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The Impact of Data Security on Firm Value: How do Stock Markets react 
to Data Breach Announcements? 

Juliane Landmann 

Abstract  

Far too often, data security concerns are not taken as seriously as they should be. This 
negligent behavior does not seldom result in data breaches with far reaching economic 
consequences. This paper demonstrates that there is an observable decline in firm value 
following a data breach announcement, applying an event study methodology to a sample of 
366 firms being subject to data breaches between January 2013 to July 2018. Using a one-
factor and a three-factor model to estimate abnormal returns, firms experiencing a data breach 
lost on average about 1.33 percent of equity over a three-day window around the event. For 
different industries, deviations in the magnitude of negative market reactions are detected. 
Various company and incident related variables, such as company size and number of 
customer records exposed are deployed in regression analyses to account for cross-sectional 
variations in abnormal returns. Profitability has a positive influence on the abnormal returns 
obtained. Multiple breaches have a negative impact on the abnormal equity returns, however, 
there is no significant difference in the severity when compared to single breaches. Other 
factors, namely company size, leverage, magnitude of the breach and type of breach do not 
have any statistically significant influence on the market reactions observed.     

Key words: Data breach, data security, information technology security, event study 

 

Resumo 

Frequentemente, as preocupações em torno da segurança dos dados não são levadas tão a 
sério quanto deveriam. Este comportamento negligente resulta, não raramente, em violações 
de dados com consequências económicas profundas. Este artigo demonstra um declínio 
observável no valor das empresas após o anúncio de uma violação de dados, aplicando uma 
metodologia de estudo de eventos a uma amostra de 366 empresas sujeitas a violações de 
dados entre janeiro de 2013 e julho de 2018. Utilizando um modelo de um fator e de três 
fatores para estimar retornos anormais, as empresas que sofreram violações de dados 
perderam, em média, aproximadamente 1,33 por centro do património líquido num período de 
três dias a contar do evento. Para diferentes indústrias, são detetados desvios na magnitude 
das reações negativas ao mercado. Várias variáveis relacionadas com a empresa e com 
incidentes, tais como o tamanho da empresa e o número de registos de clientes expostos são 
incorporadas em análises de regressão para contabilizar as variações transversais nos retornos 
anormais. A rentabilidade tem uma influência positiva nos retornos anormais obtidos. 
Múltiplas violações têm um impacto negativo nos retornos anormais do património líquido, 
no entanto, não há diferenças significativas na gravidade quando comparadas com violações 
individuais. Outros fatores, nomeadamente o tamanho da empresa, alavancagem, a magnitude 
e o tipo de violação não possuem qualquer influência estatisticamente significativa nas 
reações de mercado observadas.     

Palavras-chave: Violação de dados, segurança de dados, segurança de tecnologia da 
informação, estudo de eventos 
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1 Introduction  

Recent years saw several major data breaches of confidential customer data involving US 

firms. These breaches did not only experience extensive media coverage but often led to 

severe financial consequences for the firms involved as a result of customer dissatisfaction 

and customer’s loss of trust, substantial IT investments and customer reimbursement as well 

as considerable legal expenses and penalty fees imposed by the Federal Trade Commission 

(FTC)1. The most recent data breaches involve the huge technology companies Facebook and 

Google. Facebook has already been troubled with two of such instances this year. The first 

incident concerned the revelation of unauthorized access to 30 million Facebook member 

profiles by the third-party vendor Cambridge Analytica. With the user information the vendor 

built psychographic profiles of potential voters throughout the 2016 Presidential election 

campaign in the US (Rosenberg, Confessore and Cadwalladr, 2018). Additionally, in 

September 2018, Facebook had to inform law enforcement officials that anonymous hackers 

were able to access at least 50 million user accounts as well as applications connected to the 

respective Facebook profiles, such as Instagram and Spotify (Isaac and Frenkel, 2018). 

Google experienced a scenario similar to the Cambridge Analytica malpractice, when an 

Application-Programming-Interface (API) bug in its social network Google+ allowed third-

party app developers to access not only public but also private user data such as occupation, 

gender and age (O’Flaherty, 2018). The lack of privacy protection affected 500,000 members 

and ultimately led to Google’s decision to shut down the network. This decision was made to 

avoid any future data misusage and potential fines of four percent annual global turnover 

under the new European General Data Protection Regulation (GDPR) which Google would 

have to oblige to due to its activities within Europe (O’Flaherty, 2018).  

The events described, however, are not limited to technology companies but can affect any 

industry, for instance retail companies, manufacturers or financial institutions. One of the 

most impactful data breaches in the financial industry occurred at Equifax in 2017, a credit 

reporting agency. The breach affected 143 million customers, exposing credit card accounts, 

social security numbers and drivers’ licenses (Zaidi, 2018). The customer data was 

subsequently used for “fraudulent charges on credit cards and unauthorized mortgage loans on 

                                                     
1 Confidential customer data according to national US legislation (Consumer Privacy Protection Act) from 2017 
include customer information that ultimately make the identification of an individual person possible. Under this 
legislation, examples of confidential customer data include, but are not limited to, a persons’ full name, social 
security number, financial account information and, since recently, biometric data. Henceforth, the term data 
breach will be used to describe events in which companies exposed (intentionally or unintentionally) 
confidential customer data which were not permissioned for disclosure by customers.  
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associated accounts” (Zaidi, 2018), resulting in breach-related costs of 439 million USD of 

which only 125 million USD were covered by insurance (McCrank and Finkle, 2018). As a 

result of the public announcement regarding the detection of the data breach, Equifax’ market 

capitalization decreased by about 25 percent over the course of several days (McCrank and 

Finkle, 2018).  

Even though considerable data breaches occurred in recent years, this is not a new 

phenomenon but rather a problem companies and their customers have been experiencing 

since the rise of the internet in the 2000’s. The most comprehensive data breach of 

confidential customer data to date occurred at Yahoo in 2013, in which data of all its three 

billion customers, including names, account passwords and phone numbers, were accessed by 

malicious outsiders (Perlroth, 2017). However, the full impact of the incident was only made 

public when the company was acquired by Verizon in 2017. As a result of the revelation, 

Verizon lowered its offer price by 350 million USD to 4.48 billion USD (Perlroth, 2017). 

Even though this is a rather extreme example due to the size of the incident as well as the size 

of the companies involved in the transaction in terms of market capitalization, it still 

implicates that data breaches of confidential customer data can have a significant economic 

impact on firm value.  

Besides the prominent examples presented above and an increasing number of data breaches 

in the US each year – reaching the highest number in 2017 with a total of 1,579 reported 

breaches and 179 million records exposed (Identity Theft Resource Center, 2017) – the extent 

to which data breaches of confidential customer data impact firm value is still being discussed 

in literature.  

The first extensive review of the impact of publicly announced information security breaches 

on firm value by Campbell et al. (2003) showed a rather mixed outcome, as there was 

“limited evidence of an overall negative stock market reaction […] [to] security breaches.” (p. 

1). However, when limiting their analyses to breaches in which only confidential customer 

data were affected, the results were significant negative market reactions, showing that the 

market reacts more severe to data breaches when confidential data is involved. This negative 

reaction might be evoked as the market anticipates that the exposure and potential misuse of 

this data leads to the loss of customers as a result of decreasing trust and dissatisfaction. This 

ultimately results in the loss of revenue and market share, directly affecting firm value. 

Following up on these findings, Garg, Curtis and Halper (2003) and Hovav and D’Arcy 

(2003) showed similar negative impacts on firm value as the result of a data breach and 
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started quantifying the costs associated with such breaches. Over the past years, more and 

more studies have focused on the impact of different kinds of data breaches. Cavusoglu, 

Mishra and Raghunathan (2004) studied the impact of internet security breaches on firm 

value, Ettredge and Richardson (2003) investigated the stock market reactions following a 

denial-of-service (DOS) attack on firms that mainly operate on the internet while Chen et al. 

(2010) looked at the financial impact of phishing attacks on both company and customer side. 

All of these studies suggest that there is either a negative impact on firm value or severe 

financial costs associated with the data breach as a result of extended customer support and 

compensation and further expenses for IT security, or a combination of both. Ishiguro et al. 

(2006) report these negative results on firm value following a data breach incident for 

Japanese firms listed on the Tokyo Stock Exchange. They present evidence that negative 

stock market reactions are common reactions to data breach incidents, regardless of the 

country the affected companies operate in.  

All of these previously presented studies date back to the commercial beginnings of the 

internet and digitalization, when customer perception of data security was quite low. Also, a 

substantial number of data breach incidents were either not reported or remained 

undiscovered, with the outcome that only a limited number of firms could be analyzed as part 

of the studies mentioned above. More recent studies in this field are quite scarce. Hinz et al. 

(2015) examined the effects of data theft on the share prices of consumer electronics 

companies while Arcuri, Brogi and Gandolfi (2017) undertook a similar analysis for 

companies operating in the financial sector. Both studies confirmed the findings of previous 

studies, as they show that the companies in scope experience significant decreases in share 

prices following a data breach.   

The aim of this study is to add to the more recent literature since the topic covered is still 

gaining importance. As stated before, the number of data breach incidents is continuously 

increasing, however, since the majority of studies is outdated, it is unclear whether the effects 

that were discovered in the past are still similar for companies today. The paper is analyzing 

the changes in firm value following data breach announcements by applying an event study 

methodology. The study at hand provides a far more comprehensive dataset of a total of 366 

firms with 615 events that occurred between January 2013 to July 2018. Earlier research 

commonly examined datasets with a total of up to 60 events. Due to the further expansion of 

the internet after the 2000s and an increased significance of the technological sector, 

governments became far more concerned with data security. The US reacted by imposing 
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more and more national laws that require companies to report data breach incidents. In 2017, 

each one of the 50 states had its own data breach notification law. This significant change in 

legislation led to the outcome that data breaches are, in comparison, far better reported 

compared to previous studies. This allows for more comprehensive analyses, adding further 

findings to the existing literature. One of these new areas of research is to examine whether 

there are any differences in effects following a data breach announcement among different 

industries. In addition to examining these industry specific differences on firm value, the 

paper tries to shed light on the possible impacts that company specific characteristics such as 

firm size or incident specific characteristics such as the severity of the breach in terms of 

records exposed might have on firm value following a data breach incident. Furthermore, it is 

explored if companies that are exposed to data breaches more than once between January 

2013 to July 2018 are penalized more severely by the market and whether there is a 

measurable impact on firm value if subsidiaries of publicly listed firms experience a data 

breach.  

The research topic of this paper is also interesting in the aftermath of the Facebook scandal 

concerning Cambridge Analytica, in which the third-party contractor collected customer data 

from Facebook users and used the data for its own purposes. Neither did customers agree to 

the data collection nor did they know that their data was being used by Cambridge Analytica. 

The scandal created a worldwide public outcry for improved data security and once again 

made data security a main topic for companies and customers. Since the data breach by 

Cambridge Analytica was revealed in March 2018, the study already incorporates first market 

reactions to data breaches following this decisive event. It will be interesting to see whether 

there are already any recognizable changes in the market reaction following a data breach, in 

terms of a higher decline in firm value following a data breach incident compared to incidents 

that occurred before March 2018, regardless of the company concerned.   

The remaining part of this study is structured as follows: First, the paper is providing an 

overview about the institutional setting, in terms of a definition of the kind of data breaches 

that are in focus throughout this study as well as the kind of confidential customer data; 

second, there will be an introduction to the data used, the sampling procedure and the event 

study methodology that is commonly applied in studies assessing the impact on firm value 

following a data breach (see for example Acquisti, Friedman and Telang (2006); Kannan, 

Rees and Sridhar (2007); Gatzlaff and McCullough (2013)) (2); third, the study presents the 

main hypothesis and subordinated company specific and incident specific hypotheses that are 



Introduction 

5 
 

examined throughout the following parts (3) and provides answers to these hypotheses under 

empirical results (4).  
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2 Institutional setting, data and methodology  

This section will explain the current institutional setting regarding data breaches in the US, 

clarifying the current legislation regarding data breaches as well as a definition of what can be 

considered confidential customer data. Subsequently, the data used and the variables that are 

constructed to further examine the impact of a data breach with regards to company and 

incident specifics will be introduced and the empirical method that is applied is described in 

detail.  

2.1 Data breaches and confidential customer data  

As mentioned earlier, within the US, each of the 50 states has its own national data breach 

notification law. In general, these laws require companies to notify customers that are affected 

by a data breach immediately, usually in writing, as well as regional governing bodies, for 

instance the attorney general or state agencies such as the FTC. According to the Privacy 

Rights Clearing House, a non-profit organization engaging in the protection of customer data 

in the US, a data breach can be defined as “when a company inadvertently leaks your personal 

information as a result of a hack attack, lost or stolen computers, fraud, insider theft, and 

more” (Privacy Rights Clearing House, 2011).  

Even though data breaches are covered under national law, to date there exists no federal law 

in the US that is governing data breach notification. For this reason, the settings under which 

customers need to be notified differ widely among states. There is no general agreement upon 

which types of data should trigger a notification once they are leaked. Usually data breach 

notification laws are triggered if an individual’s full name as well as an additional 

distinguishing feature, such as a person’s social security number or account password are 

accessed under any of the following scenarios: (1) internal abuse through the intentional theft 

by employees or the unintentional exposure through employee error or improper disposal or 

(2) external access through malicious outsiders via hacking and phishing or third-party abuse. 

Under some of the national laws, howbeit, companies are only obliged to inform customers 

and authorities about data breaches when passwords or financial information have been 

accessed.  

In order to make data breaches that have occurred in different states comparable, this study 

uses data on data breaches that has been collected by the Identity Theft Resource Center 

(ITRC). This organization collects data breach incidents of the following nature:   
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“an individual name plus a Social Security number, driver’s license number, 
medical record or financial record (credit/ debit cards included) is potentially put at 
risk because of exposure. […] The ITRC will also capture breaches that do not, by 
the nature of the incident, trigger data breach notification laws. Generally, these 
breaches consist of the exposure of user names, emails and passwords.” (Identity 
Theft Resource Center, 2017, p. 19).     

The universal definition of the ITRC, in connection with the fact that breaches that would not 

trigger data breach notification laws are reported by the ITRC as well, provides a good basis 

for the following analyses. How important a general definition and hence a federal law is, is 

reflected by the different treatment of financial institutions, insurance and health care 

companies when it comes to data breaches. The beforementioned company types are governed 

under federal laws. For the first two company types the Gramm Leach Bliley Act (GLBA) 

applies. This statute requires financial institutions to protect any customer information that is 

collected in connection to the services offered by the corporations. The act also requires them 

to disclose any exposure of customer data to both affected customers and authorities promptly 

after its occurrence. The latter of the listed company types, health care companies, are, in 

addition to national data breach notification laws, governed under the federal Health 

Information Portability and Accountability Act (HIPAA). In addition to special requirements 

regarding the protection of data that is collected by any entity that deals with either an 

individual’s health status, payment for health care services or the provision of health care 

services, these companies are required to inform customers of any data exposure immediately 

after the exposure occurs.  

This difference in treatment makes is hard to compare different data breaches with each other. 

Naturally, it would appear reasonable that financial institutions and health care companies are 

far more often subject to data breaches. However, this perception mainly stems from the fact 

that companies within other sectors might not be required to report data breaches, depending 

on the state in which the data breach occurred. As already mentioned, by using the dataset of 

the ITRC, the differences in publicly released information that stems from different reporting 

standards can mostly be avoided.       

2.2 Data and variable construction  

As mentioned in the previous section, the data used for this study is retrieved from the annual 

data breach reports that are published by the ITRC from the year 2013 to the year 2017 and 

additionally from monthly publications until July 2018 to include as recent data as possible. 

The aforementioned period is chosen due to several reasons. When incorporating data from 

2018 and only including data for a period of five years, it is ensured that the results obtained 
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are updated due to the use of recent data. If a longer time range is used, there would be a 

possibility that the results do not reflect the most recent developments and are therefore not 

conclusive for firms that suffer from a data breach in the near future. In addition, and as 

already mentioned earlier, the chosen timeframe allows for an inclusion of data breach 

incidents that occurred after the Facebook scandal in March 2018. Also, the frequency of data 

breach incidents increased from 2013 to 2018. This is observable in the event distribution 

which is displayed in table 1 below. In the year 2013, the number of incidents that are 

included in this study is, with only 28 events, rather insignificant in terms of contributions to 

the results. It is expected that the yearly number of events prior to 2013 will be even lower 

than the number reported in 2013. Therefore, it was decided to only include data from 2013 

onwards.  

Data breach incidents are reported by the ITRC if companies triggered data breach 

notification laws in their respective state and, as consequence, were listed on the pertinent 

notification lists of state governmental agencies. Data breaches are also listed by the ITRC if 

various media sources confirm a data breach, even if the type of data that is exposed through 

the breach does not trigger any data breach notification laws (see previous section for a 

definition of these incidents and the kind of data considered). The ITRC considers five 

different types of loss methods for their reports: (1) Insider theft, (2) Hacking/ phishing, (3) 

Subcontractor/ third party abuse, (4) Employee error/ improper disposal/ lost and (5) 

Accidental web exposure.    

The data reported include the names of the affected companies, the dates of the data breach 

incidents, the breach types as well as the number of records exposed. However, the latter 

information is only reported for incidents that are reported to state governmental agencies. 

Around 30 percent of each data breach report lacks information about the number of records 

exposed. In cases were several firms were involved in one incident, each firm was treated as 

an individual company. From January 2013 to July 2018, a total of 4,847 firms were affected 

by data breaches as per definition of the ITRC, with a total of 1,115,562,716 records exposed. 

Out of these companies, only those that were publicly listed in the US or those which were a 

subsidiary of a publicly listed company on the NYSE, AMEX or NASDAQ between January 

2013 and July 2018, were considered for the event study. In total, 522 companies remained. 

Companies that were not listed 180 days prior to the data breach incident were excluded from 

the sample, as this time period defines the estimation window of the event study. In addition, 

companies were excluded if confounding events, such as merger and acquisition or earning 
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announcements, were made public within ten days prior to the event date, as this could 

potentially influence the estimated returns because it would be highly likely that these stock 

returns would be distorted. Companies were also excluded if they had any type of analyst call 

ten days prior to the event date. The remaining sample was winsorized at the 1st and the 99th 

percentile. The final data set that is used for the analysis consists of a total of 366 companies 

with 615 events. 104 companies of the 366 companies experienced more than one data breach 

incident within the time range of January 2013 to July 2018, with a maximum of 13 data 

breaches for one company. For the event study approach, only one event per firm is 

considered and in the case of multiple events in the considered time period, only the most 

recent data breach is included in the final sample. For example, if a company experienced a 

data breach in 2014 and a second one in 2018, only the effect of the data breach in 2018 will 

be considered for the event study. This separation is undertaken as the effects of multiple data 

breaches on firm value will be investigated in a separate regression analysis and sub-sample. 

Furthermore, the decision to only consider the most recent data breach incident rather than the 

first data breach occurring over the time frame in scope is based on the expectation that the 

more recent data breaches provide a higher explanatory power for market reactions. This is 

hypothesized due to, not only, but predominantly, the scandal that arose out of the data breach 

at Facebook, concerning the third-party abuse by Cambridge Analytica. The public outcry and 

above-average media coverage concerning this particular data breach leads me to believe that 

the reaction to data breaches ex-post to the Facebook data breach release are far more 

significant as both, investors and customers, have become much more concerned with 

customer data safety. These concerns regarding data safety were additionally strengthened by 

an increasing number of breach incidents until 2018. The following table shows the frequency 

of data breaches from January 2013 to July 2018, excluding multiple breach incidents. 

Table 1: Event distribution of data breaches from 2013 to July 2018 

Year 2013 2014 2015 2016 2017 2018 Total 
Event distribution  28 57 80 84 94 23 366 
% of the sample 7.7 15.6 21.9 23.0 25.7 6.3 100.0 
 

The table above shows that the sample reflects the general development of increasing data 

breaches over time, with 2017 being the year with the highest number of data breaches yet. As 

2018 merely displays data until July, it is reasonable that the cumulative number is lower than 

in 2017.  
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As mentioned before, the 366 companies in scope of the analysis are operating in eight 

different industries. The segmentation is undertaken on the basis of the corresponding 

Standard Industrial Classification (SIC) codes. The distribution of firms per industry is shown 

in the table below.  

Table 2: Industry distribution of data breaches from 2013 to July 2018  

Industry SIC Codes No. of firms  
Mining 1000 – 1499 7 
Construction 1500 – 1799  2 
Manufacturing 2000 – 3999  86 
Transportation, communications, electric, gas, sanitary 4000 – 4999  29 
Wholesale trade 5000 – 5199  5 
Retail trade 5200 – 5999  54 
Finance, insurance, real estate 6000 – 6799  102 
Services 7000 – 8999  81 
Total  366 
 

In table 2 above it can be seen that firms within the financial service industry are experiencing 

the highest number of data breaches within the analyzed time frame. This can be partly 

explained by the high online presence these companies have (Arcuri, Brogi and Gandolfi, 

2017) through online banking and similar applications. Also, when illegally accessing 

confidential customer data from these types of companies, outsiders or even internal 

employees often have the opportunity to directly extract financial value by using customer 

accounts or credit card information, similar to the Equifax breach. Furthermore, the fact that 

these companies are additionally governed under the GLBA might lead to more frequent 

reporting of data breaches since these companies are under any circumstances obliged to 

inform customers about any data breach that occurred. Financial service companies are 

followed by manufacturing and service companies. This might be the case as these types of 

company classifications include a high number of technology companies, for instance 

Microsoft or Adobe Systems, starting with the SIC 73XX, which are more often subject to 

data breaches due to their technological exposure. Besides retail trade, other industries 

experience a rather low number of data breach incidents from January 2013 to July 2018. 

Hence, the effects in these industries are not assumed to be highly negative.  

2.2.1 Variables on company characteristics  

Variables on company characteristics are such variables that could potentially have an 

influence on the magnitude of the increase or decrease in firm value as a result of a data 

breach. For this paper, the company characteristics that will be analyzed are size, profitability 
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and leverage. It is expected that size will have similar effects on the market reaction as in the 

paper of Malhotra and Malhotra (2011). In their paper, they show that the market tends to 

penalize larger firms more severely than smaller ones following a data breach announcement. 

In contrast, profitability is expected to have a positive influence on the abnormal returns (AR) 

realized. This is hypothesized, because companies that are more profitable are likely to have 

more monetary resources available to react to a data breach and its internal as well as external 

consequences, such as customer compensation and reputational damage. Similar to size, 

leverage is also assumed to have a negative impact on the market reaction, meaning that the 

higher the leverage ratio of a company, the more negative the ARs following a breach 

announcement. This outcome is expected as data breaches are usually an unplanned cost 

factor. For data breaches it is especially hard to estimate the total cost beforehand, since the 

expenses are dependent on the magnitude of the breach, such as the total number of systems 

infiltrated as well as the number of customers affected. A company that has more leverage 

might have troubles to service their debt holders following a data breach as a large portion of 

cash on hand might have to be used to deal with the consequences of the data breach, such as 

the compensation of customers or investments into IT security. Thus, the market is believed to 

react negatively to a data breach announcement in relation to the company’s leverage ratio.      

The variable size is the market capitalization of the firm. Market capitalization is calculated 

by multiplying the adjusted closing price with the number of shares outstanding. The proxy 

that is used for profitability is Return on Assets (ROA). ROA is the relation of net earnings to 

total assets. Leverage is represented by the leverage ratio, which is calculated as total debt 

(short-term plus long-term debt) divided by the total assets of a company. In order to gain a 

better understanding about which companies in terms of the variables presented above are 

represented within the data set used, the following table shows descriptive statistics for the 

different variables.   

Table 3: Descriptive statistics on company variables size, profitability and leverage 

The table provides summary statistics on the company specific variables size, profitability and 
leverage. The market capitalization reported is the market capitalization twenty days prior to the data 
breach incident. Profitability and the leverage ratio are as of the year in which the data breach 
incident occurred. The results for size are reported in million USD. The results for profitability are 
reported in percent. The results for leverage are reported as ratio.    

Variable No. of firms  Mean Median Minimum  Maximum Standard 
deviation  

Size  366  29,491 4,861  82 647,202 69,248 
Profitability   366 -0.13 8.65 -100.62 58.01 97.65 
Leverage   366  0.33 0.24  0.00 6.40 0.46 
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The size of the companies within the sample varies widely. However, on average, the 

companies within the sample are medium sized in terms of market capitalization. With 

regards to profitability, it is striking that the firms are exhibiting a predominantly negative 

profitability. This could be due to two reasons. Firstly, profitability in terms of ROA is 

calculated for the year in which the data breach has occurred. It could be the case that 

profitability is negatively affected by the data breach incident. Secondly, as already explained 

for table 2 regarding the industry classification, a significant number of firms is operating 

within the manufacturing and service sector. These are predominantly firms offering 

technological products and services. It could be that a majority of these companies are still in 

a starting phase, hence exhibiting negative profitability. The results obtained for the leverage 

ratio do not show any unusual outcomes. On average, the leverage ratio is quite low. 

However, the maximum shows an extraordinarily high leverage ratio. 

2.2.2 Data breach related variables  

Similar to the company related variables, there are characteristics concerning the data breach 

itself which can influence the ultimate market reaction. Characteristics that can be considered 

in this regard are the type of breach and the total number of customer records exposed.  

Breach type consists of a total of five different dummy variables that all represent one breach 

type. These breach types were chosen according to the reported breach types in the annual 

identity theft reports published by the ITRC. As already presented under section 2.2, these 

breach types are (1) Insider theft, (2) Hacking/ phishing, (3) Subcontractor/ third party abuse, 

(4) Employee error/ improper disposal/ lost and (5) Accidental web exposure. Each of these 

variables can take either a value of zero or one, which indicates whether (1) or whether not (0) 

the breach that occurred is any of the beforementioned breach types. The table below shows 

the different breach types and their respective frequency.  

Table 4: Frequency of breach types from 2013 to July 2018 

Breach type No. of events % of sample  
(1) Insider theft 14 3.8 

(2) Hacking/ phishing 277 75.7 

(3) Subcontractor/ third party abuse 27 7.4 

(4) Employee error/ improper disposal/ lost 46 12.6 

(5) Accidental web exposure  2 0.5 

Total 366 100.0  
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Table 4 shows that the majority of data breaches occurs as a result of hacking and/or phishing 

attacks. Only a limited number of incidents occurs due to internal company failures such as 

insider theft or improper disposal of customer data.  

The constructed variable for number of customer records exposed will subsequently be called 

impact and takes into consideration the number of customers whose data was exposed 

throughout the data breach. This means, if there is more than one data point of a single 

customer exposed, for example telephone number, password and full address, this exposure 

will be considered as one single exposure as only the aggregated number of customers 

affected counts, not the individual number of data points exposed. Unfortunately, the number 

of records exposed is not reported for every data breach within the sample. Either this is 

because the company that reported the incident is not aware of the magnitude of data affected 

or because the data breach did not trigger a data breach notification law. In this case, 

companies are not obliged to report the number of customer records that were exposed. The 

following table shows different size clusters for the number of customer records exposed. 

Table 5: Clustering of number of customer records exposed from 2013 to July 2018 

No. of customer records exposed No. of events % of sample 
> 100,000,000 5 1.4 

100,000,000 – 1,000,000 26 7.1 

< 1,000,000 145 39.6 

Not reported 190 51.9 

Total 366 100.0 
   

As it can be seen in table 5 above, in case the number of records is reported, there is only a 

very limited number of incidents in which a considerable number of customer records of more 

than 1,000,000 is exposed. Roughly 40 percent experience more moderate data breaches, in 

which less than 1,000,000 of customer records are exposed. However, for more than 50 

percent of the data breaches within the sample, the number of records that are exposed is not 

reported.   

2.3 Methodology  

This study uses an event study approach to determine the impact of data breaches on firm 

value. Event studies are used extensively to assess the impact of a predefined event on a 

firm’s stock performance and hence its market value (see for instance Fama et al., 1969; 
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Asquith and Mullins, 1983; McQueen and Roley, 1993; Cooper, Dimitrov and Rau, 2001; 

O’Donovan, Wagner and Zeume, 2017). Previous studies attempting to analyze the effect of 

data breaches on firm value also made use of event study approaches (Dos Santos, Peffers and 

Mauer, 1993; Gordon, Loeb and Zhou, 2011). The underlying assumption of this 

methodology is that the effects of a specific event will be reflected immediately in a firm’s 

stock price (MacKinlay, 1997). Thus, observing the stock price of a firm following a specific 

event for a short period of time will allow to draw conclusions on the impact the event has 

had on the firm value. This is based on the assumption of an efficient market (Fama, 1970) 

which will consider all information available on the market to price a security. Hence, the 

market will take into consideration implicit and explicit costs following a data breach event.  

Following the event study approach, first the ARs are calculated. This is done by identifying 

the difference between the actual return at time t, i.e. the day of the event and the days 

following the data breach and the predicted stock return that would have been expected if the 

data breach had not occurred. The predicted stock return is estimated in two ways. First, 

through a one-factor market model (consistent with the capital asset pricing model (CAPM) as 

proposed by Sharpe (1964) and Lintner (1965)), which is specified as:  

𝑅𝑖,𝑡 = 𝑎𝑖 +  ß𝑖𝑚𝑅𝑚,𝑡 + 𝜀𝑖,𝑡         (1) 

where Ri,t is the risk-adjusted return of a firm i’s stock experiencing a data breach on the date 

t, Rm,t the risk-adjusted market return on day t, αi the idiosyncratic risk component and ßim the 

slope parameter respectively for firm i and εi,t the error term. The coefficients are estimated by 

using an ordinary least square (OLS) regression. The proxy used for Rm,t are the equally-

weighted market index returns of the NYSE, NASDAQ and AMEX. This index is chosen as 

companies within the sample are listed on either of these exchanges and thus represents the 

firms within the sample.  

The second model used is the three-factor model developed by Fama and French (1992), 

which uses the factors market, size and value. The model is specified as follows:  

𝑅𝑖,𝑡 = 𝑎𝑖 +  ß𝑖𝑚𝑅𝑚,𝑡 + ß𝑖𝑠𝑆𝑀𝐵𝑡+ß𝑖𝑣𝐻𝑀𝐿𝑡 + 𝜀𝑖,𝑡      (2) 

where SMB is small minus big, i.e. the difference in returns on diversified portfolios of small 

and big shares in terms of market capitalization and HML is high minus low, i.e. the 

difference in returns on diversified portfolios of high and low shares in terms of book-to-

market ratios. Both models presented under (1) and (2) use an estimation window of 180 

trading days, ending 20 days prior to the data breach event.  
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After having obtained the predicted returns, the ARs can be computed. For the one-factor 

model presented under (1), the computation of the ARs is as follows:  

𝐴𝑅𝑖,𝑡 =  𝑅𝑖,𝑡 − (�̂�𝑖 + ß̂𝑖𝑚𝑅𝑚,𝑡)          (3) 

For the three-factor model, the computation of the ARs is as follows:  

𝐴𝑅𝑖,𝑡 =  𝑅𝑖,𝑡 − (�̂�𝑖 + ß̂𝑖𝑚𝑅𝑚,𝑡 + ß̂𝑖𝑠𝑆𝑀𝐵𝑡 + ß̂𝑖𝑣𝐻𝑀𝐿𝑡)     (4) 

The ARs reflect the deviation between the actual realized returns in the event period and the 

predicted returns based on the models presented above.  

The event window that will be considered crucial for the following analysis is a three-day 

event window, from t-1 to t+1, in which t denotes the date of the data breach announcement. 

In the case that t is not a trading day, the event date t is moved to the closest following trading 

day. This window is chosen as the underlying assumption of the event study methodology 

assumes that the effects of the event materialize in a rather short-term window surrounding 

the event. Additionally, this short event window reduces the possibility that other 

confounding factors might influence the stock price and hence the results obtained. By 

including the day prior to the event date, it is ensured that any market reactions that arise due 

to information leakage are captured in the results as well. The cumulated abnormal returns 

(CAR) over the chosen event window are calculated as follows:  

𝐶𝐴𝑅𝑖 =  ∑ 𝐴𝑅𝑖,𝑡
𝑡2
𝑡=𝑡1           (5) 

where t1 and t2 are the defined event interval and ARi,t is defined as under (3) and (4). In the 

following analysis, not only the event window t1= t-1 and t2= t+1 are considered, but a range 

of different window lengths in order to assess the time frame over which the market fully 

incorporates the entire impact of the data breach.  

As there are 366 events within the sample, the individual CARs for each event i will be 

aggregated to show the mean effect of a data breach event. This will be done as follows:  

𝐶𝐴𝑅𝑖 =  
1

𝑁
∑ 𝐴𝑅𝑖,𝑡

𝑡2
𝑡=𝑡1           (6) 

with N being the number of events. For the full sample, N is equal to 366. For the different 

industries, N can vary according to the number of firms and hence events within each industry 

classification.  
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The statistical significance of the results obtained is tested through a parametrical as well as a 

non-parametrical test.  

For the parametrical test, the standardized cross-sectional test as proposed by Boehmer, 

Masumeci and Poulsen (1991) (also called BMP-test) was used. This approach accounts for 

the variance that is induced by the event itself by standardizing the ARs by the standard 

deviation of the returns that are measured within the estimation window. Commonly used 

cross-sectional tests that do not account for the event-induced variance usually tend to reject 

the null hypothesis of ARs being indifferent from zero even though the hypothesis is actually 

true.  

The null hypothesis that CAR is equal to zero is tested through the equation shown under (7):  

𝑍𝑆𝐶𝑆 =  
∑ 𝑆𝐶𝐴𝑅𝑡 

𝑁
𝑖=1

√𝑁𝛿𝑆𝐶𝐴𝑅𝑡

            (7) 

with the standardized abnormal return SCARt being equal to  

𝑆𝐶𝐴𝑅𝑡 =  
𝐶𝐴𝑅𝑡

𝛿𝐶𝐴𝑅𝑡

          (8) 

and the variance of the standardized abnormal return being equal to  

𝛿𝑆𝐶𝐴𝑅𝑡

2 =  
1

𝑁−1
∑ (𝑆𝐶𝐴𝑅𝑡 −

1

𝑁
∑ 𝑆𝐶𝐴𝑅𝑡)2𝑁

𝑗=1
𝑁
𝑖=1       (9)  

Parametrical tests usually assume an underlying normal distribtion. In the case that this 

assumption is violated, parametrical tests tend to reject the null hypothesis. Non-parametrical 

tests, however, do not assume an underlying normal distribution. In this paper, ARs are 

calculated on the basis of daily returns. The distribution tends to have fat tails and be skewed 

(see for instance Mandelbrot, 1963; Fama, 1965). Therefore, it can be assumed that this holds 

true for the calculated ARs. To account for this, the generalized sign test by Cowan (1992) is 

applied as an additional non-parametric test.    

This test is a further development of the sign test, examining whether the fraction of positive 

ARs within the event period is higher than the number that would have been expected in the 

absence of the event and hence abnormal performance.  

For this test, the expected number of positive returns is calculated as the fraction of positive 

returns within the estimation window used. The calculation is shown under (10):  

�̂� =  
1

𝑁
∑

1

𝐿
∑ 𝑆𝑖,𝑡

𝐿
𝑡=1

𝑁
𝑖=1          (10) 
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with L being the number of days within the estimation window and Si,t being 1 if ARi,t at time 

t is > 0 and 0 if otherwise.  

The generalized sign test statistic uses the normal approximation with parameter p̂ and is 

specified as follows:  

𝑍𝐺𝑆 =
𝜔−𝑁𝑝̂̂

[𝑁𝑝̂ (1−𝑝̂)]
1
2

          (11)  

with ω being the number of CARs within the event window t1 to t2 for which CAR > 0 holds 

true. The null hypothesis that is tested is that there is no difference between the fraction of 

positive returns within the event window compared to the estimation window and hence the 

expected fraction under the absence of the ARs.  
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3 Hypothesis development  

The main goal of this study is to examine whether there is an effect of data breaches on firm 

value and, if there is a measurable effect, to quantify the resulting impact. As pointed out in 

section 2.3, this impact will be measured through an event study approach. Following the 

findings of previous studies using a similar approach, the assumption in this study is that there 

is a negative effect on firm value following a data breach event. Hence, the main null 

hypothesis of this study is as follows:  

H10: Firms do not experience negative abnormal equity returns following a data breach 

announcement.  

As described in section 2.2, there are different company specific as well as incident specific 

variables that will be investigated in detail.  

The following hypotheses will be tested regarding variables concerning company 

characteristics.  

Firstly, it will be investigated which of the eight different industries experiences the most 

negative abnormal equity returns, assuming that H10 is rejected. The hypothesis that will be 

tested is that firms operating within the financial industry (SIC Code 6000 – 6799) experience 

the most negative ARs following a data breach announcement. This is expected, as these 

companies’ operations use high amount of sensitive customer information that can 

immediately be used to extract financial value, as in the case of the Equifax breach in which 

customer data was used to unauthorizedly increase credit lines. For other sectors, the 

conversion of the breached data into a financial value is anticipated to take more time since 

customer data, such as e-mail and address information, is usually sold to interested third 

parties, which might take a considerable amount of time.      

H1CS: Companies operating in the financial sector (SIC 6000 – 6799) experience the 

most negative abnormal equity returns following a data breach announcement.  

This hypothesis is tested by comparing the CARs of the different industries in the event 

window [-1;1] and testing the CARs for statistical significance through a parametric and a 

non-parametric test (see section 2.3).  

Furthermore, it is investigated if the company specific variables size, profitability and 

leverage have an impact on the realized ARs within the event window [-1;1]. As stated in 

section 2.2.1, it is expected that size will have a negative impact on the ARs realized, meaning 
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ARs should be more negative for firms that have a bigger size in terms of market 

capitalization. This is anticipated as firms with a bigger size probably experience a higher 

degree of media coverage following a data breach announcement. Hence, reputational costs 

might be higher in comparison to smaller firms. Following the line of argumentation of 

Malhotra and Malhotra (2011), these reputational costs mainly arise as customers and the 

market expect that bigger firms do have more complex IT systems than their smaller peers. A 

comparatively small breach (in terms of IT systems affected and number of customer records 

exposed) can already undermine trust in the ability of a firm to protect all of its IT systems 

and therefore the entire amount of customer information stored in the company’s IT 

infrastructure. This negative word-of-mouth effect is expected to be more significant for 

bigger firms as the coverage and network effects are higher due to the larger customer base. 

The outcomes expected for the variables profitability and leverage are also as stated in section 

2.2.1, meaning it is expected that profitability will have a positive influence on the ARs while 

leverage is anticipated to show a negative effect. However, the effects are not expected to be 

as significant as for size. It is hypothesized that size will have the most significant influence 

on the ARs obtained. Therefore, profitability and leverage serve as control variables. The 

hypothesis tested is:  

H2CS: The higher the market capitalization of a firm affected by a data breach, the more 

negative the abnormal equity returns.  

The hypothesis will be tested by applying an OLS regression to the CARs realized in the 

event window [-1;1], controlling for industry effects. The regression equation is specified as 

follows:  

𝐴𝑅𝑖,𝑡 =  𝛼𝑖 + ß1𝑥 𝑆𝑖𝑧𝑒𝑖,𝑡 + ß2𝑥 𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 + ß3𝑥 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖,𝑡 + 𝛾1𝑥𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖,𝑡 +

𝜀𝑖,𝑡             (12)  

with i being the respective firm at time t.  

The last hypothesis that is explored regarding variables on company characteristics is whether 

there is a notable effect if a subsidiary of a publicly listed company experiences a data breach. 

The underlying working hypothesis is that the parent company (i.e. the publicly listed firm) 

will realize negative abnormal equity returns. This view stems from the fact that the parent 

company will ultimately be affected in a cost perspective, for instance in terms of legal costs 

or customer compensation. Even if these costs are not borne by the parent company directly, 

the decline in profits as a result of these additional, potentially unanticipated costs for the 
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subsidiary results in declining profits that are passed on to the parent company. Additionally, 

the data breach of a subsidiary is expected to also have negative reputation effects for the 

parent company, ultimately leading to negative abnormal equity returns.   

H3CS: Parent companies will realize negative abnormal equity returns if a subsidiary is 

affected by a data breach.  

The hypothesis is tested through an OLS regression over the event window [-1;1] to test if 

firms with affected subsidiaries realize negative ARs. The respective regression equation is as 

follows:  

𝐴𝑅𝑖,𝑡 =  𝛼𝑖 + ß1𝑥 𝑆𝑢𝑏𝑠𝑖𝑑𝑖𝑎𝑟𝑦𝑖,𝑡 +  𝜀𝑖,𝑡        (13) 

with subsidiary being a dummy variable.  

Additionally, the sub-sample containing subsidiaries will be tested on significance by 

applying both the parametrical and non-parametrical significance test as stated in equation (7) 

and (11) to the CARs over the event window [-1;1].     

Additionally, incident specific variables are analyzed as well.  

Regarding the data breach incident itself, it will be tested whether the number of records 

exposed, i.e. the impact, has an effect on the ARs realized. It is expected that a higher number 

of records exposed leads to a more negative effect, meaning the ARs realized are more 

negative compared to incidents in which a smaller number of customer records are exposed. 

Also, it is envisioned that there is an interplay between the impact and firm size. In case both 

variables increase, the effect on ARs is expected to be more negative as well. The hypothesis 

tested therefore is:  

H1IS: The higher the impact of a data breach in combination with an increase in firm 

size, the more negative the realized abnormal equity returns.  

This is tested through the following OLS regression over the event window [-1;1]:  

𝐴𝑅𝑖,𝑡 = 𝛼𝑖 +  ß1𝑥 𝐼𝑚𝑝𝑎𝑐𝑡𝑖,𝑡 + ß2𝑥 𝑆𝑖𝑧𝑒𝑖,𝑡 +  ß3𝑥 (𝐼𝑚𝑝𝑎𝑐𝑡 𝑥 𝑆𝑖𝑧𝑒) + 𝜀𝑖,𝑡  (14) 

Moreover, it will be investigated if the type of data breach that occurred (as specified under 

2.2.2) has an impact on the realized ARs. Various studies conducted in recent years showed 

that there are differences in total costs arising from data breaches dependent on the type of 

breach (see for instance Accenture, 2017). The highest costs are associated with hacking 

attacks such as malware and DOS attacks while insider theft causes relatively little losses in 
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comparison. With these studies in mind, it is assumed that data breaches that can be 

categorized in category (2) Hacking/ phishing will experience the most negative ARs in 

comparison.   

H2IS: Data breaches that are categorized as hacking and/or phishing attacks will 

experience the most negative abnormal equity returns in comparison to the other breach 

type categories.  

This hypothesis is tested by comparing means through a single-factor analysis of variance 

(ANOVA) as proposed by Fisher (1925). If differences in means can be detected and as a 

consequence the null hypothesis is rejected, a further t-test will be applied to detect the breach 

type with a difference in means.  

The last hypothesis that is tested regarding the data breach incident itself is whether 

companies that are affected by a data breach multiple times over the time frame January 2013 

to July 2018 are experiencing more negative ARs over the event window [-1;1]. It is expected 

that companies that have been experiencing multiple breaches prior to the most recent and 

hence the data breach considered are realizing more negative ARs throughout the event 

period. This is anticipated as these companies are likely to lose customer trust multiple times, 

therefore the effect on brand reputation is expected to be much more negative, resulting in 

higher reputational costs to the company affected, which is reflected by more negative ARs.   

H3IS: A company experiencing multiple data breaches over the considered time frame of 

2013 to 2018, is experiencing more negative ARs.  

This will be tested using a further OLS regression, which is as follows:  

𝐴𝑅𝑖,𝑡 =  𝛼𝑖 + ß1𝑥𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝐵𝑟𝑒𝑎𝑐ℎ𝑖,𝑡 +  𝜀𝑖,𝑡      (15)  

with multiple breach being a dummy variable. The ARs considered for the regression are the 

ARs obtained for the most recent data breach. For instance, if a company experienced a data 

breach in 2014 and a second in 2017, the ARs considered for the regression are the ones 

obtained for the breach that occurred in 2017. This is done as it is anticipated that the negative 

effect for multiple breaches will be most significant for the latest breach, as customers and 

business partners should lose more trust the more often a company experiences a data breach, 

hence the reaction is expected to be more negative following each breach incident.  
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Additionally, to test for the significance of the sub-sample for companies that experienced 

multiple data breaches, parametrical and non-parametrical significance tests as stated in 

equation (7) and (11) will be applied to the CARs over the event window [-1;1].  

In the following section, the results regarding these hypotheses are presented.  
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4 Empirical results and discussion of findings  

The results obtained for the CARs over the main event window of three days from t1= t-1 to 

t2= t+1 confirm the findings of previous studies. For the entire sample, including 366 events, 

the CARs obtained from both the one-factor model and the three-factor model are 

significantly negative. The following table shows the results for both models for the entire 

sample and for the respective industries as specified in table 2.  

Table 6: Cumulative abnormal returns and test statistic results for three-day event window   

The following table provides the results of the event study over the event window t1= t-1 to t2= t+1 for 
the entire sample and for each industry, respectively. The calculation of the mean CARs reported is as 
stated in equation (6). The total number of events N is equal to the number reported in the column no. 
of events. The statistical significance of the mean CARs reported was assessed using the parametric 
test ZSCS as reported in equation (7) and the non-parametric test ZGS as reported in equation (11). 
Percentage of negative CARs reports the relative fraction of negative CARs (<0) in each industry 
cluster. The mean CAR and % of negative CARs are reported in percent. *, ** and *** indicate the 
statistical significance at the 10%, 5% and 1% level.   

Panel A shows the results obtained applying the one-factor model for the estimation of the abnormal 
returns as stated in equation (1), (3) and (5). Panel B shows the results for the three-factor model for 
the estimation of the abnormal returns as stated in equation (2), (4) and (5).   

Panel A: Cumulative abnormal returns and test statistic results using the one-factor model  

 No. of events 
Mean 
CAR      

(1-factor) 
ZSCS ZGS 

% of 
negative 
CARs 

Full sample 366 -1.34 -1.643* -4.681*** 64.56 
      
Mining 7  0.78  0.343  0.211 42.86 
Construction  2  0.59  0.293 -1.407 100.00 
Manufacturing 86 -1.33 -3.688*** -2.168** 66.28 
Transportation 29 -1.37 -2.623** -1.111 62.07 
Wholesale trade 5 -0.38 -0.172 -0.228 60.00 
Retail trade 54 -1.99 -2.129** -2.389** 68.52 
Finance 102 -1.44 -2.318** -3.274** 67.65 
Services 81 -1.09 -3.031*** -1.212 58.23 
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Panel B: Cumulative abnormal returns and test statistic results using the three-factor model  

 No. of events 
Mean 
CAR      

(3-factor) 
ZSCS ZGS 

% of 
negative 
CARs 

Full sample 366 -1.33 -2.692*** -4.416*** 63.46 
      
Mining 7  0.79 0.343  0.432 42.86 
Construction  2  0.36 0.200 -1.421 100.00 
Manufacturing 86 -1.21 -3.389*** -1.681* 62.79 
Transportation 29 -1.51 -2.816*** -1.473 65.52 
Wholesale trade 5 -0.55 -0.274 -0.281 60.00 
Retail trade 54 -2.06 -1.971* -2.215** 66.67 
Finance 102 -1.44 -2.333** -3.532*** 68.63 
Services 81 -1.04 -2.842*** -0.834 55.70 
 

The decrease in firm value over all industries is on average -1.33 percent to -1.34 percent, 

depending on the model used to estimate the ARs, over an event window of three days for t1= 

t-1 and t2= t+1. As the results obtained are statistically significant, the null hypothesis can be 

rejected. The robustness of the results is tested by applying the generalized sign test as stated 

in equation (11), as this non-parametric test does not assume a normal distribution of the 

obtained ARs. As the results reported for ZGS are significant at the one percent level for both 

models for the full sample, it can be confirmed that a data breach incident has a negative 

impact on firm value. Based on the mean value of market capitalization, the loss in firm value 

over the three-day event window is on average equal to 392 million USD or rather 395 

million USD, depending on the model used to estimate abnormal returns. This number seems 

to be rather high, keeping in mind that this amount is similar to the estimated costs for the 

Equifax breach which was one of the most significant breaches in the financial sector. Perhaps 

there is a differentiation of costs depending on the firm size in terms of market capitalization. 

Nevertheless, a decrease in firm value, independent from firm size and other variables such as 

industry type seems reasonable considering the reputational as well as direct cost related to a 

data breach event. The decrease in firm value is potentially based on the reputational costs of 

shattered customer trust and the negative associations towards brand perception which 

manifest in a decrease in sales and hence revenues. Further reputational costs might also 

include the termination of certain contracts by supplier that do not want to be associated with 

the brand following the data breach incident. Direct costs include the notification, the 

reimbursement and the ongoing support of customers. A high proportion of costs are 

potentially related to detecting the leak, its extent and the closure of the data vulnerability to 

prevent future data breaches. Whether it is beneficial for companies to ensure that no data 
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breaches can occur in the future is discussed when looking at the results concerning the test of 

H3IS. Other direct costs include fines imposed by the FTC and legal costs that can be related 

to lawsuits and settlements following a data breach.  

Extending the event window to the days beyond t2= t+1, it can be seen in the graph below 

that the negative effect on firm value is fully realized seven days after the event. The CARs as 

well as the results of the BMP-test and a normal t-test are reported in Appendix 1 in table 1. 

With regards to the normal t-test, the CARs are significant until t2= t+10 at the one percent 

level for both models. This is different for the BMP-test. The one-factor model shows very 

mixed results, with only some days within the extended event window being significant and 

only at the ten percent level. For the three-factor model, all event window periods are 

significant, however, the significance level decreases as the event window increases. This 

indicates that the use of a parametrical significance test is useful for the event study approach, 

as a normal t-test tends to overestimate the results obtained in the present case.       

Figure 1: Development of cumulative abnormal returns until ten days after event  

The graph below shows the development of mean CARs for the full sample of 366 events. The x-axis 
reports the different lengths of event windows from t1 to t2. The CARs are reported in %.  

 

For the three-factor model, the realized CARs are slightly less negative over the course of 

time period in scope. The further decline in firm value over the following days is probably 

due to the fact that the full extent of the data breach, such as the total number of systems 

infiltrated and the total number of records exposed, is only fully detected during the days 

following the data breach announcement. Hence, the market adjusts its assessment of the full 
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costs related to the breach over a course of seven days following the data breach 

announcement.  

The first company related hypothesis, that companies within the financial industry suffer the 

highest degree in firm value decrease, does not hold true neither for the one-factor model nor 

the three-factor model. For both models, the retail industry experiences the most negative 

abnormal equity returns with -1.99 percent for the one-factor model and -2.06 percent for the 

three-factor model. These declines are significant at the five and ten percent significance 

level, respectively. However, for neither of the two models used the financial industry 

experiences the most negative abnormal equity returns. This sector also experiences a 

decrease in firm value, however, this decrease is not as negative as previously expected. This 

result is surprising, especially since this sector records the highest number of breaches in the 

covered time frame 2013 to 2018. A possible explanation might be the fact that these 

companies are the ones that are most commonly targeted in cyber security attacks. However, 

this cannot be empirically confirmed with the results obtained in this study. Due to the high 

frequency of breaches, companies within the financial sector might already have some kind of 

routine in responding to a data breach. This routine might manifest itself in processes that are 

already in place and designed in an effective way, starting from the detection of a data breach 

to the final legal settlement and the potential to avoid or reduce costly fines imposed by 

authorities and regulators. However, this explanation should be subject to further empirical 

investigation. In summary, H1CS cannot be confirmed with the results obtained in this paper.  

Following, the results for the company specific hypothesis H2CS are reviewed. Table 7 shows 

the results of the regression for the company specific variables size, profitability and leverage 

as stated in equation (12).  
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Table 7: Regression results for company specific variables size, profitability and leverage  

This table provides the ARs of firms experiencing a data breach. The regression equation is reported 
under (12). The dependent variables are the CARs over the event window [-1;1]. The independent 
variables size, profitability and leverage are constructed as stated in section 2.2.1. Industry fixed 
effects are included as indicated. T-statistics are reported in parenthesis. *, ** and *** indicate the 
statistical significance at the 10%, 5% and 1% level.    

 One-factor model Three-factor model 
Intercept   -0.008 

(-1.304) 
-0.008 

(-1.219) 
Size 0.000 

(0.900) 
0.000 

(0.928) 
Profitability 0.007 

(2.432)** 
0.008 

(2.676)*** 
Leverage 0.006 

(0.982) 
0.006 

(0.929) 
Industry fixed effects Yes Yes 
N 366 366 
Adj. R2 0.016 0.019 
 

The results obtained lead to the rejection of H2CS. It cannot be statistically confirmed that 

company size has an influence on the cumulated ARs over the event window [-1;1]. However, 

profitability does have a positive influence on the ARs for the entire sample over the specified 

event window. It seems that the market penalizes firms less severely for a data breach if they 

show a comparatively higher profitability. This is a comprehensible result as firms that are 

more profitable potentially have more cash and monetary reserves available which they can 

draw on in case of unexpected losses due to a data breach event. Therefore, more profitable 

companies might be able to absorb the monetary losses associated with data breaches in a 

better way. A company that is less profitable might have difficulties to cope with the expenses 

necessary to react to a data breach in an appropriate way. As company size on a standalone 

basis obviously does not have any effect on the ARs obtained, it was additionally tested 

whether the interplay of company size and impact of the data breach does have an effect on 

the ARs. Again, the hypothesis that the higher the company size and the higher the impact, the 

more negative the ARs (H1IS), cannot be confirmed for the companies within the sample. The 

results of this regression are reported in the table below.  
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Table 8: Regression results for company size and impact   

This table provides the ARs of firms experiencing a data breach. The regression equation is reported 
under (14). The dependent variables are the CARs over the event window [-1;1]. The independent 
variables size and impact are constructed as stated in section 2.2.1 and 2.2.2. T-statistics are reported 
in parenthesis. *, ** and *** indicate the statistical significance at the 10%, 5% and 1% level.    

 One-factor model Three-factor model 
Intercept -0.014 

(-3.269)*** 
-0.014 

(-3.075)*** 
Impact 0.004 

(0.059) 
0.004 

(0.060) 
Size 0.000 

(-0.685) 
0.000 

(-0.884) 
Impact x size 0.000 

(-0.349) 
0.000 

(-0.422) 
N 176 176 
Adj. R2 -0.012 -0.010 
 

The results obtained are most presumably linked to the fact that company size itself already 

does not have any influence on the ARs. In addition, impact does not have any effect on the 

ARs as well. However, these results might not reflect the actual influence of impact in a real-

world setting, as for over half of the sample the number of records exposed is not given. This 

is due to the fact that either the extent of the data leak is unknown to the company that 

experiences a violation or that data breach notification laws were not triggered for the data 

breach, therefore the affected company does not need to report the number of customer 

records exposed. All in all, a conclusive result regarding the effects a potential interplay 

between company size and impact can have, cannot be reached.   

The last company-related hypothesis tested is whether publicly listed firms still experience 

negative ARs if a subsidiary of the company that is not listed itself experiences a data breach 

(H3CS). First, it is tested through an OLS regression whether subsidiaries show a higher value 

effect in ARs compared to public firms that were directly affected by a data breach. This is 

not the case for any of the two models used. The non-existence of a significant effect also 

holds true when controlling for industry effects.  
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Table 9: Regression results for dummy variable subsidiary  

This table provides the ARs of firms experiencing a data breach. The regression equation is reported 
under (13). The dependent variables are the CARs over the event window [-1;1]. The independent 
variable subsidiary is a dummy variable that takes the value 1 when the event considered is related to 
a subsidiary of a publicly listed firm and 0 if otherwise. Industry fixed effects are included as 
indicated. T-statistics are reported in parenthesis. *, ** and *** indicate the statistical significance at 
the 10%, 5% and 1% level.    

 One-factor 
model 

Three-factor 
model 

One-factor 
model 

Three-factor 
model 

Intercept -0.014 
(-5.288)*** 

-0.015  
(-5.230)*** 

-0.016 
(-4.699)*** 

-0.016 
(-4.563)*** 

Subsidiary  0.008 
(0.851) 

0.013 
(1.365) 

0.009 
(1.013) 

0.011 
(1.051) 

Industry fixed effects No No Yes Yes 
N 366 366 366 366 
Adj. R2 0.001 0.002 0.009 0.013 
 

Furthermore, the CARs over the event window [-1;1] of the sub-sample that only contains 

subsidiaries is tested on significance as stated under section 3. The results are reported in the 

following table and show that the relevant ARs are not significant for any of the models used 

and with any of the tests applied.  

Table 10: Significance tests of CARs for sub-sample on firms with affected subsidiaries 

This table shows the CARs over the event window [-1;1] for the sub-sample that only contains publicly 
listed companies whose subsidiaries experienced a breach between January 2013 to July 2018. The 
mean CARs for each model are calculated as stated in equation (6). Mean CARs are reported in 
percent. The total number of events N is equal to the number reported in the row N. The statistical 
significance of the mean CARs reported was assessed using the parametric test ZSCS as reported in 
equation (7) and the non-parametric test ZGS as reported in equation (11). *, ** and *** indicate the 
statistical significance at the 10%, 5% and 1% level.    

 Mean CAR t-test ZSCS ZGS 
One-factor model  -0.25 -0.538 -0.975 -0.339 
Three-factor model -0.22 -0.481 -0.466 -0.327 
N 31 31 31 31 
 

One explanation for the results could be that losses of subsidiaries caused by a data breach are 

not perceived to be detrimental to the parents’ financial state. Moreover, one could expect that 

the IT systems of parent and subsidiary are fully independent, meaning a data breach at a 

subsidiary does not have any implication for the IT vulnerability of the parent company. In 

sum, hypothesis H3CS cannot be confirmed.  
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The results for the first incident related hypothesis, that the bigger the company size and the 

higher the impact, the more negative the ARs, were already presented when discussing the 

overall effect of firm size on the ARs. This hypothesis could not be confirmed. The second 

incident specific hypothesis, that data breaches that are classified as breach type (2) Hacking/ 

phishing are experiencing the most negative abnormal equity returns, cannot be confirmed. 

There are no detectable differences in means, as shown in the table below.  

Table 11: Results of single-factor ANOVA for different breach types  

This table provides the ANOVA results as a test for difference in means of the ARs over the event 
window [-1;1] between the different types of data breaches as specified in section 2.2.2. *, ** and *** 
indicate the statistical significance at the 10%, 5% and 1% level.    

Panel A: ANOVA results for ARs obtained from one-factor model  

Source of variation  SS df F F crit p-value 
Between groups 0.003 4 0.353 2.397 0.842 
Within groups 0.859 361    
Total  0.863 365    
 

Panel B: ANOVA results for ARs obtained from three-factor model 

Source of variation  SS df F F crit p-value 
Between groups 0.004 4 0.366 2.397 0.833 
Within groups 0.909 361    
Total  0.913 365    
 

In contrast to the initial expectation, the type of data breach does not have any meaningful 

effect on the ARs obtained over the event window [-1;1]. This could be due to the relatively 

small number of events for any data breach type other than hacking or phishing. Also, it 

obviously does not seem to matter for the financial markets how the data breach occurred, 

otherwise one could possibly observe a statistically significant negative market reaction to 

hacking and phishing.  

The last hypothesis tested, which is also pivotal for the research design chosen, is whether 

companies that experience a data breach multiple times are more severely punished by 

financial markets. It is first explored whether there is a significant difference in ARs between 

firms that experience multiple breaches and firms that only experience one breach in the time 

period in scope. This is tested through an OLS regression with a dummy variable that takes 

the value 1 when a company experienced multiple breaches between 2013 to 2018 and 0 if 

otherwise. In this paper, a company is considered to experience multiple breaches if the 

company experienced more than one breach in the time frame January 2013 to July 2018. In 



Empirical results and discussion of findings 

31 
 

case a company reported a data breach before 2013 and experienced only one further incident 

within the period in scope, this is to be considered as one breach only and not as a multiple 

breach. This methodology was applied due to the lack of data and possible inconsistencies 

when increasing the period to consider multiple breaches beyond 2013, since it could be the 

case that due to non-existent legislation prior breaches are not reported for some companies. 

The ARs considered for the regression analysis are again the ARs that occurred throughout 

the most recent data breach as the effect is considered to be the most negative for the most 

recent breach. The results of the regression as presented in equation (15) are reported in table 

12.  

Table 12: Regression results for multiple data breaches  

This table provides the ARs of firms experiencing a data breach. The regression equation is reported 
under (15). The dependent variables are the CARs over the event window [-1;1]. The independent 
variable multiple breach is a dummy variable, taking the value 1 when the event considered is related 
to a company experiencing multiple data breaches in the time frame 2013 to 2018 and 0 if otherwise. 
T-statistics are reported in parenthesis. *, ** and *** indicate the statistical significance at the 10%, 
5% and 1% level.    

 One-factor model Three-factor model 
Intercept -0.014 

(-4.622)*** 
-0.015 

(-4.675)*** 
Multiple Breach 0.002 

(0.413) 
0.005 

(0.766) 
N 366 366 
Adj. R2 -0.002 -0.001 
 

In comparison, there is no significant difference between companies that experienced multiple 

breaches and companies that experienced only one breach over the considered time frame. 

Subsequently, the sub-sample that only contains events related to companies that experienced 

multiple breaches over the considered time frame is tested on significance with the tests 

described in section 3. The results are presented in the following table. 
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Table 13: Significance tests of CARs for sub-sample on firms with multiple breaches  

This table shows the CARs over the event window [-1;1] for the sub-sample that only contains firms 
that experienced multiple data breaches between January 2013 to July 2018. The mean CARs for each 
model are calculated as stated in equation (6). Mean CARs are reported in percent. The total number 
of events N is equal to the number reported in row N. The statistical significance of the mean CARs 
reported was assessed using the parametric test ZSCS as reported in equation (7) and the non-
parametric test ZGS as reported in equation (11). *, ** and *** indicate the statistical significance at 
the 10%, 5% and 1% level.    

Panel A: Results of significance tests for events related to companies with multiple breaches 

 Mean CAR t-test ZSCS ZGS 
One-factor model  -1.09 -3.167*** -3.251*** -3.097*** 
Three-factor model -1.06 -3.073*** -3.233*** -3.071*** 
N 104 104 104 104 
Panel B: Results of significance tests for events related to companies with one breach 

 Mean CAR t-test ZSCS ZGS 
One-factor model  -1.45 -4.409*** -1.548* -3.581*** 
Three-factor model -1.44 -4.249*** -2.309** -3.285*** 
N 262 262 262 262 
 

Other than expected, a company that experienced multiple breaches is not punished more 

severely by financial markets. The ARs of companies experiencing multiple breaches are 

significant and negative, however, not as negative as for companies that experience only a 

single breach over the time period in scope. In addition, the difference between the two 

samples is not significant applying the regression as reported in table 12. The majority of 

companies facing multiple breaches belong to the financial industry (35 percent of all 

companies experiencing multiple breaches), followed by firms operating in the service 

industry (23 percent of all companies experiencing multiple breaches). This fact might be 

contributing to the results obtained since the companies within these two sectors are not as 

negatively affected by a data breach in comparison to other sectors. Hence, multiple data 

breaches might also not have such a negative effect as anticipated. Another explanation could 

be the hypothesis already considered when looking at the results obtained for firms operating 

within the financial industry: companies that do experience a breach multiple times are 

already more familiar with the subsequent procedures following a breach, such as notifying 

customers, handling the public announcement and further processes that concern closing the 

data leak. Therefore, direct costs are declining or at least do not increase when experiencing 

multiple breaches over time. This might also implicate that costs associated with reputational 

losses, especially the decline in brand reputation, are not as high of a cost factor as anticipated 

earlier but that direct costs play a much more important role for the market reaction, in 
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comparison. However, as reputational costs are hard to quantify, this is only an assumption 

rather than a verifiable finding. All in all, H3IS cannot be confirmed with the findings in this 

study.   

Overall, the following results can be noted: there are notable negative abnormal equity returns 

following a data breach event. These negative returns, with -1.33 or respectively -1.34 percent 

on average, are not insignificant to firm value. Over a period of seven days following the data 

breach announcement, the market is still adjusting its initial assessment of the implications of 

the event, resulting in a further decline of abnormal equity returns after t+1. The realized ARs 

are different for each industry. Retail trade companies are experiencing the most negative 

abnormal equity returns, however, the ARs for firms operating within the financial industry 

are in the medium range, contradicting initial expectations. Regarding company specific 

variables, neither the size of the firm nor the amount of leverage has implications on the firm 

value decrease. Yet, profitability does have a positive impact on the ARs, meaning more 

profitable companies experience less significant declines in firm value following data 

breaches. With regards to the data breach itself, the impact in terms of number of customer 

records exposed and the type of data breach occurred did not influence the market reaction 

following a breach announcement over the time period 2013 to 2018. Whether a company is 

affected by a data breach multiple times over the time range in scope significantly influenced 

the market reaction. However, firms that experience multiple breaches realized less negative 

ARs in comparison to firms that experienced only one breach in the same time range. The 

difference between the two samples is not significant though.  
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5 Limitations  

Even though this paper provides supportive findings to add to the existing literature, there are 

some flaws regarding the methodology used one should keep in mind when reviewing the 

results.  

One limitation concerns the data set used. Since the study examines stock price reactions only 

listed companies are considered. Privately held firms are by their nature not traded on stock 

exchanges, hence there are no daily stock prices and the methodology used cannot be applied. 

However, due to differences in owner structure, different legal forms and less transparency it 

is not clear whether the findings of this study can be transferred to privately held firms. 

Furthermore, an extended data set might have led to different results, especially regarding the 

company and incident specific hypotheses. To date, there is no federal data breach notification 

law in the US. Therefore, there exists no official governmental authority centrally reporting 

data breaches that trigger data breach notification laws. There are, however, private 

associations such as the ITRC whose database of incidents was used for this study, which lists 

data breaches reported in each state within the US. Unfortunately, it is unclear whether the 

database of the ITRC is complete. If authorities provided a publicly accessible database 

regarding all data breach incidents, the sample for this study could possibly be more 

comprehensive.  

Further limitations come along with the event study methodology itself. Event studies assume 

efficient markets with rational investors. However, the efficient market hypotheses as 

presented by Fama (1970) is under critique, due to empirically observed anomalies such as 

calendar effects, i.e. the January effect (Rozeff and Kinney, 1976) or efficiency anomalies 

such as the momentum effect (Jegadeesh and Titman, 1993). Hence, this study is influenced 

by the drawbacks of the methodology. In addition, non-financial events such as the release 

notification of new products or a change in management were not considered. To account for 

this limitation, an industry average is used for the presentation of the results. It is very 

unlikely that each company within an industry cluster experiences the same non-financial 

events in the considered time frame. The results are therefore robust with regards to this 

drawback. Another weakness of the event study methodology that could be applicable for this 

paper is that for events that do have rather complex implications, notably in the medium or 

long-term, the full effects are not realized and therefore not visible in the initial market 

response following the event. The fact that there is still a decline in firm value up to seven 

days following the data breach announcement shows that the market is further adjusting its 
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initial assessment of the effects that a data breach event is having on a firm. This could be 

related to the fact that the extent of a data breach is hard to grasp for outsiders and the full 

effects might materialize in the longer rather than in the short term.   

A last limitation that should be considered, especially with regards to the company related 

hypotheses, is the choice of proxies used to construct the different variables. This construction 

of the variables itself might have implications on the results obtained. For instance, for 

company size other financial proxies, such as yearly revenues or non-financial proxies such as 

the number of employees, could have been used.   
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6 Concluding comments and managerial implications   

The results obtained in this study show that data breaches do have a significant negative effect 

on firm value. Therefore, managers should be aware of detrimental effects and adjust their 

corporate efforts to protect customer data accordingly, keeping in mind that the number of 

data breaches is continuously increasing each year. This paper shows that each of the 

industries that were reviewed experienced a decline in firm value, hence negative stock 

market reactions are not a phenomenon specific to one or several industries only. This 

underpins the importance of the topic for management considerations and decision making. 

As the results of the analysis show, firm size and impact, in terms of number of customer 

records exposed, do not matter for the negative perception that comes along with a data 

breach announcement, neither does the type of data breach. Companies are therefore not only 

responsible to protect themselves and their customers from external vulnerabilities, but also 

from internal vulnerabilities, such as the inappropriate handling of customer data through 

internal employees or even data theft committed by the companies’ very own employees. 

Additionally, companies should not prioritize safety endeavors for IT systems with regards to 

the number of customer records being processed within each unit, since the results showed 

that the magnitude of the breach is not the decisive for a negative market reaction. The fact 

that a company experienced multiple data breaches often times is enough to experience a 

decline in market value. Even though data breaches are a risk that requires adequate measures, 

managers should also assess the benefits of sufficient investments in data security and 

compare them to the short and long-term costs. As this study shows, there is no further 

penalization by financial markets when experiencing multiple breaches, hence there is 

obviously a diminishing marginal utility of investments in data security measures.  

Keeping in mind that the number of data breaches has shown continuous growth over the past 

years, 2018 might have been the most significant year for data breaches in terms of public 

perception, due to the media coverage and public outcry following the scandal around 

Facebook and its third-party contractor Cambridge Analytica. Future research should 

concentrate on quantifying and monitoring the development of the reputational cost 

proportion of a data breach prior to and following this revelation. It is expected that there will 

be a major shift in significance of this cost component as well as a notable rise of these costs.  
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List of abbreviations  

 

ANOVA Analysis of variance  

API   Application-Programming-Interface 

AR   Abnormal return  

BMP  Boehmer-Masumeci-Poulsen test 

CAPM  Capital Asset Pricing Model  

CAR  Cumulated abnormal return  

DOS   Denial-of-service 

FTC  Federal Trade Commission  

GDPR  General Data Protection Regulation 

GLBA  Gramm Leach Bliley Act 

HIPAA Health Information Portability and Accountability Act  

HML  High minus low 

ITRC  Identity Theft Resource Center 

OLS  Ordinary least square  

ROA  Return on Assets 

SIC   Standard Industrial Classification  

SMB  Small minus big  
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Appendix 1 

Table 1: Development of CARs for different event window lengths  

The following table provides the results of the event study over the event window t1 to t2 for the entire 
sample of 366 events. The length of the event window differs and is specified in the column event 
window. The first number specified in brackets is equal to t1, the following number is equal to t2. The 
starting point of t1 and t2, respectively, is always the event date t. The calculation of the mean CAR 
reported is as stated in equation (6). The statistical significance of the mean CAR reported was 
assessed using a normal t-test as well as with the parametric test ZSCS as reported in equation (7). The 
mean CARs are reported in percent. *, ** and *** indicate the statistical significance at the 10%, 5% 
and 1% level.   

The column mean CAR (1-factor) shows the results obtained applying the one-factor model for the 
estimation of the abnormal returns as stated in equation (1), (3) and (5). The column mean CAR (3-
factor) shows the results for the three-factor model for the estimation of the abnormal returns as 
stated in equation (2), (4) and (5).   

Event 
window 

Mean CAR        
(1-factor) t-test ZSCS Mean CAR        

(3-factor) t-test ZSCS 

[-1;1] -1.34 -5.290*** -1.643* -1.33 -5.090*** -2.692*** 
[-1;2] -1.74 -6.321*** -1.461 -1.73 -6.079*** -3.537*** 
[-1;3] -1.85 -5.452*** -1.518 -1.83 5.299*** -2.891*** 
[-1;4] -1.94 -5.311*** -1.382 -1.92 -5.181*** -2.499**  
[-1;5] -1.95 -5.118*** -1.825* -1.93 -4.961*** -2.205** 
[-1;6] -2.21 -5.574*** -1.786* -2.19 -5.394*** -2.207** 
[-1;7] -2.23 -5.116*** -1.758* -2.21 -4.941*** -2.059** 
[-1;8] -2.21 -4.779*** -1.635* -2.19 -4.569*** -1.863* 
[-1;9] -2.20 -4.508*** -1.591 -2.17 -4.267*** -1.900* 
[-1;10] -1.83 -4.044*** -1.513 -1.79 -3.713*** -1.763* 
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Table 2: Top ten companies per industries in terms of market capitalization 

The following table shows the top ten companies in terms of market capitalization at the data breach 
incident date t. Companies are sorted from highest to lowest market capitalization. For industries 
which contain less than N= 10 companies, the entirety of companies within each industry is listed.  

Mining 
1000-1499 

Construction 
1500-1799 

Manufacturing 
2000-3999 

Transportation 
4000-4999 

Rowan Companies PulteGroup Apple Verizon 
Matrix Service Emcor Group Exxon Mobil AT&T Mobility 

New Dimension Resources  GE Healthcare UPS 
Equinox Gold  Toyota Motors Duke Energy 
Goldcorp Inc.  Cisco Systems Time Warner Cable 

  Boeing American Airlines 
  GlaxoSmithKline Delta Air Lines 
  Abbott Laboratories CBS 
  Diageo United Continental Holdings 
  Medtronic Charter Communications 

Wholesale Trade 
5000-5199 

Retail Trade 
5200-5999 

Finance 
6000-6799 

Services 
7000-8999 

Grainger Amazon Wells Fargo Alphabet 
Patterson Sam’s Club JP Morgan Chase Instagram 

Boise Cascade Walmart KCG Holdings Skype 
Sunoco Home Depot Bank of America Microsoft 

 CVS Health PayPal Oracle 
 McDonald’s American Express Accenture 
 Costco Morgan Stanley Ebay 
 Starbucks Goldman Sachs Netflix 
 Lowe’s Aetna Intuit 
 Target Cigna Adobe Systems 

 


