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ABSTRACT 
Atherosclerotic cardiovascular disease (CVD) is the leading cause of mortality worldwide. 

Atherosclerosis is initiated by the infiltration and accumulation of low-density lipoprotein 

(LDL) cholesterol in the vascular wall, which activates the innate and adaptive arm of 

immunity, thereby causing chronic vascular inflammation. The LDL particle is immunogenic, 

as it not only activates lesional macrophages but is also recognized by T cells, and it elicits B 

cell-mediated antibody responses. Animal immunization studies suggest that anti-LDL 

antibodies inhibit atherosclerosis, but concerns exist about the potential proinflammatory role 

of lesional LDL-reactive T cells. In addition to lipoproteins, amino acids and their 

metabolites can shape immune cell responses, which has been the subject of intense research 

in the emerging field of immunometabolism. Current clinical practice guidelines on the 

prevention of CVD focus on controlling traditional risk factors, such as hypercholesterolemia, 

which indirectly influence inflammation in the vascular wall. Despite optimal management, 

however, residual inflammatory risk persists and underscores the need for novel therapeutics 

that directly target vascular inflammation.  

In Paper I, we generated mouse strains bearing T cell receptor (TCR) transgenic T cells that 

react to human LDL. Adoptive transfer of these autoreactive T cells or the intercross of TCR 

transgenic mice with animals expressing human apolipoprotein B-100 (apoB100) on the LDL 

receptor−/− (LDLR−/−) background led to reduced vascular inflammation and atherosclerosis. 

Interestingly, a significant proportion of LDL-reactive T cells differentiated into T follicular 

helper cells, which helped B cells produce anti-LDL antibodies that formed immune 

complexes with circulating LDL, thereby reducing plasma cholesterol. In Paper II, we 

employed dendritic cell (DC) based immunotherapy in an attempt to induce apoB100-specific 

regulatory T (Treg) cells that can exert anti-inflammatory functions in developing plaques. The 

vaccine was prepared using bone marrow-derived DCs, which were loaded with apoB100 in 

the presence of the anti-inflammatory cytokine transforming growth factor beta 2 (TGF-β2). 

Immunotherapy with these DCs promoted an immune response to apoB100 that favoured the 

accumulation of Treg cells in atherosclerotic plaques, increased vascular expression of the 

immunomodulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO1), and ameliorated 

atherosclerosis. In vitro experiments suggested that the Treg molecule cytotoxic T-

lymphocyte–associated antigen-4 (CTLA-4) regulates IDO1 expression in macrophages and 

vascular cells. 
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In Paper III, we studied the role of IDO1-mediated tryptophan metabolism in atherosclerosis 

using an inhibitor of IDO1 enzyme, 1-methyl-tryptophan. In vivo and in vitro data indicated 

that IDO1 regulates vascular inflammation, particularly in smooth muscle cells, and inhibits 

atherosclerosis possibly via the generation of the metabolite 3-hydroxyanthranilic acid (3-

HAA). In Paper IV, we investigated the effects of increased endogenous 3-HAA levels on 

plasma lipids and atherosclerosis using an inhibitor of the enzyme 3-hydroxyanthranilic acid 

3,4-dioxygenase (HAAO). Our data suggested that 3-HAA can lower plasma lipids via 

inhibition of the sterol regulatory element binding protein-2 (SREBP-2) pathway in 

hepatocytes and suppress inflammation via inhibition of the nucleotide-binding 

oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) 

inflammasome in macrophages. 

The studies included in the present thesis illustrate the intricate interplay between metabolism 

and immunity in atherosclerosis. It is my belief that our findings will contribute to the 

development of effective immunomodulatory strategies directly targeting vascular 

inflammation and addressing the residual inflammatory cardiovascular risk.  
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1 THE BURDEN OF CARDIOVASCULAR DISEASE 
Cardiovascular diseases (CVDs), a group of disorders of the heart and blood vessels, are the 

leading cause of mortality worldwide, accounting for one-third of global deaths. Seventy-

eight percent of cardiovascular deaths are due to heart attacks and strokes, which, in the 

majority of cases, are acute manifestations of coronary heart disease and cerebrovascular 

disease, respectively. In 2015, there was a global estimate of 422.7 million cases of CVD and 

17.9 million CVD-related deaths.1 In Sweden, 31,616 CVD-related deaths (35% of total 

deaths) were reported in 2016, while it is estimated that every fifth person lives with some 

sort of cardiovascular condition.2 The high rates of CVD-related morbidity and mortality are 

translated into significant socioeconomic costs, resulting from increased healthcare costs, 

productivity losses and informal care of individuals with CVDs. The total annual cost of 

CVDs in the European Union and the United States is estimated at €210 and $316 billion, 

respectively.3,4 

The main underlying cause of CVDs is the asymmetric focal deposition of lipids—also 

known as the “atheroma” or “plaque”— on the inner lining of the arteries. This pathological 

process is known as atherosclerosis, it starts early in life, progresses slowly and can be 

influenced by various factors including genetic predisposition, smoking, hyperlipidaemia, 

hypertension, sedentary lifestyle, poor diet, obesity, and diabetes.5-8 Population-wide 

strategies aimed at modifying behavioural factors, the use of lipid-lowering drugs, 

antihypertensive and antidiabetic medications, as well as the improvement and wide 

availability of invasive interventions, have reduced the burden of CVDs in high-income 

countries.9 However, substantial residual risk remains, which underscores the need for novel 

therapies directly targeting the pathogenic mechanisms underlying the atherosclerotic 

cardiovascular disease in the vascular wall.10 

 

2 INFLAMMATION IN ATHEROSCLEROTIC 
CARDIOVASCULAR DISEASE 

Over the past decades, histopathological studies of human plaques, experimental studies in 

genetically engineered mice, and epidemiological data have illuminated the central role of 

inflammation and the immune system in atherosclerotic cardiovascular disease. First and 

foremost, a significant proportion of atherosclerotic plaques consist of immune cells, 

especially macrophages and T cells. Epidemiological studies have shown positive 

correlations between several inflammatory molecules, such as C-reactive protein (CRP), 



 

  2 

tumor necrosis factor (TNF), interleukin (IL)-6 and monocyte chemoattractant protein-1 

(MCP-1), and cardiovascular morbidity and mortality.11,12 Experimental studies suggest 

causality for some of these associations (e.g., for TNF and MCP-1) but not others (e.g., for 

CRP).13-15 Most importantly, studies on genetically targeted mice lacking cells or molecules 

of the immune system confirmed the causal role of various components of the immune 

system in atherosclerosis. 

CRP is the most frequently used marker of systemic inflammation in the clinic. Mendelian 

randomization studies and experimental data do not support a causative role of CRP in 

atherothrombosis.16 Nevertheless, high-sensitivity CRP (hsCRP) predicts myocardial 

infarction, stroke and cardiovascular death independently of traditional cardiovascular risk 

factors. HsCRP has been used in clinical trials to select patients who would benefit from 

therapies with anti-inflammatory effects. For instance, the effectiveness of acetylsalicylic acid 

in the primary prevention of myocardial infarction is particularly pronounced in individuals 

with high baseline CRP.17 Statins, drugs with pleiotropic anti-inflammatory properties, lower 

plasma CRP levels independently of plasma cholesterol, and their beneficial effects relate to 

both cholesterol and CRP lowering. These drugs reduce major cardiovascular events not only 

in individuals with high baseline cholesterol levels but also in those with low plasma 

cholesterol and high CRP.18 The 2019 American Heart Association guidelines on the primary 

prevention of CVD recommend that elevated hsCRP (≥ 2 mg/L) may be used to guide 

decision-making to initiate statin therapy.19 

CRP is secreted by the liver in response to IL-6, a cytokine that is also associated with an 

increased risk for cardiovascular events. Mendelian randomization studies have found that 

two common variants of the IL-6 receptor (IL-6R), which are known to impair IL-6R 

signalling, are associated with lower plasma CRP levels and a reduced risk for cardiovascular 

outcomes.20,21 These findings have rendered the IL-6R signalling pathway a promising target 

for the prevention of coronary heart disease. A cytokine lying upstream of the IL-6–CRP 

pathway is IL-1β. This cytokine assumed extensive interest after it was demonstrated that 

cholesterol crystals in atherosclerotic plaques can activate the nucleotide-binding 

oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) 

inflammasome in macrophages, thereby promoting IL-1β release.22,23 Interestingly, 

inflammasome activation can be induced in macrophages by plaque hypoxia24 and in 

endothelial cells at arterial segments exposed to turbulent blood flow.25 

Despite the large body of evidence implicating inflammation in atherosclerotic cardiovascular 

disease, it was only in 2017 that a randomized controlled trial (RCT) showed that a therapy 
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directly targeting inflammation could reduce major cardiovascular events. In this trial 

(CANTOS), targeting innate immunity with canakinumab, a monoclonal antibody against IL-

1β, reduced hsCRP and cardiovascular events in patients with previous myocardial infarction 

and baseline hsCRP greater than or equal to 2 mg/L.26 A secondary analysis of canakinumab-

treated patients showed that only those who achieved a hsCRP below 2 mg/L had reduced 

cardiovascular events and mortality.27 Another patient population with chronic low-grade 

inflammation that may benefit from anti-inflammatory therapies includes patients with 

rheumatic diseases. For instance, meta-analyses of RCTs suggest that TNF inhibitors and 

methotrexate reduce cardiovascular events in patients with rheumatoid arthritis.28 

Atherosclerosis is now widely accepted as a chronic inflammatory disease of large- and 

medium-sized arteries, where diverse metabolic pathways, such as lipoprotein and amino acid 

metabolism, influence the balance between proinflammatory and anti-inflammatory immune 

cells and subsequently clinical outcomes. Over the past decades, the standard of care for 

primary and secondary prevention of CVDs has focused on managing hypercholesterolemia 

and other traditional risk factors. The study of the immune system in the context of 

atherosclerosis will allow the discovery of immunomodulatory drugs directly targeting 

vascular inflammation, thus providing the medical community with a completely new 

treatment strategy for the prevention and treatment of atherosclerotic cardiovascular disease. 

 

3 THE IMMUNE SYSTEM 
The immune system is the collection of tissues, cells and molecules with a primary function 

of providing protection against infections. It also prevents the growth of cancer cells and 

contributes to tissue repair. In contrast to these beneficial functions, abnormal immune 

reactions against foreign and self-antigens can cause harmful allergic, autoinflammatory and 

autoimmune diseases. The immune system is divided into the innate immune system, which 

acts rapidly and provides the first line of defence against invading organisms, and the 

adaptive immune system, which takes days to develop but is more prevailing and generates 

responses that are specific to the different pathogens that might be encountered.29 

3.1 THE INNATE IMMUNE SYSTEM 

The principal function of innate immunity is to prevent microbial invasion, induce 

inflammation, provide antiviral immune mechanisms, and activate the adaptive immune 
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system. The innate immune system consists of epithelial cells, various innate immune cell 

types and a large number of secreted molecules. 

3.1.1 Epithelial barriers 

Epithelial cells of the skin, respiratory tract, gastrointestinal tract and genitourinary tract 

provide a physical barrier that prevents microbes from penetrating our bodies. In addition, 

epithelial cells produce mucus, secrete antimicrobial enzymes and peptides and are equipped 

with cilia that remove pathogens trapped in the mucus.  

3.1.2 Innate immune cells 

3.1.2.1 Polymorphonuclear cells 

Polymorphonuclear cells or granulocytes are bone marrow-derived white blood cells (WBCs) 

characterized by a lobed nucleus and the presence of intracellular granules that are released 

upon infection, allergic reactions and asthma. Depending on their staining pattern, these cells 

are divided into neutrophils, eosinophils and basophils. Neutrophils, the most abundant 

leukocyte type in the circulation (40-80% of WBCs in humans), patrol tissues and initiate 

prompt immune responses upon infection or sterile inflammation.30 These cells are equipped 

with various receptors (pattern recognition receptors, antibody Fc receptors, complement 

receptors) that help them phagocytose and kill invading pathogens. Other neutrophil effector 

mechanisms include the release of reactive chemicals and proteolytic enzymes as well as the 

release of neutrophil extracellular traps (NETs), which are web-like structures consisting of 

DNA and enzymes that bind to and kill microbes.31  

Eosinophils, which are present in limited numbers in the circulation (1-6% of WBCs in 

humans), are recruited to tissues, where they degranulate antimicrobial proteins and play an 

important role in parasitic infections and during the late phase of type I hypersensitivity 

reactions. Basophils, the least abundant WBC type in peripheral blood (<1-2% of WBCs in 

humans), are recruited to peripheral tissues upon infection and hypersensitivity reactions, 

release their granular contents and promote inflammation. 

3.1.2.2 Monocytes 

Similar to granulocytes, monocytes (2-10% of WBCs in human peripheral blood) are myeloid 

cells derived from bone marrow progenitors, and their production increases significantly in 

response to emergency situations such as infection. Two major populations of monocytes 

have been described, classical or inflammatory (Ly6C+ CCR2+ CX3CR1low cells in mice and 

CD14+ CD16− in humans) and the non-classical (Ly6C− CCR2− CX3CR1high in mice and 
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CD14low CD16+ in humans) monocytes.32 It has been suggested that the short-lived (half-life 

~ 20 hours) inflammatory monocytes differentiate in the circulation into non-classical (half-

life ~ 5 days) monocytes.33 The different monocyte subsets are believed to exert distinct 

functions. Classical monocytes are readily recruited to sites of inflammation and generate 

macrophages and dendritic cells (DCs), whereas non-classical monocytes are believed to 

crawl on the luminal surface of endothelial cells, survey endothelial integrity, recruit 

neutrophils and clear cell debris.34,35  

3.1.2.3 Macrophages 

Macrophages are a heterogeneous population of tissue cells that exert multiple functions, 

including phagocytosis, antigen presentation, cytokine secretion, resolution of inflammation, 

and tissue repair. In the steady state, the majority of tissue resident macrophages (e.g., brain 

microglia, Kupffer cells, skin Langerhans cells, lung macrophages, peritoneal macrophages) 

come from embryonic progenitors that are seeded into tissues before birth.33,36 The 

maintenance of tissue macrophages in the steady state relies on self-renewal. Exceptions 

include intestinal macrophages, spleen marginal zone (MZ) macrophages and a population of 

dermal macrophages, which are maintained through classical monocyte recruitment.34 Upon 

inflammation, classical Ly6C+ monocytes are abundantly recruited and differentiate into 

monocyte-derived macrophages, thus contributing substantially to the pool of tissue 

macrophages. In certain inflammatory settings, such as atherosclerosis, the recruitment of 

classical monocytes and differentiation into macrophages plays a crucial role in the 

pathogenesis of the initial stages of disease. The maintenance and expansion of lesional 

macrophages, however, depends on the local proliferation of monocyte-derived macrophages 

rather than continuous monocyte influx.37 

Depending on the tissue microenvironment, monocyte-derived macrophages polarize through 

different differentiation programmes, thereby exerting distinct functions. During the initial 

phase of inflammation, macrophages shift arginine metabolism towards the generation of 

nitric oxide (NO) and citrulline, which enhances inflammation and host defence against 

invading pathogens (M1 polarization). In vitro, M1 polarization is induced by microbial 

products (e.g., lipopolysaccharide), endogenous danger signals (e.g., oxidized lipids) and 

inflammatory cytokines [e.g., interferon (IFN)-γ, TNF]. M1 macrophages are characterized in 

vitro by low expression of IL-10 and increased production of proinflammatory cytokines 

(TNF, IL-1β, IL-6, IL-12, IL-23), NO and reactive oxygen species (ROS). 
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During the resolution phase of inflammation, macrophage metabolism of arginine shifts 

towards ornithine and polyamines (M2 polarization), promoting collagen secretion, fibrosis, 

angiogenesis, tissue repair and remodelling. Four M2 subclasses have been described: M2a 

macrophages, which are induced by IL-4 and IL-13; M2b macrophages, which are induced 

by immune complexes in combination with IL-1β or Toll-like receptor (TLR) ligands; M2c 

macrophages, which are induced by IL-10, transforming growth factor (TGF)-β or 

glucocorticoids; and M2d macrophages, which are induced by costimulation with TLR and 

adenosine A2A agonists. M2 macrophages express high levels of IL-10, TGF-β and scavenger 

receptors but low levels of IL-12 and IL-23. From a functional perspective, M2 macrophages 

are involved in defence against parasites, immunoregulation, scavenging of apoptotic debris, 

resolution of inflammation, and wound healing. Apart from M1 and M2 macrophages, 

additional macrophage subsets have recently been described in the context of atherosclerosis, 

namely Mox, M(Hb), Mhem and M4.38,39 

It is believed that, in the steady state, tissue resident macrophages have a default M2-like 

phenotype, whereas monocyte-derived macrophages can differentiate along different 

polarization programmes depending on the stage of the ongoing inflammatory reaction. 

Whether the different monocyte subsets show an intrinsic preference for polarization towards 

distinct polarization programmes remains to be investigated. Interestingly, it has been 

suggested that macrophages show plasticity and may transdifferentiate from one phenotype to 

another depending on the dynamic changes in the tissue microenvironment. Because of the 

paucity of data on the role of macrophage subsets in vivo, the M1/M2 paradigm should be 

viewed as a simplified conceptual framework where M1 and M2 cells represent the extremes 

of a continuous spectrum of macrophage functional phenotypes.40 

3.1.2.4 Dendritic cells  

DCs arise from a common dendritic cell progenitor (CDP), which can give rise to terminally 

differentiated plasmacytoid DCs (pDCs) in the bone marrow or precursors of classical DCs 

(cDCs) that are transferred to peripheral tissues and lymphoid organs where they differentiate 

into cDCs. In mice, classical DCs are subdivided into type 1 cDCs (CD8α+ CD11b− cDCs in 

lymphoid tissues; CD103+ CD11b− cDCs in non-lymphoid tissues) and type 2 CD11b+ cDCs. 

Another population of DCs in peripheral tissues (monocyte-derived DCs), which becomes 

particularly prominent upon inflammation, derives from circulating monocytes (Figure 1).41-

44 
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Figure 1. Bone marrow generation of 

myeloid cells. Monocyte-dendritic cell 

progenitors (MDPs) and granulocyte 

monocyte progenitors (GMPs) are 

thought to derive from common 

myeloid progenitor (CMP) cells. MDPs 

differentiate further into monocytes or 

common dendritic cell progenitor 

(CDP) cells, which give rise to 

plasmacytoid dendritic cells (pDCs) and 

classical dendritic cells (cDCs). MDP-

derived monocytes can migrate to 

tissues and differentiate into 

macrophages (mo-MΦ) or DCs (mo-

DCs). Monocytes can also be generated 

by GMPs via committed monocyte progenitor (MP) cells. GMPs generate neutrophils via committed granulocyte 

progenitor (GP) cells.45 

Plasmacytoid DCs resemble plasma cells, express high levels of TLR7 and TLR9 and 

produce large amounts of type I interferon in response to viral infection. Classical DCs are 

professional antigen-presenting cells (APCs) that sample the tissue microenvironment and 

recognize foreign material to be presented on molecules of the major histocompatibility 

complex (MHC) to adaptive immune cells. In peripheral tissues, immature DCs take up 

microbes and self-antigens and home to the T cell zone of draining lymph nodes. Upon 

infection, microbial products and inflammatory cytokines promote the maturation of DCs, 

which upregulate MHC, costimulatory molecules and the cytokine IL-12. Important 

costimulatory molecules include the B7-1 (CD80) and B7-2 (CD86) proteins, which bind to 

CD28 or cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) on the surface of T 

cells.46,47 Antigen presentation in the presence of adequate costimulation results in 

lymphocyte activation and proliferation. In the absence of infection, however, DCs present 

antigens to self-reactive T cells without adequate costimulation, thereby leading to T cell 

functional inactivation or death.29,48-50 

3.1.2.5 Other innate immune cells   

Other cells of the innate immune system include mast cells, natural killer (NK) cells, γδ T 

cells and NK-T cells. Mast cells are granulocytes that are present in the skin and mucosal 

tissues and play a role in type I hypersensitivity reactions as well as in the defence against 

parasites. NK cells have the capacity to kill infected and tumor cells via the secretion of 

apoptosis-inducing proteins and to stimulate the phagocytic efficiency of macrophages via the 
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secretion of the cytokine IFN-γ. γδ T cells, a population of T lymphocytes bearing receptors 

with limited diversity, are found in epithelial layers participating in the early defence against 

pathogen invasion. Finally, NK-T cells expressing surface molecules found on both NK cells 

and T cells recognize microbial lipids and glycolipids presented on the antigen-presenting 

molecule CD1d.29 

3.1.3 Humoral innate immunity 

Apart from epithelial barriers and cellular components, the innate immune system also has a 

humoral component, including the complement system, cytokines, acute phase reactants and 

natural antibodies. The complement system, a collection of circulating and membrane-bound 

proteins produced by the liver, participates in antimicrobial defence via different 

mechanisms: opsonization of microbes and facilitation of phagocytosis, leukocyte 

recruitment, and direct lysis of microbial cells via the formation of a multi-protein membrane 

attack complex. 

Upon infection, innate immune cells as well as other cell types secrete cytokines and 

chemokines, soluble proteins that mediate many of the actions of innate immune cells. For 

instance, TNF and IL-1 activate the endothelium and facilitate the recruitment and activation 

of neutrophils and monocytes at the site of infection. In addition, these cytokines, as well as 

IL-6, induce hepatic secretion of acute phase proteins, such as CRP. These proteins bind to 

pathogens and apoptotic cells and facilitate their clearance via recognition by Fcγ receptors 

(FcγRs) of phagocytes and activation of the complement system. Finally, humoral innate 

immune responses are enhanced by circulating natural antibodies, germline-encoded 

antibodies—most commonly of the immunoglobulin (Ig) M class— that are produced 

without previous exogenous antigen stimulation and contribute to antimicrobial defence.51 

3.1.4 Receptors of innate immune cells: Toll-like receptors, scavenger 
receptors, NOD-like receptors  

Innate immune cells recognize microbial structures, known as pathogen-associated molecular 

patterns (PAMPs), as well as products that are released by damaged cells and modified self-

antigens, collectively termed damage-associated molecular patterns (DAMPs), via germline-

encoded pattern recognition receptors (PRRs) localized in different cellular compartments.52 

PRRs are expressed not only by innate immune cells but also by other cell types including 

epithelial cells, endothelial cells and lymphocytes. Major PRR families include Toll-like 

receptors, NOD-like receptors (NLRs), and scavenger receptors (SRs).29 
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The TLR family includes 13 receptors (TLR1 to TLR13), although TLR11, TLR12 and 

TLR13 are expressed only in mice. TLRs are present on the plasma membrane (TLR1, 

TLR2, TLR4, TLR5, TLR6, TLR11) or in intracellular vesicles (TLR3, TLR7, TLR8, 

TLR9). TLRs sense microbial components or endogenous ligands, thereby initiating a signal 

transduction cascade that results in the expression of proteins involved in antimicrobial 

defence.53,54 Scavenger receptors are membrane-associated PRRs that were initially 

recognized as taking up modified lipoprotein particles but were later identified to recognize 

microbial structures and self-molecules. Scavenger receptors participate in the phagocytosis 

and clearance of pathogens, clearance of foreign molecules and apoptotic bodies, as well as in 

fatty acid uptake and cholesterol clearance.55 

NLRs comprise a family of evolutionarily conserved cytosolic PRRs that recognize various 

structurally unrelated molecules, including microbial substances, products of damaged cells, 

and endogenous noxious substances. NLRs are composed of an N-terminal signalling 

domain, a central NOD domain and a C-terminal domain involved in ligand binding. 

Mammalian NLRs are subdivided into 4 subfamilies characterized by different N-terminal 

domains: NLRA, NLRB, NLRC and NLRP. Upon activation, NLRs form oligomerization 

complexes that can either recruit/activate proinflammatory caspases or initiate inflammatory 

signalling pathways, including the nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB), mitogen activated protein kinase (MAPK) and interferon regulatory factor 

(IRF) pathways. NLR complexes that recruit and activate caspase-1 are widely known as 

inflammasomes. Caspase-1 cleaves pro-IL-1β and pro-IL-18 into mature cytokines that 

induce an inflammatory form of cell death known as pyroptosis.56,57 

One of the best-characterized inflammasome platforms is the NLRP3 inflammasome, which 

is biochemically defined by the NOD-like receptor NLRP3, the adaptor protein apoptosis-

associated speck-like protein containing CARD (ASC), and caspase-1. The NLRP3 

inflammasome is activated by a two-step process: the first signal (priming) results in NF-κB 

activation and transcriptional induction of inflammasome components, immature pro-IL-1β 

and pro-IL-18. The second signal is provided by diverse exogenous or endogenous PAMPs or 

DAMPs [bacteria, viruses, extracellular adenosine triphosphate (ATP), particulate matter, 

monosodium urate and calcium pyrophosphate crystals, cholesterol crystals, palmitate, ROS, 

oxidized mitochondrial DNA] and promotes the assembly of NLRP3, ASC and pro-caspase-

1, thus leading to the activation of this inflammasome complex and production of IL-1β and 

IL-18.58 Some widely recognized molecular mechanisms leading to NLRP3 inflammasome 



 

  10 

activation include K+ efflux, mitochondrial ROS (mtROS) production, and lysosome 

disruption and the release of lysosomal enzymes (Figure 2).59 

Gain-of-function mutations in NLRP3 have been identified as the cause of hereditary periodic 

fever syndromes, while single nucleotide polymorphisms in the NLRP3 locus have been 

associated with various diseases, including type 1 diabetes, celiac disease and Alzheimer’s 

disease. Moreover, activation of the NLRP3 inflammasome has been implicated in gout, 

insulin resistance, obesity and atherosclerosis.58 

Figure 2. Activation of the NLRP3 

inflammasome. Activation of the 

inflammasome requires two steps. The 

priming signal results in the activation of 

the NF-κB pathway, thus inducing the 

expression of inflammasome components, 

pro-IL-1β and pro-IL-18. The second 

signal is provided by microbial molecules 

and diverse DAMPs, such as ATP, 

cholesterol crystals, and fatty acids. 

Molecular mechanisms involved in 

inflammasome activation include K+ 

efflux, lysosome destabilization/ release of 

cathepsin B, and generation of 

mitochondrial ROS (mtROS). 

3.2 THE ADAPTIVE IMMUNE SYSTEM 

The adaptive immune system consists of lymphocytes and their products. Adaptive immunity 

is divided into humoral immunity, which is mediated by antibodies produced by B 

lymphocytes and fights extracellular microbes, and cell-mediated immunity, which is 

conferred by T lymphocytes and protects against intracellular pathogens. Lymphocytes 

express an extremely diverse repertoire of antigen receptors that can recognize millions of 

different microbial molecules and other exogenous or endogenous substances, collectively 

called antigens. Lymphocytes that have not yet encountered their antigen are called naïve 

lymphocytes. Upon antigen recognition, lymphocytes proliferate and differentiate into 

effector cells that help eliminate the antigens, or long-lived memory cells that respond rapidly 

to re-encounter the same antigen.29 
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3.2.1 T lymphocytes 

T lymphocytes or T cells arise from haematopoietic stem cell progenitors in the bone 

marrow, but their maturation is completed in the thymus. They express the cell surface 

marker CD3+ and are commonly divided in CD4+ T helper (TH) cells, which help 

macrophages and B cells exert their effector functions, and CD8+ cytotoxic T lymphocytes 

(CTLs), which kill infected, damaged and cancer cells. The majority of T cells recognize 

peptide antigens bound to MHC molecules. The antigen receptor of T cells, called T cell 

receptor (TCR), is a membrane heterodimeric receptor consisting of the α chain and the β 

chain, each chain consisting of a constant (Cα, Cβ) and a variable (Vα, Vβ) region. The 

variable regions of TCR are responsible for recognition of the antigen-MHC complex. CD4 

and CD8 serve as co-receptors that bind to an invariable region of the MHC molecule. 

Antigen recognition initiates an intracellular signal transduction cascade mediated by a 

complex of proteins, the CD3 and ζ chains, which together with the TCR form the TCR 

complex.29,60 

The total T lymphocyte repertoire consists of millions of different clones with different 

antigen specificities, meaning that each clone expresses a TCR with unique sequence in the 

variable region of α and β chains and recognizes a specific antigen. The extreme diversity of 

TCRs is accomplished during maturation in the thymus via the following two processes: 

somatic VDJ recombination of gene segments encoding the variable regions of TCR chains 

(known as combinatorial diversity), and enzymatic addition or removal of nucleotides at the 

sites of recombination (known as junctional diversity).29,61 

The maturation of T cells occurs in the thymus, where clones expressing potentially useful 

TCRs are selected to survive. In the thymus, T cell progenitors are double-negative cells 

(CD4− CD8−) that initiate the VDJ recombination process. Successful recombination 

promotes survival and proliferation and eventually results in the generation of double-positive 

CD4+ CD8+ cells expressing the complete TCR receptor. The next step is positive selection, 

where only T cells recognizing self-MHC molecules (presenting self-peptides) with low to 

moderate affinity are selected for survival. Cells recognizing MHC class I molecules lose 

expression of CD4 and become single positive CD8+ (MHC-I restricted) T cells, whereas 

cells recognizing MHC class II molecules lose expression of CD8 and become single-positive 

CD4+ (MHC-II restricted) T cells. Double-positive T cells that bind to MHC molecules with 

strong affinity die via apoptosis (negative selection).61 

After maturation in the thymus, T lymphocytes migrate to secondary lymphoid organs and 

peripheral tissues in a naïve, inactivated state. Two signals are required for activation, clonal 
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expansion and differentiation of naïve T cells to effector cells: antigen stimulation (signal 1) 

and costimulation (signal 2). The latter is provided by the engagement of CD28 molecule on 

T cells with costimulatory B7 molecules (CD80, CD86) on antigen-presenting cells. 

Another molecule that enhances T cell responses is the CD40 ligand (CD40L) on T cells that 

binds to CD40 on APCs, thereby leading to APC activation (cytokine secretion, upregulation 

of B7) and indirect T cell activation. Apart from costimulatory molecules, there are also T 

cell inhibitory receptors that limit T cell responses after invading pathogens have been 

eliminated. Two such receptors are CTLA-4, which antagonizes CD28 binding to B7 

molecules on APCs, and programmed cell death protein 1 (PD-1), which binds to 

programmed cell death ligand 1 (PD-L1) and programmed cell death ligand 2 (PD-L2) on 

various cells. CTLA-4 is also expressed by T regulatory (Treg) cells and mediates some of 

their functions.62 

Depending on the type of invading pathogen and the cytokines present in the 

microenvironment, CD4+ TH cells, upon activation, can differentiate into different effector T 

cell subsets that secrete different sets of cytokines and exert different effector functions. 

Among the TH cell subsets, TH1, TH2, TH17, Treg, and T follicular helper (TFH) cells are the 

most common subtypes. 

TH1 cells play an important role in the elimination of bacteria and viruses ingested by 

phagocytes. Differentiation of naïve T cells to TH1 cells is induced by the cytokines IFN-γ 

and IL-12. These cells express the transcription factor T-box–containing protein expressed in 

T cells (T-bet), and their signature cytokine is IFN-γ, which acts on phagocytes, thereby 

inducing their bactericidal activity.63 

TH2 cells are induced by the cytokine IL-4, express the signature transcription factor GATA-

binding protein 3 (GATA-3), and secrete IL-4, IL-5 and IL-13, which are important cytokines 

for protection against parasite infections. IL-4 stimulates antibody class switching and the 

production of IgE antibodies, IL-5 activates eosinophils to secrete their granule content, 

whereas IL-13 promotes mucus secretion and intestinal peristalsis. TH2 responses are also 

implicated in allergic reactions. 

TH17 cells contribute to the elimination of extracellular bacteria and fungi by recruiting 

neutrophils and monocytes at the site of infection. The signature cytokines of these cells are 

IL-17 and IL-22. Cytokines that skew differentiation towards the TH17 subset include IL-1, 

IL-6, IL-23 and TGF-β.64 
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Treg cells are immunoregulatory cells that promote immunological self-tolerance and limit 

excessive immune responses to foreign antigens. Naturally occurring Treg cells are CD4+ 

CD25+ CTLA-4+ cells that are generated in the thymus in response to self-antigens and 

constitutively express the transcription factor forkhead box p3 (Foxp3). The importance of 

Treg cells in the maintenance of self-tolerance is illustrated by the observation that Foxp3 

mutations cause multiorgan autoimmune disorders in mice and humans.65-67 Induced Treg cells 

are CD4+ CD25+ CTLA-4+ cells generated in the periphery by naïve T cells that are induced 

to express Foxp3 under certain conditions, such as antigen recognition in the presence of 

TGF-β or antigen presentation by immature tolerogenic dendritic cells.68-70 

Treg cells can also be generated by naïve conventional T cells of the mucosal immune system 

via oral immunization. These Treg cells, termed TH3 cells, secrete TGF-β and various amounts 

of IL-10 and IL-4 and actively suppress immune responses not only to their specific antigen 

but also to other antigens in the microenvironment.71,72 Another regulatory T cell subset is the 

IL-10 producing regulatory T cell type 1 (Tr1) population, which is induced by the cytokines 

TGF-β and IL-27. Tr1 cells can be induced in vitro by repetitive antigen stimulation of naïve 

T cells in the presence of IL-10 and in vivo by chronic antigen stimulation or mucosal 

immunization. These cells are particularly present in the gut where they play a central role in 

mucosal tolerance, as suggested by the observation that Treg specific IL-10 deletion leads to 

autoimmune gastrointestinal disease.73,74 

TFH cells represent a subset of effector T cells that, upon activation in secondary lymphoid 

organs, migrate to the B cell zone of lymphoid follicles and help B cells differentiate into 

long-lived antibody-producing plasma cells. The generation of TFH cells depends on the 

expression of inducible T-cell costimulator (ICOS), a member of the CD28 family. 

Importantly, TFH cells, depending on the type of underlying T cell response, secrete different 

cytokines (e.g., IFN-γ, IL-4, IL-17) that influence the production of different heavy chain 

isotype antibodies.  

3.2.2 B lymphocytes 

Humoral immunity is mediated by antibodies produced by B lymphocytes or B cells. These 

cells are generated and mature in the bone marrow. The antigen receptors of B cells are 

membrane-bound antibodies that recognize not only peptide antigens but also native 

(conformational) non-protein epitopes, including polysaccharides and lipids. The B cell 

antigen receptor (BCR) is a Y-shaped tetramer composed of 2 identical heavy (H) chains 

attached to each other via disulphide bonds and 2 identical light (L) chains bound to heavy 
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chains via disulphide bonds. Each heavy chain has a variant domain (VH) and 3 or 4 constant 

domains (CH), whereas each light chain has a variant (VL) and a constant (CL) domain. Every 

antibody receptor molecule has two antigen binding sites, each consisting of the VH domain 

of the heavy chain and the VL domain of the associated light chain. The extreme diversity of 

B cell specificities is achieved, as in the case of T cells, via VDJ recombination and 

junctional nucleotide addition or removal. 

Based on the constant region, there are 5 different types of heavy chains (α, γ, δ, ε, µ) that 

form 5 different antibody classes or isotypes (IgA, IgG, IgD, IgE, IgM). Similarly, there are 2 

types of light chains (κ, λ) that differ in their constant regions. Mature B cells in the naïve 

state express only IgM and IgD receptors on their surface. Upon activation by TH cells, 

however, IgD- and IgM-expressing B cells may secrete IgM or antibodies of other isotypes 

(isotype switching). 

As mentioned earlier, B cells can respond to both protein and non-protein antigens. Antibody 

responses to most protein antigens typically rely on TH cells and are therefore called T cell-

dependent responses. The first step of T-dependent reactions is the recognition of a native 

epitope of a protein antigen by B cells in lymphoid follicles, and parallel recognition by naïve 

T cells of a peptide (bound to MHC-II) that is usually derived from the same protein antigen. 

Effector TH cells and activated B cells meet at the parafollicular zone, where T cells again 

recognize the peptide-MHC complex on B cells, secrete cytokines and induce CD40L 

expression, thus inducing B cell proliferation and differentiation into short-lived antibody-

secreting plasmablasts (extrafollicular reaction). A number of activated B cells migrate back 

to the follicle, where, upon stimulation by TFH cells (e.g., via cytokines, CD40L-CD40 

ligation), they proliferate and form germinal centres (GCs). In the germinal centres, B cells 

undergo isotype switch recombination and somatic hypermutation (affinity maturation) and 

differentiate into high-affinity, long-lived plasma cells.75 

B lymphocytes can be subdivided into follicular B cells (also known as B2 cells), MZ B cells 

and B1 cells. Follicular B cells constitute the main B cell population in the lymphoid follicles 

of peripheral lymphoid organs (90% of B cells in the spleen). These cells receive T cell help 

and initially produce IgM and later IgG, IgA or IgE antibodies (upon isotype switching). MZ 

B cells are found in the marginal zone of the spleen where they respond to blood-borne 

antigens, while B1 cells are mostly found in the peritoneal and pleural cavities and in 

mucosal tissues, where they participate in surveillance against environmental pathogens. MZ 

B cells and B1 cells are known to mediate early (within 3 days) T cell-independent antibody 

responses, thus bridging innate and adaptive immunity. B1 cells—which are further 
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categorized as B1a and B1b based on surface markers—secrete germline-encoded natural 

antibodies (predominantly IgM but also IgA). Natural antibodies can recognize the 

phosphorylcholine head group present in oxidized phospholipids of oxidized low-density 

lipoprotein (oxLDL), apoptotic cells and the polysaccharide capsule of Streptococcus 

pneumoniae.76 An additional B1 cell subset has recently been identified: innate response 

activator (IRA) B cells. These cells express the immature B cell marker CD93 and respond to 

lipopolysaccharide (LPS) by secreting granulocyte-macrophage colony-stimulating factor 

(GM-CSF). Finally, regulatory B cells are also considered a separate B cell subset with a 

distinct surface marker profile and regulatory functions (e.g., secretion of IL-10).29,77 

3.3 IMMUNOLOGICAL TOLERANCE 

3.3.1 Central and peripheral tolerance 

In contrast to the innate immune system, adaptive immune cells have the potential to produce 

antigen receptors that recognize self- (or altered self) antigens, thereby triggering deleterious 

immune responses. Such autoimmune reactions do not usually occur, and this 

unresponsiveness to self is called “immunological tolerance”. Immunological tolerance 

comprises central tolerance, which is induced by exposure of immature lymphocytes to self-

antigens in the primary lymphoid organs (i.e., thymus, bone marrow), and peripheral 

tolerance, which is induced by exposure of mature lymphocytes to self-antigens in the 

periphery. Central tolerance is induced either by negative selection in primary lymphoid 

organs or the generation of naturally occurring regulatory T cells. Peripheral tolerance can be 

achieved via different mechanisms, including anergy or apoptosis of self-reactive 

lymphocytes and active suppression of self-reactive T cells by Treg cells. The elucidation of 

peripheral tolerance mechanisms is particularly important for the development of 

immunomodulatory therapies against autoimmune diseases.74 

3.3.2 Dendritic cells: orchestrators of immunity and tolerance 

The outcome of a T cell response upon antigen recognition is influenced by the DC 

maturation state and co-signalling molecules—both costimulatory and co-inhibitory—on 

lymphocytes and DCs. Mature DCs that are induced by innate immune signals and express 

high levels of MHC-II and costimulatory molecules are considered 

proinflammatory/immunogenic, whereas immature DCs are tolerogenic.78 Costimulatory and 

co-inhibitory molecules on DCs bind to their respective receptors on T cells. Important 

costimulatory molecules on T cells include CD28, CD40L, ICOS, CD137 and OX40, 

whereas CTLA-4 and PD-1 are the best-described co-inhibitory receptors.79 Peripheral 
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tolerance may occur due to the absence of adequate costimulation or the presence of 

immunosuppressive cytokines, which can induce T-cell anergy or Treg cell differentiation. 

Interestingly, CTLA-4 binds to CD80/CD86 (the same ligand for the costimulatory molecule 

CD28) on DCs.47,80,81 In experimental atherosclerosis, blockade/deletion of co-inhibitory 

molecules or activation of co-stimulatory pathways aggravates disease.82-84 The central role 

of DCs in the regulation of immunity renders these cells potential targets for 

immunomodulation.78 

The function of DCs may also be influenced by the local cytokine milieu. A number of 

cytokines, especially IL-10 and TGF-β, have been used in vitro to generate tolerogenic DCs, 

which can promote antigen-specific T-cell unresponsiveness via several mechanisms, 

including induction of anergy, expansion of Treg cells and secretion of immunosuppressive 

cytokines.85 Controlling DC function via cytokine modulation is an attractive 

immunomodulatory approach and has been tested in animal models of autoimmunity. For 

example, injection of antigen-pulsed TGF-β2−treated APCs ameliorates experimental 

autoimmune encephalomyelitis by induction of CD8+ regulatory T cells.86 In the context of 

atherosclerosis, IL-10−induced tolerogenic DCs have been shown to reduce atherosclerosis 

by inducing CD4+ Treg cells that inhibit apolipoprotein (apo) B-specific T cell responses.87 

3.3.3 Regulatory T cells: mechanisms of immunological tolerance  

The capacity of Treg cells to promote immunological self-tolerance depends to a large extent 

on their ability to inhibit self-reactive T cells that have escaped central deletion in the thymus 

and exist normally in the periphery as part of the T cell repertoire. Many of the functions of 

Treg cells are mediated by the secretion of the inhibitory cytokines IL-10 and TGF-β, which 

act on both APCs and T cells, induce a tolerogenic phenotype in DCs, and suppress T cell 

responses. These cytokines have been shown to be key players in the generation of induced 

Treg cells in vitro and in vivo. IL-35 is another cytokine implicated in the regulatory activity of 

Foxp3+ Treg cells. Treg cells may also induce contact-mediated cytolysis and apoptosis of 

effector T cells in a granzyme- and perforin-mediated manner. Other Treg immunoregulatory 

mechanisms include CD25-mediated depletion of IL-2 and the production of adenosine 

nucleosides. The latter bind to adenosine receptors on effector T cells, thereby inhibiting IL-6 

while promoting TGF-β secretion.88 

CTLA-4 expressed on Treg cells competes with the CD28 costimulatory molecules of 

proinflammatory cells for binding to CD80/CD86 of antigen-presenting cells, thereby 

preventing proinflammatory T cell responses. Moreover, CTLA-4 binding to CD80/CD86 
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leads to activation of the immunoregulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO1), 

which leads to tryptophan depletion and production of immunomodulatory metabolites, 

downregulation of CD80/CD86, and activation of the transcription factor forkhead box O3 

(FoxO3), which inhibits cytokine production by antigen-presenting cells. Another regulatory 

molecule expressed on Treg cells is the lymphocyte activation gene 3 (LAG3), which binds to 

MHC-II molecules and inhibits dendritic cell maturation.88 

 

4 LIPID METABOLISM 
Cholesterol is an organic lipid molecule that is an essential component of cell membranes and 

a precursor of steroid hormones, bile acids and vitamin D. It can be synthesized by most cell 

types, with the highest production rates occurring in the liver and intestine. Cholesterol 

biosynthesis starts with the condensation of 2 acetyl-coenzyme A (CoA) molecules into 

acetoacetyl-CoA by acetoacetyl-CoA thiolase, subsequent condensation of acetoacetyl-CoA 

with an additional acetyl-CoA into 3-hydroxy-3-methylglutaryl (HMG)-CoA by HMG-CoA 

synthase, and reduction of HMG-CoA into mevalonate by HMG-CoA reductase, the rate-

limiting enzyme of the pathway. Triglycerides, in contrast, are the main constituent of body 

fat and are used as energy sources and transporters of dietary fat. Cholesterol and 

triglycerides are transferred throughout the body on lipoprotein particles along three 

interconnected pathways: the exogenous pathway of dietary lipids, the endogenous pathway, 

and the reverse cholesterol transport pathway.  

4.1 EXOGENOUS PATHWAY 

In the gastrointestinal tract, dietary triglycerides are emulsified by bile acids and hydrolysed 

by pancreatic lipases into free fatty acids and monoacylglycerol that can be readily absorbed 

along with dietary cholesterol. Cholesterol absorption is regulated by intestinal Niemann-Pick 

C1 Like 1 (NPC1L1) protein, the molecular target of the lipid-lowering drug ezetimibe.89 The 

same protein is also expressed in the canalicular membrane of hepatocytes and promotes the 

reabsorption of secreted biliary cholesterol.90 In enterocytes, lipids (free fatty acids, 

monoacylglycerol, cholesterol and cholesterol esters) are packaged with apoB48 into nascent 

chylomicrons, which are then excreted in the lymphatics and enter the circulation via the 

thoracic duct. ApoB48, an obligate structural protein of chylomicrons, is the N-terminal 48% 

of the full-length apoB100. It is produced by enzymatic editing of a single nucleotide in 

apoB100 mRNA, which leads to the replacement of glutamine-2153 by a stop codon. 

Apolipoprotein C-II on circulating chylomicrons activates endothelial lipoprotein lipase 
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(LPL), which hydrolyses triglycerides into free fatty acids and glycerol that are then taken up 

by peripheral tissues, especially adipose tissue and muscle. The lipolysis of triglyceride-rich 

chylomicron particles is also facilitated by very low-density lipoprotein receptor (VLDLR), 

which is highly expressed on the endothelium of peripheral tissues (adipose tissue, muscle, 

heart) and has been suggested to enhance the activity of LPL.91  

4.2 ENDOGENOUS PATHWAY 

Hepatocytes synthesize triglycerides and package them with cholesterol esters and apoB100 

in very low-density lipoprotein (VLDL) particles. Human liver synthesizes only apoB100, 

since there is no apoB100 mRNA editing activity. In mice, conversely, approximately 70% of 

hepatic apoB100 mRNA is edited, thereby yielding apoB48 VLDL particles. The regulation 

of apoB/VLDL secretion is complex, but the rate limiting step involves the microsomal 

triglyceride transfer protein (MTTP), which catalyses the lipid loading of nascent apoB in the 

endoplasmic reticulum.92 VLDL particles are cleared by various receptors in the liver, 

including the low-density lipoprotein receptor (LDLR), heparan sulphate proteoglycans 

(HSPGs), LDLR-related protein 1 (LRP1), and SR-B1.93,94 

In the periphery, VLDL is hydrolysed by lipoprotein lipase and hepatic lipase to generate free 

fatty acids and glycerol. VLDL remnants, also known as intermediate-density lipoprotein 

(IDL) particles, can then be either taken up by the liver or further hydrolysed into low-density 

lipoprotein (LDL). Apolipoprotein C-III, a lipoprotein secreted by the liver and intestine and 

present on triglyceride-rich lipoprotein particles, has been suggested to inhibit the clearance 

of VLDL, IDL and chylomicron particles by inhibiting LPL activity and interfering with the 

interaction of apoE and apoB with their hepatic receptors. LDL particles are finally removed 

from the circulation via the interaction of apoB100 with LDL receptors in the liver. The 

proprotein convertase subtilisin/kexin type 9 (PCSK9) has recently been shown to escort 

LDLR to lysosomes for degradation, thus regulating the levels of LDLR on the hepatic cell 

surface and LDL cholesterol concentration in the peripheral blood. 

The biosynthesis of cholesterol and unsaturated fatty acids is regulated by a family of 

membrane-bound transcription factors, the sterol regulatory element binding proteins 

(SREBPs).95,96 The inactive precursors of SREBPs are endoplasmic reticulum (ER) 

membrane-bound proteins. Their activation is regulated by sterols and leads to the cleavage 

and release of the active nuclear forms. Upon sterol depletion, SREBPs are escorted by the 

SREBP cleavage-activating protein (SCAP) from the ER to the Golgi apparatus, where they 

are sequentially cleaved by site-1 protease (S1P) and site-2 protease (S2P). This process 
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releases the active N-terminal segment of SREBPs, which is translocated to the nucleus and 

promotes gene transcription. High cellular cholesterol levels induce the association between 

SCAP and insulin-induced gene (INSIG) protein, leading to the retention of SREBP-SCAP 

complex in the ER.97 

There are three SREBP isoforms (SREBP-1a, SREBP-1c and SREBP-2) that are encoded by 

two genes. SREBP-1a and SREBP-1c are encoded by the same gene but use different 

promoters. SREBP-1a and SREBP-2 are potent transcription factors, whereas SREPB-1c is 

relatively weak. For example, SREBP-1c transgenic mice display 2- and 4-fold increases in 

liver mRNAs of two important fatty acid biosynthetic genes, fatty acid synthase (FAS) and 

acetyl-CoA carboxylase (ACC), respectively, as opposed to 9- and 16-fold increases in 

SREBP-1a transgenic mice. Similarly, gene expression of LDLR and several cholesterol 

biosynthetic genes are elevated in SREBP-1a but not in SREBP-1c transgenic mice.98 Both 

SREBP-1a and SREBP-2 can induce the LDLR and other genes involved in cholesterol and 

fatty acid biosynthesis. However, SREBP-1a is relatively more potent in inducing fatty acid 

biosynthesis, whereas SREBP-2 preferentially induces the cholesterol biosynthetic 

pathway.99,100 

4.3 REVERSE CHOLESTEROL TRANSPORT 

High-density lipoprotein (HDL) particles, which are mainly composed by phospholipids and 

apolipoprotein A-1 (apoA1), are synthesized by the liver and the intestine. The hepatic 

transporter ATP-binding cassette (ABC) A1 (ABCA1) plays an important role in the 

production of HDL by mediating the efflux of free cholesterol and phospholipids to apoA1. 

HDL particles can take up cholesterol from peripheral macrophages via macrophage ABCA1 

and ABCG1. In the HDL particle, cholesterol is esterified by the enzyme lecithin cholesterol 

acyl transferase (LCAT), which creates a gradient for free cholesterol transfer from cells to 

HDL. Cholesterol esters in the mature HDL particle can either be taken up by the liver 

through the interaction of HDL with the scavenger receptor SR-B1 or transferred to apoB-

containing lipoproteins—in exchange for triglycerides— via the enzyme cholesterol ester 

transfer protein (CETP).101 Increasing HDL plasma levels by CETP inhibitors has been 

evaluated in clinical trials but does not seem to reduce cardiovascular events.102 In the liver, 

cholesterol can be secreted in the bile or used for bile acid synthesis. Important proteins 

involved in cholesterol secretion in bile include the heterodimer ABCG5/ABCG8103 as well 

as ABCB4104 and ABCB11.105 Cholesterol can be metabolized to bile acids via the classic 

bile acid biosynthetic pathway, which is regulated by the rate-limiting enzyme cytochrome 

P450 (CYP) 7A1 (CYP7A1), as well as an alternative pathway initiated by CYP27A1.106 
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5 TRYPTOPHAN METABOLISM 
Tryptophan is an essential amino acid; it cannot be synthesized de novo and therefore the 

naturally occurring L-enantiomer must be acquired via the diet. Rich dietary sources of this 

amino acid include egg white, meat, fish, dairy products, sesame seeds and soybeans. In 

addition to being used as building block for protein synthesis, tryptophan is a precursor of 

two important metabolic pathways: the 5-hydroxyindole pathway, which leads to the 

generation of the neurotransmitter serotonin; and the oxidative/kynurenine pathway, which 

leads either to complete oxidation to carbon dioxide and water or, to a lower extent, the 

generation of nicotinamide nucleotides. Tryptophan decarboxylation to tryptamine and 

transamination to indole pyruvic acid are two additional metabolic fates of quantitatively 

minor importance.107  

5.1 THE 5-HYDROXYINDOLE (SEROTONIN) PATHWAY 

Once in the circulation, tryptophan is able to traverse the blood brain barrier through transport 

via the large amino acid receptor. In neurons, enterochromaffin cells, pulmonary endothelial 

cells and mast cells, serotonin is generated via the hydroxylation of tryptophan to 5-

hydroxytryptophan (5-HTP) by the rate-limiting enzyme tryptophan 5-hydroxylase and 

subsequent decarboxylation of 5-HTP to 5-hydroxytryptamine (5-HT), which is widely 

known as serotonin. Serotonin is found abundantly in the enteric nervous system and, to a 

lower extent, in the central nervous system and in circulating platelets. In the pineal gland, 

serotonin is the substrate for melatonin synthesis. 

5.2 THE KYNURENINE PATHWAY 

In peripheral tissues, only 1% of dietary tryptophan is metabolized to serotonin, whereas over 

95% is metabolized along the kynurenine pathway and generates a number of metabolites 

that are collectively called kynurenines. The first and rate-limiting step of the pathway, the 

oxidative cleavage of L-tryptophan to N-formyl-L-kynurenine, is catalysed by 3 different 

enzymes: tryptophan 2,3-dioxygenase (TDO) in the liver; indoleamine 2,3-dioxygenase 1 

(IDO1) in various tissues; and the recently discovered and not well-studied indoleamine 2,3-

dioxygenase 2 (IDO2). The level and/or activity of TDO is positively regulated by 

glucocorticoids and L-tryptophan and negatively by intermediate metabolites of the 

kynurenine pathway and nicotinamide nucleotides. IDO1 differs from TDO in that it is 

expressed in various tissues, uses superoxide rather than molecular oxygen to oxidize 

tryptophan into formylkynurenine and is induced upon inflammatory stimuli. 
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Formylkynurenine is hydrolysed to L-kynurenine by a formamidase enzyme. L-kynurenine is 

positioned at a branching point of the kynurenine pathway: it can be transaminated by 

kynurenine aminotransferases (KATs) to kynurenic acid (KYNA); it can be converted to 

anthranilic acid and alanine by the pyridoxal 5-phosphate (P5P, the active form of vitamin 

B6)-dependent enzyme kynureninase; a third alternative is oxidation by kynurenine 3-

monooxygenase (KMO) to 3-hydroxykynurenine. The latter may be converted to xanthurenic 

acid by kynurenine aminotransferases or 3-hydroxyanthranilic acid (3-HAA) by 

kynureninase. The 3-HAA is further metabolized by 3-hydroxyanthranilic acid 3,4-

dioxygenase (HAAO) to yield a metabolite that can either be oxidized completely to carbon 

dioxide and water or be converted to quinolinic acid. Quinolinate phosphoribosyl transferase 

(QPRT) metabolizes quinolinic acid further to nicotinamide nucleotides. Tryptophan is 

therefore an important supplementary source of nicotinamide nucleotides in addition to 

dietary niacin (nicotinic acid and nicotinamide) (Figure 3).108,109 

 

Figure 3. Tryptophan metabolism. IDO1 indoleamine 2,3-dioxygenase 1; IDO2 indoleamine 2,3-dioxygenase 

2; TDO tryptophan dioxygenase; KAT kynurenine aminotransferase; B6 vitamin B6; KMO kynurenine 3-

monooxygenase; HAAO 3-hydroxyanthranilate 3,4-dioxygenase; ACMSD 2-amino-3-carboxymuconic acid-6-
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semialdehyde decarboxylase; AMSD 2-aminomuconic-6-semialdehyde dehydrogenase; QPRT quinolinate 

phosphoribosyl transferase. 

5.2.1 Indoleamine 2,3-dioxygenase 1 

Hayaishi and co-workers discovered indoleamine 2,3-dioxygenase in 1967.110,111 Human 

IDO1 has relatively high activity in placenta, lung and small intestine, moderate activity in 

kidney, stomach and spleen and low activity in other tissues.112 The human enzyme is able to 

oxidize L-tryptophan but also D-tryptophan and 5-hydroxy-L-tryptophan. In mice, high IDO1 

activity is found in epididymis and small intestine, moderate activity in spleen, lung, colon 

and stomach and lower activity in other organs.113 At a cellular level, IDO1 is expressed in 

several cell types, including macrophages, DCs, smooth muscle cells (SMCs) and endothelial 

cells, and it is induced under inflammatory conditions by various cytokines. IDO1 is induced 

by IFN-γ and, to a lower extent, by other cytokines, including TNF, IL-1β and type 1 

interferons. Signal transducer and activator of transcription (STAT)-1α is necessary for IDO1 

induction, whereas NF-κB, protein kinase R (PKR) and IRF-1 may also contribute to the 

induction/activation of IDO1 following IFN-γ treatment.114 The cyclooxygenase 2 (COX-2)− 

prostaglandin E2 (PGE2) pathway has also been implicated in IDO1 expression, as the COX-

2 inhibitor celecoxib suppresses IDO1 expression in a breast cancer cell line.115 As shown in 

tumor cell lines, COX-2 contributes to the production of PGE2, which induces IDO1 via the 

PI3K–Akt−mTOR and the PKC− GSK3b− β catenin pathways. Interestingly, COX-2 

expression and PGE2 production is induced by IL-1β.116 

Munn and Mellor discovered that the immunoregulatory role of IDO1 activity in the placenta 

of pregnant mice prevents T cell-mediated rejection of allogeneic concepti.117,118 IDO1 

expression in APCs suppresses excessive immune responses through different mechanisms, 

including the induction of T-cell anergy or apoptosis and the generation of Treg cells. 

Catabolism of tryptophan by IDO1-expressing cells depletes this essential amino acid in the 

local microenvironment, thus suppressing T cell proliferation and promoting T cell anergy 

and apoptosis.118,119 This effect of tryptophan insufficiency is mediated by induction of the 

general control nonderepressible 2 (GCN2) stress response pathway in T cells.119 Tryptophan 

depletion may also inhibit the mTOR and PKC-θ kinase pathways, thus inducing 

autophagy.120 Moreover, there seems to be a bidirectional connection between IDO1 and Treg 

cells. The expression of IDO1 in APCs can induce Treg cells,121,122 and Treg cells have been 

shown to induce IDO1.123 Experimental studies have employed either genetic ablation of 

IDO1 or the pharmacological inhibitor 1-methyl-tryptophan (1-MT) to show the importance 
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of IDO1 in peripheral tolerance124-127 but also its deleterious effects in cancer immune 

escape.128-130  

5.2.2 The pharmacological inhibitor 1-methyltryptophan (1-MT) 

1-methyl-tryptophan (1-MT) is a competitive inhibitor of IDO1 that is currently being 

investigated in clinical trials investigating cancer immunotherapy. The inhibitor exists as two 

stereoisomers, L-1-methyl-tryptophan (L-1-MT) and D-1-methyltryptophan (D-1-MT), with 

distinct biological activities. The L isomer is more potent in cell-free enzyme assays as well 

as in a number of cell lines. However, the D isomer has been shown to be at least equally 

effective in inhibiting IDO1 activity in mouse and human dendritic cells. Interestingly, only 

the D isomer exhibits a significant in vivo antitumor effect, which is lost when the inhibitor is 

used in IDO1-knockout mice.131 Interestingly, Metz and co-workers showed that only D-1-

MT, but not L-1-MT, can inhibit IDO2-mediated tryptophan degradation.132 A later study, 

however, showed that L-1-MT is a more potent inhibitor of both IDO1 and IDO2 activity.133 

At supraphysiological concentrations (>250 µΜ), D-1-MT has been shown to induce IDO1 

mRNA and kynurenine production via the p38 MAPK and c-Jun N-terminal kinase (JNK) 

signalling pathways.134  

5.2.3 Kynurenines: tryptophan metabolites with biological effects 

In addition to tryptophan deletion, IDO1 activation results in the generation of several 

kynurenine metabolites with immunomodulatory functions. Particularly, L-kynurenine, 3-

hydroxykynurenine, 3-HAA and quinolinic acid have been shown to inhibit T cell 

proliferation or to induce T cell apoptosis135,136 via different mechanisms, including caspase 8 

activation,136 impairment of calcium signalling,137 generation of ROS and glutathione 

depletion.138,139 Upon systemic inflammation, endothelial cell-derived L-kynurenine induces 

SMC relaxation, vasodilation, and reduction of arterial blood pressure via activation of the 

adenylate cyclase−cAMP pathway as well as the soluble guanylate cyclase− cGMP−PKG 

pathway.140 In addition, L-kynurenine can activate the aryl-hydrocarbon receptor (AHR) and 

induce differentiation of naïve T cells into Treg cells.141 3-HAA can also induce Treg 

differentiation in a dose-dependent manner.142 In T cells, 3-HAA has been shown to inhibit 

NF-κB activation upon TCR engagement, thereby suppressing T cell function and inducing 

apoptosis. This effect is mediated by inhibition of phosphoinositide-dependent protein kinase 

1 (PDK1), a key signal transducer downstream of CD28 that leads to NF-κB translocation to 

the nucleus.143 
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Another kynurenine metabolite with biological effects is KYNA, which has been shown to be 

a direct ligand for AHR and G-protein-coupled receptor 35 (GPR35).144,145 KYNA treatment 

increases IL-1−induced expression of IL-6 in MCF-7 breast tumor cells in an AHR-

dependent manner.144 In an in vitro vascular flow model, KYNA was observed to trigger the 

adhesion of monocytes to endothelial cells, an effect that was partly mediated by GPR35.146 

In contrast to these proinflammatory actions, KYNA inhibits LPS-induced secretion of TNF 

by human peripheral blood mononuclear cells (PBMCs) or CD14+ monocytes.145 In the 

central nervous system, KYNA can block nicotinic α7 acetylcholine receptors and N-methyl-

D-aspartate (NMDA) glutamate receptors,147,148 thus opposing the effects of quinolinic acid, a 

known NMDA receptor agonist with pro-oxidant activity.149,150 These metabolites have been 

implicated in a number of neurological disorders. Interestingly, a shift of the kynurenine 

pathway from L-kynurenine to KYNA through exercise training has been shown to protect 

against stress-induced depression.151 

 

6 PATHOGENESIS OF ATHEROSCLEROSIS 
Atherosclerosis refers to the build-up of a plaque in the artery wall, which leads to a 

progressive thickening of the intima and narrowing of the arteries supplying oxygen and 

nutrients to the heart, brain, extremities and peripheral organs. It is a disease of large- and 

medium-sized arteries, and it is initiated by the accumulation of apoB-containing LDL 

particles in the subendothelial space—also known as the intima— of arterial segments 

exposed to low wall shear stress (e.g., at branch points).152 

Lipoprotein particles can pass the endothelial cell barrier through transcellular or paracellular 

transport.153 In the intima, apoB-containing lipoproteins get trapped via ionic interactions 

with matrix proteoglycans, which is considered an initiating event in atherogenesis.154-156 

Following subendothelial retention, LDL undergoes various modifications, including 

oxidation, degradation and aggregation.157 Modified LDL, in concert with local 

haemodynamic forces, induces endothelial cell expression of leukocyte adhesion molecules 

and secretion of cytokines and chemokines.158,159 Oxidized phospholipids activate 

peroxisome proliferator-activated receptor (PPAR)-α and induce endothelial cell cytokine 

secretion and endothelial cell-monocyte interactions.160 Another factor that contributes to the 

activation of endothelial cells in atherosclerosis-prone areas is the adhesion of platelets to 

endothelial cells via glycoprotein (GP) Ibα and GPIIb-IIIa.161 Upon endothelial cell 

activation, circulating monocytes adhere to the endothelium and transmigrate towards a 
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chemokine gradient produced in the inflamed intima. T cells, dendritic cells and mast cells 

are also attracted into the intima, where they participate in a maladaptive immune response to 

the retained lipoproteins.162,163 

In the intima, monocytes, under the influence of the macrophage colony-stimulating factor 

(M-CSF) and GM-CSF, differentiate into macrophages.164 Macrophage accumulation in 

atherosclerotic plaques is caused by both monocyte recruitment and local macrophage 

proliferation.37,165 In the intima, macrophages upregulate diverse PRRs, among which 

scavenger receptors are involved in the uptake of modified LDL. Over time, macrophages 

accumulate lipids, as scavenger receptors are not downregulated by increased intracellular 

cholesterol content.166 LDL uptake is also mediated by fluid-phase endocytosis (pinocytosis) 

of native LDL (at much higher concentrations than oxLDL) and by phagocytosis or 

patocytosis of aggregated LDL.167 Local inflammation impairs cholesterol efflux from 

macrophages via the downregulation of ABCA1 and ABCG1.168,169 Altogether, these 

mechanisms lead to the cytosolic accumulation of large amounts of cholesterol esters in 

macrophages, which become lipid-laden “foam cells”. Foam cells are the pathologic hallmark 

of early atherosclerotic lesions or “fatty streaks”.170 Throughout lesion development, many 

foam cells die, thereby producing apoptotic bodies that can later undergo secondary necrosis. 

Failure to remove the apoptotic material (impaired efferocytosis) from atherosclerotic plaques 

results in the formation of a necrotic core, which is associated with plaque vulnerability and 

atherothrombotic complications.171 

In addition to macrophages, various immune cells, including T cells, dendritic cells, mast 

cells and neutrophils, have been described in atherosclerotic plaques.163,172 T lymphocytes 

may account for up to 20% of infiltrating cells in certain regions of human plaques. 

Importantly, T cells recognizing foreign or modified self-antigens [e.g., oxLDL, chlamydia 

proteins, heat-shock protein (HSP)-60] have been isolated from atherosclerotic plaques, 

which indicates that T-cell mediated responses can influence the development of 

atherosclerosis.173,174 In human plaques, CD4+ T cells predominate over CD8+ T cells and 

express the αβ T cell receptor. Most of these cells are CD45RO+ memory (previously 

activated) cells located in the shoulder region or the interface between the fibrous cap and the 

lipid core, and they are often in an activated state.175,176 TH1 cells predominate in atheromata 

and secrete proinflammatory cytokines that activate both vascular and innate immune cells. 

In addition to leukocytes, SMCs of the media layer also contribute to lesion pathogenesis. 

These cells can expand clonally, transdifferentiate into macrophage-like cells and migrate to 

the intima, where they can take up lipoprotein particles and become foam cells.177 In fact, 
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SMC-derived cells comprise 30% of the total cells in mouse atherosclerotic lesions.178 Intimal 

SMCs proliferate and produce extracellular matrix macromolecules, thereby forming a 

fibrous cap that surrounds a core of necrotic debris, proteoglycans and extracellular lipids, 

and it protects against plaque rupture. In vulnerable plaques, proinflammatory cytokines 

suppress SMC proliferation and collagen production, while vascular cell-secreted matrix 

metalloproteinases and ROS slowly degrade collagen fibres, rendering the plaque prone to 

rupture. Rupture and endothelial erosion are the ultimate complications of atherosclerosis, 

which lead to exposure of the thrombogenic material to the circulation, thrombus formation, 

and life-threatening clinical events (Figure 4).179,180 

 

Figure 4. Pathogenesis of atherosclerosis. The advanced atherosclerotic plaque has a necrotic core consisting 

of lipid-engorged macrophages, apoptotic cells, extracellular lipids, and proteoglycans. The necrotic core is 

surrounded by a fibrous cap consisting of proliferating SMCs and collagen. The stability of the fibrous cap can 

be compromised by cell-derived proteases and ROS, which can lead to plaque rupture and thrombosis. Plaque 

formation is initiated by the accumulation and retention of LDL particles in the intima, where LDL undergoes 

various modifications. OxLDL activates endothelial cells, which express adhesion molecules on their luminal 

surface and attract leukocytes into the intima. Monocytes transmigrate into the intima and differentiate into 

macrophages, which accumulate oxLDL in their cytoplasm and become foam cells. These cells secrete various 

proinflammatory molecules in response to oxidized phospholipids, microbial products, heat-shock proteins and 

cholesterol crystals. The latter activate the NLRP3 inflammasome. In the shoulder region of the plaque, T cells 

recognize plaque antigens, proliferate, and secrete proinflammatory and plaque-destabilizing cytokines, such as 

IFN-γ. 

6.1 INNATE IMMUNITY IN ATHEROSCLEROSIS 

The importance of innate immunity in atherosclerosis is underscored by the predominance of 

macrophages in atherosclerotic plaques and by the observation that monocyte depletion 
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attenuates atherosclerosis in hyperlipidaemic mice.181,182 In mice, hypercholesterolemia 

results in the expansion of peripheral inflammatory Ly6C+ monocytes that home to inflamed 

arterial segments, where they differentiate into macrophages that take up oxLDL, become 

activated and transform into foam cells.183 Upon activation, these cells upregulate 

proinflammatory genes and produce cytokines and other effector molecules, such as NO, 

ROS, and matrix-degrading enzymes. Of note, a number of macrophage-secreted cytokines, 

including TNF, macrophage migration inhibitory factor (MIF), IL-1, IL-18, IL-12 and M-

CSF, have been shown to promote atherosclerotic cardiovascular disease.184 In addition, the 

inducible isoform of nitric oxide synthase and certain NADPH oxidases have been implicated 

in the progression of atherosclerosis.185,186 

Plaque macrophages constitute a heterogeneous population of cells with distinct phenotype 

and functions, but with a plasticity that allows them to adapt to the lesion microenvironment. 

Classically differentiated M1 macrophages have been associated with proinflammatory 

functions and plaque vulnerability, whereas M2 macrophages have been suggested to mediate 

anti-inflammatory functions and tissue-repair. In addition to the M1 and M2 macrophages 

representing, respectively, 40% and 20% of macrophages in advanced mouse atheromata, a 

distinct subset of Mox macrophages has been identified. Mox macrophages are induced by 

oxidized phospholipids, are characterized by Nrf2-dependent expression of redox-regulated 

genes, such as haem oxygenase 1 (HO-1), express the M1-related molecules IL-1β and COX-

2, possess limited phagocytic and chemotactic capacity, and comprise approximately 34% of 

macrophages in advanced mouse plaques.187 In human atherosclerosis, the picture becomes 

even more complicated by the description of additional macrophage subsets, including 

M(Hb), Mhem and M4 macrophages.38,39 

As mentioned earlier, innate immune cells recognize PAMPs and DAMPs via pattern 

recognition receptors, including TLRs, NLRs and SRs. A number of these receptors are 

abundantly expressed in mouse and human atheromata and have been implicated in 

atherogenesis.188 Our group has previously shown that NOD2, an NLR activated by bacterial 

peptidoglycan, is expressed in plaque macrophages and endothelial cells, induces the PGE2 

pathway and promotes the formation of necrotic lipid cores.189,190 Experimental studies on 

genetically engineered mice have suggested an atherogenic role for TLR2 and TLR4, which 

suggests that the presence of endogenous TLR ligands may promote disease development.191-

194 In contrast to the aforementioned surface TLRs, TLR7 and TLR9, endosomal TLRs 

respectively recognizing single-stranded RNA and double-stranded DNA with 

hypomethylated CpG motifs, have been shown to exhibit a beneficial role in experimental 
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atherosclerosis.195,196 TLR3, an endosomal TLR that senses double-stranded RNA, presents a 

more complex situation, as whole body TLR3 is atheroprotective in apoE−/− mice, whereas 

bone marrow cell TLR3 expression promotes atherosclerosis in LDLR−/− mice.197,198 

Deficiency of myeloid differentiation primary response 88 (MyD88), a transducer in the 

signalling pathways of all TLRs apart from TLR3 (but also in IL-1/IL-18 receptor signalling) 

ameliorates atherosclerosis in apoE−/− mice.191 

The identification of PAMPs and DAMPs promoting atherosclerosis has been a challenge in 

cardiovascular research. A hypothesis was that chronic infection with certain microbes 

generates PAMPs or DAMPs that promote atherosclerosis. However, there is lack of 

evidence pointing to infection as the primary inducer of atherogenic innate immune 

responses. An alternative hypothesis is that endogenous DAMPs are responsible for the 

atherogenic innate immune responses. Among a number of potential candidates, oxLDL and 

cholesterol crystals have assumed much interest over the past decade. 

A growing body of evidence suggests that oxidation-specific epitopes (OSEs) on oxLDL and 

apoptotic cells are DAMPs that engage inflammatory innate immune responses.199 For 

instance, oxidized cholesterol esters and oxidized phospholipids induce TLR4-dependent 

activation of macrophages and endothelial cells, respectively.200,201 OxLDL triggers the 

assembly of a TLR4-TLR6 heterodimer, a process that is regulated by CD36, thus inducing 

activation of the NF-κB pathway and cytokine secretion in macrophages.202 Interestingly, 

conditions associated with deranged cell cholesterol efflux, such as ABCA1 deficiency in 

patients with Tangier disease or low HDL plasma levels, increase plasma membrane lipid 

rafts and potentiate MyD88-dependent TLR signalling.203 In contrast to oxLDL, minimally 

oxidized LDL cannot activate the NF-κB pathway in macrophages. However, it induces 

cytokine expression by activating the extracellular-signal-regulated kinase (ERK) 1/2 

pathway in a TLR4-dependent manner and the PI3K pathway in a TLR4-independent 

manner.204 OSEs are recognized by natural IgM antibodies, which exert an atheroprotective 

function possibly by blocking the uptake of oxLDL by macrophage SRs and promoting 

efferocytosis.205-207 Interestingly, OSEs present on oxLDL or apoptotic cells show molecular 

mimicry with antigens in the cell wall of certain bacteria, particularly pneumococci. Indeed, 

vaccination of atherosclerosis-prone mice with Streptococcus pneumoniae increases oxLDL-

specific IgM antibodies and ameliorates atherosclerosis.208 

As lipid-engorged macrophages accumulate cholesterol, cholesterol crystals form in the 

cytosol and activate the NLRP3 inflammasome, thus triggering caspase-1−dependent IL-1β 

secretion.22 The deleterious role of IL-1β in atherosclerosis has been shown in apoE−/− mice, 
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which develop less disease upon IL-1β deletion.209 With some exceptions, the vast majority 

of experimental data support a proatherogenic role of inflammasome activation.22,210 More 

importantly, the recently published CANTOS trial showed that neutralization of IL-1β with 

monoclonal antibodies decreases major cardiovascular events.26 

6.2 T CELLS IN ATHEROSCLEROSIS 

Adaptive immunity has been implicated in atherogenesis by the presence of T cells in 

atheromata, the increased concentration of antibodies to LDL in the circulation of patients 

with vascular disease, and the arteriopathy observed in heart transplants of patients without 

conventional cardiovascular risk factors.211 The importance of adaptive immune cells in 

atherosclerosis has been confirmed in experimental studies using gene-targeted mice. For 

instance, mice deficient for both T and B cells present less atherosclerosis than 

immunocompetent mice in the context of hypercholesterolemia.212-215 

Immunohistochemical staining has shown that T cells account for 7-20% of infiltrating cells 

in human atherosclerotic plaques, with a predominance of CD4+ T cells.175 A substantial 

proportion of T cells in the plaque are in an activated state, as indicated by the expression of 

human leukocyte antigen (HLA)-DR and the CD25 subunit of the IL-2 receptor.216,217 These 

observations suggest that cell-mediated immune responses are taking place in the vascular 

wall. Indeed, T cells that are reactive to self-antigens, such as oxLDL and HSP60, have been 

isolated from human plaques.174,218 This supports the notion that local autoimmune responses 

occur in the vascular wall and influence the development of atherosclerosis. 

The net effect of CD4+ TH cells is proatherogenic, as indicated by the reduction of 

atherosclerosis in mice after depletion of these cells.219,220 Moreover, adoptive transfer of 

CD4+ T cells into immunodeficient mice increases atherosclerotic disease, which is 

associated with elevated systemic levels of IFN-γ.214 In addition to cytokine secretion, the 

expression of stimulatory surface proteins is another crucial effector function of CD4+ T cells. 

One such molecule expressed on activated TH cells is CD40L, which binds to its receptor 

CD40 on APCs and B cells.29 Abrogation of this interaction either by use of antibodies or 

genetic ablation of CD40L in hyperlipidaemic mice reduces lesion size and promotes a more 

stable plaque phenotype.221,222 In contrast to TH cells, CD8+ T cells have been studied to a 

lesser extent. Although genetic deletion of CD8+ T cells has no effect on atherosclerosis,223 

antibody-mediated depletion of this cell population reduces the extent of disease.224 Despite 

the aforementioned data on the proatherogenic role of T cells, there are also studies showing 

a protective effect of cell-mediated immunity against the disease.223,225-228  
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6.3 TH CELL SUBSETS IN ATHEROGENESIS 

The balance between different T cell subsets may influence atherogenesis. In the plaque, 

there is a predominance of TH1 cells that secrete the proinflammatory cytokine IFN-γ, which 

induces the expression of MHC molecules on APCs, increases the efficiency of antigen 

presentation, inhibits smooth muscle cell proliferation and collagen production, and activates 

macrophages to release cytokines, chemokines, ROS and proteolytic enzymes.229,230 

Importantly, deletion of the signature TH1 transcription factor T-bet or the IFN-γ receptor 

ameliorates atherosclerosis.231,232 The TH1-inducing cytokines IL-12 and IL-18 are also 

deleterious in atherosclerosis.169 

Despite accumulating data on the proinflammatory function of TH1 responses, the role of TH2 

cells is not clear. The TH2 cytokine IL-4 has been shown to promote macrophage 

proliferation in plaques.165 Genetic ablation of IL-4 in apoE−/− mice decreases 

atherosclerosis.233 Consistent with this observation, King and co-workers showed that IL-4 

deficiency in bone marrow-derived cells could ameliorate disease in the LDLR−/− mouse 

model, suggesting a proatherogenic role of this signature TH2 cytokine.234 The authors, 

however, later showed that genetic deficiency or exogenous administration of IL-4 did not 

affect atherosclerosis development in both apoE−/− and LDLR−/− mice as well as in a model of 

angiotensin II-induced atherosclerosis.235 At odds with these studies, exogenous IL-4 

administration was found to be protective in mildly hyperlipidaemic mice and to lead to a 

reduction of atherosclerosis.220 IL-5, another TH2 cytokine that is also produced by mast cells 

and is important for B cell differentiation, probably has a beneficial role in atherogenesis, as 

suggested by the aggravated disease in IL-5−/− mice.236 

In addition to TH1 and TH2 cells, IL-17−producing TH17 cells have also been described in the 

context of atherosclerosis with mixed results. IL-17 is known to induce the expression of 

proinflammatory cytokines and chemokines, such as IL-6, IL-1β, TNF, MCP-1 and 

CXCL1.237 Most experimental studies support a proatherogenic effect of IL-17 signalling.237-

240 Using IL-17A−/− apoE−/− mice, Madhur and co-workers showed that IL-17A increases 

high-fat diet−induced IFN-γ production by splenocytes, plaque macrophage content and ROS 

production, but it does not increase the atherosclerotic plaque size.241 In contrast, TH17 cells 

have recently been suggested to promote plaque stabilization through IL-17A−mediated 

collagen production by vascular SMCs.242 

While T cells, as a whole, induce inflammation and atherosclerosis, regulatory T cells secrete 

the anti-inflammatory cytokines IL-10 and TGF-β, suppress effector T cells, and exert 

atheroprotective functions. IL-10 deficiency,243,244 abrogation of T cell-specific TGF-β 
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signalling by a dominant negative mutation in TGF-β receptor II,245 or inhibition of TGF-β 

signalling by neutralizing antibodies aggravate atherosclerotic disease in mouse models.246 In 

addition, depletion of Treg cells leads to an increase in the extent of disease in both apoE−/− 

and LDLR−/− mice.247,248 Another immunoregulatory T cell subset, the IL-10−producing Tr1 

cells, inhibits TH1 responses, increases plaque IL-10, and ameliorates atherosclerosis in 

adoptive transfer experiments to apoE−/− mice.249 

6.4 B CELLS IN ATHEROSCLEROSIS 

Although B lymphocytes are rarely detected in the intima, nodular aggregations of B cells—

also known as tertiary lymphoid organs— are found in the adventitia of advanced lesions.250 

Moreover, antibodies against plaque antigens are present in the circulation of humans and 

mice, which suggests that B cell responses may influence the progression of the disease.77 

Intravenous immunoglobulin (IgG) was found to ameliorate atherosclerosis in apoE−/− mice, 

an effect that was later suggested to be mediated by the binding of the Fc portion to the 

inhibitory FcγRIIb.251-253 Moreover, induction of IgG antibodies to OSEs via immunization 

ameliorates experimental atherosclerosis.254 Initial studies suggested that B cells provide 

protection against atherosclerosis. Caligiuri and co-workers showed that splenectomy in 

apoE−/− mice accelerates atherosclerosis, an effect that is reversed by adoptive transfer of B 

cells.255 Consistent with this observation, LDLR−/− mice reconstituted with bone marrow 

from B cell-deficient (µMT) mice have significantly increased atherosclerotic disease 

compared with recipients of wild type bone marrow.256 

The beneficial role of B cells, especially the IgM-producing B1 cell population, was 

strengthened by Lewis and co-workers, who showed that lack of serum IgM (sIgM−/−) 

aggravates atherosclerosis in LDLR−/− mice.257 B1 cell-derived natural IgM antibodies against 

OSEs have been shown to inhibit oxLDL uptake by macrophages.254 In the same line of 

evidence, Kyaw and co-workers showed that splenectomy in apoE−/− mice results in a 

substantial reduction of peritoneal B1a cells and aggravation of atherosclerosis. Interestingly, 

B1a, but not B2, cell transfer into splenectomized mice restores this cell population and 

protects against atherosclerosis, an effect that is dependent on IgM secretion.258 

The apparent protection conferred by B cells was challenged by two independent studies 

showing that B cell depletion by monoclonal anti-CD20 antibodies reduces the extent of 

atherosclerosis in apoE−/− and LDLR−/− mice.259,260 The explanation for this discrepancy 

probably relies on differential effects of B cell subsets. In fact, anti-CD20 treatment 

preferentially depletes conventional B2 cells and peritoneal B1b cells, whereas the peritoneal 
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B1a cell population is spared. B2 cells most likely promote atherosclerosis, as indicated by 

the increased plaque burden caused by adoptive transfer of B2 cells in apoE−/− mice lacking 

lymphocytes (Rag2−/− γ-chain−/−) or B cells.259 The proatherogenic function of B2 cells was 

further supported by studies on the interaction between the B cell activating factor (BAFF) 

and BAFF receptor (BAFFR), which is crucial for the survival of B2 (but not B1a) cells. 

Genetic ablation of BAFFR in atherosclerotic mouse models reduces the plaque burden.261,262 

At odds with these studies, Doran and co-workers found that adoptive transfer of B2 cells 

from apoE−/− to B cell deficient apoE−/− mice attenuates the development of 

atherosclerosis.263 In summary, peritoneal B1a cells are thought to exert an atheroprotective 

role, whereas the majority of studies support a proatherogenic role for conventional B2 cells. 

6.5 ADAPTIVE IMMUNE RESPONSE TO LDL 

Experimental studies have illuminated the role of adaptive immunity, a necessary component 

of autoimmune responses, in the development of atherosclerosis. Hyperlipidaemic apoE−/− 

mice with severe combined immunodeficiency (scid/scid) develop much less atherosclerosis 

than immunocompetent controls.214 Moreover, transfer of CD4+ from old apoE−/− mice into 

immunodeficient controls aggravates atherosclerosis,214 while bone marrow transplantation 

from mice lacking B cells into LDLR−/− mice also leads to deteriorated disease.256 These 

observations support T cell-mediated responses rather than an autoantibody response as a 

potential driving force in atherogenesis. 

The most studied autoantigens in the field of atherosclerosis are HSP60 and modified LDL. 

HSP60 is a phylogenetically highly conserved mitochondrial protein that is found in both 

prokaryotic and eukaryotic cells. T cells reactive to HSP60 have been isolated from human 

atherosclerotic plaques. In addition, immunization of experimental animals with the 

mycobacterial homologue HSP65 aggravates atherosclerosis, a finding that provides indirect 

evidence of autoimmunity, according to the criteria described by Rose and Bona.264-266 

However, HSP60 is not specific for atherosclerosis, as it has also been described for other 

inflammatory disorders such as arthritis. Moreover, later studies focusing on later stages of 

atherosclerosis have shown opposite results, as HSP65 immunization reduces atherosclerosis 

in apoE−/− mice.267 

A more specific autoantigen for atherosclerosis, modified LDL, has also been implicated in 

atherogenesis.268 A number of peptide and lipid epitopes are present in the LDL particle and 

circulating autoantibodies against these epitopes are found in both animals and humans. T 

cells recognizing different forms of LDL have been isolated from human atherosclerotic 
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plaques. Importantly, adoptive transfer of CD4+ T cells reactive to malondialdehyde (MDA)-

oxidized LDL aggravates atherosclerosis in apoE−/− scid/scid mice.269 Although this study 

provided evidence for an autoimmune component in atherogenesis, it was limited by the fact 

that it used immunodeficient scid/scid mice. 

The aforementioned proatherogenic responses of CD4+ T cells were observed in scid/scid 

mice lacking T and B cells. Therefore, possible T cell-dependent B cell responses could not 

be evaluated in this model. Several studies support an atheroprotective role for humoral 

responses to oxLDL and native LDL (nLDL). In 1959, Gero and co-workers demonstrated an 

atheroprotective effect of immunization with β-lipoprotein in animals fed a high-cholesterol 

diet.270 Thirty-six years later, Palinski and co-workers showed that immunization of LDLR−/− 

rabbits with homologous MDA-modified LDL increases IgG antibodies against MDA-LDL 

and confers atheroprotection.271 The same group showed that immunization of LDLR−/− mice 

with either MDA-modified or native LDL confers a similar degree of atheroprotection, 

similar modest decreases in plasma cholesterol, but large differences in the levels of 

antibodies against oxidization-specific epitopes.272 Ameli and co-workers also found that 

immunization with homologous copper-oxLDL or nLDL increases anti-oxLDL IgG 

antibodies and ameliorates diet-induced atherosclerosis in rabbits. Interestingly, 

immunization with nLDL was more effective in reducing plaque size in this study.273 These 

findings were supported by additional studies in hyperlipidaemic rabbits and mice.272,274-276 

In summary, LDL has been considered the predominant autoantigen involved in 

atherogenesis. T cell-mediated immunity to modified LDL appears to be proatherogenic in 

experimental studies. In 2010, Hermansson and co-workers created apoB100-reactive CD4+ 

T cell hybridomas that express a particular TCR variable β (TRBV) chain, TRBV31. 

Interestingly, immunization of atherosclerosis-prone mice with a TRBV31-derived peptide 

induced antibodies that could block the recognition of apoB100 by TRBV31+ T cells, which 

was associated with a reduction in experimental atherosclerosis.277 In contrast, the majority of 

data on humoral anti-LDL responses suggest an atheroprotective role of antibodies to 

oxidized or native LDL. Different mechanisms for this atheroprotection have been suggested, 

including antibody-mediated LDL clearance from the circulation, Fc-receptor-mediated 

oxLDL clearance from plaques, IgG-mediated stimulation of inhibitory Fc receptors, 

generation of Treg cells or unknown T cell-mediated immune responses. 
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7 AIMS 
The general aim of the present thesis was to increase understanding of the reciprocal 

relationship between immunity and metabolism in atherosclerosis and to explore novel 

immunomodulatory therapeutic strategies against atherosclerotic CVD. 

The specific aims of each article were as follows: 

I. To investigate the role of T cell-mediated responses to LDL in atherosclerosis.  

II. To evaluate the potential of triggering the Treg cell − IDO1 axis to promote vascular 

tolerance mechanisms and treat atherosclerosis. 

III. To explore the role of IDO1-mediated tryptophan metabolism in atherosclerosis.  

IV. To explore the atheroprotective molecular mechanisms of the tryptophan metabolite 3-

HAA and to assess the potential effects of increasing endogenous 3-HAA levels. 
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8 METHODOLOGICAL CONSIDERATIONS 

8.1 MOUSE MODELS OF ATHEROSCLEROSIS 

Mice are resistant to atherosclerosis development when fed a normal diet. Their plasma 

cholesterol is below 100 mg/ml and is mainly found within the HDL fraction. Only high-

cholesterol high-fat diets that also include cholic acid can induce small lesions (fatty steaks) 

in the region of valve leaflets of certain atherosclerosis-prone mouse strains, such as the 

C57BL/6 strain. 

A widely used mouse model of atherosclerosis is the apolipoprotein E knockout mouse.278,279 

These mice lack apoE, an apolipoprotein that mediates the clearance of circulating lipoprotein 

particles, show high levels of plasma cholesterol even on low-fat, low-cholesterol diets, and 

develop atherosclerosis spontaneously. Importantly, plasma cholesterol is contained mainly in 

chylomicrons, VLDL and IDL particles, a profile similar to that observed in human type III 

hyperlipoproteinemia. The atherosclerotic lesions of these mice pass through all stages of 

human plaque development (fatty streak, fibrous plaque, complex plaque) and develop at 

atherosclerosis-prone vascular sites, such as the lesser curvature of the aorta, branch points 

and proximal parts of aorta branches. A disadvantage of this mouse model is that it is not 

optimal for bone marrow transplantation studies, since macrophage-derived apoE normalizes 

cholesterol levels and prevents lesion development.280 Moreover, apoE has been shown to 

influence the proliferation of bone marrow haematopoietic stem cells and myeloid 

progenitors of monocytes and neutrophils.281 

Another common mouse model of atherosclerosis is the LDLR knockout mouse.282 This 

mouse shows approximately twice as high plasma cholesterol levels in comparison to wild 

type controls but does not develop atherosclerotic lesions on a low-fat, low-cholesterol diet. 

Importantly, cholesterol is mainly contained in the IDL and LDL fractions. A reason why 

LDLR deficient mice on chow diet are resistant to atherosclerosis is that mouse liver 

produces a high proportion of apoB48-containing lipoprotein particles, which can be taken up 

by receptors other than LDLR, such as LRP1. When fed a high-fat, high-cholesterol diet, 

these mice show pronounced plasma cholesterol levels and develop lesions that are mostly of 

the fatty streak variety. This mouse model is widely used to study the role of proteins 

expressed by bone marrow-derived cells during atherosclerosis development. 

Transgenic mice expressing human apoB have also been used to study atherosclerosis. These 

mice have 1,5-2 times higher plasma cholesterol levels (contained in the LDL and HDL 

fraction) but are resistant to atherosclerosis on a low-fat, low-cholesterol diet.283,284 However, 
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when these mice are crossed with LDLR knockout mice, they show pronounced plasma 

cholesterol levels (contained in the LDL fraction) and develop complex atherosclerotic 

plaques on a chow diet.285 While mouse models have undoubtedly contributed to our current 

understanding of the pathogenesis of atherosclerosis, they are limited by the typical absence 

of plaque rupture and thrombosis, which are common features of human coronary 

atherosclerosis. 

In Papers I and II, we employed Human APOB100-tg Ldlrtm1Her (HuBL) mice backcrossed 

to C57BL/6J for 10 generations. HuBL mice express a truncated nonfunctional LDLR and are 

transgenic for human apoB, in which leucine is substituted for glutamine-2153 to prevent 

apoB100 mRNA editing and formation of apoB48.155,286 In Paper I, three mouse strains 

transgenic for three different TCRs were generated by microinjection of hCD2-VA 

expression vectors containing specific TCR α and TCR β constructs into C57BL/6J embryos. 

These vectors direct the expression of the transgenes on the surface of T lymphocytes.287 The 

three transgenic strains were designated BT1 (TRAV12, TRBV31), BT2 (TRAV4, TRBV31) 

and BT3 (TRAV14, TRBV31). The chosen TCRs were cloned from previously described T 

cell hybridomas that respond to native LDL and apoB100.277 The different BT strains were 

crossed with HuBL mice, or with a reporter mouse expressing green fluorescent protein 

(GFP) from the Nr4a1 (Nur77) locus, which is activated upon TCR stimulation.288 In Papers 

III and IV, we used the apoE−/− and LDLR−/− mouse model, respectively. All animal 

experiments were conducted in accordance with institutional guidelines and Directive 

2010/63/EU of the European Parliament on the protection of animals used for scientific 

purposes and were approved by the regional board for animal ethics in Stockholm. 

8.2 DENDRITIC CELL-BASED IMMUNOTHERAPY 

Dendritic cells were generated from bone marrow cells obtained from femurs and tibias of 

HuBL mice, depleted of red blood cells, and cultured at 37°C and 7.5% CO2 for 8 days in 

FBS containing DMEM with 10 ng/ml GM-CSF and 10 ng/ml IL-4.289 Isolation of DCs was 

performed using a CD11c magnetic cell-sorting kit. DCs were characterized as CD11c+ 

CD11b+ I-Ab+ CD80+ CD86+ CD205+ cells, and more than 90% of the cells were viable. 

Next, the cells were transferred into cell culture dishes, where they were incubated with 5 

ng/mL TGF-β2 with or without 25 µg/mL apoB100 in serum-free DMEM at 37°C and 5% 

CO2. After 4 hours, 0,1 ng/ml LPS was added to the medium, and the cells were incubated for 

an additional 14 hours. Low-dose LPS was used to induce minimum maturation of DCs and 

to ensure apoB100 could be presented by MHC-II. Finally, DCs were washed with DMEM, 

kept on ice and injected intravenously into eleven-week-old male HuBL mice within 1 hour. 
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Five days later, the mice were placed on a Western diet (corn starch, cocoa butter, casein, 

glucose, sucrose, cellulose flour, minerals, and vitamins; 0,15% cholesterol, 21% fat, 17% 

protein, 43% carbohydrates, 10% H2O, and 3.9% cellulose fibres; R638 Lantmännen, 

Kimstad, Sweden) and maintained for 10 weeks. In parallel to the cell injection preparations, 

DCs, prepared as mentioned above, were used in in vitro experiments assessing cytokine 

secretion and in Treg cell conversion assays. 

8.3 LDL ISOLATION FROM HUMAN PLASMA 

LDL was freshly prepared from the pooled plasma of 2-3 healthy donors using a two-step 

ultracentrifugation process.290 Briefly, plasma was ultracentrifuged in a Beckman Optima™ 

L-90K ultracentrifuge equipped with a SW40Ti swinging-bucket rotor at 40,000 rpm for 20-

24 hours (4°C). After centrifugation, the upper layer containing chylomicrons, VLDL, IDL 

and a small fraction of LDL was carefully removed with a glass Pasteur pipette. Beneath the 

upper layer was a colourless region that was also discarded to a large extent. The lowest part 

of this colourless region as well as the underlying yellow layer was collected in a volumetric 

flask for density adjustment. The density was adjusted to 1.060 using potassium bromide. The 

density-adjusted plasma was then again ultracentrifuged as previously described, and the 

uppermost LDL fraction was carefully collected. Potassium bromide was removed from LDL 

using a PD-10 desalting column (GE Healthcare Life Sciences, Uppsala, Sweden). 

Ethylenediaminetetraacetic acid (EDTA) was added to the LDL preparation (1 mg/ml protein 

concentration) at a final concentration of 1 mM. For detection of antibodies against native 

LDL, both EDTA and 20 µM butylated hydroxytoluene (BHT) were added to the plasma 

before ultracentrifugation.  

8.4 LDL OXIDATION 

OxLDL was prepared using copper sulphate (CuSO4). The LDL samples were first diluted 

with phosphate-buffered saline (PBS) to a final protein concentration of 1 mg/ml and then 

incubated with 20 µM CuSO4 for 18 hours at 37°C. CuSO4 was then removed using a PD-10 

desalting column, and oxidation was halted by addition of 1 mM EDTA. 

8.5 APOLIPOPROTEIN B PREPARATION  

ApoB100 was prepared from isolated human LDL using a chloroform/methanol extraction 

protocol.291 Four parts methanol, 1 part chloroform and 3 parts distilled water were added to 1 

part LDL solution. The mixture was vortexed vigorously and then centrifuged at 9000 g for 

10 minutes. The apoB100 protein was precipitated at the interface, isolated, washed with 

PBS, and dissolved in sodium dodecyl sulphate (SDS) buffer. Excess SDS was removed 
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using a PD-10 desalting column. Soluble apoB100 was isolated by size-exclusion 

chromatography using a Superdex200 column equilibrated with Tris-buffered saline (TBS) at 

pH 7.6 (0.5 ml/min). 

8.6 LDL-IGG IMMUNE COMPLEX AND APOB CLEARANCE EXPERIMENTS 

LDL was labelled with FITC as previously described. Briefly, LDL (2 mg/ml in terms of 

protein) was dialysed overnight against 0.5 M NaHCO3 at pH 9.5. Next, 100 µg FITC 

dissolved in DMSO was added for every 1 mg of LDL protein, and the mixture was 

incubated for 2 hours at room temperature. Then, the conjugates were separated from free 

fluorochrome using a PD-10 column and PBS as elution buffer. Protein concentrations were 

measured using the Bradford assay. Human FITC-labelled LDL (100 µg protein) was mixed 

with plasma from HuBL mice that had received either BT3 CD4+ T cells or B6 CD4+ T cells. 

The mixture was then injected in the tail vein of HuBL mice, and blood was collected at 

several time intervals. Fluorescence was measured in plasma samples diluted 1:25 in PBS 

using a Perkin Elmer Wallac 1420 Victor2 plate reader. Fluorescence was normalized to the 

signal obtained in plasma collected 1 minute after injection. 

IgG antibodies were purified from the plasma of HuBL or BT3xHuBL mice using Protein G 

resin columns (GE Healthcare Life Sciences, Uppsala, Sweden), according to the 

manufacturer’s instructions. After purification, IgG solutions were extensively dialysed 

against PBS, and their protein concentration was measured with a Nanodrop 1000 

spectrophotometer. Two-hundred micrograms of purified IgG preparations were injected 

intravenously into HuBL recipient mice, and blood samples were collected at several time 

intervals for quantification of the plasma apoB concentrations. 

8.7 IMMUNE COMPLEXES AND ANTIBODIES TO LDL, OXLDL, APOB100  

Antibodies against LDL, oxLDL and apoB100 and corresponding immune complexes were 

determined using the enzyme-linked immunosorbent assay (ELISA). For determination of 

antibody titres, LDL, oxLDL or apoB100 (10 µg/ml, 30 µl/well) was coated onto Corning™ 

Costar™ 96-well microplates and incubated overnight at 4°C. For immune complex 

detection, anti-apoB100 antibodies were used to coat the plates instead of lipoprotein or 

apoB100 solutions. Coated plates were washed twice, and “blocked” with 1% gelatine in PBS 

for 1 hour at room temperature. The plates were washed twice with PBS, and mouse plasma 

diluted in TBS with 0.1% gelatine was added to the wells (30 µl/well) for 2 hours. The plates 

were washed three times with PBS containing 0.05% Tween® 20. Biotinylated anti-mouse 

IgG or anti-mouse IgM antibodies, diluted in TBS with 0.1% gelatine, were then added to the 



 

  39 

wells for 1 hour. After washing, horseradish peroxidase (HRP)-conjugated streptavidin, 

diluted in TBS with 0.1% gelatine, was added for 30 minutes. The plates were washed again, 

and HRP activity was detected using TMB (3,3',5,5'-tetramethylbenzidine) substrate followed 

by the addition of sulphuric acid stop solution to yield a yellow colour, the absorbance of 

which was measured in a Versamax™ microplate reader. 

In competition ELISA assays, purified IgG (10 µg/ml) from either HuBL or BT3xHuBL mice 

was preincubated with increasing concentrations of native LDL, oxLDL and apoB100 in 

glass tubes at 4°C overnight. The mixtures were then used in the ELISA assays to detect IgG 

antibodies against LDL and oxLDL, as described above. 

8.8 EVALUATION OF ATHEROSCLEROSIS 

The extent of atherosclerosis development was evaluated using two different methods: en 

face staining of thoracic aortas with Sudan IV and staining of transverse sections of the 

proximal 800 micrometers of the aortic root (starting from the level where the aortic leaflets 

become visible in the microscope) with Oil Red O (ORO). Sudan IV and ORO stain lipids 

and fatty substances in cells and tissues with a red colour. The term en face refers to 

longitudinally opened aortas that have been removed from the thoracic cavity of animals and 

pinned on a plastic surface. This configuration allows quantification of the intima area stained 

with Sudan IV. Lesion size was quantified in a blinded fashion using ImageJ software. 

8.9 STATISTICS 

When a Gaussian distribution could not be assumed, the following non-parametric statistical 

tests were used: the Mann-Whitney U test for comparisons of mean values between 2 groups, 

and Kruskal-Wallis one-way analysis of variance (ANOVA) followed by Dunn’s multiple 

comparison post hoc test for comparisons between more than 2 groups. Spearman's rank 

correlation coefficient was used to assess correlations between 2 variables. In Paper I, if 

normality was suggested by the Shapiro-Wilk test, the following parametric tests were used: 

Student’s t-test for comparison of means between 2 groups, one-way ANOVA with Dunnett’s 

multiple comparison test for comparison of means between more than 2 groups, two-way 

ANOVA with Bonferroni’s post-test for comparisons of mean values between groups that 

have been split on two independent variables, and Pearson correlation coefficient for linear 

correlations between continuous variables. Continuous variables are presented in various 

graph types (e.g., column bar graphs, scatter plots) as the mean ± standard error of the mean 

(SEM). The alpha (α) level denoting the type I error rate or statistical significance was set at 
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0.05 (5%). Statistical analyses were performed using GraphPad Prism (GraphPad Software, 

Inc., CA, USA). 
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9 RESULTS AND DISCUSSION 

9.1 LDL-REACTIVE T CELLS LOWER PLASMA CHOLESTEROL AND 
PROTECT AGAINST ATHEROSCLEROSIS (PAPER I) 

To investigate the definitive the role of apoB100-reactive T cells in atherosclerosis, we 

generated 3 transgenic mouse strains in which the vast majority of CD4+ TH cells recognize 

apoB100. The strains, termed BT1, BT2 and BT3, expressed the transgenic TCR variable β 

chain TRBV31 and one of the following variable α chains: TRAV12 (BT1), TRAV4 (BT2) or 

TRAV14 (BT3), respectively. The majority of TRBV31+ TH cells in BT strains were naïve 

cells, while a minority of cells comprised Treg cells (<5%) and TH1 (<3%) cells. Transgenic T 

cells could be strongly activated in vitro by human LDL and to a lower extent by oxLDL, 

confirming previous findings.277 The ability of TRBV31+ T cells to respond to human LDL 

was also verified in vivo through LDL injections in transgenic mice crossed with the Nur77-

GFP reporter mouse. 

The effects of cellular immunity to LDL on atherosclerosis were assessed by two different 

experimental setups: adoptive transfer of LDL-reactive T cells from transgenic mice into 

HuBL mice (BT1, BT2 or BT3−>HuBL), and crossbreeding of transgenic strains with HuBL 

mice. Both approaches showed that a significant proportion of LDL-reactive T cells 

differentiated into TFH cells, which helped B cells form strong germinal center reactions, 

differentiate into plasma cells and produce anti-LDL IgG antibodies. These antibodies were 

reactive to native LDL, oxLDL and apoB100 and formed immune complexes with circulating 

LDL. This antibody response led to increased lipoprotein clearance, which reduced plasma 

cholesterol levels and halted the development of atherosclerosis. The IgG antibody-induced 

lipoprotein clearance was suggested by experiments in HuBL mice showing enhanced 

clearance of injected FITC-labeled LDL that had previously been incubated with plasma from 

BT3−>HuBL mice, as well as a reduction in plasma apoB after injection of purified IgG 

antibodies from BT3xHuBL mice. 

An interesting observation is that although the BT3−>HuBL mice presented higher absolute 

numbers of TFH cells and higher levels of anti-LDL antibodies than BT1−>HuBL mice, the 

magnitude of reduction in plasma cholesterol and atherosclerosis in these two groups was 

similar. Potential explanations for the similar phenotypes are a saturation of the antibody-

mediated LDL clearance, differences in cholesterol synthesis between the groups of mice, or 

blunting of the antibody-mediated atheroprotection by stronger TH1 responses in the 

BT3−>HuBL group. 
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In the cell transfer experiments, flow cytometry of spleens suggested that apoB100-reactive T 

cells differentiated into TFH and TH1 cells, while Treg cell differentiation was negligible. 

Similar results were observed in the BT1xHuBL and BT3xHuBL cross. These crosses provide 

a humanized mouse model of cellular immunity to LDL, where the autoantigen is already 

present from birth. In this context, our study illustrates the importance of different tolerance 

mechanisms. Negative selection took place in the thymus, as shown by the elimination of 

TRBV31bright cells. Nevertheless, a substantial proportion of self-reactive T cells escaped 

central deletion and survived as TRBV31dim cells. Another tolerance mechanism, T cell 

anergy, took place in the periphery, as suggested by the lack of proliferation of splenocytes 

from BT1xHuBL mice in response to LDL stimulation in vitro. Interestingly, Treg cells did not 

seem to have played an important role in our models. 

Based on previous findings by Hermansson and co-workers,277 the initial hypothesis of our 

study was that cellular immunity to LDL would promote atherosclerosis due to increased 

proinflammatory TH1 responses in the vascular wall. However, our models showed a 

predominant role of TFH cell differentiation and humoral anti-LDL responses, which probably 

shadowed the potential deleterious effects of TH1 LDL-reactive T cells. Notably, our mouse 

models allowed the evaluation of chronic atherosclerosis development that does not capture 

acute events, where the role of vascular TH1 cells could be particularly important. 

Our results are in line with previous studies suggesting an atheroprotective role of B cell 

antibody responses to LDL.255 Epidemiological studies have shown that low levels of IgG 

antibodies to specific apoB100 peptide epitopes are associated with higher risk for 

cardiovascular events or mortality.292-294 Moreover, a number of immunization studies using 

different LDL/apoB100 preparations have shown that antibody responses to LDL, oxLDL or 

apoB protect from atherosclerosis.270-276 Although some of these studies could detect 

reductions in plasma cholesterol,270,271 the role of LDL-specific antibodies in lipoprotein 

clearance has been underappreciated. Thus, the exact mechanisms mediating the effects of 

these antibodies have never been fully elucidated. In our study, the accumulation of IgG in 

the liver and the increased cholesterol content in the feces of BT3xHuBL mice point towards a 

possible hepatic route of LDL-IgG immune complex clearance. Indeed, it is known that IgG 

immune complexes can be cleared by Fcγ receptors of Kupffer cells and sinusoidal 

endothelial cells in the liver as well as by galactose receptors in hepatic parenchymal cells.295-

297 Of note, a potential unwanted side effect of immune complexes is their deposition in 

glomeruli, which may cause glomerulonephritis.298 Although no differences in serum 
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creatinine were detected in our experiments, potential adverse effects of IgG-LDL immune 

complexes warrant further investigation. 

Another possible atheroprotective mechanism of anti-LDL antibodies is the clearance of 

modified LDL from the intima,299 which can inhibit endothelial cell activation, monocyte 

accumulation and macrophage activation in the vascular wall. In our study, decreased 

vascular inflammation was suggested by lower expression of vascular cell adhesion protein 1 

(VCAM-1) in plaques and lower IL-6 mRNA expression in para-aortic lymph nodes of 

BT1xHuBL mice. Moreover, IgG antibodies may confer atheroprotection through binding to 

inhibitory Fcγ receptors.253 

 Figure 5. Summary of Paper I. A) 

An LDL-reactive T cell in the T cell 

zone of peripheral lymphoid organs 

recognizes a peptide epitope on 

apoB100, gets activated and 

proliferates. In parallel, B cells 

recognize oxidation specific 

epitopes on LDL, get activated and 

proliferate. The activated T cells 

and B cells migrate towards one 

another. Different B cell clones now 

act as APCs and present the 

apoB100 peptide epitope to 

apoB100-specific T cells. B) In 

parafollicular areas, the T-B cell 

interaction promotes an expansion 

of TFH cells that migrate together 

with activated B cells to the follicle. 

There, TFH cells help B cells form 

germinal center (GC) reactions and 

differentiate into plasma cells 

secreting IgG antibodies to various 

LDL epitopes. C) IgG antibodies 

bind to various LDL epitopes, clear 

LDL from the circulation and 

ameliorate atherosclerosis. 

In conclusion, Paper I indicates that cellular immunity against LDL protects from 

atherosclerosis via induction of humoral anti-LDL responses that clear lipoproteins from the 

circulation and reduce plasma cholesterol (Figure 5). Hence, our data reinforces the concept 
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that immunization with an LDL preparation is a promising therapeutic strategy for the 

prevention of atherosclerosis. Our findings may form the basis for further studies focusing on 

the identification of specific apoB100 peptide epitopes, elucidation of the exact mechanisms 

behind antibody-mediated atheroprotection, and identification of potential adverse effects. 

9.2 ACTIVATION OF THE TREG−IDO1 AXIS IN THE VASCULAR WALL 
REDUCES ATHEROSCLEROSIS (PAPER II) 

In Paper II, we used DC-based immunotherapy in order to induce two important peripheral 

tolerance mechanisms in the vascular wall, namely expansion of apoB-specific Treg cells and 

induction of the immunoregulatory enzyme IDO1. Regulatory T cells promote 

immunological tolerance via secretion of the anti-inflammatory cytokines IL-10 and TGF-β, 

cell−cell contact-mediated induction of T cell anergy, and CTLA-4−mediated induction of 

IDO1 in dendritic cells.123 In turn, IDO1, which is known to suppress proinflammatory T cell 

responses and ameliorate various experimental autoimmune diseases, can induce Treg cell 

differentiation.121,122 In this study, we hypothesized that activation of this Treg−IDO1−Treg 

loop in the vascular wall could inhibit the development of atherosclerosis. 

To promote the accumulation of Treg cells in developing plaques, we employed 

immunotherapy with tolerogenic DCs loaded with an atherosclerosis-relevant antigen, 

apoB100. DCs were generated from bone marrow-derived progenitor cells and rendered 

tolerogenic through treatment with TGF-β2 during loading with apoB100. The tolerogenic 

properties of these DCs were suggested by in vitro experiments showing an anti-

inflammatory cytokine secretion profile, reduced expression of MHC-II and CD86, increased 

IDO1 expression, and the ability to induce Treg cell differentiation. 

Intravenous injection of tolerogenic TGF-β2−treated, apoB100-loaded DCs into HuBL mice 

resulted in an accumulation of Treg cells in the aortic root after 10 weeks of high-fat diet. In 

line with this finding, mRNA levels of CTLA-4, which is constitutively expressed on Treg 

cells, were upregulated in the para-aortic lymph nodes of these mice. CTLA-4 binding to 

CD80/CD86 is known to regulate IDO1 activity in DCs.123,300 Indeed, the increase in Treg 

cells in the aortic root of experimental mice was associated with increased IDO1 expression. 

Immunofluoresence staining revelead that IDO1 was expressed in vascular smooth muscle 

cells, macrophages and endothelial cells. Increased IDO1 expression was accompanied by 

increased IDO1 activity, as shown by the increased L-kynurenine staining in plaques of mice 

receiving TGF-β2−treated, apoB100-loaded DCs. Of note, L-kynurenine is an endogenous 

AHR agonist that can induce differentiation of naïve T cells to Treg cells.141 Most importantly, 
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the induction of the Treg cell−IDO1 axis in the vascular wall was associated with reduced 

macrophage infiltration and reduced atherosclerosis. 

Previous studies suggest that Treg cells must be specific to disease-relevant antigens in order 

to exert an immunosuppressive effect in vivo.87,301,302 ApoB100 contains multiple T cell 

epitopes and is abundantly present in atherosclerotic lesions, hence its use in our study.303 

Notably, induction of the Treg cell−IDO1 axis and amelioration of atherosclerosis required 

treatment of DCs with both TGF-β2 and apoB100, as the cytokine or the antigen alone had no 

effect. 

In Paper I, apoB100-specific cellular immune responses induced anti-LDL antibody 

responses, thereby lowering plasma cholesterol. In Paper II, the groups of mice receiving 

apoB100-pulsed DCs (irrespective of TGF-β2 treatment) showed higher levels of IgG 

antibodies to apoB100 (unpublished data). Although no differences in plasma cholesterol 

were observed in Paper II, we can not exclude that anti-LDL antibodies contributed to 

atheroprotection via other mechanisms. 

Consistent with our findings, positive correlations between IDO1 expression and Treg cell 

numbers have been shown in human studies as well as in experimental models of cancer, 

infection, transplantation and chronic inflammation.304-306 In the context of atherosclerosis, 

Yun and co-workers demonstrated that Treg cells and IDO1 gene expression in the vascular 

wall increase linearly with plaque size, and IDO1 deficiency in myeloid cells leads to reduced 

Treg cells in the aorta of LDLR−/− mice.307 In keeping with this finding, advanced human 

atherosclerotic plaques are characterized by upregulation of Foxp3, CTLA-4 and IDO1 

compared to non-atherosclerotic vessels.308 In our study, Treg cells and IDO1 expression were 

associated with smaller atherosclerotic plaques, suggesting that triggering the Treg cell−IDO1 

axis during early atherosclerosis can change the natural course of disease. 

The CTLA-4–CD80/CD86 interaction is known to induce IDO1 in DCs.123 Using the fusion 

protein CTLA-4-Ig in human primary cell cultures, we showed that CTLA-4 regulates IDO1 

expression and activity in aortic SMCs, human umbilical vein endothelial cells (HUVECs) 

and monocyte-derived macrophages. Interestingly, CTLA-4-Ig induced IDO1 only in cells 

that had previously been exposed to IFN-γ. At the mRNA level, IFN-γ upregulated CD80 but 

not CD86, suggesting that IDO1 induction in vascular cells is mediated by the CTLA-4–

CD80 interaction.309 Of note, Grohmann and co-workers showed that the CTLA-4-Ig–

mediated IDO1 induction in DCs requires IFN-γ and STAT-1.300 
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Autologous dendritic cell “vaccination” (also known as immunotherapy) is currently 

evaluated in clinical trials for the treatment of a number of cancers, including melanoma, 

prostate and breast cancer.310 In atherosclerosis, DC immunotherapy is still at the 

experimental level.87,311 In Paper II, TGF-β2 was chosen, because it can modulate the 

function of APCs rendering them capable of inhibiting TH1 responses and promoting TH2 and 

Treg cell responses.312,313 Notably, DC treatment with TGF-β2 was superior to IL-10 in Treg 

cell differentiation in vitro. In line, immunotherapy with TGF-β2−induced tolerogenic DCs 

resulted in accumulation of Treg cells in atherosclerotic plaques, which was not the case with a 

previous IL-10−based approach.87 

In summary, Paper II indicates that activation of the Treg cell−IDO1 axis in the vascular wall 

is an attractive immunomodulatory approach against atherosclerotic cardiovascular disease 

(Figure 6). Our findings suggest that CTLA-4-Ig, an approved biologic therapy (abatacept, 

ORENCIA®) for the treatment of rheumatoid arthritis, psoriatic arthritis and juvenile 

idiopathic arthritis, may induce IDO1-mediated tryptophan catabolism in the vascular wall, 

which might have clinical implications in this patient population characterized by chronic 

inflammation and increased cardiovascular risk. 
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Figure 6. Summary of Paper II. A) Bone marrow cells were taken from HuBL mice and cultured with GM-

CSF and IL-4 to generate immature DCs. DCs were then treated with TGF-β2, pulsed with apoB100, and 

stimulated with LPS. Matured DCs were then injected into HuBL recipient mice. B) In peripheral lymphoid 

organs, tolerogenic DCs presented apoB100 epitopes to apoB-specific naïve T cells, and skewed T cell effector 

responses towards Treg cells. C-D) ApoB100-specific Treg cells accumulated in the developing plaques, which 

was associated with increased IDO1-mediated tryptophan metabolism. In vitro experiments suggested that the 

Treg cell molecule CTLA-4 could induce IDO1 in macrophages, SMCs and endothelial cells through an 

interaction with the costimulatory molecule CD80. D) The inset depicts, in magnification, the CTLA-4−CD80 

interaction between a Treg cell and a macrophage. 

9.3 IDO1-MEDIATED TRYPTOPHAN METABOLISM REGULATES VASCULAR 
INFLAMMATION AND ATHEROGENESIS (PAPER III)  

Systemic IDO1 activity predicts future cardiovascular events in both healthy individuals and 

patients with coronary heart disease.314,315 In experimental atherosclerosis, IDO1 is expressed 

in macrophages, SMCs and endothelial cells.316,317 In Paper III, we used a pharmacological 

approach to study the role of IDO1-mediated tryptophan metabolism in atherosclerosis. 

Treatment of high-fat diet fed apoE−/− mice with the IDO1 inhibitor 1-MT promoted 

macrophage accumulation in the intima and aggravated atherosclerosis. Gene expression 

analysis showed upregulation of the inflammatory markers VCAM-1, MCP-1 and TNF in the 

aortas of these mice. Interestingly, immunohistochemical staining of the aortic roots of 1-

MT−treated mice revealed strikingly increased expression of the adhesion molecule and NF-

κΒ activation marker VCAM-1 in the media, which correlated with atherosclerotic plaque 

size. 

Systemic inhibition of tryptophan catabolism by 1-MT was confirmed by the decreased 

kynurenine/tryptophan ratio in the spleen and the duodenum, two organs with relatively high 

IDO1 expression.113 The DL stereoisomer was chosen because it had a superior inhibitory 

effect on LPS-stimulated PBMCs and it had been used extensively in experimental 

studies.125-127 The inhibitor was provided in the drinking water at a concentration based on an 

experimental cancer study that paved the way for clinical trials.131 Our data may have direct 

implications in clinical practice, since the D stereoisomer of 1-MT is currently used in cancer 

clinical trials. Notably, we found that treatment of apoE−/− mice with D-1-MT also aggravates 

atherosclerosis, while L-1-MT exerts no effect (unpublished data). 

Several studies have shown that IDO1 regulates T cell responses. In our study, 1-MT 

treatment increased the absolute plaque area stained for macrophages but did not increase the 

number of lesional T cells. Gene expression of T cell transcription factors in spleens and 

aortas as well as splenocyte cultures did not yield any differences either. However, there was 
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a trend towards increased lymphocytes in the peripheral blood of 1-MT−treated mice 

(unpublished data). These results do not exclude functional consequences or the possibility 

that 1-MT influenced T cells in earlier stages of the disease. Actually, a later study using 

IDO1−/− apoE−/− mice showed that IDO1 deficiency promoted the accumulation of lesional T 

cells at 15 weeks but there was difference at 20 weeks of age.318 In our study, mice were 

sacrificed at 20 weeks. 

3-HAA has been shown to reduce total plasma cholesterol and triglycerides, increase HDL 

cholesterol, and ameliorate atherosclerosis.319 In Paper III, reduced tryptophan metabolism 

resulted in a non-significant increase in total plasma cholesterol (due to slightly increased 

VLDL and LDL cholesterol) and a significant decrease in HDL. This suggests that reduced 

levels of 3-HAA could be an important regulator of lipoprotein metabolism. 

In a rescue experiment, exogenous administration of 3-HAA to 18-week-old apoE−/−  mice for 

4 weeks halted the 1-MT−induced vascular inflammation and progression of atherosclerosis. 

Of note, 3-HAA is a known inhibitor of the NF-κΒ pathway and can inhibit TNF-induced 

VCAM-1 expression in HUVECs.320 Because of the striking effects on medial VCAM-1 

observed in our experiments, we studied the role of IDO1 in the regulation of VCAM-1 in 

human primary vascular SMCs. Consistent with our in vivo findings, inhibition of IDO1-

mediated tryptophan catabolism in coronary SMCs induced VCAM-1 expression, an effect 

that was abrogated by 3-HAA. 

The role of VCAM-1 as adhesion molecule in endothelial cells is well known. This molecule 

is also expressed in plaque macrophages and SMCs as well as in medial SMCs,321,322 and its 

expression correlates with intimal leukocyte content.323 The exact role of VCAM-1 in 

vascular SMCs is unknown. It has been suggested that this molecule is not merely a marker 

of NF-κΒ activation but exerts biological functions driving atherosclerosis.324 VCAM-1 on 

intimal SMCs may contribute to the retention of monocytes and macrophages in the 

developing plaque.325 Electron microscopy studies showing direct contact between intimal 

SMCs and macrophages support this hypothesis. Moreover, VCAM-1 on SMCs can protect 

lesional monocytes from apoptosis via induction of the PI3K−Akt pathway, and promote 

foam cell formation via induction of ERK1/2−CD36.326 Finally, early VCAM-1 expression in 

medial SMCs was observed in atherosclerosis-prone arterial segments just prior to or 

coincident with leukocyte infiltration in both apoE−/− and LDLR−/− mice.327 

In our study, inhibition of IDO1-mediated tryptophan metabolism increased medial 

inflammation substantially. Whether medial inflammation contributed to atherogenesis or 
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was secondary to intima hyperplasia/inflammation remains unknown. An interesting 

hypothesis that was not evaluated in our study is that IDO1 regulates SMC proliferation, 

migration and transdifferentiation into macrophages.177,178 The hypothesis that the effects of 

1-MT on medial SMCs could have driven atherosclerosis is supported by a number of 

previous observations proposing a central role of IDO1 in SMCs: the inflammatory cytokines 

IFN-γ and TNF induce IDO1 expression and activity in human vascular SMCs to a much 

larger extent than in monocytes and endothelial cells.328 It has also been proposed that IDO1 

induction in the media under inflammatory conditions spares this layer from T cell infiltration 

(“medial immunoprivilege”).329 IFN-γ, the most potent inducer of IDO1, is crucial for the 

prevention of chronic viral inflammation/vasculitis in the arterial wall. Interestingly, IFN-γ−/− 

mice developed vasculitis in atherosclerosis-prone arterial segments.330 

A few months after the publication of Paper III, two studies evaluating genetic IDO1 

deletion in apoE−/− and LDLR−/− mice showed contradictory results. Metghalchi and co-

workers showed that IDO1 inhibits IL-10 release by bone marrow-derived cells and 

exacerbates atherosclerosis in LDLR−/− mice. In this study, IDO1-deficient bone marrow-

derived cells showed increased secretion of IL-10 upon in vitro stimulation with LPS and 

IFN-γ.316 Conversely, Cole and co-workers showed that IDO1 deficiency in apoE−/− mice fed 

a normal chow diet reduces IL-10−secreting B cells and aggravates atherosclerosis. The 

authors showed direct in vivo effects on IL-10, as plasma IL-10 concentration was reduced in 

IDO1−/− apoE−/− compared to apoE−/− controls.318 This latter study shows many similarities 

with our study: it used apoE−/− mice, showed that IDO1 is atheroprotective, and did not detect 

differences in plaque CD4+ T cell numbers at later disease stages. 

Potential explanations for the conflicting results on the role of IDO1 in atherosclerosis are 

study differences in mouse strains (LDLR−/− versus apoE−/−), diet (high-fat versus normal 

chow), and gut microbiome. A difference between the genetic IDO1 studies and our study is 

that our pharmacological approach allows the evaluation of enzyme activity, whereas a 

genetic approach evaluates both enzyme activity and potential other unknown biological 

functions. For instance, it has been shown that IDO1 has an intracellular signalling function 

that is crucial for the TGF-β−induced immunoregulatory phenotype of plasmacytoid DCs.331 

In summary, Paper III shows that IDO1-mediated tryptophan metabolism along the 

kynurenine pathway regulates vascular inflammation and exerts atheroprotective functions 

(Figure 7). The observed effects of IDO1 could be mediated by tryptophan depletion, the 

generation of kynurenines, or both. The ability of 3-HAA to inhibit the 1-MT−induced 

atheroprogression suggests that this metabolite is a key mediator of atheroprotective 
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mechanisms. Importantly, 3-HAA can positively influence both plasma lipids and vascular 

inflammation, which makes it an attractive candidate for drug development. 

  

Figure 7. Summary of Paper III. A) During atherogenesis, endothelial cells get activated, express the adhesion 

molecule VCAM-1, and attract blood-borne monocytes, which translocate into the intima and differentiate into 

macrophages. The resulting chronic inflammatory process induces the enzyme IDO1 in smooth muscle cells, 

macrophages and endothelial cells. IDO1 activation results in the metabolism of tryptophan along the 

kynurenine pathway, which generates various metabolites with biological properties, such as L-kynurenine and 

3-HAA. Paper III suggests that IDO-1−mediated tryptophan metabolism has an anti-inflammatory and 

atheroprotective function. B) Systemic treatment of apoE knockout mice with the IDO1 inhibitor 1-MT inhibited 

degradation of tryptophan along the kynurenine pathway, which resulted in increased expression of 

proinflammatory mediators (TNF, MCP-1), increased expression of VCAM-1 in the media, and increased 

macrophage accumulation in developing plaques. These effects were abrogated, when 3-HAA was administrated 

exogenously. 

9.4 THE ATHEROPROTECTIVE TRYPTOPHAN METABOLITE 3-HAA 
DOWNREGULATES HEPATIC SREBP-2 AND INHIBITS THE NLRP3 
INFLAMMASOME (PAPER IV) 

In Paper IV, we explored at the molecular level the potential mechanisms behind the lipid-

lowering and anti-inflammatory effects of 3-HAA on hepatocytes and macrophages, 

respectively.319,332 Moreover, we investigated whether elevating endogenous 3-HAA levels 

through inhibition of the 3-HAA−metabolizing enzyme HAAO affects lipoprotein 

metabolism and atherosclerosis. 

In vitro experiments on human HepG2 cells showed that 3-HAA decreased nuclear SREBP-2 

(nSREBP-2) as well as SREBP-2 gene expression. SREBP-2 regulates its own transcription, 

which may explain the reduced SREBP-2 gene expression in 3-HAA−treated cells.333 These 
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results imply that 3-HAA acts via a different mechanism than statins, which inhibit 

cholesterol synthesis, thereby inducing SREBP-2 and LDLR-mediated uptake of apoB-

containing lipoproteins. Moreover, 3-HAA treatment resulted in lower levels of apoB in the 

supernatants of HepG2 cells, indicating decreased lipoprotein secretion. It has been suggested 

that apoB secretion is affected by the cellular triglyceride content.334 A possible scenario is 

that 3-HAA reduces nSREBP-2, thereby leading to decreased cholesterol and triglyceride 

synthesis and hence decreased secretion of apoB-containing lipoproteins. 

The SREBP-2 pathway can be inhibited by different mechanisms, including increased SCAP-

INSIG binding, inhibition of S1P or S2P or increased degradation of nSREBP-2. A possible 

mechanism mediating the 3-HAA effects on nSREBP-2 is inhibition of the PI3K−Akt 

pathway,335 as 3-HAA has been shown to inhibit PDK1, a signalling molecule that 

phosphorylates Akt.143 Actually, inactivation of Akt has been shown to inhibit the transport of 

SCAP from ER to Golgi, thus reducing nSREBP-2.335 

Paper IV also explored the capacity of 3-HAA to inhibit the NLRP3 inflammasome in 

mouse bone marrow-derived macrophages in vitro. 3-HAA is a known inhibitor of the NF-κB 

pathway, which primes the NLRP3 inflammasome by upregulating pro-IL-1β and NLRP3. 

As expected, 3-HAA treatment of macrophages during inflammasome priming with LPS 

reduced pro-caspase-1, active caspase-1 and IL-1β secretion. Interestingly, 3-HAA inhibited 

not only the priming but also the activation of the inflammasome, since 3-HAA treatment 

after LPS priming and immediately prior to ATP stimulation decreased the secretion of 

cleaved caspase-1 and IL-1β without affecting the levels of pro-caspase-1. 

The effects of increased endogenous 3-HAA were then evaluated in vivo by treating LDLR−/− 

mice with the HAAO inhibitor 4,6-di-bromo-3-hydroxyanthranilic acid (NCR-631), which 

has been shown to increase endogenous levels of 3-HAA.336 Consistent with our in vitro 

results, NCR-631 decreased hepatic mRNA levels of SREBP-2 and its target gene HMG-

CoA reductase. More importantly, NCR-631−treated mice had lower plasma cholesterol and 

triglyceride levels and reduced atherosclerosis. Moreover, these mice presented reduced 

steatosis and inflammation in the liver compared to control mice. 

In conclusion, Paper IV provides mechanistic insights on the lipid-lowering and anti-

inflammatory functions of 3-HAA and identifies HAAO as a potential target for drug 

development against atherosclerotic cardiovascular disease (Figure 8). 
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Figure 8. Summary of Paper IV. A) In vitro experiments in mouse bone marrow-derived macrophages showed 

that 3-HAA inhibits not only the priming but also the activation of the NLRP3 inflammasome. B) Treatment of 

HepG2 cells with 3-HAA resulted in reduced nuclear SREBP-2, and hence reduced gene expression of HMG-

CoA reductase. C) Treatment of LDLR−/− mice with NCR-631, a molecule known to inhibit HAAO and increase 

endogenous 3-HAA levels, reduced plasma lipids and ameliorated atherosclerosis. 
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10 CONCLUDING REMARKS 
Despite the currently available treatment options against atherosclerotic cardiovascular 

disease, substantial residual inflammatory risk remains. This underscores the need for 

development of immunomodulatory drugs that directly target vascular inflammation. 

Harnessing the immune system will open up completely new therapeutic opportunities in the 

management and prevention of CVDs. The studies of the present thesis illustrate the intricate 

interplay between metabolism, particularly metabolism of plasma lipoproteins and the amino 

acid tryptophan, and immunity/inflammation in atherosclerosis, and investigate the 

therapeutic potential of novel immunomodulatory treatment strategies. 

Paper I shows that cellular immunity to apolipoprotein B-100 can induce T follicular helper 

cells, which initiate humoral anti-LDL antibody responses that clear plasma lipoproteins and 

reduce atherosclerosis. Hence, vaccination with apoB epitopes, which could induce similar 

responses, is a promising therapeutic strategy against cardiovascular disease. Paper II 

illustrates the capacity of regulatory T cells to activate tryptophan metabolism in atheroma-

associated cells, and the potential of tolerogenic dendritic cell-based immunotherapy to 

induce anti-inflammatory mechanisms in the vascular wall. Paper III shows that IDO1-

mediated tryptophan metabolism along the kynurenine pathway regulates vascular 

inflammation and atherosclerosis. This study strengthens previous data on the 

atheroprotective role of the tryptophan metabolite 3-HAA, which exhibits both lipid-lowering 

and anti-inflammatory properties. Finally, Paper IV shows that 3-HAA can modulate the 

SREBP-2−mediated lipid homeostasis and inhibit the activation of NLRP3 inflammasome. 

This study also identifies the enzyme HAAO as an attractive target for development of drugs 

with pleiotropic, lipid-lowering and anti-inflammatory, properties. 

Paper I and Paper II exploited adaptive immune responses to the atherosclerosis-related 

antigen apoB100, whereas Paper III and Paper IV targeted tryptophan metabolism to 

modulate lipid metabolism, immunity and atherosclerosis in an antigen-independent manner. 

The theoretical disadvantage of targeting innate immunity is that it may compromise 

antimicrobial defense. This was evident in the CANTOS trial in which treatment with 

monoclonal antibodies to IL-1β increased fatal infections.26 Nevertheless, anti-inflammatory 

therapies could be particularly effective in more selected patient groups, such as patients with 

acute cardiovascular events.337 On the other hand, targeting adaptive immunity has the 

potential to affect only relevant lymphocyte clones without compromising the rest of the 

immune system. Hence, LDL vaccination represents a promising future therapeutic strategy 
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against atherosclerosis. Here, the major challenge would be to translate experimental data 

into humans, who exhibit large variability in HLA genes. 

As a final conclusion, my thesis illustrates the crosstalk between metabolism and 

immunity/inflammation in atherogenesis. It is my firm belief that the knowledge gained from 

our studies will contribute to the development of novel immunomodulatory strategies for the 

prevention and treatment of atherosclerotic cardiovascular disease. 
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