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Introduction 

 Communities struggling with a legacy of nuclear waste are often connected to weapons 

development. Whether it is Hanford in the United States or Mayak in Russia, the rushed 

production at such sites led to simple disposal schemes, releasing large quantities of radioactive 

material. Hanford acted as a “company town”, in which the actions of the facility and its 

contractors were not to be questioned. Additionally, the limited research on the environmental 

impact of radiation was rarely shared between Hanford and other Manhattan Project sites, 

leading to a culture of hurried decisions with little consideration as to their broader impact.  

  The plutonium found in nuclear weapons, plutonium-239, has a half-life of 24,100 

years.1 Its production requires the bombardment of uranium-235 atoms by a barrage of neutrons 

generated by the decay of other uranium-235 atoms. Only a portion of the uranium in a pile will 

decay into plutonium-239. The mixture of untouched uranium-235, plutonium-239, and many 

other daughter products must then be chemically processed to yield tiny amounts of plutonium, 

resulting in the creation of massive quantities of radioactive waste.2 

 The race to create and use atomic weapons led to difficult cost-benefit calculations. With 

the United States facing an existential threat, nearly any action could be justified through the fog 

of war. Urgency drove decision-making. The environmental cost was not the Army’s priority. 

Army brass needed a site that could cope with the environmental consequences of supporting 

plutonium production reactors. It needed a desolate landscape, access to water, electricity, and 

geographic isolation from high-population areas. That, the Army reasoned, would limit the 

collateral damage. 

                                                           
1 “Backgrounder on Plutonium”, U.S. Nuclear Regulatory Commission 
2 “Seaborg and Plutonium Chemistry”, Department of Energy 
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 When Army brass chose Hanford as the site for its production reactors to support the 

atomic weapons program, it saw a vast expanse of scrubland nestled along the Columbia River. 

In this place, where they saw nothing, they would create a vibrant community of engineers, 

scientists, and professionals. The Army would also attempt to erase the indigenous people and 

farmers who called the area home for decades.3 

 The damage caused by the site is long-lived. Since the final reactor went offline in 1987, 

environmental concerns have abounded. The cost of remaining cleanup is projected to be $9 

billion per year at peak cost and the cleanup will continue until 2078. The low-range total 

estimate for the remaining cleanup is $323.2 billion.4 The high-end estimate is $677 billion. The 

slow seepage of wastes dumped on the Hanford site, the poor record-keeping at the site, and the 

potential for catastrophic events continue to lengthen the timeline. By the current estimated 

timetable, the cleanup will take generations, if not longer. But Hanford does not stand alone. 

Defense-based weapons facilities in the United States have contaminated approximately 40 

million acres of land (an area slightly larger than the state of Florida).5 Hanford is just one 

example of a much larger problem. 

 The Hanford site’s wartime origins shaped its environmental legacy. The primary motive 

of production over caution led to shortcomings in safety considerations, with the lack of 

foresight also stemming from a broader culture of workplace safety that existed in the 1940s. 

Though the first contractor, DuPont, prioritized worker safety, it did so with limited scientific 

information from other Manhattan Project sites. This lack of information in turn caused DuPont 

to utilize questionable disposal methods under the assumption that dilution of radioactive 

                                                           
3 Bruce and Hevly, 15-25 
4 2019 Hanford Scope, Schedule, and Cost Report, P-1 
5 Lustgarten, 2017 
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particles with another solution would reduce the environmental impact of radioactive emissions. 

These methods included: venting airborne radioisotopes into the atmosphere, dispersing 

radioactive particles in the Columbia River, and dumping diluted chemical wastes onto and into 

the ground. These central factors, the production motive, limited scientific information about the 

impact of radiation, and the workplace safety culture of the 1940s, all resulted in the release of 

significant levels of radioactivity both over the lifetime of the facility and long after its 

decommissioning. The site also deeply impacted the nearby communities of Richland, Pasco, 

and Kennewick, forming a science and engineering-oriented company town. 

 

World War II Production 

The story of Hanford begins with World War II. The United States believed itself to be in 

a deadly race with Germany to build the atomic bomb. On September 18, 1942, General Leslie 

Groves was given the charge of overseeing the Manhattan Engineer District, or the Manhattan 

Project.6 Groves immediately pushed for the acquisition of a site in Oak Ridge, Tennessee to 

process uranium and directed Dr. Robert Oppenheimer to find a suitable site in the southwest for 

building and testing a bomb.7 Groves also directed a team led by Colonel Franklin Matthias to 

search for a site to refine uranium into plutonium due to its potential use in another type of 

atomic bomb.8  

 Col. Matthias began his search near the Grand Coulee area in Washington state along the 

Columbia River. The area was attractive not only for the easy accessibility of cold water to cool 

the refinery, but also due to the abundance of hydroelectricity nearby to power water pumps and 

                                                           
6 Bird, Loc. 3807 
7 Ibid., Loc. 3807 
8 Findlay and Hevly, 18 
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other machinery.9 When Matthias’ team looked at the Hanford site in eastern Washington, they 

quickly discovered the region’s benefits: the area was sparsely-populated, provided easy access 

to gravel on-site for rapid building, and provided seclusion for a top-secret matter of national 

security.10 The army announced that it would condemn nearly 3,000 tracts of land owned by 

approximately 2,000 individuals in February 1943, thus creating the Hanford Reservation. The 

federal government only permitted them 30 days to leave and provided the minimum amount of 

compensation necessary to secure the land. 

 With the site in hand, the federal government needed an experienced contractor to 

oversee production. Eventually, Gen. Groves tapped DuPont Chemical to oversee the new 

facility. Within their contract, DuPont instituted a corporate payscale for its employees due to 

fears that the company could not attract skilled laborers and engineers.11 Their fears would later 

be proven true: Matthias reported that the early phases of the project were characterized by a 

monthly employee turnover rate of 10 percent.12 DuPont’s experience as a weapons 

manufacturer also informed its safety practices, which relied upon keeping the facilities a safe 

distance from inhabited areas.13 

 The Hanford Engineering Works were meticulously planned with the plutonium 

production cycle in mind. The three production reactors, B, D, and F consisted of the same basic 

plan: a grid of graphite bricks with holes bored down the middle (see Figure 1 on next page).14 

The holes held uranium fuel rods (uranium pellets encased in aluminum), control rods (to 

regulate the speed of the chain reaction), or safety rods (designed to halt the chain reaction). 

                                                           
9 Ibid., 18 
10 Ibid., 19 
11 Findlay and Hevly, 23 
12 Ibid., 25  
13 Ibid., 24 
14 Gerber, 33 
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Once the fuel was spent, it was pushed out of the back of the graphite matrix into a pool of water 

to cool. After cooling sufficiently, the fuel was taken by a remote mechanical device to chemical 

separation facilities, where the plutonium was dissolved from unconverted portions of the fuel 

rod.15 This stage presented the greatest overall environmental risk due to the impact various 

solvents had upon the adsorption rates of various radioactive byproducts.16 The effluent, or 

cooling water, produced by the Hanford “100 area” was held for a short amount of time before 

being returned to the Columbia River (see Figure 1 for a reference map). This water was filled 

with over 60 different radionuclides. 

Figure 1: Basic Design of B, D, and F Reactors 

 

Figure 1 illustrates the basic design of the original plutonium production reactors at Hanford. These were clustered 

in the 100-area of the reservation (see Figure 2). 

Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to their Environmental 
Consequences. 1997. United States: Department of Energy. 164. http://catalog.hathitrust.org/Record/003180782. 

                                                           
15 Ibid., 34 
16 Ibid., 35 

http://catalog.hathitrust.org/Record/003180782
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Figure 2: Map of the Site 

 

Figure 2 demonstrates the main difficulty facing DuPont and the Army Corps of Engineers: controlling large-scale 

operations across a massive area. Note: The original boundaries of the reservation are in yellow. 

Williams, Mark, Brad Fritz, Donaldo Mendoza, Mark Rockhold, Paul Thorne, Yulong Xie, Bruce Bjornstad, et al. 
2008. Interim Report: 100NR2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution 
Injection for in Situ Strontium90 Immobilization. doi:10.2172/969183. 
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 The war characterized the creation of the Hanford facility: speed was paramount. The 

rapid pace of building paved the way for hasty decisions. The damage to the site began with 

demolition of the existing farms and infrastructure. Though Hanford was already a desolate 

landscape, the Army Corps of Engineers exacerbated the problem. The Corps bulldozed the 

landscape flat, removed the topsoil, and replaced it with silt from the Yakima River.17 According 

to a scientist moving to the area, “When the wind blew[,] you wouldn’t be able to see across the 

street.”18 Late in 1943, Col. Matthias gave orders to the government’s contractor, DuPont, to 

install water treatment safeguards on the second reactor, but not the first to allow the first reactor 

to begin plutonium production.19 The breakneck pace of building was then concentrated on the 

amenities needed to lower the staff turnover rate.20 The entire project was viewed through the 

prism of war and production. 

  The first production reactor to be completed, B reactor, was built in 15 months from June 

1943 to September 1944.21 The Hanford Engineering Works would gain two additional reactors 

and two chemical reprocessing plants by February 1945. All three reactors were simultaneously 

running at their designed power levels by March 18, 1945. In anticipation of a Nazi surrender, 

the Army and DuPont kept up a barrage of propaganda to maintain the frenzied pace of 

production and deploy the bomb before the end of the war.22 Hanford produced its first shipment 

of fissionable material on February 2, 1945. It produced the quantities of plutonium necessary for 

both the Trinity nuclear test and the ‘Fat Man’ bomb in a span of approximately 7 months. 

  

                                                           
17 Findlay and Hevly, 21 
18 Ibid., 19 
19 Ibid., 24 
20 Ibid., 25 
21 Ibid., 34 
22 Ibid., 35 
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Waste: Early Concerns and Long-Term Trends 

 From the beginning of the project, DuPont and the Army expressed concerns over the 

waste produced at Hanford. An early memo from DuPont in 1942 estimated that the production 

of one gram of plutonium would result in 8,000 gallons of “hot” material.23 The Army 

commissioned studies to determine if winds would dilute and carry away dangerous atmospheric 

emissions. A subordinate of Gen. Groves, Lt. Col. Kenneth D. Nichols, wrote of the study: 

“Decision relative to acquiring the site is held up pending results of the meteorology study being 

made by Dr. Compton's group. Upon the completion of this study, DuPont will make its 

recommendation and the site will be acquired” (emphasis added).24 Under pressure from Groves 

and the Army, scientists conducting the study determined that the production schedule could be 

coordinated with wind patterns, lessening the overall concern.25 Instead, plant operators pushed 

to meet the delivery schedule for Los Alamos, speeding up the process by making atmospheric 

releases when the winds were poor and failing to let fuel rods cool for the correct amount of 

time. The result was that Hanford routinely released radiation well in excess of the calculated 

maximum of one curie per day set by Hanford’s chief health physicist, Herbert Parker.26 The 

chemical separation facilities in Hanford’s 200-area primarily released iodine-131, releasing 

420,000 curies of radiation in the first two years of operation (an average of more than 500 curies 

per day). Iodine-131 is dangerous due to its affinity for bonding inside human and animal thyroid 

tissue, where it can cause cancer. 

                                                           
23 Ibid., 37 
24 Nichols qtd. in Findlay and Hevly, 37 
25 Findlay and Hevly, 38 
26 Gerber, 78 
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 The surrounding area quickly showed signs of contamination from radioisotopes of 

iodine-131 and similar emissions. The chemical dissolution of the first fuel charge resulted in an 

emission of 1,700 curies (composed of radioactive xenon and iodine) being released into the 

atmosphere.27 In spring of 1945, DuPont began to track deposits of these emissions near the 

stacks and inside the chemical processing facilities, with some radioactive deposits peaking at 

more than 100 times the acceptable value. DuPont began conducting thyroid checks to track 

worker inhalation of iodine-131. The emissions were not just being deposited over a great 

distance. Instead, they were also being concentrated on-site. Contaminated vegetation was found 

nearly 70 miles away in Walla Walla and Pendleton by December 1945.28 In response, and due 

to the decreased demand for production following the Japanese surrender, DuPont increased the 

cooling time for spent fuel rods, thereby decreasing the emissions of radioactive byproducts into 

the atmosphere. This held until 1949, when the first Soviet atomic explosion inspired the “Green 

Run” experiment at Hanford. In the experiment, a plume of radioactive isotopes was released and 

tracked across the landscape to help calculate estimated Soviet production.29 The Soviet test 

caused production to increase once more. 

 Though strides were being made to limit atmospheric emissions, little was initially done 

to prevent radioisotopes from entering the Columbia river and being carried downstream. The 

first eight reactors built from 1943 to 1955 were designed as “single pass” systems, intaking 

water from the Columbia to cool the reactor, holding it for a few hours, and discharging it into 

the river.30 Since little data on the impact of radiological emissions on aquatic ecosystems 

                                                           
27 Ibid., 82 
28 Ibid., 83 
29 Brown, 168 
30 Gerber, 115 
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existed, the Army commissioned a study with the help of Dr. Lauren Donaldson of the 

University of Washington.31 Early findings in 1946 indicated that radioactive isotopes were 

concentrated within fish at a level from 6 to 30 times greater than the water.32 Of the young fish 

raised in effluent from the reactors, nearly 99 percent died. In December 1946, scientists 

estimated that nearly 40,000 curies of radiation had entered the Columbia River (peaking at 900 

curies per day in summer 1945). Further studies illustrated the biological magnification problem 

in the Columbia: even plankton and algae concentrated radioactive isotopes at a factor more than 

2,000 times that of the river water.33  

The first Soviet test in 1949 brought with it a new era of production and increased waste. 

River radioactivity entered a new phase in 1950. Channeling effects concentrated radioactive 

isotopes in ever changing-areas along the river. The beta radiation measured at the Richland 

Dock (an area with the largest population in the surrounding area) doubled from the year prior.34 

As the Cold War intensified and plutonium production increased, so too did the levels of 

radiation introduced to the water. By 1952, the radioactivity levels measured in the effluent were 

20 times the amount measured in 1947.35 This corresponded with decreased effluent holding 

times. In 1945, the Hanford Engineering Works held effluent for eight hours on average, 

providing enough time for radioisotopes with shorter half-lives to decay. By 1946, effluent 

would be held for 4 to 6 hours. By 1960, effluent holding times would be a mere 30 minutes to 3 

hours, releasing nearly the full amount of short-lived isotopes of concern (namely arsenic-76 and 

phosphorus-32).36 These practices resulted in steadily-increasing levels of radiation from August 

                                                           
31 Ibid., 114 
32 Ibid., 117 
33 Ibid., 120 
34 Ibid., 121 
35 Ibid., 124 
36 Ibid., 125 
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1957 to 1959, climbing at a rate of nearly 4,000 curies per day. By 1963, the average release rate 

of beta emitters had climbed to 14,500 curies per day. 

 The final vector for radiological contamination occurred via groundwater. The long-term 

storage of Hanford’s high-level wastes posed the lowest risk. Instead, the most significant risk to 

groundwater came from the deliberate use of injection wells and “open-bottomed” holes/cribs to 

“store” large quantities of acidic radioactive wastes from the chemical processing facilities at the 

200-area.37 Scientists at Hanford believed this practice to be safe due to ion exchange between 

the soil and wastes. This practice resulted in the following radionuclides being present in 

Hanford’s groundwater (in addition to several others): strontium-89 and 90, cobalt-60, cesium-

137, plutonium-239, and iodine-129 (which has a half-life of several million years). The use of 

cribs, or ditches, was of early concern. The practice of allowing wastes to evaporate at ground 

level meant that winds could pick up the dried waste and disperse it.38 Reverse wells (dry shafts 

with holes at the bottom) were used to prevent the creation of surface deposits but placed wastes 

in immediate contact with groundwater. A U.S. Geological Survey study of Hanford found that 

wastes from the chemical processing facility slowly inched toward the Columbia River.39 

 

Origins and Context of Disposal Methods 

 The choice of DuPont as the first contractor at Hanford would inform the facility’s 

disposal practices and safety procedures for years to come. DuPont’s prior experience in 

munitions and chemical processing influenced its choices and priorities. Common practice in the 

1940s and 1950s was to develop disposal methods through “an amalgam of science and 

                                                           
37 Stenehjem, 107 
38 Gerber, 147 
39 Gerber, 150 
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engineering mixed with heavy doses of convenience and expediency.”40 With the added pressure 

of wartime, DuPont and the Army failed to conduct early research on the relationship between 

radiation and the natural world, opting instead to prioritize the health and safety of its workers 

over the broader ecological effects of radiation upon the environment.41 DuPont failed to see the 

broader impact of its disposal schemes. 

 Outwardly, Hanford was evaluated to be a simple ecosystem primarily composed of 

scrubland. By the Army’s evaluation, the land was “practically worthless.”42 The site’s 

remoteness justified the lack of care given to disposal methods. DuPont and the Army focused 

upon tracking the danger posed by radiation to workers at the jobsites and imposing strict 

limitations on exposure.43 To achieve these limits, it was believed that the impact of radiation 

could be lessened through dilution, primarily accomplished through introducing radioisotopes to 

air or water. Management’s focus upon worker safety and misguided belief in dilution as a cure-

all resulted in disposal policies that produced the largest releases of radioactivity across the 

history of the site.44 

 DuPont designers were most short-sighted in the disposal schemes they devised for the 

byproducts of chemical separation after the fuel was recovered from the reactor. It elected to 

store corrosive byproducts (a combination of bismuth phosphate, uranium, and other 

radioisotopes) in steel containers capped by concrete due to steel shortages during the war.45 The 

plans only provided enough of these tanks to store a year’s supply of byproducts. Additionally, 

                                                           
40 Colten and Skinner, Ch. 3 
41 Stacy, 415 
42 Ibid., 418 
43 Ibid., 419 
44 Ibid., 419 
45 Ibid., 422 
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the tanks only held the most dangerous byproducts. The overwhelming majority of the chemical 

baths used to dissolve the aluminum casings around fuel slugs were deposited in the ground 

around the 200-area.46 The institutional habits created by these large-scale policies would be 

slow to change. 

 Such protection schemes did little to protect workers. In part, this stemmed from the 

institutional directive given to the Medical Section within the Manhattan Project. According to 

Hymer Friedell, the division’s chief medical officer, “the services of the medical organization are 

an accessory function. The primary interest is to maintain the health of the operators at a level 

which will in no way interfere with operations.”47 As such, military brass directed the scientists 

of the Medical Section to perform studies that would protect the Army from legal action.48 When 

DuPont inquired into the results of impact studies, the Army routinely deflected. Ultimately, 

DuPont established its own research program focused upon the impact of Hanford upon the 

ecology of the Columbia River.49 While DuPont began researching the ecological impact of 

radiation and ways to minimize its impact, the Army began researching secondary uses for the 

Hanford waste in weapons.50 The Army was well aware of the potential impact of radioactive 

waste, but the siloed nature of information in the Manhattan Project meant that DuPont 

executives would remain in the dark. 

 Despite such shortcomings, Hanford and its overseers in DuPont were viewed as overly 

cautious in respect to safety measures. A regime change would ultimately upend the comparative 

culture of caution promoted by DuPont. After the war, Methods division head Herbert Parker 

                                                           
46 Ibid., 422 
47 Friedell qtd. in Brown, 51 
48 Hales, 281 
49 Brown, 52-53 
50 Brown, 54 
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was criticized by Los Alamos scientists for the sensitivity of the methods used to detect 

contamination of workers by plutonium.51 This sense of relative conservatism was not without 

boundaries. In 1947, radioactive particles were found on the ground near the 200-area stacks. 

Attempts to control the dispersal of radioactive particles on the reservation with new ductwork 

and sand filters appeared promising until new data illustrated that particles were traveling as far 

away as Spokane.52 Parker ceased dissolving operations in the 200-area on October 25, 1948. 

The Atomic Energy Commission, which gained control of federal activities at Hanford in 1947, 

only permitted this to continue for six weeks before production resumed. The habits had been 

set. 

 

A Company Town: Social Impact 

 

 From the start, Hanford reshaped the surrounding communities of Richland, Pasco, and 

Kennewick. A community of farmers was razed to the ground to make way for the facility. In its 

stead, DuPont built company houses in nearby Richland to support the scientists and engineers 

needed to staff the site.53 As a result, Richland was a “model community” built to serve white, 

middle-class engineers, administrators, and operators.54 Matthias instructed DuPont to set rental 

rates high to discourage laborers from living in the town.55 Due to its production goals, the Army 

did not want to risk racial conflict. Richland’s planning was the product of compromise between 

economic efficiency and DuPont’s vision of middle-class life.56 The town plan was balanced 

                                                           
51 Stacy, 425 
52 Ibid., 427 
53 Findlay and Hevly, 21 
54 Ibid., 81 
55 Ibid., 82 
56 Ibid., 86 
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between boosting morale and minimizing cost. The Army and DuPont reversed roles when 

considering how Richland would be operated. The Army believed that more social services were 

necessary to support residents while DuPont intended to place its corporate culture on the 

town.57 

 By contrast, the Hanford Camp was constructed for laborers and their families. Due to the 

labor shortage, its population included African American and Hispanic workers.58 This minority-

based community was inherited by Pasco and Kennewick after the temporary Hanford Camp was 

dismantled in 1945. Hispanic and African American populations mostly lived in a now-crowded 

Pasco, the only nearby city in which they could be housed.59 The federal government had 

assumed that the small towns near the project could provide essential services necessary to 

maintain construction and production. Instead, Col. Matthias soon noted that the project had 

placed an “unbearable load on the facilities, both social and law-enforcing, of the Pasco area.”60 

 The site altered the fabric of the surrounding communities. It brought a group of 

scientists and engineers as well as African American and Hispanic laborers. The early site was 

also characterized by a lack of autonomy for Richland; the town had no local elections or local 

government.61 However, this was out of necessity, as the communities of Richland and the other 

Tri-Cities were not self-sustaining, relying heavily upon funding from the federal government. In 

1948, General Electric and the Atomic Energy Commission hired a firm to create a new master 

plan for Richland. This plan was adhered to due to the town’s lack of “politics as usual”.62 

                                                           
57 Ibid., 89 
58 Ibid., 27 
59 Ibid., 83 
60 Matthias qtd. in Findlay and Hevly, 84 
61 Findlay and Hevly, 89 
62 Ibid., 92 
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 The facility also shaped the new scientific community it created, as is evident in the early 

career of William Bair. William Bair received his undergraduate degree in chemistry from Ohio 

Wesleyan University. On a whim, he applied to the University of Rochester for a graduate 

degree in radiological physics, where he became the first person to receive a PhD in radiation 

biology.63 Bair arrived in Richland in September 1954. After two years spent working on basic 

mutagenesis research (the mechanism by which radiation causes genetic changes), he was 

selected to run the inhalation toxicology lab at General Electric in 1956. 

 The inhalation toxicology lab was born out of the need for understanding the effects of 

inhalation of radiological materials on animals, particularly humans. Prior studies on the 

biological effects of plutonium in the body utilized injection as their form of delivery, a poor 

analog for inhalation. The Air Force contracted Bair’s division to study the effects of plutonium 

inhalation in beagle dogs. Bair found that dogs exposed to an aerosol of plutonium-239 oxide 

tended to retain plutonium-239 primarily in the lungs and excrete the plutonium at five times the 

rate of intravenous injection.64 Gradually, the plutonium moved to the lymph nodes, thus 

protecting the lungs from further harm. No evidence of cancer was found in the lymph nodes.  

 Hanford continued to be the catalyst for further radiobiological research. Bair mainly 

focused on developing biokinetic models for the distribution of radionuclides throughout the 

body (which organs are most impacted and the biological mechanisms of travel between 

organs).65 General Electric commissioned studies focused on the adsorption of plutonium in the 

digestive tract and explored the mechanisms for removing plutonium from the body 

                                                           
63 “Interview with William Bair,” Hanford History Project 
64 “Retention, Translocation, and Excretion of Inhaled Pu239O2”, July 1962, T.2016.004.001b, Folder: 
Inhalation Toxicity Meeting, William Bair Collection, Hanford History Project, Richland, WA. 
65 “Interview with William Bair,” Hanford History Project 
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(“decorporation”). This line of research ultimately produced a drug, DTPA, to treat exposure to 

heavy radioactive elements (such as plutonium). 

 Bair’s story illustrates the profound impact of the Hanford reservation upon the 

communities around it. The entire scientific community came to Richland and the Tri-Cities with 

a distinct purpose: studying the impact of the new atomic frontier or aiding in its creation. That 

sense of purpose altered the essence of the Tri-Cities and directly influenced the decisions made 

by scientists and engineers like William Bair. His early focus upon inhalation toxicology and 

biokinetic models for the adsorption of radioactive material in the body were the direct legacy of 

the early waste disposal techniques used by DuPont and the contractors that followed. 

 

Conclusion 

 Hanford’s environmental legacy is the direct result of its wartime origins. The context of 

the war placed production as the primary focus above all else. Decision-making processes were 

also steeped in the workplace safety culture of the 1940s and 1950s, narrowing the scope of 

safety discussions. Attempts to make the facility safe did so with limited scientific information 

about the ecological impact of radiation and focused on providing the level of safety needed to 

ensure production. This informational deficit and organizational flaw led DuPont and future 

contractors to spew wastes into the air, send them into the Columbia River, and deposit them in 

the earth beneath the site.  

These disposal practices ultimately harmed the ecology of a significant geographical area 

and have necessitated a dangerous cleanup process that will take decades to complete. The 

cleanup process creates its own share of dangers. Though workers are monitored for exposure to 

radiation, they are also exposed to other toxins. The vapors emitted by the tank farms are known 
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to contain chemicals linked to brain and lung damage.66 The wellbeing of those cleaning up the 

facility is imperiled by the scope of the environmental damage. 

 Socially, Hanford created a new community of scientists and engineers. It also created 

three cities with deeply-engrained racial and class boundaries. The surrounding communities 

were financially-dependent on the site during its operation and continue to depend on it in the 

present day. These communities were built due to federal spending and rely on it to keep their 

citizens employed. Despite the hazards posed by the site, the Tri-Cities need Hanford. Without 

the site and its environmental impact, the area would be a simple farming community. Instead, it 

is a community forever marked by nuclear research. 

 Similar military sites have exposed countless Americans to toxic waste through disposal 

of munitions and other chemical compounds. The Pentagon estimates that nearly 40,000 known 

and suspected toxic sites exist on current and former Department of Defense properties.67 Their 

disposal schemes, particularly open burns, continue unabated. Like Hanford, we do not yet know 

the scale of their impact. Their current and future disposal practices will determine that scale. 

 

  

                                                           
66 Farrow and McHugh, 2016 
67 Lustgarten, 2017 



20 
 

Bibliography 

2019 Hanford Scope, Schedule, and Cost Report. 2019. Richland, Washington: Department of 

Energy. 

"Backgrounder on Plutonium." U.S. Nuclear Regulatory Commission., last modified May 1, 

accessed Aug 20, 2018, https://www.nrc.gov/reading-rm/doc-collections/fact-

sheets/plutonium.html. 

“Retention, Translocation, and Excretion of Inhaled Pu239O2”, July 1962, T.2016.004.001b, 

Folder: Inhalation Toxicity Meeting, William Bair Collection, Hanford History Project, 

Richland, WA. 

Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to their 

Environmental Consequences. 1997. United States: Department of 

Energy. http://catalog.hathitrust.org/Record/003180782. 

"Seaborg and Plutonium Chemistry." Department of Energy., accessed 18 August, 

2018, https://www.osti.gov/opennet/manhattan-project-history/Events/1942-

1944_pu/seaborg_plutonium.htm. 

Bird, Kai and Martin J. Sherwin. 2008. American Prometheus:&nbsp;the Triumph and Tragedy 

of J. Robert Oppenheimer. Kindle ed. London: Atlantic Books. 

Brown, Kate. 2015. Plutopia. Oxford: Oxford Univ. Press. 

Cary, Annette. 2018. "2 Hanford Workers Sprayed with Possibly Contaminated Water." Tri-City 

Herald, December 6, 2018. https://www.tricityherald.com/news/local/hanford/ 

article222713370.html. 

Colten, Craig E. and Peter N. Skinner. 1996. The Road to Love Canal: Managing Industrial 

Waste before the EPA. United States:. http://catalog.hathitrust.org/Record/003043129. 

https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/plutonium.html
https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/plutonium.html
http://catalog.hathitrust.org/Record/003180782
https://www.osti.gov/opennet/manhattan-project-history/Events/1942-1944_pu/seaborg_plutonium.htm
https://www.osti.gov/opennet/manhattan-project-history/Events/1942-1944_pu/seaborg_plutonium.htm
https://www.tricityherald.com/news/local/hanford/%20article222713370.html
https://www.tricityherald.com/news/local/hanford/%20article222713370.html
http://catalog.hathitrust.org/Record/003043129


21 
 

Energy and Natural Resources. 2004. Statement of Gregory H. Friedman, Inspector General U.S. 

Department of Energy. June 17, 2004. 

Farrow, Ronan and McHugh, Rich. "Welcome to 'the most Toxic Place in America'." NBC., last 

modified November 29, 2018, accessed September 10, 2018, 

https://www.nbcnews.com/news/us-news/welcome-most-toxic-place-america-n689141. 

Findlay, John M. and Bruce William Hevly. 2011. Atomic Frontier Days: Hanford and the 

American West. Seattle: University of Washington Press. 

Groeger, Lena, Grochowski Jones, Ryann and Lustgarten, Abrahm. "Bombs in Your Backyard." 

ProPublica., last modified 30 November, accessed 12 January, 

2018, https://projects.propublica.org/bombs/. 

Hales, Peter B. 1997. Atomic Spaces. Urbana: Univ. of Illinois Press. 

Hanford History Project at WSU Tri-Cities. 2013. Interview with William Bair Hanford History 

Project. 

Lustgarten, Abrahm. "Open Burns, Ill Winds." ProPublica., last modified July 20, accessed 

August 30, 2018, https://www.propublica.org/article/military-pollution-open-burns-radford-

virginia. 

Stacy, Ian. 2010. "Roads to Ruin on the Atomic Frontier: Environmental Decision Making at the 

Hanford Nuclear Reservation, 1942–1952." Environmental History 15 (3): 415-448.  

Stenehjem, Michele A. 1989. "Pathways of Radioactive Contamination: Beginning the History, 

Public Enquiry, and Policy Study of the Hanford Nuclear Reservation." Environmental 

Review: ER 13 (3): 95-112. doi:10.2307/3984392. http://www.jstor.org/stable/3984392. 

United States. 1995. Closing the Circle on the Splitting of the Atom: The Environmental Legacy 

of Nuclear Weapons Production in the United States and what the Department of Energy is 

https://www.nbcnews.com/news/us-news/welcome-most-toxic-place-america-n689141
https://projects.propublica.org/bombs/
https://www.propublica.org/article/military-pollution-open-burns-radford-virginia
https://www.propublica.org/article/military-pollution-open-burns-radford-virginia
http://www.jstor.org/stable/3984392


22 
 

Doing about It. Washington, DC]: U.S. Dept. of Energy, Office of Environmental 

Management: Supt. of Docs., U.S. G.P.O., 

distributor. http://hdl.handle.net/2027/mdp.39015034272024. 

United States, General Accounting Office. 1986. Nuclear Safety: Comparison of DOE's Hanford 

N-Reactor with the Chernobyl Reactor: Briefing Report to Congressional Requesters. 

Washington, D.C.: GAO. 

White, Richard. 2011. The Organic Machine. Hill and Wang.  

Williams, Mark, Brad Fritz, Donaldo Mendoza P., Mark Rockhold L., Paul Thorne, Yulong Xie, 

Bruce Bjornstad N., et al. 2008. Interim Report: 100NR2 Apatite Treatability Test: Low 

Concentration Calcium Citrate-Phosphate Solution Injection for in Situ Strontium90 

Immobilization. doi:10.2172/969183. 

http://hdl.handle.net/2027/mdp.39015034272024

