H, 0) :

0 ∈ IR(x|p, τ)} 6= ∅ and, therefore, Xl < 0 < Xr. This also implies that the optimal

revenue in this case is strictly larger than the one in the pre-shock environment.
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Our solution will send flow in [−h, h] to the origin, where h > 0 is to be deter-

mined. Inside this interval, all the flow in the subinterval [−h̄(h), h̄(h)] goes to the

origin where 0 ≤ h̄(h) ≤ h. The rest of the flow in [−h, h] partially stays at its

original position and partially goes to the origin. We now show how to determine

h̄(h) and h. For any given h > 0 we define

h̄(h) , (ψ1 + h− α · ρ1)+,

note that when ψ1 equals α · ρ1 we have that h̄(h) equals h, and we will send all the

flow in [−h, h] to the origin. However, when ψ1 < α · ρ1 not all the flow will be sent

to the origin. Define

µ1(x) , α · ρ1 ·
λ1F (ρ1)

ψ1 + h− |x| ,

then

λ1F (ρ1)

µ1(x)
≤ 1, x ∈ [−h, h] \ [−h̄(h), h̄(h)].

The idea is that for every location x ∈ K(h) , [−h, h] \ [−h̄(h), h̄(h)] we will leave

a density µ1(x) of flow there and send µ1 − µ1(x) (note that this difference is non-

negative) to the origin. In order to make this possible, we need to chose h appropri-

ately. Observe that the total supply we will send to the origin is

ST (h) = 2h̄(h)µ1 + 2

∫ h

h̄(h)

(µ1 − µ1(x)) dm(x),

where limh→0 ST (h) = 0. Hence, since ψ1 < α ·V , we can always find h > 0 such that

α · V − h ≥ α · F−1
(

1− ST (h)

λ0

)
− h ≥ ψ1. (A.23)

This yields

F
(ψ1 + h

α

)
≥ ST (h)

λ0

.

Now we construct the solution (p̃, τ̃). Fix any h satisfying Eq. (A.23) and consider

prices defined by

p̃(x) =


ψ1+h
α

if x = 0

ρ1 if x ∈ C \ {0},
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and flows for any measurable set L ⊆ C × C defined by

τ̃(L) = µ(π1(L ∩ D) ∩ [−h, h]c) + µ(π1(L ∩ [−h̄(h), h̄(h)]× {0}))

+G0(π1(L ∩K(h)× {0})) +G1(π1(L ∩ D) ∩K(h)),

where G0, G1 are measures defined for any measurable set B ⊆ K(h) by

G0(B) ,
∫
B
(µ1 − µ1(x)) dm(x), G1(B) ,

∫
B
µ1(x) dm(x).

We argue that (p̃, τ̃) is a feasible solution that complies with Eq. (A.22). From

Lemma A.6 we have that τ̃ ∈M(C ×C), also note that for any measurable set B ⊆ C

the first marginal of τ̃ satisfies

τ̃1(B) = µ(B∩ [−h, h]c)+µ(B∩ [−h̄(h), h̄(h)])+G0(B∩K(h))+G1(B∩K(h)) = µ(B).

The post-relocation supply measure is

τ̃2(B) = µ(B ∩ [−h, h]c) + ST (h) · 1{0∈B} +G1(B ∩K(h)),

clearly τ̃2 � Γ. Therefore, τ̃ ∈ F(µ). Next, we need to show that τ̃ is a supply

equilibrium. The Radon-Nikodym derivative of τ̃2 with respect the city measure is

(Γ-a.e)

s(x) =



ST (h) if x = 0

0 if x ∈ [−h̄(h), h̄(h)] \ {0}

µ1(x) if x ∈ K(h)

µ1 if x ∈ [−h, h]c.

Indeed,∫
L
s(x) dΓ(x) = ST (h)1{0∈L} +

∫
L∩[−h,h]c

µ1 dm(x) +

∫
L∩K(h)

µ1(x) dm(x) = τ̃2(L),
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that is, dτ̃2
dΓ

(·) equals s(·) Γ-a.e. From this we can compute V (·|p̃, τ̃). Note that (Γ-a.e)

Ũ(y) = U
(
y, p̃(y),

dτ̃2

dΓ
(y)
)

=



ψ1 + h if y = 0;

α · ρ1 if y ∈ [−h̄(h), h̄(h)] \ {0};

α · ρ1 · λ1F (ρ1)
µ1(x)

if y ∈ K(h);

ψ1 if y ∈ [−h, h]c.

Let a(x) be defined by

a(x) ,


ψ1 + h− |x| if x ∈ [−h, h],

ψ1 if x ∈ [−h, h]c.

We argue that V (·|p̃, τ̃) ≡ a(·). Fix x ∈ C, it is not hard to verify that

Γ(y ∈ C : Ũ(y)− |y − x| > a(x)) = 0,

and, thus, a(x) ≥ V (x| p̃, τ̃). Suppose that x ∈ [−h, h] and a(x) > V (x| p̃, τ̃) then,

because Γ({0}) > 0, we have that

ψ1 + h− |x| = a(x) > V (x| p̃, τ̃) ≥ Π(x, 0) = ψ1 + h− |0− x|,

a contradiction. Thus, for x ∈ [−h, h] we have a(x) = V (x|p̃, τ̃). For any other x we

can use a similar argument to conclude that a(x) = V (x|p̃, τ̃).

Now we are ready to verify the equilibrium condition. Observe that

E =
{

(x, y) ∈ C × C : Π(x, y) = V (x|p̃, τ̃)
)}

= ([−h, h]× {0}) ∪ ([−h, h]c × [−h, h]c ∩ D) ∪ (K(h)×K(h) ∩ D),

then

τ̃(E) = µ(π1(E ∩ D) ∩ [−h, h]c) + µ(π1(E ∩ [−h̄(h), h̄(h)]× {0}))

+G1(π1(E ∩ D) ∩K(h)) +G0(π1(E ∩K(h)× {0}))

= µ([−h, h]c) + µ([−h̄(h), h̄(h)]) +G1(K(h)) +G0(K(h))

= µ(C).
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This proves that τ̃ is an equilibrium. Next we need to show (p̃, τ̃) satisfies Eq. (A.22).

From Proposition 1.1 we have

γRev(p̃, τ̃) =

∫
C
V (x) · dτ̃2

dΓ
(x)dΓ(x)

= (ψ1 + h) · ST (h) + 2

∫ h

h̄(h)

(ψ1 + h− x)µ1(x) dm(x) + ψ1 · µ1 · 2(H − h)

≥ h · ST (h) + ψ1

(
ST (h) + 2

∫ h

h̄(h)

µ1(x)dx
)

+ ψ1 · µ1 · 2(H − h)

= h · ST (h) + ψ1

(
2h̄(h)µ1 + 2

∫ h

h̄(h)

(µ1 − µ1(x))dx+ 2

∫ h

h̄(h)

µ1(x)dx
)

+ ψ1 · µ1 · 2(H − h)

= h · ST (h) + ψ1 · µ1 · 2 ·H.

Since h ·ST (h) > 0, Eq. (A.22) obtains. This proves that Xl < 0 < Xr in any optimal

solution.

The next step of the proof of Step 1 consists on arguing that given V (0), Xr =

V (0) − ψ1 and Xl = −(V (0) − ψ1). Consider a feasible solution (p, τ) where p(·)

equals ρ1 everywhere but at the origin, and Xl < 0 < Xr. From Proposition 1.3 and

the fact that µ({Xr}) = 0 we have that

τ([Xr, H]× [Xr, H]c) ≤ µ({Xr}) + τ((Xr, H]× [Xr, H]c) = 0.

Then by Lemma A.7 we have that V (x) ≤ ψ1, Γ− a.e. x in [Xr, H]. This, together

with the continuity of V (·) imply that V (x) ≤ ψ1 for all x ∈ [Xr, H].

Suppose first that Xr < V (0)− ψ1 then

V (Xr| p, τ) = V (0)−Xr > ψ1,

but this violates the continuity of V to the right of Xr. Thus Xr ≥ V (0)−ψ1. On the

other hand, supposeXr > V (0)−ψ1 then we must have that ψ1 > V (x|p, τ) = V (0)−x

for all x ∈ (V (0)− ψ1, Xr]. Observe that

µ([V (0)− ψ1, Xr]) ≥ τ2([V (0)− ψ1, Xr]) =

∫
[V (0)−ψ1,Xr]

sτ (x) dΓ(x). (A.24)
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Define the set

K , {y ∈ [V (0)− ψ1, Xr] : sτ (y) ≤ µ1},

it must be that Γ(K) = 0; otherwise, from the definition of V (Xr| p, τ) we have

V (0)−Xr = V (Xr) ≥ U(y, ρ1, s
τ (y))− |y −Xr|, Γ− a.e. y in K

≥ U(y, ρ1, µ1)− |y −Xr|, Γ− a.e. y in K

= ψ1 − (Xr − y), Γ− a.e. y in K,

and Γ(K) > 0 implies that V (0) − y ≥ ψ1 for some y ∈ (V (0) − ψ1, Xr]. However,

we know that ψ1 > V (0) − y for y ∈ (V (0) − ψ1, Xr] and, therefore, we must have

Γ(K) = 0. Using this in Eq. (A.24) yields

µ([V (0)− ψ1, Xr]) > µ1 · Γ([V (0)− ψ1, Xr]) = µ([V (0)− ψ1, Xr]),

which is not possible. Hence, Xr = V (0)−ψ1 and the same arguments applies to Xl,

yielding Xl = −(V (0)− ψ1).

In order to conclude the proof for Step 1 we show that we can restrict attention

to solutions (p, τ) such that V (x| p, τ) equals ψ1 for all x ∈ [Xl, Xr]
c. In turn, this

will show that sτ (x) equals µ1, Γ − a.e. x in [Xl, Xr]
c. We base the proof of the

latter statements in Lemma A.9 (which we state and prove after the proof of the

present result), this lemma enables us to separate the city into two regions [Xl, Xr]

and [Xl, Xr]
c. For each region we can modify the prices and equilibria, and then paste

them together to obtain a new solution that is an equilibrium for the entire city.

Consider a feasible solution (p, τ) such that Xl < 0 < Xr, Xr = V (0) − ψ1 and

Xl = −Xr. Since τ([Xl, Xr]× [Xl, Xr]
c) = 0 and 0 /∈ [Xl, Xr]

c, Lemma A.7 delivers

1

γ
·Rev(p, τ) ≤ 1

γ
·Rev[Xl,Xr](p, τ) + 2 · µ1 · ψ1 · (H −Xr). (A.25)

We show that we can always modify (p, τ) so that the previous upper bound is achieve.

Let B = [Xl, Xr], since τ(B × Bc) = 0 and τ(Bc × B) = 0, Lemma A.9 ensures that
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(p, τ)|B is a price equilibrium pair in B. Such equilibrium satisfies VB(x) = ψ1 for

x ∈ ∂B.

Now, we choose prices pB
c
(x) equal to ρ1 for all x ∈ Bc and a flow τB

c
defines by

for any measurable set L1 × L2 ⊆ Bc × Bc

τB
c

(L1 × L2) = µ(L1 ∩ L2).

Then, it is easy to verify (as we did in the pre-shock environment, see Proposition

1.6) that (pB
c
, τB

c
) forms a price-equilibrium pair in Bc. This solution satisfy that

VBc(x) = ψ1 for x ∈ Bc, and that sτ
Bc

(x) equals µ1, Γ− a.e. x in Bc.

Lemma A.9 enables us to paste the solutions (p, τ)|B and (pB
c
, τB

c
), and generate

a new solution in the entire city. Such solution preserve the prices and flows in both

B and Bc and, therefore, the upper bound in Eq. (A.25) is achieved. In conclusion,

we can restrict attention to solutions (p, τ) such that V (x| p, τ) equals ψ1 for all

x ∈ [Xl, Xr]
c, and that sτ (x) equals µ1, Γ− a.e. x in [Xl, Xr]

c.

Step 2: We characterize sτ (·) (this completely characterizes τ2). Let

X0
r = (V (0)− α · ρ1))+ and X0

l = −X0
r ,

and

µ1(y) , α · ρ1 ·
λ1 · F (ρ1)

V (0)− |y| , ST = 2 · µ1 ·X0
r + 2

∫ Xr

X0
r

(µ1 − µ1(x))dx.

In this step we show that (Γ− a.e)

sτ (y) =



ST if y = 0

0 if y ∈ [X0
l , X

0
r ] \ {0}

µ1(y) if y ∈ [Xl, Xr] \ [X0
l , X

0
r ]

µ1 if y ∈ [Xl, Xr]
c.

Proof of Step 2: Note that at the end of the previous step we showed the result

for y ∈ [Xl, Xr]
c. So first we show

sτ (y) = 0, Γ− a.e. x in [X0
l , X

0
r ] \ {0}.
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Define the set K1 , {y ∈ [X0
l , X

0
r ] \ {0} : sτ (y) > 0}. We argue that Γ(K1) = 0. If

this is not the case then Γ(K1) > 0 and, therefore,

τ2(K1) =

∫
K1

sτ (x) dΓ(x) > 0.

Then Lemma A.2 ensures that

U
(
x, ρ1, s

τ (x)
)

= V (x| p, τ) τ2 − a.e. x ∈ K1, (A.26)

but for x ∈ K1 ⊆ [X0
l , X

0
r ] \ {0} we have V (x| p, τ) = V (0) − |x| and V (0) − |x| ≥

α · ρ1. Then Eq. (A.26) implies the existence of x ∈ (X0
l , X

0
r ) \ {0} such that

α · ρ1 < U
(
x, ρ1, s

τ (x)
)
≤ α · ρ1, yielding a contradiction. Next we show that

sτ (y) = µ1(y), Γ− a.e. y in [Xl, Xr] \ [X0
l , X

0
r ].

By Lemma A.2 we have that

U
(
x, ρ1, s

τ (x)
)

= V (x) = V (0)− |x|, Γ− a.e. x in [Xl, Xr] \ [X0
l , X

0
r ], (A.27)

but for any x ∈ [Xl, Xr]\[X0
l , X

0
r ] the definition of X0

l and X0
r imply that V (0)−|x| <

α · ρ1. Thus Eq. (A.27) and the definition of U
(
x, ρ1, s

τ (x)
)

deliver

λ1 · F (ρ1)/sτ (x) < 1, Γ− a.e. x in [Xl, Xr] \ [X0
l , X

0
r ].

Using the again Eq. (A.27) and the definition of U
(
x, ρ1, s

τ (x)
)

we conclude that

sτ (x) = α · ρ1 ·
F (ρ1)

V (0)− |x| , Γ− a.e. x in [Xl, Xr] \ [X0
l , X

0
r ],

as needed. Next we compute sτ (0),

sτ (0) · Γ({0}) =

∫
{0}
sτ (x) dΓ = τ2({0})

= τ(C × {0})

= τ([Xl, Xr]× {0})

= τ([X0
l , X

0
r ]× {0})︸ ︷︷ ︸

(1)

+ τ([Xl, Xr] \ [X0
l , X

0
r ]× {0})︸ ︷︷ ︸

(2)

,
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for (1) we have

τ([X0
l , X

0
r ]× {0}) = µ([X0

l , X
0
r ])− τ([X0

l , X
0
r ]× C \ {0})

= 2µ1 ·X0
r − τ([X0

l , X
0
r ]× [X0

l , X
0
r ] \ {0})

(a)
= 2µ1 ·X0

r ,

in (a) we use sτ (x) = 0, Γ− a.e. x in [X0
l , X

0
r ] \ {0}. For (2) we have

τ([Xl, Xr] \ [X0
l , X

0
r ]× {0}) = µ([Xl, Xr] \ [X0

l , X
0
r ])

− τ([Xl, Xr] \ [X0
l , X

0
r ]× [Xl, Xr] \ {0})

= 2µ1 · (Xr −X0
r )

− τ([Xl, Xr] \ [X0
l , X

0
r ]× [X0

l , X
0
r ] \ {0})

− τ([Xl, Xr] \ [X0
l , X

0
r ]× [Xl, Xr] \ [X0

l , X
0
r ])

= 2µ1 · (Xr −X0
r )− 0− τ2([Xl, Xr] \ [X0

l , X
0
r ])

= 2µ1 · (Xr −X0
r )−

∫
[Xl,Xr]\[X0

l ,X
0
r ]

µ1(x) dΓ,

from this we conclude that

sτ (0) = 2 · µ1 ·X0
r + 2

∫ Xr

X0
r

(µ1 − µ1(x)) dx.

Step 3: Now we can provide a full solution for the optimization problem. Recall

that we are only optimizing over p(0) or, equivalently, over V (0). By our congestion

bound (see Proposition 1.5), any solution has to satisfy V (0|p, τ) ≤ ψ0(sτ (0)). More-

over, Step 2 characterizes the supply-demand ratio at every location as a function

of V (0). Thus, the following formulation is a natural relaxation for the platform’s

problem

max
V (0)

V (0) · ST + 2 · ψ1 · µ1 · (H −X0
r ) (Ploc−reac)

s.t X0
r = (V (0)− α · ρ1))+, Xr = V (0)− ψ1

ST = 2X0
rµ1 + 2

∫ Xr

X0
r

(µ1 − µ1(x))dx, ψ1 < V (0) ≤ ψ0(ST ).
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We show that the optimal V ?(0) in (Ploc−reac) is the unique solution to

V ?(0) = ψ0(ST (V ?(0))).

The optimal solution to the platform’s problem set price at the origin p?(0) =

ρloc0 (ST (V ?(0))) such that p?(0) ≥ ρ1, and flows for any measurable set B ⊂ C × C

given by

τ(B) = µ(π1(B ∩ D) ∩ [Xl, Xr]
c) + µ(π1(B ∩ [X0

l , X
0
r ]× {0}))

+G1(π1(B ∩ D) ∩ [Xl, Xr] \ [X0
l , X

0
r ]) +G0(π1(B ∩ [Xl, Xr] \ [X0

l , X
0
r ]× {0})),

where G0, G1 are measures defined for any measurable set L ⊂ [Xl, Xr] \ [X0
l , X

0
r ] by

G0(L) ,
∫
L
(µ1 − µ1(x)) dm(x), G1(L) ,

∫
L
µ1(x) dm(x).

Proof of Step 3: The proof consists of two parts. First, we show that V ?(0) as

stated above is an optimal solution for (Ploc−reac). To do this we prove that ST (V (0))

is increasing for V (0) > ψ1, with ST (ψ1) = 0. This implies that ψ0(ST (V (0))) is

decreasing and, therefore, it crosses with V (0) at only one point. Then, we show

the objective function increases with V (0). These two facts imply the optimality of

V ?(0). Second, we show that (p, τ) with p(0) = p?(0) (and equal to ρ1 for x 6= 0)

and and τ as stated above, are a feasible price-equilibrium pair that achieve the same

revenue than the optimal solution of (Ploc−reac). Since this problem is a relaxation

to our original optimization problem we have optimality.

We begin with the first part. Note that

ST (V (0)) = 2µ1 · (V (0)− ψ1) + 2ψ1 · µ1 · log
( ψ1

V (0)− (V (0)− αρ1)+

)
.

From this it follows that ST (ψ1) = 0. If V (0) ≥ αρ1 then ST (V (0)) is clearly in-

creasing. If V (0) ∈ (ψ1, αρ1) then the derivative of ST (V (0)) with respect to V (0)

equals

2µ1 − 2ψ1 · µ1 ·
V (0)

ψ1

· ψ1

V (0)2
= 2µ1 − 2ψ1 · µ1 ·

1

V (0)
,
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which is nonnegative if and only if V (0) ≥ ψ1. Since this is in our domain, we conclude

that ST (·) is increasing in (ψ1, αρ1) and, therefore, is increasing for all V (0) > ψ1.

Next, we show the objective is increasing in V (0), the objective function is

V (0) · ST (V (0)) + 2 · ψ1 · µ1 · (H − (V (0)− αρ1)+),

when V (0) ≥ α · ρ1, the objective becomes

2µ1 · V (0) · (V (0)− ψ1) + 2ψ1 · µ1 · V (0) · log
( ψ1

αρ1

)
+ 2 · ψ1 · µ1 · (H − V (0) + αρ1).

Its derivative is non-negative if and only if 2V (0)
ψ1
≥ 2+log

(
αρ1

ψ1

)
, but from V (0) ≥ α·ρ1

and that the logarithm is a concave function the latter inequality is always true.

Similarly, for V (0) ∈ (ψ1, α · ρ1) the objective’s derivative is non-negative if and only

if 2V (0)
ψ1
≥ 2 + log

(
V (0)
ψ1

)
, which, since V (0) > ψ1, is always true. Observe that in

both cases the inequalities for the sign of the objective’s derivative is strict except

when V (0) = ψ1. Thus, the objective is strictly increasing in the domain.

For the second part we need to show that (p, τ) with p(0) = p?(0) (and equal to ρ1

for x 6= 0) and and τ , implement the solution of (Ploc−reac). To do this we first need

to argue that this solution is feasible. It can be easily seen that this flow yields the

exact same flows as in Step 2, only this time we replace V ?(0) in all the quantities

that depend on V (0). Given the value of sτ and the fact that under p?(0) we have

U(0, p(0), sτ (0)) = V (0| p, τ) = V ?(0), we can do the same as we did in Step 1(to

show that τ̃ is an equilibrium) and show that τ is an equilibrium. Since we have

pinned the value of V (0| p, τ) (and thus the value of V (| p, τ) in the entire city) and

the value of sτ (·), it is easy to see (using Proposition 1.1) that 1
γ
·Rev(p, τ) coincides

with the optimal value of (Ploc−reac). Therefore, (p, τ) is the optimal solution.

To conclude we argue that p?(0) ≥ ρ1. There are two cases. If µ1 ≤ λ1 · F (ρ1)

then ψ1 equals α ·ρ1. Since V ?(0) > ψ and V ?(0) = ψ0(ST (V ?(0))) we have have that

α · ρ1 = ψ1 < V ?(0) = ψ0(ST (V ?(0))) ≤ α · ρloc0 (ST (V ?(0))) = α · p?(0),
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that is, ρ1 < p?(0). The second case is µ1 > λ1 · F (ρ1). Here ρ1 equals ρu and, since

ρloc0 (ST (V ?(0))) equals max{ρbal0 , ρu}, we have that ρ1 ≤ p?(0).

�

Lemma A.8 Let (p, τ) be a feasible price-equilibrium pair for either the local price

response environment (Section 1.6.2) or the global price response environment (Sec-

tion 1.6.3). If either {x ∈ (0, H] : 0 ∈ IR(x|p, τ)} = ∅ or {x ∈ [−H, 0) : 0 ∈

IR(x|p, τ)} = ∅, then the platform’s objective satisfies

γ ·Rev(p, τ) ≤ ψ1 · µ1 · 2 ·H.

Proof of Lemma A.8. WLOG let us just assume that {x ∈ (0, H] : 0 ∈

IR(x|p, τ)} = ∅. That is, for all x ∈ (0, H] we have 0 /∈ IR(x|p, τ). In turn,

this implies that τ((0, H]× [−H, 0]) = 0 and, therefore, by Lemma A.7 we conclude

that

V (x|p, τ) ≤ ψ1 Γ− a.e. in (0, H],

which, from the continuity of V (·|p, τ), implies that V (x|p, τ) ≤ ψ1 for all x ∈ [0, H].

Now, we show that the same bound holds for x ∈ [−H, 0). If τ([−H, 0)× B) = 0 for

any B ⊂ [0, H], we can use Lemma A.7 to obtain the upper bound. On the other

hand, if there exists B ⊂ [0, H] such that τ([−H, 0)×B) > 0 then by Lemma A.5 we

know there exists a pair (x, y) ∈ [−H, 0)×B for which y ∈ IR(x| p, τ). Thus, we can

define

x = inf{z ∈ [−H, 0) : y ∈ IR(z| p, τ)},

and by Proposition 1.3, y ∈ IR(x| p, τ). Also, from Lemma 1.3 we have

V (z|p, τ) = V (x|p, τ) + z − x, ∀ z ∈ [x, y].

This implies V (z|p, τ) ≤ V (y|p, τ) for all z ∈ [x, y], and because y ∈ B ⊂ [0, H] we

have V (y|p, τ) ≤ ψ1, yielding V (z|p, τ) ≤ ψ1 for all z ∈ [x, y]. Furthermore, from

Lemma A.5 and the definition of x we can conclude that τ([−H, x] × (x,H]) = 0
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which together with Lemma A.7 and the continuity of V imply that V (x|p, τ) ≤ ψ1

for all x ∈ [−H, x]. Completing the argument for the upper bound.

In order to bound the revenue, simply note that

1

γ
·Rev(p, τ) =

∫
C
V (x)sτ (x) dΓ(x) ≤ ψ1 ·

∫
C
sτ (x) dΓ(x) = ψ1 · µ1 · 2 ·H.

�

Lemma A.9 (Equilibria Separation and Pasting) Consider a set B ⊂ C such that

both B and Bc are intervals or union of intervals with Γ(∂B) = 0.

1. (Separation) Let (p, τ) be a price-equilibrium in C, if τ(B×Bc) = 0 and τ(Bc×B) =

0 then (p|B, τ |B×B) and (p|Bc , τ |Bc×Bc) are price-equilibrium pairs in B and Bc, re-

spectively. Moreover, V (·|p|B, τ |B×B) equals V (·|p|Bc , τ |Bc×Bc) in ∂B, V (·|p|B, τ |B×B)

coincides with V (·| p, τ)|B and the same holds for Bc.

2. (Pasting) Suppose we have two price-equilibrium pairs (pB, τB) and (pB
c
, τB

c
) in B

and Bc such that τB ∈ FB(µ|B) and τB
c ∈ FBc(µ|Bc), respectively. If V (·| pB, τB)

equals V (·| pBc , τBc) in ∂B then the flow τ defined by for any measurable set L ⊆

C × C

τ(L) = τB(L ∩ B × B) + τB
c

(L ∩ Bc × Bc),

belongs to F(µ) and is an equilibrium in C for a price p equal to pB in B and equal to

pB
c

in Bc. Moreover, V (x|p, τ) = V (x| pB, τB) in B and V (x|p, τ) = V (x| pBc , τBc)

in Bc.

Proof of Lemma A.9. Separation. Suppose that τ(B × Bc) = 0 and τ(Bc ×

B) = 0. Let τB = τ |B×B and pB = p|B, we show that (pB, τB) is a price-equilibrium

pair. The proof for (p|Bc , τ |Bc×Bc) is analogous and, thus, omitted. We need to prove

that τB ∈ FB(µB), where µB coincides with µ|B, and that the set

E|B ,
{

(x, y) ∈ B × B : Π(x, y, pB(y),
dτB2
dΓ|B

(y)) =
B

ess sup Π(x, ·, pB(·), dτ
B
2

dΓ|B
(·)
)}
,
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satisfies τB(E|B) = µ|B(B).

First we verify that τB ∈ FB(µB). Since τB is the restriction of τ to B × B it

clearly belongs to M(B × B). Also, for any L1 measurable subset of B we have that

τB1 (L1) equals

τB(L1 × B) = τ((L1 × B) ∩ (B × B)) = τ(L1 × B) = τ(L1 × C) = τ1(L1) = µ(L1).

Thus, τB1 = µ|B. Now we need to prove that τB2 � Γ|B. Observe that for any L2

measurable subset of B we have that τB2 (L2) equals

τB(B × L2) = τ((B × L2) ∩ (B × B)) = τ(B × L2) = τ(C × L2) = τ2(L2),

that is, τB2 = τ2|B. Therefore, since τ2 � Γ, we have that τB2 � Γ|B. In turn, τB ∈ FB.

Now we show τB(E|B) = µ|B(B). It suffices to prove that τB(E|cB) = 0 where the

complement is taken with respect to B × B, we do this by contradiction. Assume

that τB(E|cB) > 0, this implies that 0 < τB(E|cB) = τ(E|cB), and we must have that

τ2(B) > 0, indeed

0 < τ(E|cB) ≤ τ(C × B) = τ2(B).

Next, observe that for any L2 measurable subset of B

τB2 (L2) = τ2(L2) =

∫
L2

sτ (x) dΓ(x) =

∫
L2

sτ (x) dΓ|B(x),

therefore,

dτB2
dΓ|B

(x) = sτ (x), Γ− a.e. x in B. (A.28)

This implies that

V (x|pB, τB) = ess sup
B

Π(x, ·, pB(·), dτ
B
2

dΓ|B
(·)
)

= ess sup
B

Π(x, ·, p(·), dτ2

dΓ
(·)
)

= VB(x|p, τ).

(A.29)

Consider the set G , {y ∈ B :
dτB2
dΓ|B

(y) = sτ (y)}. Then, by Eq. (A.28) we have

τ(E|cB ∩ (B × Gc)) ≤ τ(C × Gc) = τ2(Gc) = 0,
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where the complement is take with respect to B. Therefore, 0 < τ(E|cB) = τ(E|cB ∩

(B × G)) and we can conclude that

τ
(
{(x, y) ∈ B × B : Π(x, y, p(y),

dτ2

dΓ
(y)) 6= VB(x|p, τ)}︸ ︷︷ ︸

,R

)
> 0.

Define the sets R− and R+ by

R− = {(x, y) ∈ B × B : Π(x, y, p(y),
dτ2

dΓ
(y)) > VB(x|p, τ)}

R+ = {(x, y) ∈ B × B : Π(x, y, p(y),
dτ2

dΓ
(y)) < VB(x|p, τ)},

and note that R = R−∪R+. To obtain a contradiction we argue that τ(R−∪R+) = 0.

Consider first the set R+, and note that τ(R+) = τ(R+ ∩ E). However, any (x, y) ∈

R+ ∩ E satisfies

Π(x, y, (p(y),
dτ2

dΓ
(y)) < VB(x|p, τ) and Π(x, y, (p(y),

dτ2

dΓ
(y)) = V (x|p, τ),

but V (x) ≥ VB(x) implies that R+ ∩ E = ∅ and, therefore, τ(R+) = 0.

Consider R−. Define A , {y ∈ B : U(y) = VB(y|p, τ)}, then by Lemma A.2 we

have τ(R−) = τ(R− ∩ (B × A)). Take any (x, y) ∈ R− ∩ (B × A) then VB(y|p, τ) −

|y− x| > VB(x|p, τ), which, because of the Lipchitz property (see Lemma 1.1), is not

possible. Thus, R− ∩ (B×A)) = ∅ and we have that τ(R−) = 0. This proves that τB

is an equilibrium in B.

Now we show that V (x|pB, τB) = V (x|pBc , τBc) for all x ∈ ∂B. From equation

(A.29) we have

V (x|pB, τB) = VB(x|p, τ) and V (x|pBc , τBc) = VBc(x|p, τ),

so we just need to show VB(x|p, τ) equals VBc(x|p, τ) for all x ∈ ∂B. We first show

that VB(x|p, τ) = V (x|p, τ) for all x ∈ B. Let x ∈ B, since B is an interval or a union
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of intervals we must have µ(B(x, 1
n
) ∩ B) > 0 for all n ∈ N. In turn, this implies

0 < τ(B(x,
1

n
) ∩ B × B)

= τ(B(x,
1

n
) ∩ B × Bo) + τ(B(x,

1

n
) ∩ B × ∂B)

= τ(B(x,
1

n
) ∩ B × Bo),

where the third line comes from τ2 � Γ and Γ(∂B) = 0. Thus, from Lemma A.5

there exists (zn, yn) ∈ B(x, 1
n
) ∩ B × Bo such that yn ∈ IR(zn| p, τ). Then,

∀n ∈ N, ∃ δ(n) > 0 such that ∀δ ≤ δ(n)
1

n
+ VB(yn,δ)(zn) ≥ V (zn). (A.30)

Note that since yn ∈ Bo we can always find δ0 such that B(yn, δ) ⊆ B for all δ ≤ δ0.

So we can consider δ ≤ min{δ0, δ(n)} in Eq. (A.30). Using that zn ∈ B(x, 1
n
) and

the Lipschitz property (see Lemma 1.1) we have

VB(yn,δ)(zn)− VB(yn,δ)(x) ≤ 1

n
and V (zn)− V (x) ≥ − 1

n
,

plugging this into Eq. (A.30) yields

∀n ∈ N, ∃ δ(n) > 0 such that ∀δ ≤ min{δ0, δ(n)} 3

n
+ VB(yn,δ)(x) ≥ V (x).

Since B(yn, δ) ⊆ B we have VB(x) ≥ VB(yn,δ)(x) thus the former expression implies

that VB(x) ≥ V (x). But we always have that V (x) ≥ VB(x) and, therefore, V (x) =

VB(x). The same argument shows that V (x) = VBc(x) for all x ∈ Bc.

To conclude we need to prove that VB(x|p, τ) equals VBc(x|p, τ) for all x ∈ ∂B.

Consider x ∈ ∂B. Let {xn}n∈N ⊂ B be a sequence converging to x. Then the

continuity of VB implies VB(xn) → VB(x). At the same time, since xn ∈ B we have

VB(xn) = V (xn) and by continuity V (xn)→ V (x). Then VB(x) = V (x) and the same

is true for Bc, which implies VB(x|p, τ) = VBc(x|p, τ) for all x ∈ ∂B.
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Pasting. First we check that τ ∈ F(µ). Let L1 be any measurable subset of C

we have that

τ1(L1) = τ(L1 × C)

= τB((L1 × C) ∩ (B × B)) + τB
c

((L1 × C) ∩ (Bc × Bc))

= τB((L1 ∩ B)× B) + τB
c

((L1 ∩ Bc)× Bc)

= µ|B(L1 ∩ B) + µ|Bc(L1 ∩ Bc)

= µ(L1).

Also, if Γ(L1) = 0 then Γ|B(L1) = Γ|Bc(L1) = 0. Therefore, τB2 (L1) = τB
c

2 (L1) = 0,

which in turn implies τ2 � Γ. Hence τ ∈ F(µ).

Now we show the set

E ,
{

(x, y) ∈ C × C : Π(x, y, p(y), sτ (y)) = ess sup
C

Π(x, ·, p(·), sτ (·)
)}
,

satisfies τ(E) = µ(C). Note that

E ∩ B × B =
{

(x, y) ∈ B × B : Π(x, y, p(y), sτ (y)) = V (x|p, τ)
}
.

It is enough to prove that τB(E ∩ B × B) = µ(B). As we did in the first part of the

proof (see Eq. (A.28)) we can show that

dτB2
dΓ|B

(x) = sτ (x), Γ− a.e. x in B,

so if we prove that V (·|p, τ)|B ≡ V (·|pB, τB) we will be done (the proof for Bc is

analogous). Fix x ∈ B, as in Eq. (A.29) we have

V (x|pB, τB) = ess sup
B

Π(x, ·, pB(·), dτ
B
2

dΓ|B
(·)
)

= ess sup
B

Π(x, ·, p(·), dτ2

dΓ
(·)
)

= VB(x|p, τ).

So we just need to verify that V (x|p, τ) = VB(x|p, τ). We show that V (x|p, τ) ≤

VB(x|p, τ), the other inequality always holds. Let I(x) be the interval in B to which

x belongs to. Let yL = inf I(x) and yU = sup I(x), note that yL and yU do not
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necessarily belong to B but they do belong to ∂B. By assumption V (y| pB, τB) =

V (y| pBc , τBc) for y ∈ {yL, yU}, in turn this implies that VB(y|p, τ) equals VBc(y|p, τ)

for y ∈ {yL, yU}. Consider the sets BcL = [H, yL] ∩ Bc and BcU = [yU , H] ∩ Bc then

VB(x|p, τ)
(a)

≥ VB(yU |p, τ)− |x− yU |

= VB(yU |p, τ)− (yU − x)

(b)

≥ U(w, sτ (w))− |yU − w| − (yU − x), Γ− a.e. w in BcU
(c)

≥ U(w, sτ (w))− (w − yU)− (yU − x), Γ− a.e. w in BcU
(d)

≥ U(w, sτ (w))− |w − x|, Γ− a.e. w in BcU ,

where (a) follows from the Lipschitz property (see Lemma 1.1), and (b) from the

definition of VB(yU |p, τ) and Γ(BcU) > 0; (c), (d) hold because for w ∈ BcU we have

x ≤ yU ≤ w. Similarly,

VB(x|p, τ) ≥ VB(yL|p, τ)− |x− yL|

= VB(yL|p, τ)− (x− yL)

≥ U(w, sτ (w))− |yL − w| − (x− yL), Γ− a.e. w in BcL

= U(w, sτ (w))− (yL − w)− (x− yL), Γ− a.e. w in BcL

= U(w, sτ (w))− |w − x|, Γ− a.e. w in BcL.

Since BcL ∪ BcU = Bc this implies that VB(x|p, τ) ≥ V (x|p, τ). This concludes the

proof.

�

A.3.3 Proofs for Section 1.6.3

Proof of Lemma 1.5. Let (p, τ) be a feasible solution. We show that at any

optimal solution we must have Xl < 0 < Xr, in turn this implies that 0 is a sink loca-

tion. By Lemma A.8 we have that if either of the sets {x ∈ (0, H] : 0 ∈ IR(x|p, τ)}
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or {x ∈ [−H, 0) : 0 ∈ IR(x|p, τ)} is empty then the revenue the platform makes

satisfies 1
γ
·Rev(p, τ) ≤ ψ1 · µ1 · 2 ·H. However, the solution (p, τ) given in Proposi-

tion 1.7 has both sets non-empty because 0 ∈ IR(Xr| p, τ) and 0 ∈ IR(−Xr| p, τ)

with Xr > 0. Furthermore, Rev(p, τ) is strictly large than the revenue of the pre-

demand shock environment or, equivalently, strictly larger than ψ1 · µ1 · 2 ·H. This

implies that any optimal solution must satisfy {x ∈ (0, H] : 0 ∈ IR(x|p, τ)} 6= ∅ and

{x ∈ [−H, 0) : 0 ∈ IR(x|p, τ)} 6= ∅ and, therefore, Xl < 0 < Xr.

�

Proof of Lemma 1.6. If Xr = H there is nothing to prove, so let’s assume

Xr < H. Fix x ∈ [Xr, H]. From the Lipschitz property (see Lemma 1.1) we have

that V (x| p, τ) ≤ V (Xr| p, τ) + (x − Xr). Moreover, Proposition 1.3 ensures that

τ([Xr, H]× [Xr, H]c) = 0 and, hence, because 0 /∈ [Xr, H] we can apply Lemma A.7

to deduce that

V (x|p, τ) ≤ ψ1, Γ− a.e. x in [Xr, H]. (A.31)

To show that the previous inequality holds everywhere, notice that if V (x| p, τ) > ψ1

the from the Lipschitz continuity property of V (·| p, τ) we could find a subset of of

[Xr, H] with positive Γ measure (in this set Γ coincides with the Lebesgue measure)

in which V (·| p, τ) is strictly larger than ψ1. This is not possible because it would

contradict Eq. (A.31). Putting together both upper bounds yields the desire result.

�

Proof of Proposition 1.8. Let (p, τ) be optimal for problem (P2) as in Lemma

1.5 so we have 0 < Xr. Note that is Xr = H then the result trivially holds, so let’s

assume Xr < H. Before we begin note that for any x ≥ Xr, by Lemma 1.6 and the

Lipschitz continuity property of V (·|p, τ) (see Lemma 1.1), we must have V (x) ≤ ψ1.

We first prove the second statement of the proposition. Suppose V (Xr) = ψ1

and define the set R , {x ∈ [Xr, H] : V (x) = ψ1}. We show by contradiction that

we cannot have τ2(Rc) > 0 (the complement is taken with respect to [Xr, H]). If
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τ2(Rc) > 0, because ψ1 is an upper bound from Proposition 1.1 we have the following

1

γ
·Rev[Xr,H](p, τ) =

∫
[Xr,H]

V (x) dτ2(x)

=

∫
R

V (x) dτ2(x) +

∫
Rc
V (x) dτ2(x)

<

∫
R

V (x) dτ2(x) +

∫
Rc
ψ1 dτ2(x)

≤ ψ1 · τ2([Xr, H])

= ψ1 · µ1 · (H −Xr),

where the last line comes Proposition 1.3. Thus, the quantity Rev[−H,Xr](p, τ) +

γ · ψ1 · µ1 · (H − Xr), strictly upper bounds the platform’s objective. So if we are

able to construct a solution such that attains the upper bound, we will contradict

the optimality of (p, τ). Observe that Lemma A.9 enables us to separate the solu-

tion (p, τ) in [−H,Xr] and (Xr, H]. The separated solution (p[−H,Xr], τ [−H,Xr]) (see

Lemma A.9 for notation) in [−H,Xr] has revenue equal to Rev[−H,Xr](p, τ), and

V (Xr| p[−H,Xr], τ [−H,Xr]) coincides with V (Xr| p, τ) which equals ψ1. For (Xr, H] con-

sider prices p̃(x) = ρ1 for all x ∈ (Xr, H]c, and flows τ̃(L) = µ(π1(L ∩ D)) for any

measurable set L ⊂ (Xr, H] × (Xr, H]. The pair (p̃, τ̃) is the same solution as in

Proposition 1.6 with the sole difference that we have changed the city to be (Xr, H]

instead of C. Therefore, (p̃, τ̃) is a feasible price-equilibrium in (Xr, H] with revenue

equal to γ ·ψ1 ·µ1 · (H −Xr), and such that V (x| p̃, τ̃) equal to ψ1 for all x ∈ (Xr, H].

Thus we can use Lemma A.9 to paste both solution and obtain an equilibrium in the

entire city. This new equilibrium achieves the upper bound.

Suppose that τ2(Rc) = 0 and define the sets

L+ , {x : µ1 > sτ (x)}, L0 , {x : µ1 = sτ (x)}, L− , {x : µ1 < sτ (x)}.

Then by Lemma 1.5 it holds that Γ(R ∩ L−) = 0. Moreover, if Γ(R ∩ L+) > 0 we
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have

µ([Xr, H]) = τ2([Xr, H])
(a)
= τ2(R) =

∫
R∩L+

sτ (x) dΓ(x) +

∫
R∩L0

sτ (x) dΓ(x)

< µ1Γ(R) ≤ µ([Xr, H]),

not possible, where (a) comes from Proposition 1.3. Thus Γ(R ∩ L+) = 0. This

implies that Γ(R ∩ L0) = Γ(R) and

µ1Γ([Xr, H]) = µ([Xr, H]) =

∫
R∩L0

sτ (x) dΓ(x) = µ1Γ(R),

that is, Γ(R) = Γ([Xr, H]) or Γ(Rc) = 0. In turn, Γ− a.e. x ∈ [Xr, H] we have that

V (x) equals ψ1. Since, V (·) is continuous and Γ|[Xr,H] has full support in [Xr, H]

which has non-empty interior we conclude that V (x) = ψ1 for all x ∈ [Xr, H].

For the reminder of the proof we assume V (Xr) < ψ1. We show that if V (·) is not

non-decreasing in [Xr, H] then there is an strict objective improvement. In the proof

we define several critical points in the interval [Xr, H] which will help us to create a

flow separated region (no flow leaves this region). Then we show the objective strict

improvement in this region. In Figure A.1 we provide a graphical representation of

the points just mentioned.

So assume that V (x) is not non-decreasing in [Xr, H], then there exists x̂ > ŷ ≥ Xr

such that V (x̂) < V (ŷ). Let,

ȳ , sup{z ∈ [ŷ, x̂] : V (z) = V (ŷ)},

note that since for z = ŷ, V (z) = V (ŷ) thus the set over which we take the supremum

above is both bounded and non-empty. Hence, ȳ is well defined and it corresponds

to the last point z in [ŷ, x̂] such that V (z) equals V (ŷ). Moreover, because V (·) is

continuous ȳ < x̂, and for all z ∈ (ȳ, x̂] we have V (z) < V (ŷ) = V (ȳ). Let

y0 , inf{z ∈ [Xr, ȳ] : ∃x ∈ (ȳ, H] such that z ∈ IR(x)},
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if for all z ∈ [Xr, ȳ] and for all x ∈ (ȳ, H] we have z /∈ IR(x), we let y0 = ȳ. That is,

y0 is the smallest z in [Xr, ȳ] to which some location in (ȳ, H] is indifferent to travel

to. Note that for all z ∈ (y0, x̂] we have V (z) < V (y0). Also, the definition of y0 and

Lemma A.5 imply that τ([−H, y0]× (y0, H]) = 0 and τ((y0, H]× [−H, y0]) = 0. Let

y1 , inf{z ∈ [x̂, H] : V (z) > V (y0)},

that is, y1 is the first value after x̂ for which V (·) hits V (y0). Note that when well

defined y1 satisfies that τ([y1, H] × [−H, y1]) = 0. If this is not the case then since

atoms do not have measure we would have τ((y1, H]× [−H, y1)) > 0 and, therefore,

by Lemma A.5 we can find (x, y) ∈ (y1, H] × [−H, y1) such that y ∈ IR(x). Then

Lemma 1.3 would contradict the minimality of y1.

0 HXr ŷ x̂ȳy0 y1

V (ŷ)

V (x̂)

V (y0)
V (·) < V (ŷ)

No flow crossing this point
No flow crossing this point

towards Xr

Figure A.1: Graphical representation of ŷ, x̂, ȳ, y0 and y1.

There are two cases:

1. y1 is not well defined: In this case we have that for all z ∈ [x̂, H], V (z) ≤ V (y0).

Recall that from our previous discussion we have that V (z) < V (y0) for all z ∈

(y0, x̂]. Also, Property 1 (which we prove at the end of the present proof) establishes

that τ2((y0, x̂]) > 0. Using this observations we create a new solution (p̃, τ̃) with

revenue strictly larger than that of (p, τ).

Let B = [−H, y0] and note that we have both τ(B×Bc) = 0 and τ(Bc×B) = 0, so

we can use the separation result in Lemma A.9. Hence (pB, τB) (see Lemma A.9 for

212



notation) is a price-equilibrium pair in B. Its revenue equals the revenue of (p, τ)

in B, and V (y0| pB, τB) = V (y0).

For Bc we choose flows τB
c
(L) = µ(π1(L ∩ D)) for all L ⊂ Bc × Bc. That is all

drivers stay at their initial location. It is not hard to see that sτ
Bc

(x) equals µ1,

Γ−a.e. x in Bc. We choose prices pB
c
(x) = p0 for all x ∈ Bc, where p0 is such that

α · p0 ·min{1, λ1 · F (p0)

µ1

} = V (y0), (A.32)

note that since V (y0) ≤ ψ1, p0 is well defined. That is, the solution (pB
c
, τB

c
) is

the same solution as in pre-demand shock environment but in smaller city, Bc and

with a larger price across all locations. Using Proposition 1.1 it is not hard to see

that the revenue associated with this solution is γ · V (y0) · µ1 · (H − y0).

By Lemma A.9, we can paste the two previous solutions to create a new solu-

tion (p̃, τ̃) in entire city. This new solution yields a strict objective improvement.

Indeed,

Rev[y0,H](p, τ) =

∫
[y0,H]

V (x) dτ2(x)

=

∫
(y0,x̂]

V (x) dτ2(x) +

∫
(x̂,H]

V (x) dτ2(x)

(a)
< V (y0) · τ2((y0, x̂]) +

∫
(x̂,H]

V (x) dτ2(x)

≤ V (y0) · τ2((y0, x̂]) + V (y0) · τ2((x̂, H])

(b)
= V (y0) · µ([y0, H])

= V (y0) · µ1 · (H − y0)

= Rev[y0,H](p̃, τ̃),

where (a) comes from τ2((y0, x̂]) > 0, (b) comes from the fact that under τ no flow

leaves or enters [y0, H], and the last two lines from the definition of (p̃, τ̃) restricted

to [y0, H].
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2. y1 is well defined: In this case there exists z ∈ [x̂, H] such that V (z) > V (y0). Also,

we must have y1 > x̂, and we already argued that τ([y1, H]× [−H, y1]) = 0. There

are two more cases.

a) ∀y ∈ (y0, y1], ∀x > y1, x /∈ IR(y): This together with Lemma A.5 imply that

τ([y0, y1] × ([−H, y0] ∪ [y1, H])) = 0, and we also have τ(([−H, y0] ∪ [y1, H]) ×

[y0, y1]) = 0. From this we can construct a new feasible solution (p̃, τ̃) with

revenue strictly larger than that of (p, τ).

Let B = [−H, y0) ∪ (y1, H] and note that we have both τ(B × Bc) = 0 and

τ(Bc×B) = 0, so we can use the separation result in Lemma A.9. Thus (pB, τB)

(see Lemma A.9 for notation) is a price-equilibrium pair in B. Its revenue equals

the revenue of (p, τ) in B, and V (y0| pB, τB) = V (y0) and V (y1| pB, τB) = V (y0).

For Bc we choose flows τB
c
(L) = µ(π1(L ∩ D)) for all L ⊂ Bc × Bc. We choose

prices pB
c
(x) = p0 for all x ∈ Bc, where p0 is as in Eq. (A.32). As we argued

before this solution forms an price-equilibrium pair with revenue equal to V (y0) ·

µ1 · (y1 − y0).

We can then paste both solutions (see Lemma A.9) to obtain a solution (p̃, τ̃) in

the entire city. As before, it yields a strict revenue improvement.

b) ∃ y ∈ (y0, y1], ∃ x > y1 such that x ∈ IR(y): Then the following points are well

defined

y1 , sup{x ∈ [y1, H] : ∃ y ∈ [y0, y1] such that x ∈ IR(y)},

y
1
, inf{y ∈ [y0, y1] : ∃ x ∈ [y1, H] such that x ∈ IR(y)}.

That is, y1 is largest point after y1 for which some location in [y0, y1] has drivers

indifferent to travel to it. As for y
1
, it corresponds to the smallest point in

[y0, y1] that has drivers willing to travel to some location in [y1, H]. Note that

from the definition of y1 and Lemma A.5 we can deduce that there is no flow

crossing y1 in any direction, that is, τ([−H, y1] × [y1, H]) = 0. Also, from
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Property 2 (which we prove at the end of the present proof) for any z ∈ [y
1
, y1],

y1 ∈ IR(z). This together with Lemma 1.3 imply that for any z ∈ [y
1
, y1],

V (z| p, τ) = V (y1)− |y1 − z|.

The idea is to again construct an strict objective improvement. First, define yc

to be such that V (y0) + (yc − y0) = V (y1), that is, yc = V (y1) − V (y0) + y0.

Next we argue that yc ∈ (y0, y1). In fact, by the definition of y1 we must have

V (y1) > V (y0) thus yc > y0. Also, if yc ≥ y1 then

V (y0) + (yc − y0) ≥ V (y0) + (y1 − y0)⇔ V (y1) ≥ V (y0) + (y1 − y0),

and since V (y1) = V (y1) + (y1 − y1) we would have

V (y1) + (y1 − y1) ≥ V (y0) + (y1 − y0)⇔ V (y1)− V (y0) ≥ y1 − y0,

which, since y1 > y0, implies that V (y1) > V (y0), contradicting the definition of

y1. From this we can also infer that yc − y0 = y1 − y1.

Second, let h , y1 − yc and for any set L ⊆ C × C define the set

Lh , {(x+ h, y + h) ∈ C × C : (x, y) ∈ L}.

We now construct a new solution (p̃, τ̃). Let B = [−H, y0) ∪ (y1, H], so that

Bc = [y0, y1]. Following our previous scheme of proof we construct two price-

equilibrium pairs one in B and another in Bc, and then we paste them to create

(p̃, τ̃). As we did before we can use the separation result (see Lemma A.9) to

obtain a solution (pB, τB) in B such that V (y0|pB, τB) = V (y0) and V (y1|pB, τB) =

V (y1).

For Bc define the flow τB
c

for any L ⊆ Bc × Bc by

τB
c

(L) = τ
(

(L∩([y0, y
c]×[y0, y1]))h

)
+µ(π1(L∩([yc, y1]×[y0, y1])∩D)), (A.33)

We next show that this flow belongs to FBc(µ|Bc) and that it is an equilibrium

for some prices pB
c

yet to be defined. Indeed, for any measurable subset K of
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Bc we have

τB
c

1 (K) = τ
(

((K × Bc) ∩ ([y0, y
c]× [y0, y1]))h

)
+ µ(π1((K × Bc) ∩ ([yc, y1]× [y0, y1]) ∩ D))

= τ
(

((K ∩ [y0, y
c])× [y0, y1])h

)
+ µ(K ∩ [yc, y1])

= τ
(

((K + h) ∩ [y0 + h, yc + h])× [y0 + h, y1 + h]
)

+ µ(K ∩ [yc, y1])

= τ
(

((K + h) ∩ [y1, y1])× [y1, y1 + h]
)

+ µ(K ∩ [yc, y1])

(a)
= τ

(
((K + h) ∩ [y1, y1])× C

)
+ µ(K ∩ [yc, y1])

= µ((K + h) ∩ [y1, y1]) + µ(K ∩ [yc, y1])

= µ((K ∩ [y0, y
c]) + h) + µ(K ∩ [yc, y1])

(b)
= µ(K ∩ [y0, yc]) + µ(K ∩ [yc, y1])

= µ(K),

where (a) holds because by construction in [y1, y1] the flow there can be trans-

ported only inside the same set and, therefore, τ([y1, y1] × [y1, y1 + h]c) equals

zero. Equality (b) comes from the fact that µ is invariant under translation

(it is a multiple of the Lebesgue measure). Therefore, τB
c

1 coincides with µ|Bc .

Also, it is clear from the definition of τB
c

that τB
c

2 � Γ. Hence, τB
c

belongs to

FBc(µ|Bc). Furthermore, Property 3 (which we prove at the end of the present

proof) ensures that

dτB
c

2

dΓ
(x) ≤ dτ2

dΓ
(x+h) Γ−a.e. x in [y0, y

c], and
dτB

c

2

dΓ
(x) = µ1 Γ−a.e. x in [yc, y1].

(A.34)

We choose the prices pB
c

as follows. In [yc, y1] we set constant prices equal to p1

such that

α · p1 ·min{1, λ1 · F (p1)

µ1

} = V (y1),

this price is well defined because V (y1) ≤ ψ1. For locations in [y0, y
c] consider
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the set

K ,
{
x ∈ [y0, y

c] :
dτB

c

2

dΓ
(x) ≤ dτ2

dΓ
(x+ h)

}
, (A.35)

note from Eq. A.34 we have Γ(Kc) = 0. We set prices for x ∈ K to be such that

U
(
x, pB

c

(x),
dτB

c

2

dΓ
(x)
)

= U
(
x+ h, p(x+ h), sτ (x+ h)

)
, (A.36)

such prices are well defined because the new Radon-Nikodym is smaller than the

old one (shifted by h) in K. For x ∈ Kc we set the prices equal to zero. Now we

need to verify that this selection of prices and flows yields an equilibrium. That

is, we need show that the set

EBc =
{

(x, y) ∈ Bc × Bc : Π(x, y, pB
c

(y),
dτB

c

2

dΓ
(y))

= ess sup
Bc

Π
(
x, ·, pBc(·), dτ

Bc
2

dΓ
(·)
)}
,

has τB
c

measure equal to µ(Bc). First, from Property 3 we have

V (x| pBc , τBc) = ess sup
Bc

Π
(
x, ·, pBc(·), dτ

Bc
2

dΓ
(·)
)

=


V (y1) + (x− y0) if x ∈ [y0, y

c]

V (y1) if [yc, y1].

(A.37)

For the first term in Eq. (A.33) observe that τ((EBc ∩ [y0, y
c]× [y0, y1])h) equals

τ
({

(x, y) ∈ [y1, y1]×[y1, y1] : Π(x−h, y−h, pBc(y−h),
dτB

c

2

dΓ
(y−h)) = V (y1)+(x−y1)

})
,

using that Γ(Kc) = 0 and Eq. (A.47) one can verify that this expression equals

τ
({

(x, y) ∈ [y1, y1]× [y1, y1] : Π(x, y, p(y), sτ (y)) = V (x| p, τ)
})
.

In turn, from the definition of y
1

and y1, and the fact that τ is an equilibrium

flow this last expression equals µ([y1, y1]). For the second term in Eq. (A.33) we

have

EBc∩[yc, y1]×[y0, y1]∩D =
{

(x, y) ∈ [yc, y1]×[y0, y1] : Π(x, y, pB
c

(y),
dτB

c

2

dΓ
(y)) = V (y1)

}
∩D,
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Thus the second term in Eq. (A.33) equals

µ
({
x ∈ [yc, y1] : U(x, pB

c

(x),
dτB

c

2

dΓ
(x)) = V (y1)

})
= µ([yc, y1]) = µ([y0, y1]),

where the first equality comes from Eq. (A.34) and the discussion that it follows

it. The second equality comes from µ being invariant under translation and

yc − y0 = y1 − y1. Putting all these together yields

τB
c

(EBc) = µ([y1, y1]) + µ([y0, y1]) = µ([y0, y1]) = µ(Bc).

In order to create the new solution (p̃, τ̃) we just use Lemma A.9 to paste the two

solutions we constructed in B and Bc. Note that the pasting is allowed because

V (y0| pBc , τBc) = V (y0) and V (y1| pB
c
, τB

c
) = V (y1).

We now finally show the objective improvement. It is sufficient to prove that

Rev[y0,y1](p̃, τ̃) > Rev[y0,y1](p, τ),

Rev[y0,y1](p, τ) =

∫
[y0,y1]

V (x) dτ2(x)
(a)
<

∫
[y0,y1]

V (y0) dτ2(x)

(b)
=

∫
[y0,y1]

V (y0) dτB
c

2 (x)

(c)

≤
∫

[y0,y1]

V (x| pBc , τBc) dτBc2 (x)

= Rev[y0,y1](p̃, τ̃),

where in (a) use Property 1. In (b) we use that under τ no flow leaves or enters

Bc and, thus,

τB
c

2 (Bc) = τB
c

(Bc×Bc) = µ(Bc) = τ(Bc×C) = τ(Bc×Bc) = τ(C ×Bc) = τ2(Bc).

In (c) we simply use Eq. (A.37).

In what follows we provide a complete proof of the three properties that we use

to obtain the result.

Property 1. τ2((y0, x̂]) > 0.
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Proof of Property 1. First we show that ∃ h ∈ (0, x̂− y0) such that τ((y0, y0 +

h)× [x̂, y1]) = 0. Suppose this is not true then for all n ∈ N large enough we have that

τ((y0, y0 + 1
n
) × [x̂, y1]) > 0, which thanks to Lemma A.5 implies that for all n ∈ N

large enough there exists (xn, yn) ∈ (y0, y0 + 1
n
) × [x̂, y1] such that yn ∈ IR(xn).

Our envelope result (see Lemma 1.3) ensures that V (xn) = V (yn)− |yn − xn|. Since

yn ∈ [x̂, y1] we must have V (yn) ≤ V (y0) for all n ∈ N large (when y1 is not well

defined we replaced by H and the argument still goes through). Furthermore, xn

converges to y0 so the continuity of V (·) yields

V (y0) = lim
n→∞

V (xn) = lim
n→∞

V (yn)− |yn − xn| ≤ V (y0)− lim
n→∞

(yn − xn) < V (y0),

not possible. We conclude that ∃h ∈ (0, x̂−y0) such that τ((y0, y0 +h)× [x̂, y1]) = 0.

Note that the same must be true for some h ∈ (0, (x̂− y0)∧ (y1−y0)
2

). We fix h in this

interval with the property we just proved.

Next, note we also have that τ((y0, y0 + h) × (y1, H]) = 0; otherwise, by Lemma

A.5 we can find (x, y) ∈ (y0, y0 + h) × (y1, H] such that y ∈ IR(x), which implies

that y ∈ IR(y1). Using the envelope result delivers V (y1) = V (y) − |y − y1| and

V (x) = V (y) − |y − x|. Since V (y1) = V (y0) we have (y1 − x) = V (y0) − V (x), but

our choice of h implies that y1 − x > h thus

h < (y1 − x) = V (y0)− V (x) ≤ |y0 − x| ≤ h,

again a contradiction. The last inequality comes from the Lipschitz property (see

Lemma 1.1). In summary, we have that there exists h ∈ (0, (x̂ − y0) ∧ (y1−y0)
2

) such
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that τ((y0, y0 + h)× [x̂, H]) = 0. To conclude the proof note the following

0
(a)
< µ((y0, y0 + h))

= τ((y0, y0 + h)× C)
(b)
= τ((y0, y0 + h)× [y0, H])

= τ((y0, y0 + h)× [y0, x̂)) + τ((y0, y0 + h)× [x̂, H])

= τ((y0, y0 + h)× [y0, x̂))

≤ τ2([y0, x̂])

(c)
= τ2((y0, x̂]),

where (a) comes from the fact that the measure µ has full support in C. The equality

(b) holds because by construction no flow leaves [y0, H], and (c) is true because τ2 � Γ

and Γ does not have atoms in [y0, x̂]. This concludes the proof of Property 1.

Property 2. Both y1 and y
1

are achieved in the set where they are defined.

Furthermore, for any z ∈ [y
1
, y1], y1 ∈ IR(z).

Proof of Property 2. First we show both

∃ yq ∈ [y0, y1] such that y1 ∈ IR(yq) and ∃ xq ∈ [y1, H] such that xq ∈ IR(y
1
).

(A.38)

Let us begin with the first statement. Let xn be a sequence in A converging to y1,

where

A = {x ∈ [y1, H] : ∃ y ∈ [y0, y1] such that x ∈ IR(y)}.

Then there exists a sequence {yn} ⊂ [y0, y1] such that xn ∈ IR(yn). Note that since

{yn} ⊂ [y0, y1] and xn ∈ [y1, H], Lemma A.3 implies that xn ∈ IR(y1). Fix ε > 0 and

δ > 0 then we can find n0(δ) such that for all n ≥ n0(δ) we have B(xn, δ/2) ⊂ B(y1, δ).

This implies that VB(xn,δ/2)(y1) ≤ VB(y1,δ)(y1) for all n ≥ n0(δ). Fix n ≥ n0(δ), because

xn ∈ IR(y1) we know that

∃ δ0(ε, n) such that ∀δ̂ ≤ δ0(ε, n) VB(xn,δ̂)
(y1) ≥ V (y1)− ε.
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Let r0 = δ0(ε, n) ∧ δ
2

then for all δ̂ ≤ r0 we have

VB(y1,δ)(y1) ≥ VB(xn,δ/2)(y1) ≥ VB(xn,δ̂)
(y1) ≥ V (y1)− ε.

This shows that for any ε, δ > 0 we have VB(y1,δ)(y1) ≥ V (y1)−ε. That is, y1 ∈ IR(y1).

Now we prove that y
1
∈ A where

A = {y ∈ [y0, y1] : ∃ x ∈ [y1, H] such that x ∈ IR(y)}.

By the definition of y
1

we can always construct a sequence {yn} ⊂ A converging to

y
1
. From the definition of A there exists another sequence {xn} ⊂ [y1, H] such that

xn ∈ IR(yn) for all n. Fix ε > 0 then we can always find n0(ε) such that for all

n ≥ n0(ε) we have |yn − y
1
| ≤ ε/3. Fix n ≥ n0(ε) then since xn ∈ IR(yn) we have

∃ δ0(ε, n) such that ∀δ ≤ δ0(ε, n) VB(xn,δ)(y
n) ≥ V (yn)− ε

3
, (A.39)

but from the Lipchitz property we can deduce that

VB(xn,δ)(y
n) ≤ VB(xn,δ)(y1

) +
ε

3
and V (yn) ≥ V (y

1
)− ε

3
.

Replacing this in Eq. (A.39) yields

∃ δ0(ε, n) such that ∀δ ≤ δ0(ε, n) VB(xn,δ)(y1
) ≥ V (y

1
)− ε,

that is, xn ∈ IR(y1). This concludes the proof for Eq. (A.38).

Next, we show that for all z ∈ [y
1
, y1], y1 ∈ IR(z). First, from our previos

argument we know there exists yq and xq as in Eq. (A.38). Then Lemma A.3 implies

y1 ∈ IR(z) for all z ∈ [yq, y1]. Observe that this yields y1 ∈ IR(xq) because xq ∈

[yq, y1]. Take z ∈ [y
1
, yq] then since xq ∈ IR(y

1
) from Lemma A.3 we conclude that

xq ∈ IR(z). Using envelope result, Lemma 1.3, we have that V (xq) = V (z)+(xq−z).

Furthermore, fix ε > 0 then since y1 ∈ IR(xq) we have

∃ δ0(ε) such that ∀δ ≤ δ0(ε) VB(y1,δ)(xq) + ε ≥ V (xq) = V (z) + (xq − z). (A.40)
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Thus for any δ ≤ δ0(ε), the Lipchitz property and Eq. (A.40) yield

VB(y1,δ)(z) ≥ VB(y1,δ)(xq)− (xq − z) ≥ V (z) + (xq − z)− (xq − z)− ε = V (z)− ε,

which implies that y1 ∈ IR(z). This concludes the proof of Property 2.

Property 3. Both Eq. (A.34) and Eq. (A.37) hold.

Proof of Property 3. Let us star with Eq. (A.34). In order to prove the first

part in Eq. (A.34) consider the following set

K =
{
x ∈ [y0, y

c] :
dτB

c

2

dΓ
(x) ≤ dτ2

dΓ
(x+ h)

}
.

We want to show that Γ(Kc) = 0 (the complement is taken with respect to [y0, y
c]).

If this is not true then Γ(Kc) > 0 and we have

τB
c

2 (Kc) =

∫
Kc

dτB
c

2

dΓ
(x) dΓ(x) >

∫
Kc

dτ2

dΓ
(x+ h) dΓ(x) = τ2(Kc + h). (A.41)

However,

τB
c

2 (Kc) = τ
(

([y0, y
c]×Kc)h

)
+ µ(π1(([yc, y1]×Kc) ∩ D))

= τ
(

([y0, y
c]×Kc)h

)
= τ
(

[y0 + h, yc + h]× (Kc + h)
)

≤ τ
(
C × (Kc + h)

)
= τ2(Kc + h).

This together with Eq. A.41 yield a contradiction. To prove the second part of Eq.

(A.34) consider any R ⊂ [yc, y1], and observe that

τB
c

2 (R) = τ
(

[y1, y1]× (R+ h)
)

+ µ(R) = µ(R) =

∫
R
µ1dΓ(x),

where the second equality comes fromR+h ⊂ [y1, y1+h] and τ([y1, y1]×[y1, y1+h]) =

0.
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Finally, we provide a proof for Eq. (A.37). Let Z(x) , min{V (y0) + (x −

y0), V (y1)}. We verify that for all x ∈ Bc

Z(x) ≥ U
(
w, pB

c

(w),
dτB

c

2

dΓ
(w)
)
− |w − x|, Γ− a.e. w in Bc, (A.42)

and that Z(x) is the smallest with such property. First, fix x ∈ [yc, y1] so Z(x) =

V (y1). Note that from our choice of prices in [yc, y1] we have

Z(x) = V (y1) ≥ V (y1)−|w−x| = U
(
w, pB

c

(w),
dτB

c

2

dΓ
(w)
)
−|w−x|, Γ−a.e.w in[yc, y1].

So we only need to show the same inequality but this time for [y0, y
c]. From the

definition of y
1

and y1, Lemma A.3 and Lemma 1.3 we have that V (y1) − |y1 − y1|

equals V (y1| p, τ) and, therefore,

V (y1) ≥ U(w, p(w), sτ (w))− |w − y1|+ |y1 − y1|, Γ− a.e. w in [y1, y1]

≥ U(w, p(w), sτ (w)), Γ− a.e. w in [y1, y1].

We can use this together with the fact that [y0, y
c] + h = [y1, y1] to obtain

Z(x) = V (y1)
(a)

≥ U
(
w + h, p(w + h), sτ (w + h)

)
, Γ− a.e. w in [y0, y

c]

≥ U
(
w + h, p(w + h), sτ (w + h)

)
− |w − x|, Γ− a.e. w in [y0, y

c]

(b)
= U

(
w, pB

c

(w),
dτB

c

2

dΓ
(w)
)
− |w − x|, Γ− a.e. w in [y0, y

c],

Inequality (a) comes from the fact that Γ in the interval under consideration is in-

variant under a shift; (b) comes from Eq. (A.47). That is, for x ∈ [yc, y1] Eq. (A.42)

is satisfied. It is left to verify that Z(x) is the smallest value satisfying Eq. (A.42).

For any ε > 0, since x ∈ [yc, y1] we have

0 < Γ(B(x, ε) ∩ [yc, y1])

= Γ
(
w ∈ [yc, y1] : V (y1)− |w − x| > V (y1)− ε

)
= Γ

(
w ∈ [yc, y1] : U

(
w, pB

c

(w),
dτB

c

2

dΓ
(w)
)
− |w − x| > V (y1)− ε

)
,
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hence V (y1) is the smallest value satisfying Eq. (A.42).

Now we show Eq. (A.42) for x ∈ [y0, y
c]. Fix x ∈ [y0, y

c] so Z(x) = V (y0)+(x−y0).

Note that V (y0) equals V (y1), and from the definition of y1 and the envelope result

we have that V (y1) equals V (y1)− (y1 − y1). Therefore,

Z(x) = V (y1)− (y1 − y1) + (x− y0)

(a)

≥ V (y1)− (w − x), Γ− a.e. w in [yc, y1]

(b)
= U

(
w, pB

c

(w),
dτB

c

2

dΓ
(w)
)
− |w − x|, Γ− a.e. w in [yc, y1],

where (a) follows from w ≥ yc and yc − y0 = y1 − y1. Line (b) holds from our choice

of prices in [yc, y1]. Hence, Z(x) upper bounds (almost surely) the desire quantity

in [yc, y1], so we just need to prove the same bound for [y0, y
c]. Note that from the

definition of y
1

and y1 we have that

V (x+ h) = V (y1) + (x+ h− y1) = V (y1) + (x− y0) = Z(x),

and thus

Z(x) = V (x+ h| p, τ)

(a)

≥ U(w, p(w), sτ (w))− |w − (x+ h)|, Γ− a.e. w in [y1, y1]

(b)
= U(w + h, p(w + h), sτ (w + h))− |w + h− (x+ h)|, Γ− a.e. w in [y0, y

c]

(c)
= U(w, pB

c

(w),
dτB

c

2

dΓ
(w))− |w − x)|, Γ− a.e. w in [y0, y

c],

where (a) comes from the definition of V (x + h| p, τ), (b) from the invariance under

translation of Γ. Line (c) follows from Eq. (A.47). Therefore, Z(x) satisfies Eq.

(A.42). To see why Z(x) is the smallest value satisfying this equation observe that

0 < Γ(B(yc, ε) ∩ [yc, y1])

(a)
= Γ

(
w ∈ [yc, y1] : V (y1)− (w − x) > V (y1)− (y1 − y1) + (x− y0)− ε

)
= Γ

(
w ∈ [yc, y1] : U

(
w, pB

c

(w),
dτB

c

2

dΓ
(w)
)
− |w − x| > Z(x)− ε

)
,
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where in (a) we use that yc − y0 = y1 − y1. This implies that Z(x) is the smallest

value satisfying Eq. (A.42), completing the proof.

�

Proof of Proposition 1.9. If Xr = H there is nothing to prove, so assume

Xr < H. Let (p, τ) be a feasible solution such that V (·|p, τ) is non-decreasing. Due

to Proposition 1.8 we can always restrict attention to this type of solution. We

proceed by contradiction. Assume that there exists x̃ ∈ (Xr, H] such that

V (x̃) < min{V (Xr) + (x̃−Xr), ψ1} , Z(x̃). (A.43)

First, we construct an interval Ĩ such that τ2(Ĩ) > 0 and V (x) < Z(x) for all x ∈ Ĩ.

Then, we show that Z(x) can be achieved in a feasible manner by appropriately

creating a price-equilibrium pair (p̃, τ̃) that mimics the flow generated by τ in (Xr, H].

The final step of the proof is to use the interval Ĩ and the flow τ̃ to show an strict

objective improvement.

Interval construction. From Eq. (A.43) and the continuity of V (·) we can

deduce the existence of an interval [ã, b̃] ⊂ (Xr, H] such V (x) < Z(x) for all x ∈ [ã, b̃].

Furthermore, the Lipchitz property (see Lemma 1.1) and Lemma 1.6 imply that

V (x) < Z(x) for all x ∈ [ã, c̃] where c̃ is the minimum between H and the value c

such that V (ã) + (c− ã) = ψ1. Also, Proposition 1.8 and Lemma A.5 together with

Lemma 1.3 imply that τ([ã, c̃]× C) = τ([ã, c̃]× [ã, c̃]). Putting all of this together we

conclude that there exists an interval Ĩ = (ã, c̃) such that τ2(Ĩ) > 0 and V (x) < Z(x)

for all x ∈ Ĩ.

Flow mimicking. Define the collection of intervals

I , {I ⊂ (Xr, H] : I = [a, b], a < b, b ∈ IR(a), a is minimal and b is maximal}.

There are two cases: I = ∅ and I 6= ∅. We only do the latter because its treatment

contains the former.
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Suppose I 6= ∅, then there exists Xr < a < b such that b ∈ IR(a), where a and

b are minimal and maximal with this property, respectively. We first look at some

properties of the equilibrium in each element of I and then we look at its complement.

Note that from the minimality of a we have that for any x < a, a /∈ IR(x).

Similarly, for any x > b we have x /∈ IR(b). This, together with Proposition 1.8

and Lemma A.5 imply that [a, b] is a flow-separated region, that is, there is no flow

coming in nor flow going out of [a, b], τ([a, b]× [a, b]c) = 0 and τ([a, b]c × [a, b]) = 0.

Observe that our flow separation result in Lemma A.9 implies that in each interval

I ∈ I we have an equilibrium. Furthermore, from Lemma 1.3 we must have

V (x) = V (a) + (x− a), ∀x ∈ [a, b].

From the previous discussion we infer that the elements in the collection I are disjoint

intervals and, since V is non-decreasing, the collection is at most countable.

For any a, b such that [a, b] ∈ I we define

t(a) , V (a)− V (Xr) +Xr, and t(b) , V (b)− V (Xr) +Xr.

Note that since V is non-decreasing we have V (a) ≥ V (Xr) and, therefore, t(b) >

0 HXr a bt(a) t(b)

V (Xr)

ψ1

V (x| p, τ )
Z(x)

Figure A.2: Graphical representation of t(a) and t(b).

t(a) ≥ Xr. Also, for any such b we have t(b) < Yr. The points t(a), t(b) are the

corresponding points to a, b in the interval [Xr, Yr] (see Figure A.2). Furthermore,

t(·) is a non-decreasing mapping.

We denote by Ic the collection of intervals whose elements are the intervals that

do not belong to I. Observe that the elements in I and Ic alternate in a consecutive
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manner. That is, if we have an interval (c, d) ∈ Ic then it can only be followed by

and interval [a, b] ∈ I with a = d. In the case that I = (c, d) ∈ Ic is not followed by

an interval in I then I equals (c,H]. Define the sets

K ,
⋃
I∈I

I and Kc ,
⋃
I∈Ic

I.

Note that (Xr, H] = K ∪ Kc up to a set of Γ measure zero. Also, for each interval

I ∈ Ic we must have that for all measurable sets A ⊂ I, τ(A × A) = µ(A) = τ2(A);

otherwise, by Lemma A.5 we would get a contradiction with the definition of I. In

turn, this implies that dτ2
dΓ

(x) = µ1, Γ− a.e. x in Kc.

We denote by It the collection of intervals {[t(a), t(b)]}[a,b]∈I , and Ict is defined in

analogous manner. Also, Kt and Kct are defined similarly to K and Kc replacing I

with It and Ic with Ict , respectively.

The idea now is to construct a solution (p̃, τ̃) in (Xr, H] and then paste it with

the old solution (p, τ) restricted to [−H,Xr). To construct (p̃, τ̃) we will make use

of the collections It and Ict . For each element in these collections we will create a

price-equilibrium. For intervals [t(a), t(b)] ∈ It the idea is that the solution (p̃, τ̃) has

the same equilibrium than (p, τ) in [a, b]. For the interval in Ict we choose prices such

that no drivers will have an incentive to move. Finally, using Lemma A.9 we will

paste the equilibria generated in all the intervals.

First, we show how to construct prices and an equilibrium in some [t(a), t(b)]. Fix

[a, b] = I ∈ I and denote the mimicking set [t(a), t(b)] by It. Choose prices pIt(x)

equal to p(x+(a− t(a))) for all x ∈ It. For the flows, we define τ It for any L ⊆ It×It
by

τ It(L) = τ
(
L+ (a− t(a), a− t(a))

)
,

that is, τ It mimics τ in I × I. It can be shown that (see Property 1 at the end of this

proof) (pIt , τ It) forms a price-equilibrium pair in It such that τ It ∈ FIt(µ|It). Also,
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V (x| pIt , τ It) equals V (x+ a− t(a)| p, τ) for all x ∈ It, and

dτ It2

dΓ
(x) =

dτ2

dΓ
(x+ a− t(a)), Γ− a.e. x in It. (A.44)

Furthermore, because I ∈ I we have

V (x|pIt , τ It) = V (x+a−t(a)|p, τ) = V (a)+(x−t(a)) = V (Xr)+(x−Xr) = Z(x), ∀x ∈ It,

that is, for all intervals It the associated solution (pIt , τ It) achieves the upper bound

Z(x).

Second, we show how to set the prices and construct an equilibrium everywhere

else. Consider any two consecutive sets in I, I1 = [a1, b1] and I2 = [a2, b2]. The

corresponding mimicking sets are [t(a1), t(b1)] and [t(a2), t(b2)]. We need to set prices

and define the flow in the interval Jt = (t(b1), t(a2)). We choose the prices pJt to be

such that

U
(
x, pJt(x), µ1

)
= Z(x), ∀x ∈ Jt.

Since Z(x) ≤ ψ1 these prices are guaranteed to exist. We define the measure τJt for

any measurable set L ⊆ Jt × Jt by

τJt(L) = µ(π1(L ∩ D)).

This measure has dτJt2 /dΓ = µ1, Γ − a.e in Jt. It can be shown that (see Property

2 at the end of this proof) (pJt , τJt) forms a price-equilibrium pair in Jt such that

τJt ∈ FJt(µ|Jt) and V (x| pJt , τJt) equals Z(x) for all x ∈ Jt.

Third, the solutions {(pIt , τ It)}It∈It and {(pJt , τJt)}Jt∈Ict cover the whole interval

(Xr, H]. Moreover they are defined in disjoint interval, and are such that the respec-

tive V (·) functions coincide at the boundaries of the interval (these functions coincide

with Z(·)). Thus, we can apply Lemma A.9 to paste all these solutions and obtain a

new solution (p̃, τ̃) in (Xr, H]. As mentioned before we can use the same lemma to

paste this solution with the old solution restricted to [−H,Xr]. This would yield a

solution in the entire city.
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Objective improvement. Consider the revenue under (p, τ) in (Xr, H], it easy

to observe that

Rev(Xr,H](p, τ) =

∫
(Xr,H]

V (x|p, τ) · sτ (x) dΓ(x)

=

∫
K
V (x|p, τ) · sτ (x) dΓ(x) +

∫
Kc
V (x|p, τ) · sτ (x) dΓ(x)

=
∑
I∈I

∫
I

V (x|p, τ) · sτ (x) dΓ(x)︸ ︷︷ ︸
=(a)

+

∫
Kc
V (x|p, τ) · sτ (x) dΓ(x)︸ ︷︷ ︸

=(b)

.

Let us develop the integral of the term (a). Let I be equal to [a, b] and It equal to

[t(a), t(b)] then∫
[a,b]

V (x|p, τ) · sτ (x) dΓ(x) =

∫
[t(a),t(b)]

V (x+ a− t(a)|p, τ) · sτ (x+ a− t(a)) dΓ(x)

=

∫
[t(a),t(b)]

V (x|pIt , τ It) · sτIt (x) dΓ(x),

where in the first line we use the invariance under translation of Γ, and in the second

line we use that V (x|pIt , τ It) equals V (x+a− t(a)|p, τ) for all x ∈ It and Eq. (A.44).

Thus,

Rev(Xr,H](p, τ) =
∑
It∈It

∫
It

V (x|pIt , τ It) · sτIt (x) dΓ(x) + (b)

=

∫
Kt
Z(x) · sτ̃ (x) dΓ(x) + (b).

Thus, to conclude the proof we only need to show that

(b) =

∫
Kc
V (x|p, τ) · sτ (x) dΓ(x) <

∫
Kct
Z(x) · sτ̃ (x) dΓ(x). (A.45)

Define the following functions

Ve(x) =


V (x|p, τ) if x ∈ Kc,

V (a|p, τ) if x ∈ [a, b], some [a, b] ∈ I,

Ze(x) =


Z(x) if x ∈ Kct ,

Z(t(a)) if x ∈ [t(a), t(b)], some [t(a), t(b)] ∈ It.
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We verify that Ve(x) ≤ Ze(x) for all x ∈ (Xr, H], and the we use this inequality to

prove the objective improvement. Let x ∈ Kc then there exists an interval (c, d) ∈

Ic with x ∈ (c, d). If x ∈ Kct then the upper bound is trivial. If x /∈ Kct then

x ∈ [t(a), t(b)] for some [t(a), t(b)] ∈ It. We must have that a ≥ d; otherwise, since

(c, d) ∈ I, it must be the case that b ≤ c. In turn, this implies that [t(a), t(b)]∩(c, d) =

∅ which contradiction our current assumption. Therefore,

Ve(x) = V (x|p, τ) ≤ V (d|p, τ) ≤ V (a|p, τ) = Z(t(a)) = Ze(x).

Let x ∈ [a, b] for some [a, b] ∈ I. If x ∈ Kct , t(b) < x otherwise we would have that

t(a) ≤ a ≤ a ≤ t(b), that is, x ∈ [t(a), t(b)] ∈ It. Under our current assumption this

is not possible. Then,

Ve(x) = V (a|p, τ) < V (b|p, τ) = Z(t(b)) ≤ Z(x) = Ze(x), (A.46)

that is, when x ∈ K ∩ Kct we have Ve(x) < Ze(x). If x ∈ [t(â), t(b̂)] for some

[t(â), t(b̂)] ∈ It. Using similar arguments as before we can show that â ≥ a and,

therefore,

Ve(x) = V (a|p, τ) = Z(t(a)) ≤ Z(t(â)) = Ze(x).

Now, recall that in the Interval construction part of the proof we defined an

interval Ĩ = [ã, c̃] in which the function V (·|p, τ) is uniformly strictly bounded by

Z(·). Now we relate this interval to Kct by showing that there exists ε > 0 such that

(c̃− ε, c̃) ⊆ Ict with Ict ∈ Ict . The idea is to use that (c̃− ε, c̃) ⊂ Ĩ and (c̃− ε, c̃) ⊂ Kct
together with Eq. (A.46) to show an strict objective improvement.
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Note that if c̃ = H then

sup
[t(a),t(b)]∈It

t(b)
(1)

≤ t(c̃)

= V (c̃)− V (Xr) +Xr

= (V (c̃)− V (ã)) + (V (ã)− V (Xr)) +Xr

(2)
< (V (c̃)− V (ã)) + (Z(ã)− Z(Xr)) +Xr

(3)

≤ (c̃− ã) + (ã−Xr) +Xr

= c̃,

where (1) comes from the fact that t(·) is non-decreasing and c̃ = H, line (2) follows

from the V (ã) < Z(ã) and V (Xr) = Z(Xr). Inequality, (3) holds because both V and

Z are 1−Lipschitz functions. In the case that c̃ < H we have V (ã) + (c̃ − ã) = ψ1.

Also, we always have that t(b) ≤ Yr where Yr is such that V (Xr) + (Yr −Xr) = ψ1.

From this we deduce that Yr < c̃ and, therefore, we have that sup[t(a),t(b)]∈It t(b) < c̃.

Either way we can always find ε ∈ (0, c̃− ã) such that the interval (c̃− ε, c̃) does not

intersect with any interval in It. Hence, since Ict are all the intervals that do not

belong to It we must have that (c̃− ε, c̃) ⊆ Ict for some Ict ∈ Ict .

Because (c̃ − ε, c̃) is a subset of both Kct and (ã, c̃), for x ∈ (c̃ − ε, c̃) ∩ Kc we

have Ve(x) < Ze(x). Also, for x ∈ (c̃ − ε, c̃) ∩ K from equation Eq. (A.46) we have
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Ve(x) < Ze(x). That is, Ve(x) < Ze(x) for all x ∈ (c̃− ε, c̃) and, therefore,∫
Kc
V (x|p, τ) · sτ (x) dΓ(x) =

∫
(Xr,H]

Ve(x|p, τ) · µ1dΓ(x)

−
∑

[a,b]∈I

∫
[a,b]

V (a|p, τ) · µ1dΓ(x)

<

∫
(Xr,H]

Ze(x) · µ1dΓ(x)−
∑

[a,b]∈I

∫
[a,b]

V (a|p, τ) · µ1dΓ(x)

=

∫
(Xr,H]

Ze(x) · µ1dΓ(x)−
∑

[a,b]∈I

V (a|p, τ)µ([a, b])

=

∫
(Xr,H]

Ze(x) · µ1dΓ(x)−
∑

[t(a),t(b)]∈It

Z(t(a))µ([t(a), t(b)])

=

∫
Kct
Z(x) · µ1dΓ(x),

which proves Eq. (A.45). To conclude, we provide a proof for both Property 1 and

Property 2.

Property 1. (pIt , τ It) forms a price-equilibrium pair in It such that τ It ∈

FIt(µ|It). Also, V (x| pIt , τ It) equals V (x+ a− t(a)| p, τ) for all x ∈ It, and

dτ It2

dΓ
(x) =

dτ2

dΓ
(x+ a− t(a)), Γ− a.e. x in It.

Proof of Property 1. We first show that τ It ∈ FIt(µ|It). It is clear that τ It ∈

M(It×It), and that τ It2 � Γ. To see why τ It1 coincides with µIt consider a set K ⊂ It

then τ It1 (K) equals

τ It1 (K × It) = τ((K + a− t(a))× (It + a− t(a))) = τ((K + a− t(a))× [a, b])

= τ((K + a− t(a))× C)

= µ(K + a− t(a))

= µ(K),

where the fourth line holds because the set K + a− t(a) is contained in [a, b], and we

know there is no flow leaving this interval. Next, using a similar argument we show
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the property for dτ It2 /dΓ, let K be a measurable subset of It then∫
K

dτ It2

dΓ
(x) dΓ(x) = τ It(It ×K)

= τ([a, b]× (K + a− t(a)))

=

∫
(K+a−t(a))

dτ2

dΓ
(x) dΓ(x)

=

∫
K

dτ2

dΓ
(x+ a− t(a)) dΓ(x).

Using this last property and the prices definition is easy to see that

V (x| pIt , τ It) = inf{u ∈ R : Γ(y ∈ It : U(y, pIt(y),
dτ It2

dΓ
(y))− |y − x| > u) = 0}

= inf{u ∈ R : Γ(y ∈ It : U(y, p(y + a− t(a)),
dτ2

dΓ
(y + a− t(a)))

− |y − x| > u) = 0}

= inf{u ∈ R : Γ(y ∈ I : U(y, p(y),
dτ2

dΓ
(y))

− |y − (x+ a− t(a))| > u) = 0}

= VI(x+ a− t(a)| p, τ),

but from out flow separation result (see Lemma A.9) we have that VI(x + a −

t(a)| p, τ) = V (x + a − t(a)| p, τ). Using this same approach, the definition of τ It

and the fact that τ is an equilibrium in [a, b] it is easy to verify the equilibrium

condition.

Property 2. The pair (pJt , τJt) forms a price-equilibrium pair in Jt such that

τJt ∈ FJt(µ|Jt) and V (x| pJt , τJt) equals Z(x) for all x ∈ Jt.

Proof of Property 2. From the definition of τJt it is clear that τJt ∈ FJt(µ|Jt).

Also, dτJt2 /dΓ = µ1, Γ−a.e in Jt. To see why V (x|pJt , τJt) equals Z(x) for all x ∈ Jt,

note that for fixed x ∈ Jt

Γ(y ∈ Jt : U(y, pJt(y),
dτJt2

dΓ
(y))−|y−x| > Z(x)) = Γ(y ∈ Jt : Z(y)−|x−y| > Z(x)) = 0,

where in the first equality we use the definition of pJ(t) together with dτJt2 /dΓ = µ1,

Γ − a.e in Jt. In the second equality we use the Lipschitz property of the function
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Z(·). That is, Z(x) ≥ V (x| pJt , τJt). This upper bound (Γ−a.e) is tight. Let ε > 0

then

0 < Γ(B(x, ε/2) ∩ Jt)

≤ Γ(y ∈ B(x, ε/2) ∩ Jt) : ε > |x− y|+ (Z(x)− Z(y)))

= Γ(y ∈ B(x, ε/2) ∩ Jt) : Z(y)− |y − x| > Z(x)− ε)

= Γ(y ∈ B(x, ε/2) ∩ Jt) : U(y, pJt(y),
dτJt2

dΓ
(y))− |y − x| > Z(x)− ε),

thus Z(x) is the smallest upper bound (Γ−a.e) and we have Z(x) = V (x| pJt , τJt). It

is not hard to verify that the equilibrium condition reduces to

τJt((x, y) ∈ Jt × Jt : Z(y)− |y − x| = Z(x)) = µ(Jt),

and by the definition of τJt this is immediately satisfied.

�

Proof of Theorem 1.2. The result follows directly from Proposition 1.9, and

the fact that [Xl, Xr] is an attraction region where V (·) is pinned down.

�

Proof of Theorem 1.3. We separate the proof in several steps. First, we argue

that there are at most three attraction regions in the any optimal solution. Then we

show that any optimal solution does not have drivers moving to the interval [Wr, Xr]

and [Xl,Wl]; otherwise, the platform can incentivize the movement of a positive

fraction of drivers outside of the center and make strictly larger revenue. After this

we put into practice Theorem 1.1 which prescribes what are the optimal prices and

post-relocation supply in each attraction region. In the final main step of the proof

we argue that the optimal solution has to be symmetric. We present the proof of two

properties that we will use during the main arguments, Property 1 and Property 2,

after the main proof.

Attraction regions identification: Lemma 1.5 establishes that at an optimal
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solution the attraction region of the origin is well defined with Xl < 0 < Xr. So Our

first attraction region is the interval [Xl, Xr].

The second and third attraction regions correspond to the intervals [Yl, Xl] and

[Xr, Yr] with Yl and Yr being sink locations. WLOG consider only the right interval,

if Yr = Xr we do not identify any attraction region to the right of Xr. Assume that

Xr < Yr, we will show that A(Yr) = [Xr, Yr] and Yr /∈ A(z) for any z 6= Yr. In order,

to show this we first show that Yr ∈ IR(Xr| p, τ). From Theorem 1.2 we know that

V (x) equals V (Xr) + (x − Xr) for all x ∈ [Xr, Yr]. Fix ε > 0 and δ0 ∈ (0, Yr − Xr)

then for any δ ≤ δ0 define the set

Kδ , {y ∈ B(Yr, δ) ∩ [Xr, Yr] : U(y) = V (y)}.

Since µ((Yr−δ, Yr]) > 0 and τ((Yr−δ, Yr]×(C \ (Yr−δ, Yr])) = 0 (otherwise we would

obtain a contradiction with Theorem 1.2), we must have that τ2((Yr − δ, Yr]) > 0.

This together with Lemma A.2 and τ2 � Γ imply that Γ(Kδ) > 0. Hence,

0 < Γ(Kδ)

= Γ(y ∈ Kδ : ε > 0)

= Γ(y ∈ Kδ : V (Xr) > V (Xr)− ε)

= Γ(y ∈ Kδ : V (y)− |y −Xr| > V (Xr)− ε)

= Γ(y ∈ Kδ : U(y)− |y −Xr| > V (Xr)− ε)

≤ Γ(y ∈ B(Yr, δ) : U(y)− |y −Xr| > V (Xr)− ε)

This implies that VB(Yr,δ)(Xr) ≥ V (Xr) − ε. By the choice of ε and δ we conclude

that limδ↓0 VB(Yr,δ)(Xr) is V (Xr). In other words, Yr ∈ IR(Xr| p, τ). Now, Yr cannot

belong to any other attraction region; otherwise, by the Lemma 1.3 the value function

would not be as in Theorem 1.2. Therefore, Yr is a sink location and [Xr, Yr] ⊆ A(Yr).

If there existed x ∈ A(Yr) but x /∈ [Xr, Yr], the value function would not be as in

Theorem 1.2. In conclusion, A(Yr) = [Xr, Yr] and Yr /∈ A(z) for any z 6= Yr.
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No supply in [Wr, Xr]: Next we argue that at an optimal solution (p, τ) we must

have that τ2([Wr, Xr]) = 0, the same is true for the left side. Suppose by contradiction

that τ2([Wr, Xr]) > 0 and denote this amount of supply by qr, we construct a new

solution (p̃, τ̃) that yields an strict objective improvement. Observe that,

0 < qr = τ(C × [Wr, Xr]) = τ([Wr, Xr]× [Wr, Xr]) ≤ µ([Wr, Xr]) = µ1 · (Xr −Wr).

That is, from the total amount of initial supply in [Wr, Xr] we have that qr units

stay within [Wr, Xr] and a total of µ1 · (Xr −Wr) − qr units travel to [0,Wr]. Note

that for this qr units of mass their V is bounded by ψ1 and, therefore, what the

platform can make from them is strictly bounded by ψ1 · qr (times a scaling factor).

Let X̃r ∈ [Wr, Xr) be such that qr = µ1 · (Xr − X̃r). In the new solution, we will

modify the attraction region [Xl, Xr] to be [Xl, X̃r]. We will maintain the same prices

and post-relocation supply in the origin’s attraction region. However, to the right

side of X̃r we will set new prices that will be consistent with a new value function

and flows that upper bound those of the old solution, see Figure A.3.

0 HXrWr YrX̃r Ỹr

V (0)
h

Ỹr − X̃r

µ([X̃r, Xr]) = qr

ψ1
V (x| p, τ )
V (x| p̃, τ̃ )

Figure A.3: No supply in [Wr, Xr]. The new solution moves the right end of the
attraction region from Xr to X̃r, so now a mass qr of drivers can travel towards
the periphery. From this mass the platform now makes ψ1 instead of V (x) with
V (x) < ψ1.

We begin our construction of (p̃, τ̃) with the interval I1
r = [X̃r, Ỹr], where Ỹr is

such that ψ1 = V (X̃r) + (Ỹr − X̃r). Let h , 2 · (Xr − X̃r), we define flows for any
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L ⊆ I1
r × I1

r by

τ I
1
r (L) = τ

(
L+ (h, h)

)
.

Consider the set K , {x ∈ I1
r :

dτ
I1r
2

dΓ
(x) ≤ dτ2

dΓ
(x+ h)}. We set prices to be such that

U
(
x, pI

1
r (x),

dτ
I1
r

2

dΓ
(x)
)

= U
(
x+ h, p(x+ h), sτ (x+ h)

)
, ∀x ∈ K, (A.47)

and zero otherwise. We prove, in Property 1 (see end of present proof), that (pI
1
r , τ I

1
r )

is a price-equilibrium pair in I1
r such that V (x| pI1

r , τ I
1
r ) = V (X̃r) + (x − X̃r) and

Γ(Kc) = 0.

In the interval I2
r = (Ỹr, H] we can achieve the optimal solution when there is no

demand shock. As in the optimal solution in the pre-demand shock environment (see

Proposition 1.6) we set prices equal to ρ1 and the flows are such that dτ I
2
r /dΓ equals

µ1, Γ− a.e in I2
r .

The interval I0
r = [Xl, X̃r] is more involved. Observe that all the initial flow to

the right of the origin that we have to allocate in [0, X̃r] equals µ1 ·Xr − qr. This is

exactly the same amount of drivers in [0, Xr] that travels to [0,Wr] according to τ .

Our new solution will generate the same post-relocation supply than τ in [0,Wr] but

this time only using drivers from [0, X̃r].

We use the same prices, that is pI
0
r (x) = p(x) for all x ∈ [Xl, X̃r]. For the flows

we define them through two measures: the flow that goes from [Xl, 0] to [Xl, 0] and

the flow that goes from [0, X̃r] to [0, X̃r]. For the first flow we use τ ` = τ |[Xl,0], for the

second measure τ r we will use a monotone coupling (see e.g, [60] for details). Define

the initial supply to the right measure µr to be equal to µ|[0,X̃r], and the final supply

Sr to be

Sr(B) , τ([0, Xr]× B), for any measurable set B ⊆ [0, X̃r].

Note that Sr([0,Wr]) equals µr([0, X̃r]). Given this we define τ r by

τ r(L) , (F
[−1]
µr , F

[−1]
Sr )#m(L), for any measurable set L ⊆ [0, X̃r]× [0, X̃r],
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where # correspond to the push-forward operator. For any measure ν defined in

[0, X̃r] we define its cumulative function and pseudo-inverse by

Fν(y) , ν([0, y]), ∀ y ≥ 0 and F [−1]
ν (t) , inf{y ≥ 0 : Fν(y) ≥ t},

∀t ∈ [0, µr([0, X̃r])]. Effectively, τ r transports the initial mass in [0, X̃r] to the final

supply distribution (considering only drivers that come from the right) in [0,Wr] as

prescribed by τ . The final flow measure τ I
0
r correspond to τ `+τ r|[0,X̃r]. In Property 2

below we show that (pI
0
r , τ I

0
r ) is a price-equilibrium pair such that Rev[Xl,Wr](p

I0
r , τ I

0
r ) =

Rev[Xl,Wr](p, τ).

The solution (p̃, τ̃) is constructed by pasting (see Lemma A.9) the old solution is

[−H,Xl) with the new solution in I0, I1
r and I2

r . The pasting is possible because the

equilibrium utility function coincide in the boundaries of these intervals. This new

solution preserves the platform’s revenue in [−H,Wr]∪ [Yr, H] but it strictly improves

it in [Wr, Yr]. Indeed, note that

qr =

∫
[Xr,Yr]

sτ (x) dx−
∫

[X̃r,Ỹr]

sτ̃ (x) dx

=

∫
[X̃r,Ỹr]

(sτ (x+ h)− sτ̃ (x))︸ ︷︷ ︸
≥0 Γ−a.e

dx+

∫
[Xr,Xr+(Xr−X̃r)]

sτ (x) dx, (A.48)
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thus

1

γ
·Rev[Wr,Yr](p̃, τ̃) =

∫
[Wr,X̃r]

V (x|p̃, τ̃) · sτ̃ (x) dx+

∫
[X̃r,Yr]

V (x|p̃, τ̃) · sτ̃ (x) dx

(a)
=

∫
[X̃r,Yr]

V (x|p̃, τ̃) · sτ̃ (x) dx

(b)
=

∫
[X̃r,Ỹr]

V (x|p̃, τ̃) · sτ̃ (x) dx+ ψ1 · 2 · qr
(c)
>

∫
[X̃r,Ỹr]

V (x|p̃, τ̃) · sτ̃ (x) dx+ ψ1 · qr +

∫
[Wr,Xr]

V (x) · sτ (x) dx

(d)

≥
∫

[X̃r,Ỹr]

V (x|p̃, τ̃) · sτ (x+ h) dx

+

∫
[Wr,Xr+(Xr−X̃r)]

V (x) · sτ (x) dx

(e)
=

∫
[Wr,Yr]

V (x) · sτ (x) dx =
1

γ
·Rev[Wr,Yr](p, τ),

where (a) follows because τ̃ does not put mass in [Wr, X̃r], (b) because Yr− Ỹr equals

2 · (Xr − X̃r). Using the fact that τ2([Wr, Xr]) = qr we obtain (c), while (d) follows

from Eq. (A.48) and (e) from V (x| p̃, τ̃) being equal to V (x+ h) for all x ∈ [X̃r, Ỹr].

In conclusion, any optimal solution both τ2([Wr, Xr]) and τ2([Xl,Wl]) must equal

zero.

Using Theorem 1.1: All the conditions in Theorem 1.1 are met. So, for any of

the three attraction regions if (p, τ) is not already as in the statement of the theorem

we can find at least a weak improvement. That is, we can restrict to solution as in

Theorem 1.1. Therefore, the prices are as stated in the present theorem, and there

exists βlc ∈ [Wl, 0], βrc ∈ [0,Wr], β
l
p ∈ [Yl, Xl] and βrp ∈ [Xr, Yr] such that

sτ (x) =


0 if x ∈ (βrc , β

r
p) ∪ (βlp, β

l
c),

ψ−1
x (V (x| p, τ)) otherwise,

with ∫ βrc

βlc

ψ−1
x (V (x| p, τ)) dΓ(x) = µ1 · (Xr −Xl)
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and∫ Yr

βrp

ψ−1
x (V (x|p, τ))dΓ(x) = µ1 ·(Yr−Xr),

∫ βlp

Yl

ψ−1
x (V (x|p, τ))dΓ(x) = µ1 ·(Xl−Yl).

Note that the fact that βlc ∈ [Wl, 0] and βrc ∈ [0,Wr], does not come directly from

Theorem 1.1 but rather is a consequence of that any optimal solution must satisfy

both τ2([Wr, Xr]) = 0 and τ2([Xl,Wl]) = 0. Also, observe that Theorem 1.1 only

gives us a solution in each attraction but above we have stated the solution for the

entire city. The only missing interval are [−H, Yl] and [Yr, H]. In this intervals, as

in the pre-shock environment, the solution set prices equal to ρ1 and the supply at

every location is µ1, in turn, the V equals ψ1 in this region. This gives a complete

solution to the platform’s problem up to three values: V (0), Xl, Xr.

Symmetry: In the last main step of the proof we argue that the solution is

symmetric. After proving this, the solution will take the exact form in the statement

of the present theorem.

Note that given a value for V (0) and an central attraction region characterize byXl

andXr we can characterize the optimal solution as we did in Using Theorem 1.1. So

fix these three values and the optimal solution associated to them. We now proceed to

construct a new solution that yields a strict objective improvement when the solution

is not symmetric. WLOG assume that |Xl| > Xr and let δ = (|Xl|−Xr)/2. Consider

the solution (p̃, τ̃) associated to the values

Ṽ (0) = V (0), X̃l = Xl + δ, X̃r = Xr + δ.

Note that with this values we have |X̃l|, W̃r ≥ Wr and Ỹi = Yi+2 ·δ for i ∈ {l, r}. We

next show that this new solution yields a weak objective improvement in the center,

and a strict objective improvement in the periphery.

Note that given Ṽ (0), X̃l and X̃r Theorem 1.2 characterizes V (·| p̃, τ̃). It has the

same shape than V (·| p, τ) except that now the dip in [Ỹl,Wl] is smaller, while the

dip in [Wr, Yr] is larger. See Figure A.4 for a graphical representation. Consider
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−H H0 Xr

X̃r
Xl

X̃l
Wr−Wr Yr ỸrYl Ỹl

V (0)

ψ1ψ1

same level

2 · δ2 · δ δδ

βrpβlp−β̃p β̃p

Figure A.4: Symmetry argument.

first the solution in the center, [X̃l, X̃r]. This interval contains the same amount

of drivers that the old attraction region. The difference is that it lost a mass of

µ1 · δ drivers to the left and gain the same mass to the right. As in the discussion

that follows Theorem 1.1 the optimal solution in [X̃l, X̃r] can be obtained using a

knapsack argument. This new attraction region is symmetric, |X̃l| = X̃r, with equal

mass of drivers at both sides of the origin. Therefore the knapsack solution must be

symmetric, with β̃c ∈ [0,Wr] such that

sτ̃ (x) = ψ−1
x (V (x| p̃, τ̃)) = ψ−1

x (V (x| p, τ)), ∀x ∈ [−β̃c, β̃c],

and equals zero otherwise, and∫ β̃c

−β̃c
ψ−1
x (V (x| p̃, τ̃) dΓ(x) = µ1 · (X̃r − X̃l) = µ1 · (Xr −Xl).

Note that β̃c ∈ [0,Wr] is a consequence of the having βlc ∈ [Wl, 0] and βrc ∈ [0,Wr]

in the old solution. Theorem 1.1 prescribes how to formally implement this solution

through prices and flows. We omit the details of how to construct the flows, but we

note that the optimal prices are given p̃(x) = ρlocx (sτ̃ (x)). In the case that β̃ = 0 then

sτ̃ (0) = µ1 · (Xr −Xl) and p̃(0) is such that U(0, p(0), sτ̃ (0)) = V (0). The platform’s

revenue in the new center is then

1

γ
·Rev[X̃l,X̃r]

(p̃, τ̃) =

∫ X̃r

X̃l

V (x| p̃, τ̃) · sτ̃ (x) dx =

∫ β̃c

−β̃c
V (x) · ψ−1

x (V (x)) dx.

241



This expression is an upper bound for the platform’s revenue under (p, τ) in [Xl, Xr].

In fact, WLOG assume βrc ≥ |βlc| which implies that β̃c ∈ [|βlc|, βrc ] and we must have

1

γ
·Rev[Xl,Xr](p, τ) =

∫ βrc

βlc

V (x) · ψ−1
x (V (x)) dx

=

∫ |βlc|
βlc

V (x) · ψ−1
x (V (x)) dx+

∫ βrc

|βlc|
V (x) · ψ−1

x (V (x)) dx

=
1

γ
·Rev[X̃l,X̃r]

(p̃, τ̃)

− 2 ·
∫ β̃c

|βlc|
V (x) · ψ−1

x (V (x)) dx+

∫ βrc

|βlc|
V (x) · ψ−1

x (V (x)) dx

=
1

γ
·Rev[X̃l,X̃r]

(p̃, τ̃)

−
∫ β̃c

|βlc|
V (x) · ψ−1

x (V (x)) dx+

∫ βrc

β̃c

V (x) · ψ−1
x (V (x)) dx

≤ 1

γ
·Rev[X̃l,X̃r]

(p̃, τ̃)

+ V (β̃c) ·
(
−
∫ β̃c

|βlc|
ψ−1
x (V (x)) dx+

∫ βrc

β̃c

ψ−1
x (V (x)) dx

)
=

1

γ
·Rev[X̃l,X̃r]

(p̃, τ̃).

That is, the new solution in the center is a weakly improvement over the old solution.

Now let us consider the periphery. Since |X̃l| = X̃r both right and left periphery

are symmetric. Thus the optimal solution as given by Theorem 1.1 is the symmetric

at both sides. The post-relocation supply is characterize by β̃p ∈ [X̃r, Ỹr] such that

sτ̃ (x) = ψ−1
x (V (x| p̃, τ̃)) = ψ−1

x (V (Xr) + (x−Xr)− 2 · δ), ∀x ∈ [β̃p, Ỹr],

and equals zero otherwise, and∫ Ỹr

β̃p

ψ−1
x (V (x| p̃, τ̃) dΓ(x) = µ1 · (Ỹr − X̃r) = µ1 · (Yr −Xr) + µ1 · δ.

The optimal prices are p̃(x) = ρlocx (sτ̃ (x)). As before we omit the characterization of

the equilibrium flow as their existence is guaranteed by Theorem 1.1. The platforms

revenue in the periphery is

1

γ
·Rev[−H,X̃l]∪[X̃r,H](p̃, τ̃) = 2 ·

∫ Ỹr

β̃p

V (x| p̃, τ̃) ·ψ−1(V (x| p̃, τ̃))dx+2 ·ψ1 ·µ1 · (H− Ỹr),
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where we have dropped the subindex x from ψ−1
x to stress the fact that in this part of

the city this subindex does not change the congestion function. We need to compare

this revenue with the revenue of the old solution in the periphery. Not that since

|Xl| > Xr we must have

Yr − βrp < Ỹr − β̃p < βlp − Yl.

Thus,

1

γ
·Rev[−H,Xl]∪[Xr,H](p, τ) =

∫ βlp

Yl

V (x) · ψ−1(V (x)) dx+

∫ Yr

βrp

V (x) · ψ−1(V (x)) dx

+ ψ1 · µ1 · (H − Yr + Yl +H)

=

∫ βlp

Yl+(Yr−βrp)

V (x) · ψ−1(V (x)) dx+ 2 ·
∫ Yr

βrp

V (x) · ψ−1(V (x)) dx

+ ψ1 · µ1 · (H − Yr + Yl +H)

=

∫ βlp

Yl+(Yr−βrp)

V (x) · ψ−1(V (x)) dx+ 2 ·
∫ Ỹr

βrp+2·δ
V (x| p̃, τ̃) · ψ−1(V (x| p̃, τ̃)) dx

+ 2 · ψ1 · µ1 · (H − Ỹr)

=

∫ βlp

Yl+(Yr−βrp)

V (x) · ψ−1(V (x)) dx− 2 ·
∫ βrp+2·δ

β̃p

V (x| p̃, τ̃) · ψ−1(V (x| p̃, τ̃)) dx︸ ︷︷ ︸
(a)

+
1

γ
·Rev[−H,X̃l]∪[X̃r,H](p̃, τ̃),

So if we show that the term (a) is strictly negative we will be done. Not that

(a) =

∫ βlp

Yl+(Yr−βrp)

V (x) · ψ−1(V (x)) dx− 2 ·
∫ Yl+(Ỹr−β̃p)

Yl+(Yr−βrp)

V (x) · ψ−1(V (x)) dx

=

∫ βlp

Yl+(Ỹr−β̃p)

V (x) · ψ−1(V (x)) dx−
∫ Yl+(Ỹr−β̃p)

Yl+(Yr−βrp)

V (x) · ψ−1(V (x)) dx

< V (Yl + (Ỹr − β̃p)) ·
(∫ βlp

Yl+(Ỹr−β̃p)

ψ−1(V (x)) dx−
∫ Yl+(Ỹr−β̃p)

Yl+(Yr−βrp)

ψ−1(V (x)) dx
)

= 0.
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In conclusion, we have constructed a new symmetric solution that yields an strict

revenue improvement over the old solution. Therefore, any optimal solution ought to

be symmetric.

Property 1. (pI
1
r , τ I

1
r ) forms a price-equilibrium pair in I1

r such that V (x|pI1
r , τ I

1
r )

equals V (X̃r) + (x− X̃r) and Γ(Kc) = 0.

Proof of Property 1. We first show that τ I
1
r ∈ FI1

r
(µ|I1

r
). It is clear that

τ I
1
r ∈ M(I1

r × I1
r ), and that τ

I1
r

2 � Γ. To see why τ
I1
r

1 coincides with µI1
r

consider a

set I ⊂ I1
r then τ

I1
r

1 (K) equals

τ
I1
r

1 (K × I1
r ) = τ((I + h)× (I1

r + h))

= τ((I + h)× [X̃r + h, Yr])

= τ((I + h)× C)

= µ(I + h)

= µ(I),

where the fourth line holds because the set I + h is contain in [X̃r + h, Yr], and we

know there is no flow leaving this interval. Next, using a similar argument we show

the property for dτ
I1
r

2 /dΓ, let I be a measurable subset of I1
r then∫

I

dτ
I1
r

2

dΓ
(x) dΓ(x) = τ I

1
r (I1

r × I) = τ([X̃r + h, Yr]× (I + h))

≤ τ([Xr, Yr]× (I + h))

=

∫
(I+h)

dτ2

dΓ
(x) dΓ(x)

=

∫
I

dτ2

dΓ
(x+ h) dΓ(x),
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that is, Γ(Kc) = 0. As for the equilibrium utility function let x ∈ [X̃r, Ỹr) we have

V (x| pI1
r , τ I

1
r ) = inf{u ∈ R : Γ(y ∈ I1

r : U(y, pI
1
r (y),

dτ
I1
r

2

dΓ
(y))− |y − x| > u) = 0}

= inf{u ∈ R : Γ(y ∈ I1
r : U(y, p(y + h),

dτ2

dΓ
(y + h))− |y − x| > u) = 0}

= inf{u ∈ R : Γ(y ∈ [X̃r + h, Yr] : U(y, p(y),
dτ2

dΓ
(y))

− |y − (x+ h)| > u) = 0}

≤ V (x+ h| p, τ).

Actually this upper bound is tight. Indeed, Fix any ε > 0 and consider δ > 0 small

enough such that (x+ h) /∈ B(Yr, δ). We have τ2({y ∈ B(y, δ)∩ [X̃r + h, Yr] : U(y) =

V (y)}) > 0 which implies that Γ({y ∈ B(Yr, δ) ∩ [X̃r + h, Yr] : U(y) = V (y)}) > 0

and, therefore,

0 < Γ({y ∈ B(Yr, δ) ∩ [X̃r + h, Yr] : U(y) = V (y), ε+ y − (x+ h) > |y − (x+ h)|})

= Γ({y ∈ B(Yr, δ) ∩ [X̃r + h, Yr] : U(y) = V (y), U(y)− |y − (x+ h)|

> V (x+ h)− ε})

≤ Γ({y ∈ [X̃r + h, Yr] : U(y)− |y − (x+ h)| > V (x+ h)− ε})

= Γ({y ∈ I1
r : U(y, pI

1
r (y),

dτ
I1
r

2

dΓ
(y))− |y − x| > V (x+ h)− ε}),

therefore V (x| pI1
r , τ I

1
r ) equals V (x+ h) for all x ∈ [X̃r, Ỹr), and by continuity for all

x ∈ I1
r . Since V (x+ h) equals V (X̃r) + (x− X̃r) we obtain the desired result.

Now we need to verify that this selection of prices and flows yields an equilibrium.

That is, we need show that the set

EI1
r

=
{

(x, y) ∈ I1
r × I1

r : Π(x, y, pI
1
r (y),

dτ
I1
r

2

dΓ
(y)) = V (x| pI1

r , τ I
1
r )
}
,

has τ I
1
r measure equal to µ(I1

r ). Observe that τ(EI1
r
) equals

τ
({

(x, y) ∈ [X̃r+h, Yr]×[X̃r+h, Yr] : Π(x−h, y−h, pI1
r (y−h),

dτ
I1
r

2

dΓ
(y−h)) = V (x)

})
,
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using that Γ(Kc) = 0 and the way we chose the prices one can verify that this

expression equals

τ
({

(x, y) ∈ [X̃r + h, Yr]× [X̃r + h, Yr] : Π(x, y, p(y), sτ (y)) = V (x| p, τ)
})
.

There is no τ flow of drivers leaving [X̃r + h, Yr] so the fact that τ is an equilibrium

flow implies that this last expression equals µ([X̃r + h, Yr]), which equals µ(I1
r ).

Property 2. (pI
0
r , τ I

0
r ) is a price-equilibrium pair such that Rev[Xl,Wr](p

I0
r , τ I

0
r ) =

Rev[Xl,Wr](p, τ).

Proof of Property 2. First a couple of observations, note that for any y ∈ [0, X̃r]

and the set [0, y] then

τ r1 ([0, y]) = τ r([0, y]× [0, X̃r]) = m
(
t ∈ [0, µr([0, X̃r])] : F

[−1]
µr (t) ∈ [0, y]

)
= m

(
t ∈ [0, µr([0, X̃r])] : 0 ≤ t ≤ Fµr(y)

)
= Fµr(y),

and the same argument holds for τ r2 and Sr, this characterizes the first and second

marginals of τ r. Furthermore, it’s not difficult to see that for y1, y2 ∈ [0, X̃r] we have

τ r([0, y1]×[0, y2]) = m
(
t ∈ [0, µr([0, X̃r])] : t ≤ Fµr(y1), t ≤ FSr(y2)

)
= Fµr(y1)∧FSr(y2).

(A.49)

Next, we show that τ I
0
r ∈ FI0

r
(µ|I0

r
) is an equilibrium in I0

r . In order to do so we

first show thatτ I
0
r ∈ FI0

r
(µ|I0

r
). Second, we compute the supply density of τ

I0
r

2 and

corroborate they coincide with sτ . Third, we compute VI0
r
(·| pI0

r , τ I
0
r ) and verify is

coincides with V (·| p, τ) in I0
r . Finally, we check the equilibrium condition.

Clearly τ I
0
r is a non-negative measure in I0

r ×I0
r because is the sum of non-negative
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measures. Now we check that τ
I0
r

1 = µ|I0
r
. Consider a measurable set B ⊆ I0

r then

τ
I0
r

1 (B) = τ((B ∩ [Xl, 0])× [Xl, 0]) + τ r((B ∩ [0, X̃r])× [0, X̃r])

= τ((B ∩ [Xl, 0])× C) + µr(B ∩ [0, X̃r])

= µ(B ∩ [Xl, 0]) + µ(B ∩ [0, X̃r])

= µ|I0
r
(B)

and thus we also have τ
I0
r

1 � Γ. For the second marginal of τ I
0
r we have

τ
I0
r

2 (B) = τ([Xl, 0]× (B ∩ [Xl, 0])) + τ r([0, X̃r]× (B ∩ [0, X̃r]))

= τ([Xl, 0]× (B ∩ [Xl, 0])) + Sr(B ∩ [0, X̃r])

= τ([Xl, 0]× (B ∩ [Xl, 0])) + τ([0, Xr]× (B ∩ [0, X̃r]))

= τ2(B ∩ [Xl, 0)) + τ2(B ∩ (0, X̃r]) + τ2(B ∩ {0})

= τ2|I0
r
(B),

and thus τ
I0
r

2 � Γ. We conclude that τ I
0
r ∈ FI0

r
(µ|I0

r
). From this we can also conclude

that

dτ
I0
r

2

dΓ
(x) = sτ (x), Γ− a.e. x in I0

r .

Next we compute the equilibrium utilities. We show that V (x|pI0
r , τ I

0
r ) equals V (x|p, τ)

for all x ∈ I0
r . Observe that Γ − a.e. y in I0

r we have U(y, pI
0
r (y), sτ

I0r (y)) =

U(y, p(y), sτ (y)), and, therefore, V (x| p, τ) ≥ V (x| pI0
r , τ I

0
r ). Using the same argu-

ment that we used for the proof of Property 1 we can argue that this upper bound is

tight, that is, V (x| p, τ) = V (x| pI0
r , τ I

0
r ).

Now the equilibrium condition. Consider the equilibrium set

EI0
r
,
{

(x, y) ∈ I0
r × I0

r : U(y, pI
0
r (y), sτ

I0r (y))− |y − x| = V (x| pI0
r , τ I

0
r )
}
,
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we need to verify that τ I
0
r (EI0

r
) equals µ(I0

r ). First, for τ l(EI0
r
) we have

τ l(EI0
r
) = τ

({
(x, y) ∈ [Xl, 0]× [Xl, 0] : U(y, p(y), sτ (y))− |y − x| = V (x| p, τ)

})
= τ([Xl, 0]× [Xl, 0])

= τ([Xl, 0]× C)

= µ([Xl, 0])

where we have used our choice of prices, the relation between dτ
I0
r

2 /dΓ and sτ , and

the fact that τ is an equilibrium flow that does not setnd flow out of [Xl, 0]. For

τ r|[0,X̃r], note that its second marginal is Sr and, therefore, Lemma A.2 implies that

τ r|[0,X̃r](EI0
r
) = τ r

({
(x, y) ∈ [0, X̃r]× [0, X̃r] : V (y| p, τ)− |y − x| = V (x| p, τ)

})
,

and because V (z| p, τ) equals V (0)− z for any z ∈ [0, X̃r] we have

τ r|[0,X̃r](EI0
r
) = τ r

({
(x, y) ∈ [0, X̃r]× [0, X̃r] : −y − |y − x| = −x

})
= τ r

({
(x, y) ∈ [0, X̃r]× [0, X̃r] : x ≥ y

})
= µr([0, X̃r])− τ r

({
(x, y) ∈ [0, X̃r]× [0, X̃r] : x < y

})
,
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but

τ r
({

(x, y) ∈ [0, X̃r]× [0, X̃r] : x < y
})
≤

∑
q∈∩[0,X̃r]

τ r([0, q]× (q, X̃r])

=
∑

q∈Q∩[0,X̃r]

{
τ r([0, q]× [0, X̃r])

− τ r([0, q]× [0, q])
}

=
∑

q∈Q∩[0,X̃r]

{
µr([0, q]) ∧ Sr([0, X̃r])

− µr([0, q]) ∧ Sr([0, q])
}

=
∑

q∈Q∩[0,X̃r]

{
µr([0, q]) ∧ Sr([0, X̃r])

− µr([0, q]) ∧ Sr([0, q])
}

= 0,

where in the last line we used that µr([0, q]) ≤ Sr([0, q]). Adding up τ l(EI0
r
) with

τ r|[0,X̃r](EI0
r
), yields that τ I

0
r (EI0

r
) equals µ(I0

r ), and the equilibrium condition is satis-

fied. Finally, the revenue condition in the statement of the Property is immediately

satisfied as dτ
I0
r

2 /dΓ coincide with sτ in Ir0 , and the same is true for the equilibrium

utilities.

�
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Appendix B

Spatial Capacity Planning

B.1 Proofs for Section 2.3.2

Proof of Lemma 2.1. Let x0 be in the interior of C, a bounded subset of R2

with area denoted by |C|. It is enough to prove that the following limit exists

lim
k→∞

√
k · E

[
min
i=1,...,k

‖Xi − x0‖
]
.

Let Zk , mini=1,...,k ‖Xi − x0‖. First, note that since x0 is in the interior of the

bounded region we can always find a ball B(x0, ε) that is contain in C (below we take

ε small enough). From this and the fact that the points Xi are drawn uniformly at

random in C, we have the following lower and upper bounds for any i = 1, . . . , k

π · (z ∧ ε)2

|C| = P[‖Xi − x0‖ ≤ z ∧ ε] ≤ P[‖Xi − x0‖ ≤ z] ≤ π · z2

|C| .

Second, from these bounds and the fact that the points Xi are IID we deduce(
1− π · z2

|C|
)k
∨ 0 ≤ P[Zk > z] ≤

(
1− π · (z ∧ ε)2

|C|
)k
∨ 0.

This yields the following bound for E[Zk]∫ √|C|/π
0

(
1− π · z2

|C|
)k
dz ≤ E[Zk] ≤

∫ ε

0

(
1− π · z2

|C|
)k
dz +

∫ RC

ε

(
1− π · ε2

|C|
)k
dz,

where RC = maxx,y∈C ‖x− y‖ and we are assuming that ε < RC. Note that

lim
k→∞

√
k ·
∫ RC

ε

(
1− π · ε2

|C|
)k
dz = lim

k→∞

√
k ·
(

1− π · ε2
|C|

)k
· (RC − ε) = 0,

where we are using that ε is small enough such that π · ε2/|C| < 1. Therefore, we have

that
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√
k·
∫ ε

0

(
1−π · z

2

|C|
)k
dz ≤

√
k·E[Zk] ≤

√
k·
∫ ε

0

(
1−π · z

2

|C|
)k
dz+
√
k·
∫ RC

ε

(
1−π · ε

2

|C|
)k
dz,

where the last term on the RHS above converges to zero. To complete the proof note

that

lim
k→∞

√
k ·
∫ ε

0

(
1− π · z

2

|C|
)k
dz =

√
|C|
π
· lim
k→∞

√
k ·
∫ ε·
√
π/|C|

0

(
1− z2

)k
dz ≈ 0.886 ·

√
|C|
π
,

where in the last step we use that for any 0 < δ < 1 the limit as k ↑ ∞ of
√
k
∫ δ

0
(1−

z2)kdz is approximately 0.886. �

B.2 Proofs for Section 2.4

Proof of Theorem 2.1. We make use of Proposition B.1 which we state and

prove after the proof of this theorem. We prove each statements in the theorem.

(i) First we show that qn as given in the statement is always an stable equilibrium.

We have that qn = n + z2
n with zn = ρn/(1 − ρn). Any equilibrium solves

fn(q) = 0, thus we just need to verify that

1 +
1

zn
=

n

λns̄
=

1

ρn
,

which is clearly satisfied. To verify stability we proceed using the Lyapunov

method. Let V (q) = |q − qn|, then V̇ (q) = sgn(q − qn) · fn(q). We need to

verify that V̇ (q) < 0 for q 6= qn (for n large enough). By Proposition B.1

part (i), if q ∈ (qn, qn + δ] we have that V̇ (q) = fn(q) < 0, and if ∈ [qn − δ, qn)

V̇ (q) = −fn(q) < 0 for δ > 0 small enough. Hence, qn is a locally asymptotically

stable equilibrium.

If α > 1/3 or if α = 1/3 and β < β∗1 by Proposition B.1 we have that fn(q) > 0

for all q ∈ [0, qn). Therefore the same Lyapunov analysis as before leads to the

conclusion that qn is a globally asymptotically stable equilibrium.
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(ii) Both equilibria q and q̃n can be found by equating g1,n(q) and g2,n(q). This turns

out to be equivalent to solving the equation

(n− q) +
n · ρn√
n− q = n · (1− ρn). (B.1)

For the current values of α and β, Proposition B.1 part (iii), we know the latter

equation has two solutions: q̃n and q. Let’s start with q̃n. From Proposition B.1 we

know that in a vicinity to the left of q̃n we have fn(q) < 0, that is, in a vicinity to

the left of q̃n we have dQ̃n(t)/dt < 0 and, therefore, the systems moves away from q̃n.

Similarly, in a vicinity to the right of q̃n we have fn(q) > 0 and, therefore, the system

moves away from q̃n. This shows that this equilibrium is unstable.

For q we can use the same Lyapunov analysis as before, together with Proposition

B.1, to show that it is a locally asymptotically stable equilibrium.

To conclude we need to provide a closed form characterization the two equilibria.

We transform the equation that defines them, Eq. (B.1), in to a cubic equation.

Consider the change of variables w =
√
n− q, then the equation becomes

w3 − n · (1− ρn) · w + n · ρn = 0. (B.2)

The solution to this equation can be found in [62]. When the term −4n3 · (1− ρn)3 +

27n2 · ρ2
n is non-positive the three possible solutions to (B.2) are real and given by

wi = 2

√
n · (1− ρn)

3
· cos

(1

3
arccos

(
−
√

27ρ2
n

4n · (1− ρn)3

)
− 2πi

3

)
, i = 0, 1, 2.

In order to verify that −4n3 · (1 − ρn)3 + 27n2 · ρ2
n ≤ 0, note that this is equivalent

to 27ρ2
n ≤ 4n1−3α · (nα(1− ρn))3. For large n, this last inequality holds for α < 1/3.

The same is true for α = 1/3 and β > β∗1 . Therefore, the solutions wk are all real.

Furthermore, it is possible to verify that they are ordered, w0 ≥ w1 ≥ w2, and that

w2 satisfies

w2 = −2

√
n · (1− ρn)

3
· cos

(1

3
arccos

(√ 27ρ2
n

4n · (1− ρn)3

))
< 0,
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and w1 ≥ 0 for large n. Since we are using the change of variables w =
√
n− q, we

can disregard w2 as a solution and take w0 and w1 to compute the solutions of our

original equation. Because q ≤ q̃n we obtain that q = n− w2
0 and q̃n = n− w2

1.

�

Proposition B.1 Suppose limn→∞(1− ρn)nα = β and that ρn ↑ 1. Let β∗1 = 3/41/3

then

(i) there exists n0 such that for all n ≥ n0 there exists qn > n for which

fn(q)


= 0 if q = qn

< 0 if q > qn

> 0 if q ∈ [n, qn).

(ii) if α > 1/3, or if α = 1/3 and β < β∗1 , there exists n0 such that for all n ≥ n0

we have fn(q) > 0 for all q ∈ [0, qn).

(iii) if α < 1/3, or if α = 1/3 and β > β∗1 then there exists n0 such that for all

n ≥ n0 there exist q and q̃n with 0 ≤ q < n− (n·ρn
2

)2/3 < q̃n < n− 1 such that

fn(q)


= 0 if q ∈ {q, q̃n}

< 0 if q ∈ (q, q̃n)

> 0 if q ∈ [0, q) ∪ (q̃n, qn).

Proof of Proposition B.1. First note that from the definition of fn we have

fn(q) = λn −
1

s̄√
|q−n|∨1

+ s̄
·min(n, q). (B.3)

Next prove each part of the statement separately.

(i) Consider q ≥ n+ 1 then fn(q) = 0 if and only if(
1 +

1√
q − n

)
=

1

ρn
.
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The left hand side is a decreasing function of q with maximum value equal to 2

for q ≥ n + 1. Also, since ρn < 1 we have that 1/ρn > 1. If n is large enough

so that 1/ρn < 2, we can always find a solution qn > n such that fn(qn) = 0.

Moreover, fn(qn) < 0 for q > qn, and fn(qn) > 0 for q ∈ [0, qn).

(ii) First suppose that q ∈ [n, qn), from what we did in the proof of (i) we can

conclude that fn(q) > 0 for n large enough. For q ∈ [n− 1, n), fn(q) > 0 if and

only if 2 > q/(nρn). Since ρn ↑ 1 and q is at most n this last inequality holds

for all n large enough.

Next, suppose that q < n− 1. Note that fn(q) > 0 if and only if

(
1 +

1√
n− q

)
>

q

nρn
.

We can rewrite the previous equation in the following equivalent form

xn +
n · ρn√
xn︸ ︷︷ ︸

gn(xn)

> n · (1− ρn),

where xn = n − q. Hence, fn(q) > 0 if and only if gn(xn) > n · (1 − ρ). Note

that

dgn(x)

dx
= 1− n · ρ

2x3/2
, and

d2gn(x)

dx2
=

3n · ρ
4x5/2

.

Hence, gn(x) is a convex function with minimum at x∗n = (n·ρn
2

)2/3. Thus,

whenever gn(x∗n) > n · (1− ρn) we have that fn(q) > 0. Observe that

gn(x∗n) > n · (1− ρn)⇔ (n · ρn)2/3 (
1

22/3
+ 21/3)︸ ︷︷ ︸
β∗1

> n · (1− ρn),

which is equivalent to ρ
2/3
n β∗1 > n1/3−α · (1 − ρn)nα. If α > 1/3 then, because

(1 − ρn) · n1/3 → β, the last inequality above holds for all n sufficiently large.

If α = 1/3 the last inequality above becomes ρ
2/3
n · β∗1 > (1 − ρn) · n1/3, and if

β < β∗1 , since (1−ρn) ·n1/3 → β and ρn ↑ 1, we would have gn(x∗n) > n · (1−ρn)
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for all n sufficiently large. Therefore in both cases we have that fn(q) > 0 for

all q < n− 1.

(iii) Similarly, we can argue that if α < 1/3, or if α = 1/3 and β > β∗1 then

gn(x∗n) < n · (1 − ρn) for n sufficiently large. When gn(x∗n) < n · (1 − ρn)

the function gn(x) (recall this is a convex function) crosses n · (1 − ρn) at two

points: x1,n and x1,n, with 1 < x1,n < x∗n < x1,n ≤ n. Defining q = n− x1,n and

q̃n = n− x1,n we conclude the result.

�

B.3 Proofs for Section 2.5

Proof of Proposition 2.1. We make use of Eq. (2.9) and Proposition B.1.

(i) Note that from Proposition B.1 part (i) we have that fn(k) ≥ 0 for all k ∈

[n, qn], since bqnc ≤ qn from Eq. (2.9) we deduce that πn(k) is increasing for all

k ∈ [n, bqnc] ∩ N. Moreover, because fn(k) < 0 for k > qn and qn < bqnc + 1

from Eq. (2.9) we have that πn(k) decreases for all k ∈ (bqnc,∞) ∩ N. Finally,

using a similar argument and Proposition B.1 part (ii), we deduce that πn(k)

is increasing for all k ∈ [0, n] ∩ N.

(ii) Note that from Proposition B.1 part (iii) we have that fn(k) ≥ 0 for all k ∈

[0, q], fn(k) < 0 for all k ∈ (q, q̃n), and fn(k) ≥ 0 for all k ∈ [q̃n, qn). Eq.

(2.9) then implies that πn(k) increases for k ∈ [0, bqc] ∩ N, it decreases for

k ∈ (bqc, bq̃nc] ∩ N, and it increases for k ∈ (bq̃nc, bqnc) ∩ N.

�

Proof of Theorem 2.2. This result relies on Proposition 2.2 which is stated in

the main text in the Proof sketch of Theorem 2.2 discussion. We provide a proof for

Proposition 2.2 after the present proof.
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We prove each statement in the theorem separately.

(i) We analyze different cases. First we consider α ∈ (1/3, 1). In this case from

Proposition 2.1 part (ii) we now that πn(k) ≤ πn(n) for all k, for all n large

enough. Moreover, from Proposition 2.2 part (i) we have that for ε ∈ (0, 1/β)

for all n large enough the following inequality holds

πn(n)

πn(bqnc)
≤ exp

(
− nα(

1

β
− ε)

)
.

Therefore,

P[Qn(∞) < n] =
n−1∑
k=0

πn(k) ≤ n · πn(n)

= n · πn(n)

πn(bqnc)
· πn(bqnc)

≤ n · exp
(
− nα(

1

β
− ε)

)
· πn(bqnc)→ 0.

Next, consider α = 1/3 and β < β∗2 . Let πn(k|β) be the steady-state probability

when λn is such that (1−ρn)n1/3 = β. For notational clarity we use λn(β), qn(β)

and q(β) instead of λn, qn and q. It is possible to show that for β < β′ and n

large enough we must have that

πn(k|β)

πn(bqn(β′)c|β)
≤ πn(k|β′)
πn(bqn(β′)c|β′) , ∀k ≤ n− 1. (B.4)

Before we show Eq. (B.4), we will use to conclude this part of the proof. Fix

β < β∗2 then we can find β′ ∈ (max{β∗1 , β}, β∗2) for which Eq. (B.4) holds and,

therefore, from Proposition 2.2 we can take ε ∈ (0, g(β′)) such that for n large
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enough we have

P[Qn(∞) < n] =
n−1∑
k=0

πn(k|β)

≤
n−1∑
k=0

πn(k|β)

πn(bqn(β′)c|β)

≤
n−1∑
k=0

πn(k|β′)
πn(bqn(β′)c|β′)

≤ n ·
πn(bq(β′)c|β′)
πn(bqn(β′)c|β′)

= n · exp
(
− n1/3(g(β′)− ε)

)
→ 0,

as n→∞. Next, we verify Eq. (B.4). Note that for k < bqn(β′)c

πn(bqn(β′)c|β)

πn(k|β)
=

bqn(β′)c∏
m=k+1

λn(β)s̄

min{m,n} ·
(

1 +
1√

|n−m| ∨ 1

)
and

πn(bqn(β′)c|β′)
πn(k|β′) =

bqn(β′)c∏
m=k+1

λn(β′)s̄

min{m,n} ·
(

1 +
1√

|n−m| ∨ 1

)
.

Hence, Eq. (B.4) is satisfied if and only if

λn(β′)bqn(β′)c−k ≤ λn(β)bqn(β′)c−k ⇔ λn(β′) ≤ λn(β)

which is equivalent to

n1/3
(

1− λn(β′)s̄

n

)
≥ n1/3

(
1− λn(β)s̄

n

)
,

since both expression in the last inequality above converge to β′ and β (respec-

tively) and β′ > β, we can always find n large enough so that the inequality is

true. This shows Eq. (B.4).

(ii) Consider first α ∈ (0, 1/3). Write

P[Qn(∞) ≥ n] =

bqnc∑
k=n

πn(k) +
∞∑

k=bqnc+1

πn(k). (B.5)
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We next bound both terms and then show they converge to zero. The first term

in Eq. (B.5) is bounded above

bqnc∑
k=n

πn(k) ≤ πn(bqnc) · (bqnc − n+ 1)

= πn(bqnc) · (bqnc − qn + qn − n+ 1)

≤ πn(bqnc) · (
ρ2
n

(1− ρn)2
+ 1),

where in the last inequality we used that bqnc ≤ qn, and Theorem 2.1 part (i)

to obtain an expression for qn. In order to bound the second term in Eq. (B.5),

first note that

πn(k)

πn(bqnc)
=

k∏
`=bqnc+1

ρn ·
(

1 +
1√
`− n

)
, ∀k > bqnc.

Let

an = ρn ·
(

1 +
1√

bqnc+ 1− n
)
,

which satisfies an < 1 for all n. Indeed,

ρn ·
(

1 +
1√

bqnc+ 1− n
)
< 1 ⇔ ρ2

n

(1− ρn)2
< bqnc+ 1− n

which is equivalent to

ρ2
n

(1− ρn)2
< 1− (qn − bqnc) + qn − n,

from Theorem 2.1 part (i), the last inequality becomes (qn − bqnc) < 1, which
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is always true. then

∞∑
k=bqnc+1

πn(k) = πn(bqnc) ·
∞∑

k=bqnc+1

k∏
`=bqnc+1

ρn ·
(

1 +
1√
`− n

)
(a)

≤ πn(bqnc) ·
∞∑

k=bqnc+1

k∏
`=bqnc+1

an

= πn(bqnc) ·
∞∑

k=bqnc+1

ak−bqncn

= πn(bqnc) · a−bqncn · a
bqnc+1
n

1− an
< πn(bqnc) ·

1

1− an
,

where (a) holds because the term 1 + 1/
√
`− n is decreasing in `. Putting the

upper bounds for Eq. (B.5) together yields

P[Qn(∞) ≥ n] ≤ πn(bqnc) ·
( ρ2

n

(1− ρn)2
+ 1 +

1

1− an

)
.

Observe that the term in brackets is O(nγ) for some γ > 0. Also, we can always

consider ε > 0 such that β2/2 > ε and then we can use Theorem 2.2 to find n0

such that for all n ≥ n0

πn(bqnc) ≤ πn(bqc) · exp
(
− (

β2

2
− ε) · n1−2α

)
.

Since πn(bqc) ≤ 1 and 1− 2α > 0 we conclude that

P[Qn(∞) ≥ n] ≤ exp
(
− (

β2

2
− ε) · n1−2α

)
·O(nγ) −→ 0, as n→∞.

Note that for α = 1/3 and β > β∗2 the same argument holds, we only need

to chose ε > 0 such that |g(β)| > ε. This is always possible since for β > β∗2

Theorem 2.2 establishes that g(β) < 0. This concludes the proof.

�

Proof of Proposition 2.2. We prove each part separately. First, note that

πn(bqnc)
πn(m)

=

bqnc∏
k=m+1

λn
µn(k) ·min{k, n} =

bqnc∏
k=m+1

λns̄

min{k, n} ·
(

1 +
1√

|n− k| ∨ 1

)
,
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for any m < bqnc. Then

log
(πn(bqnc)
πn(m)

)
= (bqnc −m) log(ρn) +

bqnc∑
k=m+1

log
[ n

min{k, n} ·
(

1 +
1√

|n− k| ∨ 1

)]
(B.6)

(i) For m = n: Let xn = bqnc − n, then equation (B.6) becomes

log
(πn(bqnc)

πn(n)

)
= xn log(ρn) +

bqnc∑
k=n+1

log
[
1 +

1√
k − n

]
= xn · log(ρn) +

∫ xn

1

log
[
1 +

1√
x

]
dx+O(1)

= xn · log(ρn) +
[√

x+ x log(1 +
1√
x

)− log(1 +
√
x)
]∣∣∣xn

1
+O(1)

=
√
xn − log(1 +

√
xn) + xn ·

(
log(ρn) + log

(
1 +

1√
xn

))
+O(1).

In the expression above we can use that xn →∞, xn = bqnc − qn + ρ2

(1−ρ)2 and

Taylor expansions to conclude that

√
xn =

ρn
(1− ρn)

+ o(1),

and that

xn ·
(

log(ρn) + log
(

1 +
1√
xn

))
= − ρ2

(1− ρ)2
+
√
xn +O(1) = O(1).

Since (1− ρn)nα → β we have

lim
n→∞

1

nα
log
(πn(bqnc)

πn(n)

)
= lim

n→∞

1

nα
ρn

(1− ρn)
=

1

β
.

(ii) We assume that α < 1/3 and we take m = bqc. Note that since α < 1/3 we

have

27ρ2
n

4n · (1− ρn)3
→ 0, as n→∞.

Then, we can use Theorem 2.1 and do a Taylor expansion to deduce that

r0,n(ρn) = 1− 2

3
√

3

√
x− 2

27
x− 5

81
√

3
x3/2 +O(x2)

∣∣∣
x=

27ρ2n
4n·(1−ρn)3

.
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Hence, since α < 1/3 we deduce that

n− q = n · (1− ρn) +O(n(1+α)/2). (B.7)

In order to prove the result for this part of the proposition we need to analyze

the term

log
(πn(bqnc)
πn(bqc)

)
= (bqnc − bqc) log(ρn) +

n−1∑
k=bqc+1

log
[n
k
·
(

1 +
1√
n− k

)]

+

bqnc−n∑
k=1

log
[
1 +

1√
k

]
+ log(2)

= (n− bqc) log(ρn)︸ ︷︷ ︸
A

+
n−1∑

k=bqc+1

log
[n
k
·
(

1 +
1√
n− k

)]
︸ ︷︷ ︸

B

+ (bqnc − n) log(ρn) +

bqnc−n∑
k=1

log
[
1 +

1√
k

]
︸ ︷︷ ︸

C

+ log(2).

Let’s look at each one of the terms A, B and C. For A, using Eq. (B.8), we

have that

(n−bqc) log(ρn) = n·(1−ρn) log(ρn)+O(n(1−α)/2) = −n·(1−ρn)2+O(n1−3α)+O(n(1−α)/2),

and because α < 1/3, we have that A/n1−2α → −β2. So we only need to case

analyze B and C. From the proof of part (i) we have

C =
ρn

(1− ρn)
+ log(1− ρn) +O(1) = o(n1−2α),
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where the last equality comes from α < 1/3. For B,

B =

∫ n−1

bqc
log
[n
x
·
(

1 +
1√
n− x

)]
dx+ o(n1−2α)

=
[
x log(

n

x
) + x−

√
n− x− (n− x) log(1 +

1√
n− x) + log(1 +

√
n− x)

]∣∣∣n−1

bqc

+ o(n1−2α)

= n− 1−
[
bqc log(

n

bqc) + bqc −
√
n− bqc − (n− bqc) log(1 +

1√
n− bqc

)

+ log(1 +
√
n− bqc)

]
+ o(n1−2α)

= n− bqc log(
n

bqc)− bqc+ o(n1−2α)

= n− bqc − bqc ·
((n− bqc)
bqc −

(n− bqc)2

2bqc2
)

+ o(n1−2α)

=
(n− bqc)2

2bqc + o(n1−2α),

using that α < 1/3 it follows that this last expression, when scaled by 1/n1−2α,

converges to β2/2 . Therefore,

1

n1−2α
log
(πn(bqnc)
πn(bqc)

)
→ −β2 +

β2

2
+ 0 = −β

2

2
, as n→∞,

as required.

(iii) We assume that α = 1/3 and we take m = bqc. Note that

r0,n(ρn)→ 4

3
· cos

(1

3
arccos

(
−
√(β∗1

β

)3))2

, r(β), as n→∞. (B.8)

Observe that since we are considering β ≥ β∗1 the arccos(·) term is well defined

and, therefore, so is r(β). We need to analyze the following expression

log
(πn(bqnc)
πn(bqc)

)
= (n− bqc) log(ρn)︸ ︷︷ ︸

A

+
n−1∑

k=bqc+1

log
[n
k
·
(

1 +
1√
n− k

)]
︸ ︷︷ ︸

B

+ (bqnc − n) log(ρn) +

bqnc−n∑
k=1

log
[
1 +

1√
k

]
︸ ︷︷ ︸

C

+ log(2).
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Let’s look at each one of the terms A, B and C. For A, using Theorem 2.1 we

have that

A = (n−bqc) log(ρn) = n·(1−ρn)·r0,n(ρn) log(ρn)+o(1) = −n(1−ρn)2r0,n(ρn)+o(n1/3).

Similarly to part (ii) above, for C we deduce

C =
ρn

(1− ρn)
+ log(1− ρn) +O(1) =

ρn
(1− ρn)

+ o(n1/3).

Finally, for B (similarly to part (ii) above)

B = n−
[
bqc log(

n

bqc) + bqc −
√
n− bqc − (n− bqc) log(1 +

1√
n− bqc

)

+ log(1 +
√
n− bqc)

]
+ o(n1/3)

= n− bqc − bqc log(
n

bqc) + 2
√
n− bqc+ o(n1/3)

=
(n− bqc)2

2bqc + 2
√
n− bqc+ o(n1/3),

and, therefore, using that n1/3(1 − ρn) → β, n − bqc = n(1 − ρn)r0,n(ρn) and

Eq. (B.8) we can compute the limit

lim
n→∞

B

n1/3
= lim

n→∞

1

n1/3
·

(n− bqc)2

2bqc + 2

√
n− bqc
n1/3

=
β2r(β)2

2
+ 2
√
βr(β),

where r(β) is defined in Eq. (B.8). From this we can deduce that

1

n1/3
log
(πn(qn)

πn(q)

)
→ −β2r(β)+

β2r(β)2

2
+2
√
βr(β)+

1

β
, g(β), as n→∞.

(B.9)

It is possible to verify that g(β) satisfies g(β∗1) > 0 and it is strictly decreasing

for β ≥ β∗1 , with limβ→∞ g(β) = −∞, see Figure B.1. Therefore, there exists

β∗2 > β∗1 such that g(β∗2) = 0. Thus we have verified that g(β) is such that if

β∗1 < β < β∗2 then g(β) > 0, whereas if β > β∗2 then g(β) < 0.

�
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ββ∗1

g(β)

β∗2

51
24β∗1

Figure B.1: Function g(β) as defined in Eq. (B.9), g(β) is strictly decreasing and it
crosses zero at β∗2 .

Proof of Theorem 2.3. We make use of the lemmata B.1 and B.2 which we

first state and then prove after the proof of this theorem. We also make use of

Proposition 2.3 which is stated in the main text and proven in this appendix.

In order to simplify notation let p+
n = P[Qn(∞) ≥ n]. Let β = β∗2 and α = 1/3

then from Lemma B.1 and Lemma B.2 there exists n1 such that

1−exp

(
−C

2β3

2

)
C2β3

2

1 +
exp

(
−C2

2

(
1− 1

2(β·r(β))3/2

))
C2

2

(
1− 1

2(β·r(β))3/2

)
︸ ︷︷ ︸

A(C)

·πn(bqnc)
πn(bqc) ≤

p+
n

(1− p+
n )

≤
1 + 1 ·

exp

(
−C

2β3

4

)
C2β3

4

1−exp

(
−C2·

(
1− 1

2(β·r(β))3/2

))
C2·
(

1− 1

2(β·r(β))3/2

)
︸ ︷︷ ︸

B(C)

·πn(bqnc)
πn(bqc) ,

∀n ≥ n1. Next, fix ε > 0 then by Proposition 2.3 we have that there exists n2 such

that

exp(−ε+ c) ≤ πn(bqnc)
πn(bqc) ≤ exp(ε+ c), ∀n ≥ n2.
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Therefore, for all n ≥ max{n1, n2}

A(C) · exp(−ε+ c) ≤ p+
n

(1− p+
n )
≤ B(C) · exp(ε+ c),

or, alternatively, (letting ε→ 0)

A(C)

e−c + A(C)
≤ lim inf

n→∞
p+
n ≤ lim sup

n→∞
p+
n ≤

B(C)

e−c +B(C)
.

Now we want to find the tightest upper and lower bound. To do this it is enough

to maximize the LHS and minimize the RHS above as a function of C. Since all the

parameters are known (β∗2 ≈ 2.6030 and r(β∗2) ≈ 0.7192) we can obtain numerical

values,

max
C>0

{ A(C)

e−c + A(C)

}
≈ 0.0524

e−c + 0.0524
, and min

C>0

{ B(C)

e−c +B(C)

}
≈ 1.3173

e−c + 1.3173
.

So if we fix pH ∈ (0, 1) then there exists c∗ ∈ R such that

1.3173

e−c∗ + 1.3173
= pH ,

and c∗ increases with pH . Therefore if we let

pL(pH) =
0.0524

e−c∗ + 0.0524
,

we have that pL(pH) ∈ (0, 1) increases with pH . In particular, limpH→1 pL(pH) = 1

and limpH→0 pL(pH) = 0, as desired.

�

Lemma B.1 Fix α ∈ (0, 1/3) and β > 0, or α = 1/3 and β > β∗1 . Suppose that

limn→∞ n
α(1− ρn) = β and let C > 0 be a constant then

2 ·
1− exp

(
− C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

))
C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

) ≤ lim inf
n→∞

1

C
√
n
· P[Qn(∞) < n]

πn(bqc) ,

and

lim sup
n→∞

1

C
√
n
· P[Qn(∞) < n]

πn(bqc) ≤ 2 + 2 ·
exp

(
− C2

2

(
1− 1{α=1/3}

2(β·r(β))3/2

))
C2

2

(
1− 1{α=1/3}

2(β·r(β))3/2

) ,

where r(β) = limn→∞ r0,n(ρn).
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Lemma B.2 Fix α ∈ (0, 1) and β > 0. Suppose that limn→∞ n
α(1− ρn) = β and let

C > 0 be a constant then

2 ·
1− exp

(
− C2β3

2

)
C2β3

2

≤ lim inf
n→∞

1

Cn
3
2
α
· P[Qn(∞) ≥ n]

πn(bqnc)
,

and

lim sup
n→∞

1

Cn
3
2
α
· P[Qn(∞) ≥ n]

πn(bqnc)
≤ 2 + 2 ·

exp
(
− C2β3

4

)
C2β3

4

.

Proof of Lemma B.1. We start we the lower bound. Let bn = C
√
n and note

that

P[Qn(∞) < n]

πn(bqc)bn
=

1

bn

n−1∑
k=0

πn(k)

πn(bqc)

≥ 1

bn

bqc+bn∑
k=bqc−bn

πn(k)

πn(bqc)

=
1

bn

bqc∑
k=q−bn

bqc∏
`=k+1

1

ρn

`

n

1(
1 + 1√

n−`

) +
1

bn

bqc+bn∑
k=bqc+1

k∏
`=bqc+1

ρn
n

`

(
1 +

1√
n− `

)
(a)

≥ 1

bn

bqc∑
k=bqc−bn

( 1

ρn

bqc − bn
n

1(
1 + 1√

n−bqc+bn

)
︸ ︷︷ ︸

s1n

)bqc−k

+
1

bn

bqc+bn∑
k=bqc+1

(
ρn

n

bqc+ bn

(
1 +

1√
n− bqc − bn

)
︸ ︷︷ ︸

s2n

)k−bqc

=
1

bn
· 1− sbn+1

1n

1− s1n

+
1

bn
· s2n − sbn+1

2n

1− s2n

, (B.10)

where (a) comes from the fact that the function

hn(x) =
1

x
· (1 +

1√
n− x),

is decreasing in [0, q + bn] for n large, we show this at the end of the proof. Next we

show that both terms in Eq. (B.10) above converge to a constant. First note that

from Theorem 2.1 we have that q = n− z2
n where z2

n is given by n · (1− ρn) · r0,n(ρn).
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Note that 1 − r0,n(ρn) is of order O(n−(1−3α)/2) if α < 1/3 and r0,n(ρn) converges to

a function of β, r(β), for α = 1/3

r(β) =
4

3
· cos

(1

3
arccos

(
−
√(β∗1

β

)3))2

.

For the rest of the proof we will use b̃n to denote bn+(q−bqc). Note that |(q−bqc)| ≤ 1.

Let `n = (n− z2
n − b̃n)/n, for s1n we have that

s1n =
1

ρn
`n

1(
1 + 1√

z2
n+b̃n

)
=

1

ρn
`n

(
1− 1√

z2
n + b̃n

+O(
1

z2
n + b̃n

)
)

=
1

ρn
`n

(
1− 1

zn

1√
1 + b̃n

z2
n

+O(
1

z2
n + b̃n

)
)

=
1

ρn
`n

(
1− 1

zn
+

b̃n
2z3

n

+O(
b̃2
n

z5
n

) +O(
1

z2
n + b̃n

)
)

=
`n
ρn
− `n
ρnzn

+
`nb̃n

2ρnz3
n

+O(
`nb̃

2
n

ρnz5
n

) +O(
`n

ρn(z2
n + b̃n)

),

the last two terms above times bn converge to zero. Hence,

bn · (1− s1n) = bn −
bn`n
ρn

+
bn`n
ρnzn

− `nbnb̃n
2ρnz3

n

+ o(1).

The expression above converges to C2 ·
(

1− 1{α=1/3}
2(β·r(β))3/2

)
. Indeed, the fourth term above

is O(n)/O(n
3
2

(1−α)) which is o(1) when α < 1/3 and converges to −C2/(2β3/2 ·r(β)3/2)

when α = 1/3. The first three terms converge to C2. Indeed, recall that q solves the

equation

(n− q) +
nρn√
n− q = n(1− ρn), or equivalently, z2

n +
nρn
zn

= n(1− ρn). (B.11)
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Hence

bn · (1− s1n) = bn −
bn`n
ρn

+
bn`n
ρnzn

− `nbnb̃

2ρnz3
n

+ o(1)

= bn −
(

1− z2
n

n
− b̃n
n

)
· bn
ρn

+
(

1− z2
n

n
− b̃n
n

)
· bn
ρnzn

− `nbnb̃

2ρnz3
n

+ o(1)

= bn −
(

1− z2
n

n

)
· bn
ρn

+
bn
ρnzn

+
bnb̃n
ρnn
− `nbnb̃

2ρnz3
n

+ o(1)

Eq.(B.11)
= bn −

(
1− z2

n

n

)
· bn
ρn

+
bn
ρ2
n

(
(1− ρn)− z2

n

n

)
+
bnb̃n
ρnn
− `nbnb̃

2ρnz3
n

+ o(1)

=
bnb̃n
ρnn
− `nbnb̃

2ρnz3
n

+ o(1)

→ C2 − 1{α=1/3} ·
C2

2(β · r(β))3/2
.

Given this, we have

1

bn
· 1− sbn+1

1n

1− s1n

=
1− exp

(
(bn + 1) log(s1n)

)
bn(1− s1n)

=
1− exp

(
− bn(1− s1n) + o(1)

)
bn(1− s1n)

→
1− exp

(
− C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

))
C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

) ,

note that the function (βr(β))3/2 is strictly increasing and equal to 1/2 at β = β∗1 .

Because we are considering β > β∗1 , the last expression above is positive. Finally,

since this limit is a lower bound we obtain the desired lower bound for the lim inf.

A similar argument shows that

1

bn
· s2n − sbn+1

2n

1− s2n

→
1− exp

(
− C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

))
C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

)
Next we move to the upper bound. We first note that

bqc+bn∑
k=bqc−bn

πn(k) ≤ πn(bqc) · (2 · bn + 1).
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Now we bound the terms in [0, bqc − bn − 1] and [bqc+ bn + 1, n− 1] separately.

1

bn · πn(bqc) ·
bqc−bn−1∑

k=0

πn(k) =
1

bn
·
bqc−bn−1∑

k=0

bqc∏
`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
(a)

≤ 1

bn
·
bqc−bn−1∑

k=0

bqc−1∏
`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
(b)

≤ 1

bn
·
bqc−bn−1∑

k=0

{
1

bqc − k − 1
·
bqc−1∑
`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)}bqc−k−1

(c)

≤ 1

bn
·
bqc−bn−1∑

k=0

{
1

bn
·
bqc−1∑

`=bqc−bn

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
︸ ︷︷ ︸

s1n

}bqc−k−1

=
sbn1n − s

bqc−1

1n

bn · (1− s1n)
,

where in (a) we use that

1

ρn
·
bqc
n
· 1(

1 + 1√
n−bqc

) ≤ 1,

in (b) the inequality of arithmetic and geometric means, and in (c) the fact that hn(x)

is decreasing for x ≤ q + bn. In order to simplify notation let z̃2
n = n − bqc. Let us
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analyze s1n,

s1n =
1

bn
·
bqc−1∑

`=bqc−bn

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
≤ 1

bn
·
∫ bqc
bqc−bn

1

ρn
· x
n
· 1(

1 + 1√
n−x

)dx
=

1

bnnρn
·
[

1

6

(
− 3n2 + n(8

√
n− x+ 6) + 4x

√
n− x− 12

√
n− x+ 3x2 − 6x

)

− 2(n− 1) log(
√
n− x+ 1)

]∣∣∣∣∣
bqc

bqc−bn

=
1

bnnρn
·
[

12n− 4z̃2
n − 12

6

(
z̃n −

√
z̃2
n + bn

)
+

4

6
bn
√
z̃2
n + bn + (n− z̃2

n)bn −
b2
n

2

− 2(n− 1) log
( z̃n + 1√

z̃2
n + bn + 1

)]
,

If we denote this last expression s̃1n then for bn(1− s̃1n) we have that

bn(1− s̃1n) = bn −
1

nρn

[
12n− 4z̃2

n − 12

6
z̃n

(
1−

√
1 +

bn
z̃2
n

)
+ (n− z̃2

n)bn −
b2
n

2

]
+ o(1)

= bn −
1

nρn

[
12n− 4z̃2

n − 12

6

(
− bn

2z̃n
+

b2
n

8z̃3
n

)
+ (n− z̃2

n)bn −
b2
n

2

]
+ o(1)

Eq.(B.11)
= bn −

(
1− z̃2

n

n

) bn
ρn

+
((1− ρn)

ρn
− z2

n

nρn

) bn
ρn
· zn
z̃n
− b2

n

4ρnz̃3
n

+
b2
n

2ρnn

+ o(1)

= bn
(1− ρn)2

ρ2
n

(1− r0,n)− b2
n

4ρnz̃3
n

+
b2
n

2ρnn
+ o(1)

= − b2
n

4ρnz̃3
n

+
b2
n

2ρnn
+ o(1),

where in the last equality we used that when α < 1/3 then (1−r0,n) = O(n−(1−3α)/2).

This last expression converges to 1
2
(C2 − 1{α=1/3} · C2

2(β·r(β))3/2 ), which is a positive
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quantity. Therefore, for n large enough we have s̃1n ≤ 1 and, thus

1

bn · πn(bqc) ·
bqc−bn−1∑

k=0

πn(k) ≤ sbn1n − s
bqc+1

1n

bn · (1− s1n)
≤ s̃bn1n
bn · (1− s̃1n)

→
exp

(
− 1

2

(
C2 − 1{α=1/3} · C2

2(β·r(β))3/2

))
1
2

(
C2 − 1{α=1/3} · C2

2(β·r(β))3/2

) ,

where is the second inequality we used that for n large enough s̃1n ≤ 1.

Next we move to the range [bqc+ bn + 1, n− 1]. First observe that

n−1∑
k=bq̃nc

πn(k) ≤ πn(n) · (n− bq̃nc) ≤
πn(n)

πn(bqnc)
· (n− bq̃nc)→ 0,

where the limit follows from Proposition 2.2 part i). Thus,

1

bn · πn(bqc) ·
n−1∑

k=bqc+bn+1

πn(k) =
1

bn
·

bq̃nc∑
k=bqc+bn+1

k∏
`=bqc+1

ρn ·
n

`
·
(

1 +
1√
n− `

)
+ o(1)

≤ 1

bn
·

bq̃nc∑
k=bqc+bn+1

{
1

k − bqc ·
k∑

`=bqc+1

ρn ·
n

`
·
(

1 +
1√
n− `

)}k−bqc

≤ 1

bn
·

bq̃nc∑
k=bqc+bn+1

{
1

bn
·
bqc+bn∑
`=bqc+1

ρn ·
n

`
·
(

1 +
1√
n− `

)
︸ ︷︷ ︸

s2n

}k−bqc

≤ sbn+1
2n

bn · (1− s2n)
.

Let us analyze s2n,

s2n =
1

bn
·
bqc+bn∑
`=bqc+1

ρn ·
n

`
·
(

1 +
1√
n− `

)
≤ 1

bn
·
∫ bqc+bn
bqc

ρn ·
n

x
·
(

1 +
1√
n− x

)
dx

=
ρn · n
bn
·
[

log(x) +
1√
n

(
log(
√
n−
√
n− x)− log(

√
n− x+

√
n)
)]∣∣∣bqc+bn
bqc

=
ρn · n
bn
·
[

log(1 +
bn
bqc) +

1√
n

(
log
[1− z̃n√

n
·
√

1− bn
z̃2
n

1 + z̃n√
n
·
√

1− bn
z̃2
n

]
− log

[1− z̃n√
n

1 + z̃n√
n

])]
.
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Denoting this last expression by s̃2n we have that

bn · (1− s̃2n) = bn − ρn · n · log(1 +
bn
bqc)− ρn ·

√
n ·
(

log
[1− z̃n√

n
·
√

1− bn
z̃2
n

1 + z̃n√
n
·
√

1− bn
z̃2
n

]

− log
[1− z̃n√

n

1 + z̃n√
n

])
= bn − ρn · n ·

( bn
bqc −

b2
n

2bqc2
)
− ρn ·

√
n ·
( bn√

nz̃n
+

b2
n

4
√
nz̃3

n

)
+ o(1)

= ρn · n ·
b2
n

2bqc2
− ρn ·

b2
n

4z̃3
n

+ bn ·
(

1− ρn · n
bqc −

ρn
z̃n

)
+ o(1)

Eq.(B.11)
= ρn · n ·

b2
n

2bqc2
− ρn ·

b2
n

4z̃3
n

+ bn · (1− ρn)2 · (1− rn) · rn + o(1)

= ρn · n ·
b2
n

2bqc2
− ρn ·

b2
n

4z̃3
n

+ o(1)

where from the first to second equality we we did a Taylor expansion around zero

of the functions log(1 + x), log((1 − x)/(1 + x)) and
√

1− x, and collected the o(1)

terms. In the last equality we used that when α < 1/3 then (1− rn) = O(n−(1−3α)/2).

As before we can argue that s̃2n ≤ 1 for n large. From this we have

1

bn · πn(bqc) ·
n−1∑

k=bqc+bn+1

πn(k) ≤ sbn+1
2n

bn · (1− s2n)
≤ s̃bn2n
bn · (1− s̃2n)

→
exp

(
− 1

2

(
C2 − 1{α=1/3} · C2

2(β·r(β))3/2

))
1
2

(
C2 − 1{α=1/3} · C2

2(β·r(β))3/2

) .

Finally, since this limit is an upper bound we obtain the desired upper bound for the

lim sup.

Remaining proofs. Let

hn(x) =
1

x
· (1 +

1√
n− x),

we show is decreasing in (0, q + bn] for n large. First,

dhn
dx

(x) = − 1

x2
·
(

1 +
1√
n− x

)
+

1

2x
(n− x)−3/2,
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so hn(x) is decreasing if and only if x ≤ 2((n− x)3/2 + n− x). Note that the LHS in

the previous inequality is strictly increasing and the RHS is strictly decreasing. Also,

at x = 0 the LHS is below the RHS, and for x = n the converse is true. Therefore,

there if for some y,

y

2
≤ (n− y)3/2 ·

(
1 +

1√
n− y

)
(B.12)

then the same is true for all x ≤ y. Consider y = q + bn and let `n = 1− bn
n−q

(n− q − bn)3/2 ·
(

1 +
1√

n− q − bn

)
= (n− q)3/2`3/2

n ·
(

1 +
1√
`n

1√
n− q

)
Eq.(B.11)

= (n− q)3/2`3/2
n ·

(
1 +

1√
`n
·

(q − nρn)

nρn

)
= (n− q)3/2`n ·

(nρn(
√
`n − 1) + q

nρn

)
,

note that for n large enough nρn(
√
`n − 1) + q > 0. Then Eq. (B.12) is satisfied if

and only if

ρn
2
·
[ q + bn

`n(nρn(
√
`n − 1) + q)

]
︸ ︷︷ ︸

Hn

≤
(n− q)3/2

n
= n(1−3α)/2(nα(1− ρn)r0,n(ρn))3/2, (B.13)

where we used that n − q = n(1 − ρn)r0,n(ρn). Since `n → 1, Hn → 1. If α < 1/3

then for n large enough the previous inequality hold. If α = 1/3 and β > β∗1 , the

LHS in Eq (B.13) converges to 1/2 and the RHS to (βr(β))3/2. This last function is

strictly increasing and equal to 1/2 at β = β∗1 . This implies that for n large enough

Eq. (B.13) is satisfied, completing the proof.

�

Proof of Lemma B.2. We start we the lower bound, let bn = Cn
3α
2 and note
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that

P[Qn(∞) ≥ n]

bnπn(bqnc)
=

1

bn

∞∑
k=n

πn(k)

πn(bqnc)

≥ 1

bn

bqnc+bn∑
k=bqnc−bn

πn(k)

πn(bqnc)

=
1

bn

bqnc∑
k=bqnc−bn

bqnc∏
`=k+1

1

ρn

1(
1 + 1√

`−n

) +
1

bn

bqnc+bn∑
k=bqnc+1

k∏
`=bqnc+1

ρn

(
1 +

1√
`− n

)

≥ 1

bn

bqnc∑
k=bqnc−bn

[
1

ρn

1(
1 + 1√

bqnc−bn−n

)
︸ ︷︷ ︸

s1n

]bqnc−k

+
1

bn

bqnc+bn∑
k=bqnc+1

[
ρn

(
1 +

1√
bqnc+ bn − n

)
︸ ︷︷ ︸

s2n

]k−bqnc
(B.14)

=
1

bn
· 1− sbn+1

1n

1− s1n

+
1

bn
· s2n − sbn+1

2n

1− s2n

.

Next we compute limits for bn(1 − s1n) and bn(1 − s2n). Before we begin note that

qn = n+ z2
n where z2

n = ρ2
n/(1− ρn)2 and let b̃n = bn + (qn − bqnc) then

bn(1− s1n) =
bn

b̃n

[
b̃n − b̃n ·

1

ρn

1(
1 + 1√

bqnc−bn−n

)]

=
bn

b̃n

[
b̃n − b̃n ·

1

ρn

(
1− 1√

z2
n − b̃n

)
+ o(1)

]

=
bn

b̃n

[
b̃n − b̃n ·

1

ρn

(
1− 1

zn

{
1 +

b̃n
2z2

n

})
+ o(1)

]
=
bn

b̃n

[
b̃n

(1− ρn)2

ρ2
n

+
b̃2
n

2ρ4
n

· (1− ρn)3 + o(1)
]

→ C2β3

2
.

Thus,

1

bn
· 1− sbn+1

1n

1− s1n

→
1− exp

(
− C2β3

2

)
C2β3

2

.
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For bn(1− s2n) we have

bn(1− s2n) =
bn

b̃n

[
b̃n − b̃n · ρn

(
1 +

1√
z2
n + b̃n

)]

=
bn

b̃n

[
b̃n − b̃n · ρn

(
1 +

1

zn

{
1− b̃n

2z2
n

})
+ o(1)

]
=
bn

b̃n

[ b̃2
n

2ρ2
n

· (1− ρn)3 + o(1)
]

→ C2β3

2
.

Thus,

1

bn
· s2n − sbn+1

2n

1− s2n

→
1− exp

(
− C2β3

2

)
C2β3

2

.

Finally, since this limit is a lower bound we obtain the desired lower bound for the

lim inf.

For the upper bound note that

P[Qn(∞) ≥ n]

bnπn(bqnc)
=

1

bn

∞∑
k=n

πn(k)

πn(bqnc)
≤ 2+

1

bn

bqnc−bn∑
k=n

πn(k)

πn(bqnc)
+

1

bn

∞∑
k=bqnc+bn+1

πn(k)

πn(bqnc)
,

(B.15)

so we just need to upper bound both summation on the right hand side of Eq. (B.15)

and take the limit. For the first summation we have

1

bn

bqnc−bn∑
k=n

πn(k)

πn(bqnc)
=

1

bn

bqnc−bn∑
k=n

bqnc∏
`=k+1

1

ρn ·
(

1 + 1√
`−n

)
(a)

≤ 1

bn

bqnc−bn∑
k=n

[
1

bn
·

bqnc−1∑
`=bqnc−bn+1

1

ρn ·
(

1 + 1√
`−n

)
︸ ︷︷ ︸

s1n

]bqnc−k

≤ 1

bn

sbn1n
1− s1n

,

where in (a) we used the inequality of arithmetic and geometric means, and the fact
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that the function inside the summation is increasing. For s1n we have

s1n =
1

ρn · bn
·

bqnc−1∑
`=bqnc−bn+1

1(
1 + 1√

`−n

)
≤ 1

ρn · bn
·
∫ qn

qn−bn

1(
1 + 1√

x−n

)dx
=

1

ρn · bn
·
[
− 2
√
x− n+ 2 log(

√
x− n+ 1) + x− n

]∣∣∣qn
qn−bn

=
1

ρn · bn
·
[
− 2zn + 2 log(zn + 1) + 2

√
z2
n − bn − 2 log(

√
z2
n − bn + 1) + bn

]
,

then denoting the last expression above by s̃1n we have

bn · (1− s̃1n) = bn −
1

ρn
·
[
− 2zn + 2 log(zn + 1) + 2

√
z2
n − bn

− 2 log(
√
z2
n − bn + 1) + bn

]
= bn +

bn
ρnzn

+
b2
n

4ρnz3
n

− bn
ρn

+ o(1)

→ C2β3

4
.

Hence, since (for n large) s̃1n ≤ 1 we have

1

bn

qn−bn∑
k=n

πn(k)

πn(qn)
≤ 1

bn

sbn1n
1− s1n

≤ 1

bn

s̃bn1n
1− s̃1n

→
exp

(
− C2β3

4

)
C2β3

4

.

Now let us consider the second summation in Eq. (B.15),

1

bn

∞∑
k=bqnc+bn+1

πn(k)

πn(bqnc)
=

1

bn

∞∑
k=bqnc+bn+1

k∏
`=bqnc+1

ρn

(
1 +

1√
`− n

)

≤ 1

bn

∞∑
k=bqnc+bn

[
1

bn
·
bqnc+bn∑
`=bqnc+1

ρn ·
(

1 +
1√
`− n

)
︸ ︷︷ ︸

s2n

]k−bqnc

=
1

bn

sbn2n
1− s2n

,

where we used the inequality of arithmetic and geometric means, the fact that the

function inside the summation is decreasing, and that for app ` ≥ bqnc+ 1 the terms
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in the summation are strictly bounded above by 1. For s2n, if we let z̃2
n = bqnc − n,

we have

s2n ≤
ρn
bn
·
∫ bqnc+bn
bqnc

(
1 +

1√
x− n

)
dx

=
ρn
bn
·
[
2
√
x− n+ x

]∣∣∣bqnc+bn
bqnc

=
ρn
bn
·
[
2
√
z̃2
n + bn − 2z̃n + bn

]
,

denoting this last term by s̃2n we have

bn · (1− s̃2n) = bn − ρn ·
[
2
√
z̃2
n + bn − 2z̃n + bn

]
= bn(1− ρn)− ρn ·

[bn
z̃n
− b2

n

4z̃3
n

]
+ o(1)

→ C2β3

4
.

Thus, since s̃2n ≤ 1 (for n large) we have

1

bn

∞∑
k=bqnc+bn+1

πn(k)

πn(bqnc)
≤ 1

bn

sbn2n
1− s2n

≤ 1

bn

s̃bn2n
1− s̃2n

→
exp

(
− C2β3

4

)
C2β3

4

.

Finally, since this limit is an upper bound we obtain the desired upper bound for the

lim sup. �

Proof of Lemma 2.2. This result is a direct consequence of Lemmata B.1 and

B.2 which were stated and proved right before the present proof. �

Proof of Proposition 2.3. Consider the following

ρn(y) = 1− β∗2
n1/3

− y

n1/3
, y ∈ (−(β∗2 − β∗1), (β∗2 − β∗1)) = D.

Note that n1/3(1 − ρn(y)) = β∗2 + y > β∗1 and ρn(y) ↑ 1, hence we can always find

n1 such that for all n ≥ n1 the leftmost equilibrium q is well defined. Note that for

ρn(y) we have

log
(πn(bqnc)
πn(bqc)

)
= (bqnc − bqc) log(ρn(y)) +

n−1∑
k=bqc+1

log
[n
k
·
(

1 +
1√
n− k

)]

+

bqnc−n∑
k=1

log
[
1 +

1√
k

]
+ log(2). (B.16)
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Furthermore, observe that both q and qn are continuous functions of y,

q(y) = n− n(1− ρn(y)) · r0,n(ρn(y)) and qn(y) = n+
ρn(y)2

(1− ρn(y))2
.

Define,

fn(y) , log
(πn(bqn(y)c)
πn(bq(y)c)

)
.

since we are using the floor function, fn(·) might not be continuos. In the first step

of this proof we show that the potential jumps of fn(·) in D converge to zero (Step

1). Then we show that there exists a sequence γcn such that fn(γcn)→ c (Step 2) and

γcn → 0 (Step 3).

Step 1. Fix ε > 0. First, we prove that there exists ñ such that for all n ≥ ñ we

have that

∀y ∈ D, ∃δ > 0 such that ∀ỹ : |ỹ − y| < δ ⇒ |fn(ỹ)− fn(y)| < ε. (B.17)

We choose ñ such that for all n ≥ ñ:

• supz∈D 2| log(ρn(z))| ≤ ε/9. This is possible because ρn(z)→ 1 uniformly in D.

•

sup
z∈D

∣∣∣ log
[ n

bq(z)c+ 1

]∣∣∣ ≤ ε

6
, and sup

z∈D

∣∣∣ log
(

1 +
1√

n− bq(z)c − 1

)∣∣∣ ≤ ε

6
.

This is possible because for any z ∈ D, n/(bq(z)c+ 1)→ 1.

•

sup
z∈D

∣∣∣ log
[
1 +

1√
bqn(z)c − n

]∣∣∣ ≤ ε

3
.

This is possible because for any z ∈ D, (bqn(z)c − n) ↑ ∞.

Let n ≥ n1 and fix y ∈ D, we consider the first three terms in fn(·), see Eq.

(B.16). Let Qn(ỹ) = bqn(ỹ)c − bq(ỹ)c and Rn(ỹ) = qn(ỹ) − q(ỹ), and note that
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|Qn(ỹ)− Rn(ỹ)| ≤ 2 for any ỹ. Also, Rn(ỹ) log(ρn(ỹ)) is continuous; therefore, there

exists δ1 such that

|Rn(ỹ) log(ρn(ỹ))−Rn(y) log(ρn(y))| ≤ ε/9, ∀ỹ : |ỹ − y| < δ1.

Using this, for the first term in Eq. (B.16), we have∣∣∣Qn(ỹ) log(ρn(ỹ))−Qn(y) log(ρn(y))
∣∣∣ =

∣∣∣(Qn(ỹ)−Rn(ỹ)) log(ρn(ỹ)) +Rn(ỹ) log(ρn(ỹ))

− (Qn(y)−Rn(y)) log(ρn(y))−Rn(y) log(ρn(y))
∣∣∣

≤ 2| log(ρn(ỹ))|+ 2| log(ρn(y))|

+ |Rn(ỹ) log(ρn(ỹ))−Rn(y) log(ρn(y))|

≤ ε

3
,

for all ỹ such that |ỹ− y| < δ1. For the second term in Eq. (B.16), observe that since

q(·) is continuous there always exists δ2 > 0 such that for all ỹ with |ỹ − y| < δ2 we

have |bq(ỹ)c − bq(y)c| ≤ 1. Therefore,

∣∣∣ n−1∑
k=bq(ỹ)c+1

log
[n
k
·
(

1 +
1√
n− k

)]

−
n−1∑

k=bq(y)c+1

log
[n
k
·
(

1 +
1√
n− k

)]∣∣∣ ≤ ∣∣∣ log
[ n

bq(ỹ)c+ 1
·
(

1 +
1√

n− bq(ỹ)c − 1

)]∣∣∣
≤
∣∣∣ log

[ n

bq(ỹ)c+ 1

]∣∣∣
+
∣∣∣ log

(
1 +

1√
n− bq(ỹ)c − 1

)∣∣∣
≤ ε

3
.

Finally, for the third term in Eq. (B.16), since qn(·) is continuous there always exists

δ3 > 0 such that for all ỹ with |ỹ−y| < δ3 we have |bqn(ỹ)c−bqn(y)c| ≤ 1. Therefore,

∣∣∣ bqn(ỹ)c−n∑
k=1

log
[
1 +

1√
k

]
−
bqn(y)c−n∑

k=1

log
[
1 +

1√
k

]∣∣∣ ≤ ∣∣∣ log
[
1 +

1√
bqn(y)c − n

]∣∣∣ ≤ ε

3
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Putting the three inequalities jus proved together, for δ ≤ min{δ1, δ2, δ3}, delivers

Eq. (B.17). Next define

∆n , sup
y∈D
|fn(y+)− fn(y−)|,

then Eq. (B.17) ensures that ∆n → 0.

Step 2. We construct γcn and show that fn(γcn)→ c. Fix y1 ∈ (−(β∗2−β∗1), 0) and

y2 ∈ (0, β∗2 − β∗1), we next argue that there exists n2 such that for all n ≥ n2 it holds

that fn(y1) > c > fn(y2). Indeed, consider first y1 and note that β∗2 +y1 ∈ (β∗1 , β
∗
2). For

g(·) as in Proposition 2.2 part iii), one has g(β∗2 + y1) > 0. So, again by Proposition

2.2 part iii) we have that for any ε1 ∈ (0, g(β∗2 + y1)) there exists n1,2 such that for

all n ≥ n1,2 we have

c < n1/3 · (g(β1)− ε1) < fn(y1).

A similar argument that leverages the fact that g(β∗2 +y2) < 0 shows that there exists

n2,2 such that for all n ≥ n2,2 we have fn(y2) < c. We take n2 = max{n1,2, n2,2} to

conclude that for all n ≥ n2 it holds that fn(y1) > c > fn(y2). To conclude consider

n ≥ max{n1, n2} then, by Step 1 we can always find γcn ∈ (y1, y2) such that

c− ∆n

2
≤ fn(γcn) ≤ c+

∆n

2

Taking limit at both sides and using that ∆n → 0, we conclude that fn(γcn)→ c.

Step 3. To conclude the proof we need to argue that γcn → 0. Note from the

argument above {γcn} is a bounded sequence. For the sake of contradiction fix ε > 0

and suppose that

lim sup
n→∞

γcn > ε.

This implies that there exists a subsequence {γck(n)} that convergences to a point

γ̂c ≥ ε. Let

ρ̂n = 1− β∗2
n1/3

− γcn
n1/3

,
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then k(n)1/3(1− ρ̂k(n))→ β?2 + γ̂c. Because g(β?2 + γ̂c) < 0 from Proposition 2.2, for

ε′ > 0 such that g(β?2 + γ̂c) + ε′ < 0, we can deduce that for all n large enough

fk(n)(γ
c
k(n)) ≤ n1/3(g(β?2 + γ̂c) + ε′) ≤ c− ε′.

However, from Step 1 we know that fk(n)(γ
c
k(n))→ c. This, together with the previous

inequality yields a contradiction. The case when lim infn→∞ γ
c
n < ε can be treated

similarly and is thus omitted. Therefore, for any ε > 0

ε ≤ lim inf
n→∞

γcn ≤ lim sup
n→∞

γcn ≤ ε,

since ε is arbitrary we have that γcn → 0, which concludes the proof.

�

Proof of Proposition 2.4. We prove both statement separately.

(i) We show that

lim
n→∞

P[Qn(∞) < bqnc − C ·
√

log(n) · n1.5α] = 0,

the other case in analogous. To reduce notation let bn = C ·
√

log(n) · n1.5α for

some C > 0 that we will choose later in the proof then

P[Qn(∞) < bqnc − bn] ≤ P[Qn(∞) < n] + P[n ≤ Qn(∞) ≤ bqnc − bn]

= P[Qn(∞) < n] +

bqnc−bn∑
k=n

πn(k)

by Theorem 2.2 part (i) the first term converges to zero. For the second term we
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have the following upper bound

bqnc−bn∑
k=n

πn(k) ≤
bqnc−bn∑
k=n

bqnc∏
`=k+1

1

ρn ·
(

1 + 1√
`−n

)
(a)

≤
bqnc−bn∑
k=n

[
1

bqnc − k
·
bqnc−1∑
`=k+1

1

ρn ·
(

1 + 1√
`−n

)]bqnc−k

≤
bqnc−bn∑
k=n

[
1

bn
·

bqnc−1∑
`=bqnc−bn+1

1

ρn ·
(

1 + 1√
`−n

)
︸ ︷︷ ︸

sn

]bqnc−k

≤ sbnn
1− sn

,

where in (a) we used the inequality of arithmetic and geometric means. We next

show the last term above converges to zero.

Recall that qn = n+ z2
n where zn = ρn

(1−ρn)
. We have

sn =
1

ρn · bn
·

bqnc−1∑
`=bqnc−bn+1

1(
1 + 1√

`−n

)
≤ 1

ρn · bn
·
∫ qn

qn−bn

1(
1 + 1√

x−n

)dx
=

1

ρn · bn
·
[
− 2
√
x− n+ 2 log(

√
x− n+ 1) + x− n

]∣∣∣qn
qn−bn

=
1

ρn · bn
·
[
− 2zn + 2 log(zn + 1) + 2

√
z2
n − bn − 2 log(

√
z2
n − bn + 1) + bn

]
,

denote this last term by s̃n. Then

s̃n =
1

ρn · bn
·
[
− 2zn + 2(

1

zn
+O(n−2α)) + 2zn

(
1− bn

2z2
n

− b2
n

8z4
n

+O(
b3
n

z6
n

)
)

− 2
(√

1− bn
z2
n

+
1

zn
− 1 +O(

b2
n

z4
n

)
)

+ bn

]
=

1

ρn · bn
·
[
2zn

(
− bn

2z2
n

− b2
n

8z4
n

)
− 2
(
− bn

2z2
n

)
+ bn

]
+O(n−2α log(n))

=
[
1 +

(1− ρn)3

ρ3
n

− bn(1− ρn)3

4ρ4
n

]
+O(n−2α log(n)).
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Hence, s̃n → 1 and

bn · (1− s̃n) =
(1− ρn)3

ρ3
n︸ ︷︷ ︸

O(n−3α)

· b2
n

4ρn︸︷︷︸
O(n3α log(n))

+O(n−α/2 log(n)3/2) = O(log(n)). (B.18)

From this we can deduce that bn · (1− s̃n)→ +∞ (which implies that s̃n ≤ 1) and

bn·(1−s̃n)2 = O(log(n))·(1−s̃n) = O(log(n))·O(n−3α/2
√

log(n)) −→ 0 as n→∞.

Putting all this together yields, for n large enough,

bqnc−bn∑
k=n

πn(k) ≤ sbnn
1− sn

≤ s̃bnn
1− s̃n

=
exp

(
− bn · (1− s̃n) +O(bn(1− s̃n)2)

)
1− s̃n

Eq.(B.18)
=

exp
(
− (1−ρn)3b2n

4ρ4
n

+O(n−α/2 log(n)3/2)
)

1− s̃n

=
n
−n

3α(1−ρn)3C2

4ρ4n exp
(
O(n−α/2 log(n)3/2)

)
1− s̃n

,

observe that the exponential term above converges to 1. Also, the denominator

is O(n−3α/2
√

log(n)) while n3α(1−ρn)3C2

4ρ4
n

→ β3C2/4. So if we choose C such that

β3C2/4 > 3α/2 then we have that

lim
n→∞

bqnc−bn∑
k=n

πn(k) = 0,

as desired.

(ii) We show that

lim
n→∞

P[Qn(∞) < bqc − C ·
√

log(n) · √n] = 0,
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the other case is analogous. To reduce notation let bn = C ·
√

log(n) · n for some

C > 0 that we identify later then

P[Qn(∞) < bqc − bn] =

bqc−bn−1∑
k=0

πn(k)

=

bqc−bn−1∑
k=0

bqc∏
`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
(a)

≤
bqc−bn−1∑

k=0

bqc−1∏
`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
(b)

≤
bqc−bn−1∑

k=0

{
1

bqc − k − 1
·
bqc−1∑
`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)}bqc−k−1

(c)

≤
bqc−bn−1∑

k=0

{
1

bn
·
bqc−1∑

`=bqc−bn

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
︸ ︷︷ ︸

s1n

}bqc−k−1

≤ sbn1n
(1− s1n)

,

where in (a) we use that

1

ρn
·
bqc
n
· 1(

1 + 1√
n−bqc

) ≤ 1,

in (b) the inequality of arithmetic and geometric means, and in (c) the fact that

the term we are summing in the second summation is decreasing in ` is decreasing
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for ` ≤ q + bn. In order to simplify notation let z̃2
n = n− bqc. Let us analyze s1n,

s1n =
1

bn
·
bqc−1∑

`=bqc−bn

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
≤ 1

bn
·
∫ bqc
bqc−bn

1

ρn
· x
n
· 1(

1 + 1√
n−x

)dx
=

1

bnnρn
·
[

1

6

(
− 3n2 + n(8

√
n− x+ 6) + 4x

√
n− x− 12

√
n− x+ 3x2 − 6x

)

− 2(n− 1) log(
√
n− x+ 1)

]∣∣∣∣∣
bqc

bqc−bn

=
1

bnnρn
·
[

12n− 4z̃2
n − 12

6

(
z̃n −

√
z̃2
n + bn

)
+

4

6
bn
√
z̃2
n + bn + (n− z̃2

n)bn

− b2
n

2
− 2(n− 1) log

( z̃n + 1√
z̃2
n + bn + 1

)]
,
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If we denote this last expression s̃1n then for (1− s̃1n) we have that

(1− s̃1n) = 1− 1

bnnρn

[
12n− 4z̃2

n − 12

6
z̃n

(
1−

√
1 +

bn
z̃2
n

)
+ (n− z̃2

n)bn −
b2
n

2

]

+ o
(√ 1

n log(n)

)
= 1− 1

bnnρn

[
12n− 4z̃2

n − 12

6

(
− bn

2z̃n
+

b2
n

8z̃3
n

)
+ (n− z̃2

n)bn −
b2
n

2

]

+ o
(√ 1

n log(n)

)
= 1− 1

bnnρn

[
2n
(
− bn

2z̃n
+

b2
n

8z̃3
n

)
+ (n− z̃2

n)bn −
b2
n

2

]

+ o
(√ 1

n log(n)

)
Eq.(B.11)

= 1−
(

1− z̃2
n

n

) 1

ρn
+
((1− ρn)

ρn
− z2

n

nρn

) 1

ρn
· zn
z̃n
− bn

4ρnz̃3
n

+
bn

2ρnn

+ o
(√ 1

n log(n)

)
= − bn

4ρnz̃3
n︸ ︷︷ ︸

O(
√

log(n)

n2−3α )

+
bn

2ρnn︸ ︷︷ ︸
O(

√
log(n)
n

)

+o
(√ 1

n log(n)

)
,

hence, s̃n → 1 and

bn · (1− s̃n) = bn ·
(
− bn

4ρnz̃3
n

+
bn

2ρnn
+ o
(√ 1

n log(n)

))
= O(log(n)). (B.19)

From this we can deduce that bn · (1− s̃n)→ +∞ (which implies that s̃n ≤ 1) and

bn · (1− s̃n)2 = O(log(n)) · (1− s̃n) = O(log(n)) ·O(

√
log(n)

n
) −→ 0 as n→∞.
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Putting all this together yields, for n large enough

bqc−bn−1∑
k=0

πn(k) ≤ sbnn
1− sn

≤ s̃bnn
1− s̃n

=
exp

(
− bn · (1− s̃n) +O(bn(1− s̃n)2)

)
1− s̃n

Eq.(B.19)
=

exp
(
−
(
− b2n

4ρnz̃3
n

+ b2n
2ρnn

)
+O(

√
log(n)3

n
)
)

1− s̃n

=
n
−
(
− C2n

4ρnz̃
3
n

+ C2n
2ρnn

)
exp

(
O(
√

log(n)3

n
)
)

1− s̃n
,

observe that the exponential term above converges to 1. Also, the denominator is

O(
√

log(n)
n

) while

− C2n

4ρnz̃3
n

+
C2n

2ρnn
→ C2

2

(
1− 1{α=1/3} ·

1

2(β · r(β))3/2

)
,

where r(β) = limn→∞ r0,n(ρn), and the term in brackets in the expression above is

strictly positive when α = 1/3 and β > β∗1 . So if we choose C such that

C2

2

(
1− 1{α=1/3} ·

1

2(β · r(β))3/2

)
>

1

2

then we have that

lim
n→∞

bqc−bn−1∑
k=0

πn(k) = 0,

as desired. �
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Appendix C

The Scope of Sequential Screening With Ex-Post

Participation Constraints

C.1 Proofs for Section 3.5

Proof of Lemma 3.1. The proof of this result is standard and thus omitted.

�

Proof of Lemma 3.2. The fact that the optimal solution is a threshold allo-

cation is explained in the main text. Thus, we only need to provide a proof for θ̂

being in the interval [θ̂1, θ̂K ]. Note that for all θ below θ̂1, µk(θ) is negative for all

k ∈ {1, . . . , K}. Therefore, µ̄(θ) is negative for all θ below θ̂1. Similarly, for all θ

above θ̂K , µ̄(θ) is positive. Since the allocation is of the threshold type, it is optimal

to set x(θ) equal to 0 for θ below θ̂1 and to set x(θ) equal to 1 for θ above θ̂K . This

necessarily implies that θ̂ is in [θ̂1, θ̂K ]. �

Proof of Theorem 3.1. We first show the sufficiency of our condition and then

its necessity. We denote by Ω the space of non-decreasing allocations, that is,

Ω , {x : [0, 1]→ [0, 1] : x(·) is non-decreasing}.

Sufficiency. We assume condition (APR) holds, we want to verify the static contract

288



is optimal. In order to do so we dualize the IC constraints. The Lagrangian is

L(u,x,λ,w) = uL(wL − λHL − αL) + uH(λHL − αH + wH)

+

∫ θmax

0

xL(z) ·
[
αLµL(z)fL(z)− λHLFH(z)

]
dz

+

∫ θmax

0

xH(z) ·
[
αHµH(z)fH(z) + λHLFH(z)

]
dz,

where wL, wH correspond to the multipliers for the ex-post IR constraints, and λ ∈

{λHL, λLH} to the multipliers for IC constraints. In the Lagrangian above we have

chosen the multipliers as follows

wL = αL − αHrHH(θ̂), wH = αH + αHr
HH(θ̂), λHL = αLr

LH(θ̂), λLH = 0, (C.1)

these multipliers are non-negative because rHH(θ̂) ≤ 0, rLH(θ̂) ≥ 0 and

wH = αH + αHr
HH(θ̂) ≥ 0⇔ rHH(θ̂) ≥ −1⇔ [θ̂ − FH

fH
(θ̂)] ≥ −FH

fH
(θ̂)⇔ θ̂ ≥ 0.

Hence, maximizing the Lagrangian over non-decreasing allocation xL and xH yields an

upper bound for the relaxed problem. Note that this choice of multipliers eliminates

the uL and uH terms in the Lagrangian. We next show that under (APR) the solution

to the Lagrangian relaxation is the static solution. We first claim that

max
xL∈Ω

∫ θmax

0

xL(z)·
[
αLµL(z)fL(z)−λHLFH(z)

]
dz =

∫ θmax

θ̂

[
αLµL(z)fL(z)−λHLFH(z)

]
dz.

(C.2)

To prove this first note that the optimal solution xL on the left hand side of (C.2)

must be of the threshold type, that is, xL(θ) = 1{θ≥θ?}, because xL(·) is non-decreasing

(see, e.g., [52] or [57]). Hence (C.2) is equivalent to∫ θmax

θ?

[
αLµL(z)fL(z)−λHLFH(z)

]
dz ≤

∫ θmax

θ̂

[
αLµL(z)fL(z)−λHLFH(z)

]
dz, ∀θ? ∈ [0, 1].

Replacing the value of λHL, this equation can be cast over values θ?1 ≤ θ̂ and θ?2 ≥ θ̂

as ∫ θ̂
θ?1
αLµL(z)fL(z)dz∫ θ̂
θ?1
FH(z)dz

≤ αLr
LH(θ̂) ≤

∫ θ?2
θ̂
αLµL(z)fL(z)dz∫ θ?2
θ̂
FH(z)dz

, ∀θ?1 ≤ θ̂ ≤ θ?2 (C.3)
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Condition (APR) ensures the equation above always hold. Indeed, condition (APR)

implies that for any θ?1 ≤ θ̂ and ε > 0∫ θ̂
θ?1
αLµL(z)fL(z)dz∫ θ̂
θ?1
FH(z)dz

≤
∫ θ̂+ε
θ̂

αLµL(z)fL(z)dz∫ θ̂+ε
θ̂

FH(z)dz
.

Taking ε ↓ 0 yields the left hand side inequality in (C.3). The right hand side

inequality in (C.3) can be verified using an analogous argument. This shows (C.2),

that is, the static contract maximizes the part of the Lagrangian that corresponds to

interim type L. We now prove the same for type H. Note first that the optimality

of the static contract implies

λ = αLr
LH(θ̂) = −αHrHH(θ̂).

Then

max
xH∈Ω

∫ θmax

0

xH(z) ·
[
αHµH(z)fH(z) + λHLFH(z)

]
dz

= max
xH∈Ω

∫ θmax

0

xH(z) · αH ·
[
µH(z)fH(z)− rHH(θs)FH(z)

]
dz

(a)
= max

xH∈Ω

∫ θmax

0

xH(z) · αH ·
[
rHH(z)− rHH(θs)

]
FH(z)dz

(b)
=

∫ θmax

θ̂

αH ·
[
rHH(z)− rHH(θs)

]
FH(z)dz

where in (a) we have used the definition of rHH(·) and in (b) our assumption that

rHH(·) is increasing. Thus, we have proved that for this choice of Lagrange multipliers

the static contract maximizes the Lagrangian. Since the value of the Lagrangian

coincides with the primal objective at the static solution, and this solution is always

primal feasible. We conclude that the static contract is optimal.

Necessity. We differ this proof to the proof of Proposition 3.1. In it we show that

whenever condition (APR) is not satisfied, there is a contract different from the static

one with a strictly larger revenue. �
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Proof of Proposition 3.1. Assume (APR) does not hold, then by Lemma C.1

(which we state and prove after the current proof) there exist θ1 < θ̂ < θ2 such that∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FH(z)dz

>

∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ2
θ̂
FH(z)dz

, (C.4)

Consider a solution in which we set uL = uH = 0, and

xL(θ) =


0 if θ < θ1

x if θ1 ≤ θ ≤ θ2

1 if θ2 < θ,

xH(θ) =


0 if θ < θ̂

1 if θ̂ ≤ θ,

where x =
∫ θ2
θ̂
FH(z)dz/

∫ θ2
θ1
FH(z)dz. We next show that this solution is feasible

and that yields an strict revenue improvement over the static contract.

Feasibility. The ex-post participation constraints are clearly satisfied. Also,

since θ1 < θ̂ < θ2 we have xL ∈ (0, 1), and both xL(·) and xH(·) are non-decreasing

allocations. We verify the IC constraints

uL +

∫ θmax

0

xL(θ)FL(θ)dθ ≥ uH +

∫ θmax

0

xH(θ)FL(θ)dθ,

uH +

∫ θmax

0

xH(θ)FH(θ)dθ ≥ uL +

∫ θmax

0

xL(θ)FH(θ)dθ.

By replacing the allocations and ex-post utilities we obtain that the IC constraints

are equivalent to ∫ θ2
θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

≥
∫ θ2
θ̂
FL(z)dz∫ θ2

θ1
FL(z)dz

. (C.5)

To see why this is true, rewrite equation (C.4) as∫ θ2
θ̂
FH(z)dz∫ θ̂

θ1
FH(z)dz

>

∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ̂

θ1
FH(z)rLH(z)dz

, (C.6)

note that we are using here that by Lemma C.1 the denominator on the right hand
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side is strictly positive. Also, note that∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ2
θ̂
FL(z)dz

=

∫ θ2
θ̂
FL(z)rLL(z)dz∫ θ2
θ̂
FL(z)dz

≥ rLL(θ̂)

∫ θ2
θ̂
FL(z)dz∫ θ2

θ̂
FL(z)dz

= rLL(θ̂)

∫ θ̂
θ1
FL(z)dz∫ θ̂

θ1
FL(z)dz

≥
∫ θ̂
θ1
FL(z)rLL(z)dz∫ θ̂
θ1
FL(z)dz

=

∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FL(z)dz

,

where the inequalities come from the fact that rLL(·) is an increasing function and

rLL(θ̂) ≥ 0. This gives ∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ̂

θ1
FH(z)rLH(z)dz

≥
∫ θ2
θ̂
FL(z)dz∫ θ̂

θ1
FL(z)dz

,

note that we are using here that by Lemma C.1 the denominator on the left hand side

is strictly positive. This inequality together with (C.6) yields (C.5) and, therefore,

the proposed solution is feasible.

Revenue improvement. We need to prove that∫ θmax

θ̂

[αLfL(z)µL(z) + αHfH(z)µH(z)]dz < χ ·
∫ θ2

θ1

αLfL(z)µL(z)dz +

∫ θmax

θ2

αLfL(z)µL(z)dz

+

∫ θmax

θ̂

αHfH(z)µH(z)dz,

this is equivalent to∫ θ2

θ̂

αLfL(z)µL(z)dz <

∫ θ2
θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

·
∫ θ2

θ1

αLfL(z)µL(z)dz

which is the same as ∫ θ2
θ̂
FH(z)rLH(z)dz∫ θ2
θ̂
FH(z)dz

<

∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FH(z)dz

which is exactly the property satisfied by θ1, θ2 in (C.4). �
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Lemma C.1 Suppose

max
0≤θ≤θ̂

RLH(θ, θ̂) > min
θ̂≤θ≤θmax

RLH(θ̂, θ).

Then, there exist θa, θb ∈ [0, θmax] with θa < θ̂ < θb such that RLH(θa, θ̂) > RLH(θ̂, θb).

Moreover, 0 <
∫ θ̂
θa
FH(z)rLH(z)dz =

∫ θ̂
θa
FL(z)rLL(z)dz, and 0 <

∫ θb
θ̂
FH(z)rLH(z)dz =∫ θb

θ̂
FL(z)rLL(z)dz.

Proof of Lemma C.1. Note that both rLH(·, θ̂) and rLH(θ̂, ·) are continuous

functions. Thus the maximum and the minimum in the statement are achieved by

some θ̃a ∈ [0, θ̂] and θ̃b ∈ [θ̂, θ], respectively. Therefore, by assumption, we have that

RLH(θ̃a, θ̂) > RLH(θ̂, θ̃b).

Using the continuity of both function we can find θa < θ̂ and θb > θ̂ such that the

inequality above is satisfied.

To finalize, we argue why 0 <
∫ θ̂
θa
F 2(z)rLH(z)dz. Note that since θb > θ̂ ≥ θ̂a

(see Lemma 3.2) we have RLH(θ̂, θb) > 0. Therefore, RLH(θa, θ̂) > 0 which imply the

desired inequalities. �

Proof of Lemma 3.3. From Lemma 3.2 we have that θ̂L ≤ θ̂ ≤ θ̂H . For ex-

ponential distributions, θ̂L = 1/λL and θ̂H = 1/λH . Therefore, θ̂ ∈ [1/λL, 1/λL].

Moreover, θ̂ must satisfy (3.8), if not we could increase it or decrease and obtain an

strict revenue improvement.

We provide a proof for the rest of the properties for general distributions satisfying

(DHR). Note first that θ̂ can be seen as a function of αL and αH but since αH equals

1 − αL, we can effectively consider θ̂ just a function of αL. Then, when αL equals 0

is as we only had type H buyers and, therefore, the optimal threshold is θ̂H . While

when αL equals 1 is as we only had type L buyers so the optimal threshold is θ̂L.

Hence, θ̂(0) equals θ̂H and θ̂(1) equals θ̂L.

Now we prove that θ̂(αL) is non-increasing. Consider αaL < αbL and suppose that

293



θ̂(αaL) < θ̂(αbL). Define

`(θ, αL) ,
∫ θmax

θ

αLfL(z)µL(z) + (1− αL)fH(z)µH(z)dz,

note that this is a linear function of αL and, for fixed αL, it is maximized at θ̂(αL).

Hence,

`(θ̂(αaL), αbL) ≤ `(θ̂(αbL), αbL)

= `(θ̂(αbL), αbL − αaL) + `(θ̂(αbL), αaL)

≤ `(θ̂(αbL), αbL − αaL) + `(θ̂(αaL), αaL)

therefore∫ θ̂(αbL)

θ̂(αaL)

αbLfL(z)µL(z)+(1−αbL)fH(z)µH(z)dz ≤
∫ θ̂(αbL)

θ̂(αaL)

αaLfL(z)µL(z)+(1−αaL)fH(z)µH(z)dz.

(C.7)

Recall that θ̂ is in [θ̂L, θ̂H ] and, therefore, θ̂L ≤ θ̂(αaL) < θ̂(αbL) ≤ θ̂H . This in turn

implies that

µL(z) > 0 and µH(z) < 0, ∀z ∈ (θ̂(αaL), θ̂(αbL)),

so for z in (θ̂(αaL), θ̂(αbL)) we have

αaLfL(z)µL(z) + (1− αaL)fH(z)µH(z) < αbLfL(z)µL(z) + (1− αbL)fH(z)µH(z),

which contradicts (C.7). �

Proof of Proposition 3.2. We make use of Theorem 3.1. Condition (APR)

for the exponential distribution is

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
≤ min

θ̂≤θ

{θe−λLθ − θ̂e−λLθ̂
e−λHθ − e−λH θ̂

}
. (C.8)

Before we begin the proof we need some definitions and observations. Define the

following functions

g(θ) ,
θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

and g(θ) ,
θe−λLθ − θ̂e−λLθ̂
e−λHθ − e−λH θ̂

.
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Note the following

lim
θ→θ̂+

g(θ) = lim
θ→θ̂−

g(θ) =
(λLθ̂ − 1)

λH
· e−θ̂(λL−λH), (C.9)

and

lim
θ→∞

g(θ) = θ̂ · e−θ̂(λL−λH). (C.10)

Finally note that

(λLθ̂ − 1)

λH
· e−θ̂(λL−λH) ≤ θ̂ · e−θ̂(λL−λH) ⇐⇒ θ̂ ≤ 1

λL − λH
. (C.11)

Now, suppose condition (APR) holds and

θ̂ >
1

λL − λH
(C.12)

From equations (C.9),(C.10) and (C.11) we see that

g(θ̂) = g(θ̂) > lim
θ→∞

g(θ),

which implies

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
> min

θ̂≤θ

{θe−λLθ − θ̂e−λLθ̂
e−λHθ − e−λH θ̂

}
(C.13)

contradicting the fact that condition (APR) holds.

For the other direction, assume equation (3.9) holds. We first prove that for θ ≤ θ̂

we have g(θ) ≤ g(θ̂), indeed

g(θ) ≤ g(θ̂)⇐⇒ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

≤ (λLθ̂ − 1)

λH
· e−θ̂(λL−λH)

⇐⇒ λH · (θ̂e−λLθ̂ − θe−λLθ) ≥ (e−λH θ̂ − e−λHθ) · (λLθ̂ − 1) · e−θ̂(λL−λH)

⇐⇒ λH θ̂ · (1−
θ

θ̂
e−λL(θ−θ̂))− (1− e−λH(θ−θ̂)) · (λLθ̂ − 1) ≥ 0,

so we just need to see that this last inequality holds for θ ≤ θ̂. For doing so define

H(θ) , λH θ̂ · (1−
θ

θ̂
e−λL(θ−θ̂))− (1− e−λH(θ−θ̂)) · (λLθ̂ − 1),
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and note that H(θ̂) = 0 and

H(0) = λH θ̂ + (eλH θ̂ − 1) · (λLθ̂ − 1) ≥ λH θ̂ + λH θ̂(λLθ̂ − 1) = λH θ̂ · λLθ̂ > 0,

where the inequality comes from convexity of the exponential function and the fact

that θ̂ ≥ 1/λL. Furthermore the derivative of H is given by

dH

dθ
= λH(λLθ − 1)e−λL(θ−θ̂) − λH(λLθ̂ − 1)e−λH(θ−θ̂),

and it can be easily verified that for θ ≤ θ̂ we have dH/dθ ≤ 0. This together to the

facts that H(0) > 0 and H(θ̂) = 0 imply that g(θ) ≤ g(θ̂) for all θ ≤ θ̂. Which in

turn implies

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
=

(λLθ̂ − 1)

λH
· e−θ̂(λL−λH).

Now we prove that for θ ≥ θ̂ we have g(θ) ≥ g(θ̂). Note that if we prove this we are

done because this and what we have just proven imply condition (APR). As before

we do

g(θ) ≥ g(θ̂)⇐⇒ θe−λLθ − θ̂e−λLθ̂
e−λHθ − e−λH θ̂

≥ (λLθ̂ − 1)

λH
· e−θ̂(λL−λH)

⇐⇒ λH(θ̂e−λLθ̂ − θe−λLθ) ≥ (λLθ̂ − 1) · (e−λH θ̂ − e−λHθ) · e−θ̂(λL−λH)

⇐⇒ λH(θ̂ − θe−λL(θ−θ̂))− (λLθ̂ − 1) · (1− e−λH(θ−θ̂)) ≥ 0,

note that the LHS of this last inequality is again the function H(·) but this time

defined for θ ≥ θ̂. We have H(θ̂) = 0. It is easy to prove that for θ̂ ≤ θ ≤ θ̃

the function H(θ) is increasing, and then for θ > θ̃ is decreasing, where θ̃ > θ̂ and

dH(θ̃)/dθ = 0. Also,

lim
θ→∞

H(θ) = λH θ̂ − (λLθ̂ − 1) ≥ 0,

hence for θ ≥ θ̂ we have H(θ) ≥ 0 and, therefore, g(θ) ≥ g(θ̂) for all θ ≥ θ̂, as desired.

�

Proof of Corollary 3.1. Recall that for any λL > λH from Lemma 3.3 we have

1

λL
≤ θ̂(αL) ≤ 1

λH
,
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and

λL ≤ 2λH ⇐⇒
1

λH
≤ 1

λL − λH
,

therefore, for any αL ∈ [0, 1] equation (3.9) is satisfied. Then by Proposition 3.2 we

conclude that the static contract is optimal for any αL ∈ [0, 1]. �

Proof of Corollary 3.2. First we show θ̂(·) is continuous from the right at

zero. Let {αnL} ∈ [0, 1] be any sequence such that

lim
n→∞

αnL = 0,

and suppose θ̂(αnL) does not converge to θ̂(0) = 1/λH . That is,

∃ε > 0,∀n0,∃n ≥ n0, | 1

λH
− θ̂(αnL)| > ε,

since θ̂(αnL) ≤ 1
λH

we have

| 1

λH
− θ̂(αnL)| > ε⇐⇒ 1

λH
− θ̂(αnL) > ε.

This in turn means that we can create a subsequence {α`nL } ⊂ {αnL} such that

∀n, 1

λH
− ε > θ̂(α`nL ). (C.14)

But since θ̂(α`nL ) is a maximizer of Πstatic(·) we must have

α`nL θ̂(α
`n
L )e−λLθ̂(α

`n
L ) +(1−α`nL )θ̂(α`nL )e−λH θ̂(α

`n
L ) ≥ α`nL

1

λH
e
−λL 1

λH +(1−α`nL )
1

λH
e
−λH 1

λH ,

because λL > λH we can bound the LHS above to obtain

θ̂(α`nL )e−λH θ̂(α
`n
L ) ≥ α`nL

1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH . (C.15)

Note that the function θe−λHθ has a unique maximum at θ = 1/λH and since θ̂(α`nL )

satisfies equation (C.14), we can always find δ(ε) > 0 such that

( 1

λH
+ δ(ε)

)
e
−λH( 1

λH
+δ(ε))

> θ̂(α`nL )e−λH θ̂(α
`n
L ), ∀n,
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plugging this in equation (C.15) yields( 1

λH
+ δ(ε)

)
e
−λH( 1

λH
+δ(ε))

> α`nL
1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH , ∀n,

so taking the limit over n gives a contradiction. In conclusion we have proved that

θ̂(·) is continuous from the right at zero. Now, to finalize the proof recall that we are

assuming λL > 2λH or equivalently 1
λH

> 1
λL−λH

. However, since θ̂(0) = 1/λH and

θ̂(·) is continuous from the right we can always find ᾱL ∈ (0, 1] such that

1

λH
≥ θ̂(ᾱL) ≥ 1

λL − λH
,

so thanks to Proposition 3.2, the sequential contract is optimal when we set αL > ᾱL.

Note that the same arguments is valid for 1/λL. That is, we can show that θ̂(αL) is

continuos from the left at 1 and then using the fact that

1

λL − λH
>

1

λL
,

we can find ᾱH ∈ [ᾱL, 1) such that

1

λL − λH
> θ̂(ᾱH) ≥ 1

λL
,

hence in [ᾱH , 1] the static contract is optimal. All of this implies that since θ̂(·) is a

non-increasing function we can always find ᾱ ∈ (0, 1) with the desired property. �

Proof of Corollary 3.3. Fix λH and αL. Suppose the result is not true, that

is,

∀λ̄L ≥ 2λH ,∃λL ≥ λ̄L, θ̂(λL) ≤ 1

λL − λH
.

From this we can construct a sequence λnL ≥ 2λH such that

lim
n→∞

λnL =∞ and θ̂(λnL) ≤ 1

λnL − λH
, ∀n ∈ N,

therefore θ̂(λnL) converges to 0, and we have

Πstatic(θ̂(λnL)) = θ̂(λnL)e−λH θ̂(λ
n
L)
(
αLe

−(λnL−λH)θ̂(λnL) + αH

)
≤ θ̂(λnL)e−λH θ̂(λ

n
L) n→∞→ 0.
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However, since θ̂(λnL) maximizes Πstatic(·) it must be the case that Πstatic(1/λH) ≤

Πstatic(θ̂(λnL)), that is,

αL
1

λH
e
−λnL

1
λH + αH

1

λH
e
−λH 1

λH ≤ Πstatic(θ̂(λnL)).

Taking limit over n at both sides of the previous equation yields

αH
1

λH
e
−λH 1

λH ≤ 0,

a contradiction. �

C.2 Proofs for Section 3.6

Proof of Theorem 3.2. For ease of exposition we restate the problem’s formu-

lation,

(PR) max
0≤x≤1

−
∑

k∈{L,H}

αkuk +
∑
∈{L,H}

αk

∫ θmax

0

xk(z)µk(z)fk(θ)dθ

s.t xk(θ) non-decreasing, ∀k ∈ {L,H}

uk ≥ 0,∀k ∈ {L,H}

uH +

∫ θmax

0

xH(z)FH(z)dz ≥ uL +

∫ θmax

0

xL(z)FH(z)dz.

We separate this proof into two parts. In part 1 we show that the optimal solution

has the structure in the statement of the theorem. Note that it is enough to provide

a proof for the structure of the allocation, the transfers can be readily derived from

Lemma 3.1. In part 2 we derive the properties about the thresholds, xL and uH and

uL.

Part 1. For any optimal solution to (PR) two possible situations may arise:

1. The allocation has at least one interval in which is continuously strictly increas-

ing.
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2. The allocation does not have an interval in which is continuously strictly in-

creasing, but is a piecewise constant non-decreasing function.

For each interim type, we prove that if we are in case (1), we can modify the

allocation in that interval to be constant and obtain at least a weak improvement in

the objective. This implies that for any optimal allocation, we can construct another

optimal allocation that is a piecewise constant non-decreasing function. Therefore,

we can always assume we are in case (2). In this case, we show that for interim type

L there is only one intermediate step, and for interim type H there is no intermediate

step.

We split the proof in interim type L and H. Let x?L(θ) and x?H(θ) denote the

optimal allocations. We begin with interim type L.

• interim type L case (1): Suppose there is an interval (θ1, θ2) in which x?L(θ) is

continuously strictly increasing. Before we start with the main argument, note

that if θ̂L > θ1 then we can set x?L(θ) to be equal to x?L(θ1) for all θ in (θ1, θ̂L).

This strictly increases the objective function while maintaining feasibility. So

we can assume θ̂L ≤ θ1, which in turn implies that µL(·) is non-negative in the

interval (θ1, θ2).

Now we give the main argument. Note that by Theorem 1 in [44, p. 217], x?L(θ)

must maximize the Lagrangian:1

L(u,x,λ,w) = uL(wL − λ− αL) + uH(λ− αH + wH)

+

∫ θmax

0

xL(z) ·
[
αLµL(z)fL(z)− λFH(z)

]
dz

+

∫ θmax

0

xH(z) ·
[
αHµH(z)fH(z) + λFH(z)

]
dz,

with λ,wL, wH ≥ 0. Define LL(·) by

LL(θ) , αLµL(θ)fL(θ)− λFH(θ),

1To use this theorem we need to verify that there is a feasible solution that strictly satisfies all
inequalities. We can take uL = uH > 0, xL(θ) = 1{θ≥θL} and xH(θ) = 1{θ≥θH} with θH < θL.
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then it must be the case that LL(θ) = 0 for all θ ∈ (θ1, θ2). Suppose this is

not true, then we could have θ̂ ∈ (θ1, θ2) such that LL(θ̂) > 0, since LL(·)

is a continuous function this must also be true for all θ ∈ (θ̂ − ε, θ̂ + ε) for

ε > 0 small enough. But then we can obtain a strict improvement by setting

x1(θ) = x?L(θ̂ + ε) for all θ ∈ (θ̂ − ε, θ̂ + ε). A similar argument holds when

LL(θ̂) < 0. Therefore, we have just proved that LL(θ) = 0 for all θ ∈ (θ1, θ2).

In other words,

αL
µL(θ)fL(θ)

FH(θ)
= λ ≥ 0, ∀θ ∈ (θ1, θ2), (C.16)

Also, by the second mean value theorem for integrals there exists θ̂ ∈ (θ1, θ2)

such that

x?L(θ̂) =

∫ θ2
θ1
x?L(z)F 2(z)dz∫ θ2
θ1
FH(z)dz

. (C.17)

Going back to (PR), we have that the part of objective associated to x?L in

(θ1, θ2) is ∫ θ2

θ1

αLx
?
L(z)µL(z)fL(z)dz = λ ·

∫ θ2

θ1

x?L(z)FH(z)dz, (C.18)

where in the equality we have used (C.16). Now, consider modifying x?L to be

x̃?L equal to x?L(θ̂) in (θ1, θ2). Then from (C.16), (C.17) and (C.18) we get∫ θ2

θ1

x?L(z)αLµL(z)fL(z)dz = λ · x?L(θ̂) ·
∫ θ2

θ1

FH(z)dz

= x?L(θ̂) ·
∫ θ2

θ1

αLµL(z)fL(z)dz

=

∫ θ2

θ1

x̃?L(z)αLµL(z)fL(z)dz,

therefore, the modified x̃?L has the same objective value than the old one. Also,
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note that we have preserved feasibility because

uL +

∫ θmax

0

x̃?L(z)FH(z)dz = uL +

∫ θ2

θ1

x̃?L(z)FH(z)dz +

∫
(θ1,θ2)c

x̃?L(z)FH(z)dz

= uL + x?L(θ̂) ·
∫ θ2

θ1

FH(z)dz +

∫
(θ1,θ2)c

x?L(z)FH(z)dz

(a)
= uL +

∫ θ2

θ1

x?L(z)FH(z)dz +

∫
(θ1,θ2)c

x?L(z)FH(z)dz

= uL +

∫ θmax

0

x?L(z)FH(z)dz,

where in (a) we used equation (C.17).

• interim type L case (2): Suppose for x?L(·) there exists θ1 < θ2 < θ3 and

0 < x1 < x2 < 1 such that x?L(θ) = x1 in (θ1, θ2) and x?L(θ) = x2 in (θ2, θ3).

Since type’s L allocation is piecewise constant we must have x?L(θ−1 ) < x1 and

x2 < x?L(θ+
3 ).

Then, the part of objective associated to interim type L in these intervals is

αL · x1 ·
∫ θ2

θ1

µL(z)fL(z)dz + αL · x2 ·
∫ θ3

θ2

µL(z)fL(z)dz. (C.19)

If µL(θ̂) ≤ 0 for some θ̂ ∈ (θ1, θ3) then because of (DHR), µL(θ) ≤ 0 for all

θ ≤ θ̂ and, therefore, we can always find a better solution by setting x?L(θ) = 0

for all θ ≤ θ̂ (note that this does not affect feasibility in (PR)). So assume

µL(θ) > 0 for all θ ∈ (θ1, θ3), then it must be the case that

uH +

∫ θmax

0

xH(z)FH(z)dz = uL +

∫ θmax

0

xL(z)FH(z)dz, (C.20)

otherwise we could increase x1 and obtain an strict improvement in the objec-

tive. There are two cases:

a)
∫ θ2
θ1

µL(z)fL(z)dz∫ θ2
θ1

F 2(z)dz
≥

∫ θ3
θ2

µL(z)fL(z)dz∫ θ3
θ2

F 2(z)dz
: In this case consider decreasing x2 by ε2 >

0 and increasing x1 by ε1 > 0, in such a way that equation (C.20) remains

with equality, that is,

ε1 ·
∫ θ2

θ1

FH(z)dz − ε2 ·
∫ θ3

θ2

FH(z)dz = 0. (C.21)
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The change in equation (C.19) is

αL ·
ε2 ·
∫ θ3
θ2
FH(z)dz∫ θ2

θ1
FH(z)dz

·
∫ θ2

θ1

µL(z)fL(z)dz−αL ·ε2 ·
∫ θ3

θ2

µL(z)fL(z)dz, (C.22)

which under our current assumption is non-negative. So we can weakly

improve our objective, indeed we can do it so until x1 + ε1 and x2− ε2 are

equal,

x1 + ε1 = x2− ε2 ⇔ x1 + ε2 ·
∫ θ3
θ2
FH(z)dz∫ θ2

θ1
FH(z)dz

= x2− ε2 ⇔ ε2 =
(x2 − x1)

1 +
∫ θ3
θ2

FH(z)dz∫ θ2
θ1

FH(z)dz

,

since x2 > x1 we have ε2 > 0 and, therefore, we have shown that it is

possible to increase x1 and to decrease x2 in such a way the objective is

weakly improved and the solution is constant in (θ1, θ3).

b)
∫ θ2
θ1

µL(z)fL(z)dz∫ θ2
θ1

FH(z)dz
<

∫ θ3
θ2

µL(z)fL(z)dθ∫ θ3
θ2

FH(z)dz
: In this case consider increasing x2 by ε2 > 0

and decreasing x1 by ε1 > 0 in such a way that equation (C.20) remains

with equality. By doing this the change in the objective is strictly positive,

and we do it until either x1 = x?L(θ−1 ) or x2 = x?L(θ+
3 ).

This proves the result for interim type L and case (2).

In conclusion, putting together what we have proved for type L in cases (1) and

(2), we can always consider x?L to be a step function with at most one intermediate

step as in the statement of the proposition.

Now we proceed with interim type 2.

• interim type H case (1): Suppose there is an arbitrary interval (θ1, θ2) in

which x?H(θ) is continuously strictly increasing. Before we start with the main

argument, note that if θ̂H < θ2 then we can set x?H(θ) to be equal to x?H(θ2) for

all θ in (θ̂H , θ2). This strictly increases the objective function and maintains

feasibility. So we can assume θ̂H ≥ θ2, which in turn implies that µH(·) is

non-positive in the interval (θ1, θ2).
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Now we give the main argument. Note that by Theorem 1 in [44, p. 217], x?H(θ)

must maximize the Lagrangian

L(u,x,λ,w) = uL(wL − λ− αL) + uH(λ− αH + wH)

+

∫ θmax

0

xL(z) ·
[
αLµL(z)fL(z)− λFH(z)

]
dz

+

∫ θmax

0

xH(z) ·
[
αHµH(z)fH(z) + λFH(z)

]
dz,

with λ,wL, wH ≥ 0. Define LH(·) by

LH(θ) , αHµH(θ)fH(θ) + λFH(θ),

then it must be the case that LH(θ) = 0 for all θ ∈ (θ1, θ2). Suppose this is

not true, then we could have θ̂ ∈ (θ1, θ2) such that LH(θ̂) > 0, since LH(·)

is a continuous function this must also be true for all θ ∈ (θ̂ − ε, θ̂ + ε) for

ε > 0 small enough. But then we can obtain an strict improvement by setting

x2(θ) = x?H(θ̂ + ε) for all θ ∈ (θ̂ − ε, θ̂ + ε). A similar argument holds when

LH(θ̂) < 0. Therefore, we have just proved that LH(θ) = 0 for all θ ∈ (θ1, θ2).

In other words,

αH
µH(θ)fH(θ)

FH(θ)
= −λ, ∀θ ∈ (θ1, θ2). (C.23)

Also note that by the second mean value theorem for integrals, there exists

θ̂ ∈ (θ1, θ2) such that

x?H(θ̂) =

∫ θ2
θ1
x?H(z)FHdz∫ θ2

θ1
FH(z)dz

. (C.24)

Going back to (PR), we have that the part of objective associated to x?H in

(θ1, θ2) is∫ θ2

θ1

αHx
?
H(z)µH(z)fH(z)dz = −λ ·

∫ θ2

θ1

x?H(z)FH(z)dz, (C.25)
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where in the equality we have used (C.23). Now, consider modifying x?H to be

x̃?H equal to x?H(θ̂) in (θ1, θ2). Then from (C.23), (C.24) and (C.25) we get∫ θ2

θ1

x?H(z)αHµH(z)fH(z)dz = −λ · x?H(θ̂) ·
∫ θ2

θ1

FH(z)dz

= x?H(θ̂) ·
∫ θ2

θ1

αHµH(z)fH(z)dz

=

∫ θ2

θ1

x̃?H(z)αHµH(z)fH(z)dz,

therefore, the modified x̃?H has the same objective value than the old one. Also,

note that we have preserved feasibility because

uH +

∫ θmax

0

x̃?H(z)FH(z)dz = uH +

∫ θ2

θ1

x̃?H(z)FH(z)dz +

∫
(θ1,θ2)c

x̃?H(z)FH(z)dz

= uH + x?H(θ̂) ·
∫ θ2

θ1

FH(z)dz +

∫
(θ1,θ2)c

x?H(z)FH(z)dz

(a)
= uH +

∫ θ2

θ1

x?H(z)FH(z)dz +

∫
(θ1,θ2)c

x?H(z)FH(z)dz

= uH +

∫ θmax

0

x?H(z)FH(z)dz,

where in (a) we used equation (C.24).

• interim type H case (2): Suppose x?H(·) is an optimal solution to (PR) for

which there exists θ1 < θ2 and 0 < x < 1 such that x?H(θ) = x in (θ1, θ2).

Similar to the proof of type L assume x?H(θ−1 ) < x < x?H(θ+
2 ).

Then the part of the objective for the interim type 2 in this interval is

αH · x ·
∫ θ2

θ1

µH(z)fH(z)dz. (C.26)

If µH(θ̂) ≥ 0 for some θ̂ ∈ (θ1, θ2) then because of (DHR), µH(θ) ≥ 0 for all

θ ≥ θ̂ and, therefore, we can always find a better solution by setting x?H(θ) = 1

for all θ ≥ θ̂ (note that this does not affect feasibility in (PR)). So assume

µH(θ) < 0 for all θ ∈ (θ1, θ2), then it must be the case that

uH +

∫ θmax

0

xH(z)FH(z)dz = uL +

∫ θmax

0

xL(z)FH(z)dz, (C.27)
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otherwise we could decrease x and obtain an strict improvement in the objective.

Now, consider splitting the interval in half, that is, take θ̂ = (θ1 + θ2)/2 and

note that because of (DHR) we always have∫ θ̂
θ1
µH(z)fH(z)dz∫ θ̂
θ1
FH(z)dz

≤
∫ θ2
θ̂
µH(z)fH(z)dz∫ θ2
θ̂
FH(z)dz

. (C.28)

We can modify x?H(θ) in (θ1, θ2) as follows and obtain an, at least weakly,

objective improvement. For θ ∈ (θ1, θ̂) set x?H(θ) = x − ε1 and for θ ∈ (θ̂, θ2)

set x?H(θ) = x+ ε2 with ε1, ε2 > 0, and such that equation (C.27) remains with

equality. That is,

−ε1 ·
∫ θ̂

θ1

FH(z)dz + ε2 ·
∫ θ2

θ̂

FH(z)dz = 0.

With this modification the change in the objective is

−αH ·
ε2 ·
∫ θ2
θ̂
FH(z)dz∫ θ̂

θ1
FH(z)dz

·
∫ θ̂

θ1

µH(z)fH(z)dz + αH · ε2 ·
∫ θ2

θ̂

µH(z)fH(z)dz,

which by equation (C.28) is non-negative. Then we can keep increasing ε2 until

either x − ε1 = x?H(θ−1 ) or x + ε2 = x?H(θ+
2 ). This proofs we can, at least

weakly, improve the objective. It also proves that we can modify the solution

in such a way that for one of the two halves of the intervals the step reaches

the boundary bound given by either x?H(θ−1 ) or x?H(θ+
2 ). For the half that did

not reach the boundary, we can do the same procedure described above and

then repeat this procedure until we completely get rid of the intermediate step

between (x?H(θ−1 ), x?H(θ+
2 )). Note that this process can be potentially infinite,

in which case a more rigorous argument is required.

Suppose the process described above goes for infinitely many steps. In this case,

an allocation sequence {xnH(θ)}n∈N defined in [θ1, θ2] is generated. To prove that

the argument works, we need to show that there exists θ∞ ∈ [θ1, θ2] such that

lim
n→∞

∫ θ2

θ1

xnH(z)µH(z)fH(z)dz = x?H(θ1)

∫ θ∞

θ1

µH(z)fH(z)dz+x?H(θ2)

∫ θ2

θ∞

µH(z)fH(z)dz.

(C.29)
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To prove this, let {θn, θn, θ̂n}n∈N be the sequence generated in the infinite process

where:

– θn and θn correspond to the lower and upper bound of the interval. For

example, at the beginning θ1 = θ1 and θ1 = θ2. At the next iteration we

will have either θ2 = θ1 and θ2 = θ̂ or θ2 = θ̂ and θ2 = θ2. Note that for

all n ∈ N: θn, θn ∈ [θ1, θ2].

– θ̂n is defined to be the half of the interval. So θ̂1 = θ̂, and θ̂2 = (θ2 + θ2)/2.

From these definitions we have that θn and θn are bounded monotonic sequences

(the first non-decreasing and the second non-increasing), thus both converge to

a limit. Also,

θ̂n =
θn + θn

2
,

then all three quantities, θn, θn and θ̂n, converge to the same limit which we

denote by θ∞ ∈ [θ1, θ2] (if the limit was not the same we could continue iterating

the process).From this we can conclude that the following limit holds almost

surely

lim
n→∞

xnH(θ) =


x?H(θ−1 ) if θ < θ∞

x?H(θ+
2 ) if θ ≥ θ∞,

∀θ ∈ [θ1, θ2].

Finally, we can use the almost surely version of the dominated convergence

theorem to obtain (C.29). This completes the proof for interim type 2 and case

(2).

In conclusion, putting together what we have proved for type H in cases (1) and

(2), we can always consider x?H to be a threshold allocation as in the statement of

the proposition.
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Part 2. From what we have just proved we can write down (PR) as follows

max −
∑

k∈{L,H}

αkuk + α1χ

∫ θ2

θ1

µ1(z)f1(z)dz + α1

∫ θmax

θ2

µ1(z)f1(z)dz

+ α2

∫ θmax

θH

µH(z)fH(z)dz

s.t χ ∈ [0, 1], θ1 ≤ θ2

uk ≥ 0, k ∈ {L,H}

uH +

∫ θmax

θH

FH(z)dz ≥ uL + χ

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

• uL = 0: From the formulation above it is clear that is always optimal to set

uL = 0.

• θ̂L ≤ θ1: Suppose the opposite, that is, θ̂L > θ1. This implies that between θ1

and θ̂1, µL(·) is negative. Then, we can increase θ1 while keeping feasibility and,

at the same time, increasing the objective function. Note this argument is also

valid when θ1 = θ2. Also, note that we can obtain a strict improvement only

when x > 0; however, when x = 0 we can only obtain a weak improvement. In

either case, we can always consider θ̂L ≤ θ1.

• θH ≤ θ̂H : Suppose the opposite, θH > θ̂H . Since µH(θ) > 0 for all θ ≥ θ̂H , we

can can decrease θH and obtain an objective improvement while maintaining

feasibility.

• uH = 0: Suppose uH > 0, then we must have

uH +

∫ θmax

θH

FH(z)dz = x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz, (C.30)

otherwise, we could decrease uH and, by doing so, improve the objective. Since

uH > 0, equation (C.30) yields

0 < uH = x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz −
∫ θmax

θH

FH(z)dz, (C.31)
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then it must be true that θ1 < θH ; otherwise, from equation (C.31) we would

have (θ1 ≤ θ2)∫ θ1

θH

FH(z)dz+

∫ θ2

θ1

FH(z)dz+

∫ θmax

θ2

FH(z)dz < x

∫ θ2

θ1

FH(z)dz+

∫ θmax

θ2

FH(z)dz,

which implies ∫ θ1

θH

FH(z)dz < 0,

a contradiction. Thus, θ1 < θH .

Now consider, a new contract for type H which consists on decreasing the cut-off

θH by ε > 0 sufficiently small, but at the same time maintaining the equality in

equation (C.30). Specifically, let θH(ε) = θH − ε > 0 (which we can do because

as we just saw θH > θ1 ≥ 0) and let uH(ε) be

uH(ε) = x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz −
∫ θmax

θH(ε)

FH(z)dz,

note that by taking ε small we still have uH(ε) > 0. We claim that this new

contract, characterized by θ1, θ2, x, θH(ε) and uH(ε), yields a larger objective

that the old contract, characterized by θ1, θ2, x, θH and uH . The old contract

objective’s is

−αHuH+αLx

∫ θ2

θ1

µL(z)fL(z)dz+αL

∫ θmax

θ2

µL(z)fL(z)dz+αH

∫ θmax

θH

µH(z)fH(z)dz,

and using equation (C.30) it becomes

x

∫ θ2

θ1

(αLµL(z)fL(z)− αHFH(z))dz +

∫ θmax

θ2

(αLµL(z)fL(z)− αHFH(z))dz

+αH

∫ θmax

θH

zfH(z)dz.

We obtain a similar expression for the new contract’s objective. Specifically,

the first two terms in the expression above are the same and the third term

differs in θH . Hence, the new contract yields an improvement over the old one

if and only if ∫ θmax

θH

zfH(z)dz <

∫ θmax

θH(ε)

zfH(z)dz.
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Since θH(ε) < θH this last inequality is true. Thus, if uH > 0 we can always

construct a new contract yielding a larger objective value and, therefore, at any

optimal contract we must have uH = 0.

• θH ≤ θ2: Since at any optimal solution uH = 0, the IC constraint is∫ θmax

θH

FH(z)dz ≥ x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

Hence, if θH > θ2 from the expression above we would have∫ θmax

θH

FH(z)dz ≥ x

∫ θ2

θ1

FH(z)dz +

∫ θH

θ2

FH(z)dz +

∫ θmax

θH

FH(z)dz,

which implies θH = θ2, a contradiction.

• θ1 ≤ θH : First we show that θ1 ≤ θ̂H . Suppose the opposite, that is, θ1 > θ̂H .

Then, since θ̂H ≥ θH we must have θ1 > θH and, therefore,∫ θmax

θH

FH(z)dz =

∫ θ1

θH

FH(z)dz +

∫ θmax

θ1

FH(z)dz

>

∫ θmax

θ1

FH(z)dz

=

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz

≥ χ

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

That is, the IC constraint is not binding. Therefore, since θ1 > θ̂H ≥ θ̂L we can

slightly decrease θ1 and, in this way, obtain an objective improvement whenever

x > 0. When x = 0, because θ2 ≥ θ1, we can decrease θ2 and obtain an objective

improvement as well. Hence, at any optimal solution we must have θ1 ≤ θ̂H .

In order to complete the proof, suppose θ1 > θH then, as before, we have∫ θmax

θH

FH(z)dz > x

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

Using that θ1 ≤ θ̂H implies θH < θ̂H , we can slightly increase θH (maintaining

feasibility) and thus obtain an objective improvement. In conclusion, at any

optimal solution we must have θ1 ≤ θH .
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• x =
∫ θ2
θH
FH(z)dz/

∫ θ2
θ1
FH(z)dz: since θ̂L ≤ θ, the part of the objective that

involves x is always non-negative and, therefore, it is optimal to make x as

large as possible. The IC constraints gives an upper bound for x which is

precisely
∫ θ2
θH
FH(z)dz/

∫ θ2
θ1
FH(z)dz, thus the result.

�

Proof of Theorem 3.3. We divide the proof into two part. In part 1 we show

that the solution to the relaxed problem and the original problem coincide. In part

2 we prove that the three conditions that we state after the theorem are sufficient to

characterize the optimality of the static contract.

Part 1. It is enough to show that the solution of (PR) is feasible in (P). From

Theorem 3.2 we know that we can formulate (PR) as

(PdR) max αLχ

∫ θ2

θ1

µL(z)fL(z)dz + αL

∫ θmax

θ2

µL(z)fL(z)dz

+ αH

∫ θmax

θH

µH(z)fH(z)dz

s.t χ =

∫ θ2
θH
FH(z)dz∫ θ2

θ1
FH(z)dz

θ̂L ≤ θ1 ≤ θH ≤ θ2, θH ≤ θ̂H∫ θmax

θH

FH(z)dz ≥ χ

∫ θ2

θ1

FH(z)dz +

∫ θmax

θ2

FH(z)dz.

Let θ1, θH , θ2 and x be the optimal solution to (PR). If this solution corresponds to

the optimal static contract or yields the same objective than it, we are done because

this contract is always feasible in (P). If this solution is different from the optimal

static contract and yields a strictly larger objective than it, it must be the case that∫ θmax

θH

µ̄(z)dz < αLx

∫ θ2

θ1

µL(z)fL(z)dz

+ αL

∫ θmax

θ2

µL(z)fL(z)dz + αH

∫ θmax

θH

µH(z)fH(z)dz. (C.32)

This is true because the contract (u1, u2, x1, x2) = (0, 0,1{θ≥θH},1{θ≥θH}) is a feasible

static contract and, therefore, its associated revenue is bounded by that of the optimal
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static contract. From the formulation of (PR) we know that θ̂L ≤ θ1 ≤ θH ≤ θ2, this

and equation (C.32) deliver

0 ≤
∫ θ2

θH

µL(z)fL(z)dz < x

∫ θ2

θ1

µL(z)fL(z)dz.

Hence, θ1 < θ2, θH < θ2 (otherwise x = 0) and∫ θ2
θH
µL(z)fL(z)dz∫ θ2

θ1
µL(z)fL(z)dz

< x. (C.33)

Also, since x ≤ 1 we must have θ1 < θH . Note that since θ̂L ≤ θ1 < θ2 the denomi-

nator above is strictly positive.

Now we argue that the contract optimizing (PR) characterized by θ1, θH , θ2 and

x is feasible for (P). Since the high to low IC constraint is satisfied, we only need

to verify the low to high IC constraint. That is, we need to verify the following

inequality

x

∫ θ2

θ1

FL(z)dz +

∫ θmax

θ2

FL(z)dz ≥
∫ θmax

θH

FL(z)dz, (C.34)

or, equivalently, x ≥
∫ θ2
θH
FL(z)dz/

∫ θ2
θ1
FL(z)dz. In order to see why (C.34) holds,

observe that from Lemma C.2 (which we state and prove after the present proof) we

have∫ θ2
θ1
µL(z)fL(z)dz∫ θ2
θ1
FL(z)dz

≤
∫ θ2
θH
µL(z)fL(z)dz∫ θ2
θH
FL(z)dz

⇔
∫ θH
θ1

µL(z)fL(z)dz∫ θH
θ1

FL(z)dz
≤
∫ θ2
θH
µL(z)fL(z)dz∫ θ2
θH
FL(z)dz

.

(C.35)

The right hand side in (C.35) always holds thanks to (DHR), indeed,∫ θH
θ1

µL(z)fL(z)dz∫ θH
θ1

FL(z)dz
=

∫ θH
θ1

FLr
LL(z)dz∫ θH

θ1
FL(z)dz

≤ rLL(θH) ≤
∫ θ2
θH
FLr

LL(z)dz∫ θ2
θH
FL(z)dz

=

∫ θ2
θH
µL(z)fL(z)dz∫ θ2
θH
FL(z)dz

.

Thus the left hand side in (C.35) holds. Equivalently,∫ θ2
θH
FL(z)dz∫ θ2

θ1
FL(z)dz

≤
∫ θ2
θH
µL(z)fL(z)dz∫ θ2

θ1
µL(z)fL(z)dz
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Using this, together with equation (C.33), delivers equation (C.34). This concludes

the proof for Part 1.

Part 2. In this part we prove the following optimality conditions for the thresh-

olds θ1 ≤ θH ≤ θ2:

1. RLH(θ1, θ2) ≤ minθ2≤θ R
LH(θ2, θ);

2. maxθ≤θ2 R
LH(θ, θ2) ≤ RLH(θ1, θ2);

3. αL ·RLH(θ1, θ2) + αHr
HH(θH) = 0.

It is enough to prove that under the conditions the optimal contract characterized

by (θ1, θH , θ2) is optimal for (PR). To prove this we use a Lagrangian relaxation (we

do not relax the monotonicity constraints) and show that this relaxation is optimized

by the contract characterized by (θ1, θH , θ2).

First, we establish some properties that can be derived from conditions (1) to (3).

Condition (3) implies that θ2 ≥ θ̂L; otherwise, θ1, θ2 < θ̂L which would imply that

RLH(θ1, θ2) < 0. In turn, condition (3) would give RHH(θH) > 0 which would imply

that θ̂H < θH . Since θH ≤ θ2 we would have θ̂H < θH ≤ θ2 < θ̂L, that is, θ̂H < θ̂L

which is not possible. Moreover, condition (2) together with the fact that θ2 ≥ θ̂L

imply that θ1 ≥ θ̂L. This yields RLH(θ1, θ2) ≥ 0, and thus we can use condition (3)

again to deduce that θH ≤ θ̂H . In summary, θ̂L ≤ θ1 and θH ≤ θ̂H .

Now we provide the main argument. If θ1 = θ2, then we also have θ1 = θ2 =

θH . Condition (3) implies that the contract characterize by (θ1, θH , θ2) is the static

contract. Conditions (1) and (2) together yield (APR) and, therefore, from Theorem

3.1 we deduce that the static contract is optimal. Next suppose that θ1 < θ2, and

define

Ω , {x : [0, 1]→ [0, 1] : x(·) is non-decreasing}.

313



We use x? to denote the solution characterize by (θ1, θH , θ2). The Lagrangian for

(PR) is

L(u,x,λ,w) = uL(wL − λ− αL) + uH(λ− αH + wH)

+

∫ θmax

0

xL(z) ·
[
αLµL(z)fL(z)− λFH(z)(z)

]
dz

+

∫ θmax

0

xH(z) ·
[
αHµH(z)fH(z) + λFH(z)

]
dz,

consider the following multipliers

λ = αL ·RLH(θ1, θ2), wL = λ+ αL, wH = −λ+ αH ,

note that λ and wL are non-negative, and for wH we have

wH ≥ 0⇔ αH + αHr
HH(θH) ≥ 0⇔ rHH(θH) ≥ −1

if and only if

[θH − hHH(θH)] ≥ −hHH(θH)⇔ θH ≥ 0,

where in the first if and only if we used condition (3) in our hypothesis. Thus when

we optimize the Lagrangian we obtain:

max
(u,x)∈Ω

L(x,u,λ,w) = max
0≤θ≤θmax

∫ θmax

θ

[
α1µ1(z)f1(z)− λF 2(z)

]
dz

+ max
0≤θ≤θmax

∫ θmax

θ

[
αHµH(z)fH(z) + λFH(z)

]
dz , (C.36)

where we can reduce attention to threshold strategies because xL(·), xH(·) are non-

decreasing (see, e.g., [52] or [57]). If we are able to show that L(x,u,λ,w) evaluated

at our candidate solution is an upper bound for the RHS above we are done. Let’s

begin with the second term, take any 0 ≤ θ ≤ θmax then∫ θmax

θ

[
αHµH(z)fH(z) + λFH(z)

]
dz =

∫ θmax

θ

[
αHµH(z)fH(z)− αHrHH(θH)FH(z)

]
dz

=

∫ θmax

θ

αHFH(z)
[
rHH(z)− rHH(θH)

]
dz

≤
∫ θmax

θH

αHFH(z)
[
rHH(z)− rHH(θH)

]
dz

=

∫ θmax

0

x?H(z)
[
αHµH(z)fH(z) + λFH(z)

]
dz,
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where in the first equality we used condition (3) and the inequality comes from the

fact that rHH(·) is non-decreasing. Now we look into the first term in equation (C.36),

consider first θ ≥ θ2∫ θmax

θ

[
αLµL(z)fL(z)− λFH(z)

]
dz =

∫ θmax

θ2
L

[
αLµL(z)fL(z)− λFH(z)

]
dz

−
∫ θ

θ2
L

[
αLµL(z)fL(z)− λFH(z)

]
dz

≤
∫ θmax

θ2
L

[
αLµL(z)fL(z)− λFH(z)

]
dz,

where we have used that

−
∫ θ

θ2

[
αLµL(z)fL(z)− λF 2(z)

]
dz ≤ 0

if and only if

αL ·
∫ θ2
θ1
FH(z)rLH(z)dz∫ θ2
θ1
FH(z)dz

= λ ≤ αL ·
∫ θ
θ2
F 2(z)rLH(z)dz∫ θ
θ2
FH(z)dz

,

which thanks to condition (1) in our hypothesis is true. A similar argument holds for

θ ≤ θ2, but using condition (2). Since L(x?, 0,λ,w) equals

x

∫ θ2

θ1

[
α1µ1(z)f1(z)− λFH(z)

]
dz +

∫ θmax

θ2

[
α1µ1(z)f1(z)− λFH(z)

]
dz

+

∫ θmax

θH

[
αHµH(z)fH(z) + λFH(z)

]
dz,

which by the definition of λ simplifies to∫ θmax

θ2

[
α1µ1(z)f1(z)− λFH(z)

]
dz +

∫ θmax

θH

[
αHµH(z)fH(z) + λFH(z)

]
dz,

we conclude that max(u,x)∈Ω L(u,x,λ,w) ≤ L(0,x?,λ,w), as required. �

Lemma C.2 Let θi ∈ [0, 1] for i = 1, 2, 3 be such that θ1 < θ2 < θ3. Also, consider

functions f, g : [θ1, θ3]→ I, with
∫ θ2
θ1
g(z)dz,

∫ θ3
θ2
g(z)dz > 0. Then,∫ θ3

θ1
f(z)dz∫ θ3

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

if and only if

∫ θ2
θ1
f(z)dz∫ θ2

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

.
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Proof of Lemma C.2.∫ θ3
θ1
f(z)dz∫ θ3

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

⇔
(∫ θ3

θ2

g(z)dz
)(∫ θ3

θ1

f(θ)dz
)
≤
(∫ θ3

θ1

g(z)dz
)(∫ θ3

θ2

f(z)dz
)

⇔
(∫ θ3

θ2

g(z)dz
)(∫ θ2

θ1

f(z)dz
)
≤
(∫ θ2

θ1

g(z)dz
)(∫ θ3

θ2

f(z)dz
)

⇔
∫ θ2
θ1
f(z)dz∫ θ2

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

�

Proof of Proposition 3.3. We use the sufficient condition in Theorem 3.3.

First note that since the support of the exponential distribution is unbounded from

above, we can take θ2 = ∞ which eliminates condition (1). Conditions (2) and (3)

can be cast as

θ1e
−θ1(λL−λH) ≥ θe−θ(λL−λH) ∀θ ≥ 0 and αL ·λHθ1e

−θ1(λL−λH) = −αH ·(λHθH−1),

(C.37)

By optimizing the first term in (C.37) we obtain

θ1 =
1

λL − λH
,

and then solving for θH yields

θH =
1

λH
− αL
αH

e−1

λL − λH
.

What we need to check (and it is not obvious at a first glance) is that θ1 ≤ θH . First,

we show

αL(θ1 −
1

λL
)λLe

−λLθ1 + αH(θ1 −
1

λH
)λHe

−λHθ1 < 0. (C.38)

To prove this inequality notice that since θ̂ is the optimal static cutoff we have

αLθ̂e
−λLθ̂ + αH θ̂e

−λH θ̂ ≥ αLθ1e
−λLθ1 + αHθ1e

−λHθ1 , (C.39)
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then

αL(θ1
L −

1

λL
)λLe

−λLθ1
L

+αH(θ1
L −

1

λH
)λHe

−λHθ1
L = αLθ

1
L(λL − λH)e−λLθ

1
L + αLθ

1
LλHe

−λLθ1
L

+ αHθ
1
LλHe

−λHθ1
L − αLe−λLθ

1
L − αHe−λHθ

1
L

= αLe
−λLθ1

L + λH(αLθ
1
Le
−λLθ1

L + αHθ
1
Le
−λHθ1

L)

− αLe−λLθ
1
L − αHe−λHθ

1
L

(a)

≤ λH(αLθ̂e
−λLθ̂ + αH θ̂e

−λH θ̂)− αHe−λHθ
1
L

(b)
< λH(αLθ̂e

−λLθ̂ + αH θ̂e
−λH θ̂)− αHe−λH θ̂

= λHαLθ̂e
−λLθ̂ + λHαHe

−λH θ̂(θ̂ − 1

λH
)

(c)
= λHαLθ̂e

−λLθ̂ − λLαLe−λLθ̂(θ̂ −
1

λL
)

= αLe
−λLθ̂

(
− θ̂(λL − λH) + 1

)
(d)
< 0,

where (a) comes from equation (C.39), (b) is true because the function −e−λHθ in-

creasing and θ1 < θ̂, (c) comes from equation (3.8). And (d) comes from θ1 < θ̂.

With this we have proven (C.38) and thus

λLαH · (θH −
1

λH
)

(a)
= −λLαL · θ1

Le
−θ1

L(λL−λH)

= −λLαL ·
(
θ1
L −

1

λL

)
e−θ

1
L(λL−λH) − λLαL ·

1

λL
e−θ

1
L(λL−λH)

(b)
> αH(θ1

L −
1

λH
)λH − αL · e−θ

1
L(λL−λH)

(c)
= αH(θ1

L −
1

λH
)λH +

αH
θ1
L

· (θH −
1

λH
),

where in (a) and (c) we used the definition of θH , and in (b) we used equation (C.38).

From this we have that

(θH −
1

λH
) ·
(
λLαH −

αH
θ1

)
> αH(θ1 −

1

λH
)λH ,
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but replacing θ1 with 1/(λL − λH) in this last expression we get θH > θ1.

Finally, x is given by

x =

∫ θ3
θH
FH(z)dz∫ θ3

θ1
FH(z)dz

=
e−λHθH

e−λHθ1
= exp

(
− λH

[ 1

λH
− αL
αH

e−1

λL − λH
− 1

λL − λH

])
.

�

C.3 Proofs for Section 3.7

Proof of Theorem 3.4. In Lemma C.3 (which we state and prove after this

proof) we show that A is non-empty. Next we prove the necessary and sufficient

condition.

We prove both directions separately. First we show that if there exists λ ∈ A

satisfying the properties then the static contract is optimal. Then we show that if the

static contract is optimal then we can always solve for λ satisfying the properties.

Define

Ω , {x : [0, 1] −→ [0, 1] : x(·) is non-decreasing}, and ΩK , Ω× · · · × Ω︸ ︷︷ ︸
K times

.

For the first part we use a Lagrangian relaxation approach. That is, we dualize the IC

constraints for a specific set of multipliers. This gives an upper bound to the seller’s

problem. Then we show that for our choice of multipliers the relaxation is maximized

at the static allocation. The Lagrangian is

L(x, u,λ,w) =
K∑
k=1

uk

(
− αk + wk +

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk

)
+

K∑
k=1

∫ θmax

0

xk(z)
(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz,

where λ correspond to the multipliers associated with the ICs, and w to the multi-

pliers associated with the ex-post IR constraints. Let us define λ to be equal to the
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(λij)i,j∈{1,··· ,K}2 we are assuming to exist, that is λ ∈ A, and let

wk = αk +
∑
j:j 6=k

λjk −
∑
j:j 6=k

λkj,∀k ∈ {1, . . . , K}. (C.40)

Note that by our choice of λ (λ ∈ A), wk is non-negative for all k. With this choice

of w the first summation in the Lagrangian becomes zero. Now, we need to show

that for this choice of multipliers the Lagrangian is maximized at the static contract.

In order to show this observe that

max
x∈ΩK ,u≥0

L(x, u,λ,w) =
K∑
k=1

max
xk∈Ω

∫ θmax

0

xk(z)
(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj

−
∑
j:j 6=k

λjkF j(z)
)
dz, (C.41)

thus we just need to verify that the RHS of (C.41) is bounded above by

K∑
k=1

∫ θmax

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz. (C.42)

Note that the RHS of (C.41), for each k, is maximized at some threshold contract

θk ∈ [0, 1]. So to prove that (C.42) is an upper bound of (C.41) is enough to show

that for all k and for any θk ∈ [0, 1]∫ θmax

θk

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj

−
∑
j:j 6=k

λjkF j(z)
)
dz ≤

∫ θmax

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj

−
∑
j:j 6=k

λjkF j(z)
)
dz. (C.43)

Consider θk ≥ θ̂ in (C.43), then (C.43) becomes

0 ≤
∫ θk

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz,

this is equivalent to

−
( ∑
j:j 6=k

λkj

)
·
∫ θk

θ̂

F k(z)dz ≤
∫ θk

θ̂

(
αkµk(z)fk(z)−

∑
j:j 6=k

λjkF j(z)
)
dz, ∀θk ≥ θ̂,
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which can be rewritten as

−
( ∑
j:j 6=k

λkj

)
≤ min

θ̂≤θ

{
αk

∫ θ
θ̂
µk(z)fk(z)dz∫ θ
θ̂
F k(z)dz

−
∑
j:j 6=k

λjk ·
∫ θ
θ̂
F j(z)dz∫ θ

θ̂
F k(z)dz

}
. (C.44)

Similarly, if θk ≤ θ̂ then (C.43) is equivalent to

0 ≥
∫ θ̂

θk

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz, ∀θk ≤ θ̂,

which is equivalent to

max
θ≤θ̂

{
αk

∫ θ̂
θ
µk(z)fk(z)dz∫ θ̂
θ
F k(z)dz

−
∑
j:j 6=k

λjk ·
∫ θ̂
θ
F j(z)dz∫ θ̂

θ
F k(z)dz

}
≤ −

( ∑
j:j 6=k

λkj

)
. (C.45)

In summary, proving that (C.43) holds is equivalent to showing that both (C.44) and

(C.45) hold. To see why this is true, note that

lim
θ→θ̂+

αk

∫ θ
θ̂
µk(z)fk(z)dz∫ θ
θ̂
F k(z)dz

−
∑
j:j 6=k

λjk ·
∫ θ
θ̂
F j(z)dz∫ θ

θ̂
F k(z)dz

=
αk · µk(θ̂) · fk(θ̂)−

∑
j:j 6=k λjk · F j(θ̂)

F k(θ̂)

= −
( ∑
j:j 6=k

λkj

)
, (C.46)

where the last equality comes from the choice of the multipliers. Since the limit is

taken for values above θ̂, this implies that

min
θ̂≤θ

{
αk

∫ θ
θ̂
µk(z)fk(z)dz∫ θ
θ̂
F k(z)dz

−
∑
j:j 6=k

λjk ·
∫ θ
θ̂
F j(z)dz∫ θ

θ̂
F k(z)dz

}
is bounded above by

lim
θ→θ̂+

αk

∫ θ
θ̂
µk(z)fk(z)dz∫ θ
θ̂
F k(z)dz

−
∑
j:j 6=k

λjk ·
∫ θ
θ̂
F j(z)dz∫ θ

θ̂
F k(z)dz

= −
( ∑
j:j 6=k

λkj

)
.

A similar argument(taken the limit for values below θ̂ this time) can be used to show

that

−
( ∑
j:j 6=k

λkj

)
≤ max

θ≤θ̂

{
αk

∫ θ̂
θ
µk(z)fk(z)dz∫ θ̂
θ
F k(z)dz

−
∑
j:j 6=k

λjk ·
∫ θ̂
θ
F j(z)dz∫ θ̂

θ
F k(z)dz

}
.

Since we are assuming that the minimum is an upper bound to the maximum above,

we can conclude that both (C.44) and (C.45) hold (with equality). This concludes

the proof for the first direction.
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For the second direction we need to show that if the static contract is optimal then

we can find λ satisfying condition (APRM). Theorem 1 in Luenberger (1969, p. 217)

gives then the existence of Lagrange multipliers such that the static contract maxi-

mizes the Lagrangian(here we use the interior point condition in the assumptions).

In other words, ∃λ,w ≥ 0 such that

L(xs,0,λ,w) ≥ L(x,u,λ,w), ∀u,x ∈ RK
+ × ΩK . (C.47)

Note that (C.47) holds for any u,x ∈ RK
+ × ΩK . Thus we can first consider x equal

to xs in (C.47), this yields

0 ≥
K∑
k=1

uk

(
− αk + wk +

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk

)
, ∀u ∈ RK

+ .

Which implies that

−αk + wk +
∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk = 0, ∀k,

and since wk ≥ 0 we can conclude that

αk ≥
∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk, ∀k,

as required. Now, fix k and consider a solution x ∈ ΩK such that xj ≡ xs for all

j 6= k and xk is 1{θ≥θk} for some θk ∈ [0, 1]. Then equation (C.47) delivers equation

(C.43). And we already saw that (C.43) is equivalent to both equations (C.44) and

(C.45). Putting these two equations together yields

max
θ≤θ̂

{
αk

∫ θ̂
θ
µk(z)fk(z)dz∫ θ̂
θ
F k(z)dz

−
∑
j:j 6=k

λjk ·
∫ θ̂
θ
F j(z)dz∫ θ̂

θ
F k(z)dz

}
≤ −

( ∑
j:j 6=k

λkj

)
which is bounded above by

min
θ̂≤θ

{
αk

∫ θ
θ̂
µk(z)fk(z)dz∫ θ
θ̂
F k(z)dz

−
∑
j:j 6=k

λjk ·
∫ θ
θ̂
F j(z)dz∫ θ

θ̂
F k(z)dz

}
,
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that is, condition (APRM) holds for any k. We only need to check that λ ∈ A.

Observe that both the maximum and the minimum are bounded from below and

above (respectively) by

αk · µk(θ̂) · fk(θ̂)−
∑

j:j 6=k λjk · F j(θ̂)

F k(θ̂)
. (C.48)

To see this we can take the limit as before. For the maximum we take the limit of θ

approaching to θ̂ from below. This limit converges to the expression in (C.48) and is

bounded above by the maximum. The same argument applies to the minimum but

this time taking the limit from above θ̂. In turn implies that

αk · µk(θ̂) · fk(θ̂)−
∑

j:j 6=k λjk · F j(θ̂)

F k(θ̂)
= −

( ∑
j:j 6=k

λkj

)
,

and we can conclude that λ ∈ A. �

Lemma C.3 The set A is non-empty.

Proof of Lemma C.3. We want to show that A 6= ∅, which amount to proving

that the linear system

K∑
j=1,j 6=k

λjk · F j(θ̂) = αk · µk(θ̂) · fk(θ̂) + F k(θ̂) ·
K∑

j=1,j 6=k

λkj, ∀k ∈ {1, . . . , K},

αk = wk +
K∑

j=1,j 6=k

λkj −
K∑

j=1,j 6=k

λjk, ∀k ∈ {1, . . . , K},

with (λ,w) ≥ 0 has a solution. We begin by writing down the system with matrices

and then we apply Farkas’ lemma.

First, the vector λ is given by

(λ12, λ13, · · · , λ1K︸ ︷︷ ︸
Type1

, λ21, λ23, · · · , λ2K︸ ︷︷ ︸
Type2

, · · · , λK1, λK2, · · · , λKK−1︸ ︷︷ ︸
TypeK

),

note that the terms λkk for any k ∈ {1, . . . , K} do not form part of the vector. Now,

consider matrix A with K(K − 1) +K columns and 2K rows given by

A =

F1 F2 · · · FK 0K×K

B1 B2 · · · BK IK×K

 ,
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where 0K×K is the zero matrix of dimension K ×K and IK×K is the identity matrix

of dimension K ×K. Also, Fk is a matrix of dimension K × (K − 1) defined by

Fk
ij =



−F k(θ̂) if i = k

F k(θ̂) if i < k, j = i

F k(θ̂) if i > k, j = i− 1

0 if o.w

,

and Bk is a matrix of dimension K × (K − 1) defined by

Bk
ij =



1 if i = k

−1 if i < k, j = i

−1 if i > k, j = i− 1

0 if o.w

.

Finally, let b be a vector defined by

b = (αLµ1(θ̂)f1(θ̂), α2µ2(θ̂)f2(θ̂), · · · , αKµK(θ̂)fK(θ̂), αL, · · · , αK).

Then, the linear system can be rewritten as

A ·

λ
w

 = b, λ,w ≥ 0.

Now we use Farkas’ lemma, if this system does not have a solution then it must be

the case that the following system has a solution

Aᵀ ·

yF
yB

 ≥ 0, bᵀ ·

yF
yB

 < 0. (C.49)

Explicitly, we have (yF , yB) solve

F k(θ̂) · (yFj − yFk )− (yBj − yBk ) ≥ 0, ∀k,∀j 6= k

yBk ≥ 0, ∀k
K∑
k=1

αkµk(θ̂)fk(θ̂) · yFk +
K∑
k=1

αk · yBk < 0.
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Let yFm be equal to mink{yFk } (m is the index that achieves the minimum) then

K∑
k=1

αkµk(θ̂)fk(θ̂) · yFk +
K∑
k=1

αk · yBk
(a)
=

K∑
k=1

αkµk(θ̂)fk(θ̂) · (yFk − yFm) +
K∑
k=1

αk · yBk

=
K∑
k=1

αk

(
θ̂ − F k(θ̂)

fk(θ̂)

)
fk(θ̂) · (yFk − yFm) +

K∑
k=1

αk · yBk

=
K∑
k=1

αk

(
θ̂fk(θ̂)− F k(θ̂)

)
· (yFk − yFm) +

K∑
k=1

αk · yBk

(b)

≥ −
K∑
k=1

αkF k(θ̂) · (yFk − yFm) +
K∑
k=1

αk · yBk

=
K∑
k=1

αkF k(θ̂) · (yFm − yFk ) +
K∑
k=1

αk · yBk

(c)

≥
K∑
k=1

αk · (yBm − yBk ) +
K∑
k=1

αk · yBk

=
K∑
k=1

αk · yBm

(d)
= yBm ≥ 0,

a contradiction. Where in (a) we use the fact that
∑K

k=1 αkµk(θ̂)fk(θ̂) = 0, in (b) we

use the definition of yFm, in (c) we use the first set of equations in (C.49) and in (d)

we use the fact that
∑K

k=1 αk = 1 and yBm ≥ 0. �

Proof of Proposition 3.4. We make use of Lemma C.4 which we state and

prove after the present proof. In that lemma we need to define the function

Lk(z|λ) , αkµk(z) +
F̄k(z)

fk(z)
·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`k
F̄`(z)

fk(z)
,

for any λ ≥ 0. For exponential distributions Lk(z|λ) becomes:

Lk(z|λ) = αk · z +
1

λk
·
(∑
`: 6̀=k

λk` − αk
)

︸ ︷︷ ︸
linear

−
∑
`:`>k

λ`k
e−z(λl−λk)

λk︸ ︷︷ ︸
increasing and convex

−
∑
`:`<k

λ`k
e−z(λl−λk)

λk︸ ︷︷ ︸
decreasing and convex

.

Hence, Lk(·|λ) is concave, which means that it crosses zero at most two times. Using

Lemma C.4 we conclude that in the exponential case allocations have at most one

step in which randomization occurs. �
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Lemma C.4 For any dual-feasible variable λ associated to the IC constraints define

Lk(z|λ) , αkµk(z) +
F̄k(z)

fk(z)
·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`k
F̄`(z)

fk(z)
. (F)

If Lk(z|λ) crosses zero at most p times then the optimal allocation xk has at most

bp/2c intervals where randomization occurs.

Proof of Lemma C.4. We divide the proof into two parts. In the first part

we construct a new dual problem and state the complementary slackness conditions.

This part of the proof follows the general theory of linear programming in infinite

dimensional space developed by [6]. In the second part we exploit the complementary

slackness conditions to show that the optimal allocation xk has at most bp/2c intervals

where randomization occurs.

Part 1. Define the cone of non-negative non-decreasing functions

K , {x : [0, θmax]→ R|x is non-negative and non-decreasing function}.

(Primal Cone)

The general formulation of the seller’s problem is

(P) max −
K∑
k=1

αkuk +
K∑
k=1

αk

∫ θmax

0

xk(z)µk(z)fk(z)dz

s.t xk(·) ∈ K, ∀k ∈ {1, . . . , K}

xk(θ) ≤ 1, ∀θ ∈ [0, θmax] ,∀k ∈ {1, . . . , K}

uk ≥ 0, ∀k ∈ {1, . . . , K}

uk +

∫ θmax

0

xk(z)F̄k(z)dz ≥ uk′ +

∫ θmax

0

xk′(z)F̄k(z)dz, ∀k, k′ ∈ {1, . . . , K}.

Note that the dual cone of K is

K∗ = {β :

∫ θmax

θ

β(z)dz ≥ 0, ∀θ ∈ [0, θmax]}. (Dual Cone)
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The Lagrangian is

L(x, u,λ, β,w) =
K∑
k=1

uk ·
(
− αk + wk +

∑
`:`6=k

λk` −
∑
`:`6=k

λ`k

)
+

K∑
k=1

∫ θmax

0

xk(z)
(
αkµk(z)fk(z) + F̄k(z) ·

∑
`:`6=k

λk`

−
∑
`: 6̀=k

λ`kF̄`(z) + βk(z)− ηk(z)
)
dz

+
K∑
k=1

∫ θmax

0

ηk(z)dz,

where βk are the dual variables associated with the monotonicity constraints, ηk are

dual variables associated with the constraints xk(θ) ≤ 1. While λ,w correspond to

the dual variables associated with the IC an non-negativity constraints respectively.

This yields the following Dual program (D):

(D) min
K∑
k=1

∫ θmax

0

ηk(z)dz

s.t− αk + wk +
∑
`:`6=k

λk` −
∑
`:` 6=k

λ`k = 0, ∀k

αkµk(z)fk(z) + F̄k(z) ·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`kF̄`(z)

= ηk(z)− βk(z), ∀k, ∀z ∈ [0, θmax]

λ,w, ηk(·) ≥ 0, βk ∈ K∗, ∀k.

And we must have complementary slackness:

• For the monotonicity constraints (the cone constraints) this means that if xk(·)

changes at some θ then
∫ θmax
θ

βk(z)dz = 0. Also x(0) ·
∫ θmax

0
β(z)dz = 0. All of

this for all k.

• For the upper bound constraints: (1−xk(θ)) · ηk(θ) = 0 for all θ ∈ [0, θmax] and

for all k.
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Part 2. Consider an optimal primal-dual pair. Let xk be the primal solution for

interim type k, and βk, ηk and λ,w the corresponding dual solutions. Observe that

from dual feasibility we must have

fk(z) · Lk(z|λ) = ηk(z)− βk(z), ∀z ∈ [0, θmax]. (C.50)

Let us denote by ẑ1 < · · · < ẑp the points where Lk(·|λ) crosses zero, and we let

ẑ0 = 0 and ẑp+1 = θmax. Note that Lk(θmax|λ) = α · θmax > 0, and by the feasibility

of λ we have Lk(0|λ) = −wk/fk(0) ≤ 0.

Let z?1 , inf{z ∈ [0, θmax] : xk(z) = 1} (if xk(z) never equals 1 we take z?1 = θmax).

We can assume that z?1 > 0, otherwise xk(z) would be equal to 1 everywhere in

[0, θmax] and the result would follow. In turn, there has to be a change on xk around

z?1 and, therefore, complementary slackness implies that
∫ θmax
z?1

βk(z)dz = 0. Moreover,

since xk(z) < 1 for all z < z?1 complementary slackness implies that ηk(z) = 0 for all

z < z?1 . Therefore, Eq. (C.50) becomes

fk(z) · Lk(z|λ) = −βk(z), ∀z ∈ [0, z?1). (C.51)

Let q be the largest index in {0, 1, . . . , p} such that ẑq ≤ z?1 . Note that z?1 ∈ [ẑq, ẑq+1].

We show the following claim:

Claim 1. Lk(·|λ) is positive in (ẑq, ẑq+1) and z?1 = ẑq.

Proof of Claim 1. First suppose that Lk(·|λ) is positive in (ẑq, ẑq+1) we show

that z?1 = ẑq. If not then for any z ∈ (ẑq, z
?
1) we have Lk(z|λ) > 0 which thanks to

Eq. (C.51) yields βk(z) < 0 for any z ∈ (ẑq, z
?
1) and, therefore,∫ θmax

z

βk(z)dz =

∫ z?1

z

βk(z)dz +

∫ θmax

z?1

βk(z)dz︸ ︷︷ ︸
=0

=

∫ z?1

z

βk(z)dz < 0, (C.52)

but this contradicts the fact that βk ∈ K∗. That is, z?1 ≤ ẑq but since ẑq ≤ z?1 we

conclude that ẑq = z?1 . To complete the argument suppose Lk(·|λ) is negative in

(ẑq, ẑq+1) then, in particular, Lk(·|λ) is negative in (z?1 , ẑq+1) and from Eq. (C.50) we

327



deduce that βk(z
′) > 0 for all z′?1 , ẑq+1). Hence, for any z′?1 , ẑq+1)

0 =

∫ θmax

z?1

βk(z)dz =

∫ z′

z?1

βk(z)dz︸ ︷︷ ︸
>0

+

∫ θmax

z′
βk(z)dz︸ ︷︷ ︸
≥0

> 0, (C.53)

a contradiction. In the second bracket we use the fact that βk ∈ K∗. This concludes

the proof of Claim 1.

This shows that xk(·) equals 1 in (ẑq, θmax] and that it changes value at ẑq.

Now, from Claim 1 we now that Lk(·|λ) is negative in (ẑq−1, ẑq) and, therefore,

from Eq. (C.51) we deduce that βk(·) is positive in (ẑq−1, ẑq). This together with∫ θmax
z?1

βk(z)dz = 0 imply that xk(·) is constant in (ẑq−1, ẑq) (by means of complemen-

tary slackness any change would yield a contradiction). Let’s denote the value of

xk(·) in (ẑq−1, ẑq) by χq. Note that of χq = 0 we are done. Similarly to what we did

before we define z?2 , inf{z ∈ [0, ẑq−1] : xk(z) = χq}. Note that z?2 < ẑq−1. If z?2 = 0

then we xk(·) equals χq for all values below zq and, therefore, there is nothing more

to prove. So assume z?2 > 0. If z?2 = ẑq−1 then xk(·) changes value at ẑq−1 and, there-

fore, by complementary slackness
∫ θmax
ẑq−1

βk(z)dz = 0. However, Lk(·|λ) is positive in

(ẑq−2, ẑq−1) which by Eq. (C.51) implies that βk is negative in (ẑq−2, ẑq−1) but this

would contradict the dual feasibility of βk. Hence, we can assume that z?2 < ẑq−1.

Let q2 be the largest index in {0, 1, . . . , q − 1} such that ẑq2 ≤ z?2 . Note that

z?2 ∈ [ẑq2 , ẑq2+1]. As before we can show that Lk(·|λ) is positive in (ẑq2 , ẑq2+1) and

z?2 = ẑq2 . Note that this implies that the value χq of xk(·) extends for at least two

intervals, namely, (ẑq−2, ẑq−1) and (ẑq−1, ẑq).

The previous argument can be applied iteratively over all intervals defined by

ẑ1 < · · · < ẑp. Since in each step of the argument we cover two interval we deduce

that there can be at most bp/2c different value of χq′ where q′ is defined in every

step as we did before. Moreover, if Lk(0|λ) < 0 then in the interval (0, ẑ1) the dual

variable βk(·) is positive. Because
∫ θmax
ẑ1

βk(z)dz = 0 (this follows from the steps of

the argument) and x(0) ·
∫ θmax

0
β(z)dz = 0 we must have x(0) = 0 and so in the last
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interval xk equals 0. �
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