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ABSTRACT 

We introduce in this paper the notion of dominance in the divisional efficiencies space in Network Data Envelopment 

Analysis. We argue that, irrespectively of the method used, a successful efficiency evaluation protocol should satisfy 

the dominance property at the divisional efficiencies level. In particular, there should not exist any other feasible 

solution in the assessment model, suboptimal in terms of the optimality criterion, that provides stage efficiencies scores 

at least as high as the assessed ones and higher for at least one stage. Then, we investigate the dominance property 

for the relational model and the additive efficiency decomposition method for general two-stage series processes. We 

provide an example showing that these methods do not comply with the dominance requirement at the divisional 

efficiencies level and lead to controversial results. 

Keywords: Data Envelopment Analysis; network DEA; relational model; efficiency decomposition; dominance 

property.  

INTRODUCTION 

Network DEA is an extension of the conventional DEA, which considers the DMU as a network of sub-

DMUs (divisions, sub-units, sub-processes, stages, etc.) and was introduced by Fare and Grosskopf (2000). 

Thereafter, a large volume of studies has been published in both theoretical and application level. Extended 

literature reviews can be found in Castelli et al. (2010), Cook and Zhu (2014) and Kao (2014a). In network 

DEA, the efficiency is a multi-dimensional (vector) measure, as one has to account for the efficiency of the 

divisions encountered in the process as well as the overall system efficiency. Assessing the efficiency of 

the individual divisions and the overall efficiency of the system independently of each other constitutes the 

so called independent efficiency assessments approach (see, for example, Wang et al., 1997 and Seiford 

and Zhu, 1999). The holistic approach, on the other hand, requires that the efficiencies of the individual 

divisions and the overall system efficiency are estimated jointly by taking into account the 

interdependencies of the divisions by means of the flow of intermediate measures. Irrespectively of the 

method used to assess the efficiencies in the frame of the holistic approach, the divisional efficiencies 

cannot exceed their independent counterparts, which serve as upper bounds. The series and the parallel 

                                                           
1 Sotiros, D., G. Koronakos and D. K. Despotis (2018) Dominance at the divisional efficiencies level in network 

DEA: The case of two-stage processes, in Emrouznejad and Thanassoulis (eds.), Data Envelopment Analysis and 

Performance Measurement: Recent Developments: Proceedings of the DEA40: International Conference of Data 

Envelopment Analysis, Aston Business School, UK, ISBN: 978 1 85449 438 2. 
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production processes are two characteristic process configurations studied extensively in the literature. The 

term “stage” is commonly used to name the divisions in series processes and it will be used equivalently 

hereafter. 

Generally, there are two main paradigms in the holistic approach of network DEA for series processes, 

namely the non-cooperative and the cooperative. In both paradigms, the efficiency of each division is 

commonly defined as the ratio of the implied aggregate value of its outputs to the implied aggregate value 

of its inputs. Focusing on two-stage processes, the non-cooperative paradigm assumes that pre-emptive 

priority is given to one of the two stages (leader stage), whose efficiency is assessed first. Then, the 

efficiency of the other stage (follower) is assessed in a manner that the optimal efficiency of the leader is 

maintained (Liang et al., 2008). In the cooperative paradigm, two broad approaches can be identified, 

namely the top-down approach and the bottom-up approach. This classification reflects how the different 

methods select the driver of the assessment, i.e. whether the system (top-down) or the divisional efficiencies 

(bottom-up) is given priority for optimization. In the top-down approach, the overall system efficiency is 

optimized first, and the divisional efficiencies derive as offspring from the optimal solution that maximizes 

the system efficiency. This requires an a priori definition of the overall system efficiency. Representative 

methods of the top-down approach are the additive efficiency decomposition method (Chen et al., 2009) 

and the relational model (Kao and Hwang, 2008; Kao, 2009; Kao, 2014b). The latter, when applied to 

simple two-stage processes where nothing but the external inputs to the first stage enters the system and 

nothing but the external outputs of the second stage leaves the system, is also known as multiplicative 

efficiency decomposition method (Kao and Hwang, 2008). The bottom-up approach is based on an inverse 

perspective. The divisional efficiencies are estimated first and the system overall efficiency is derived ex 

post. The methods proposed in the literature differ in the way they assess the divisional efficiencies and the 

functional form used to define the system efficiency. Indicative methods of the bottom-up approach can be 

found in Guo et al. (2017), Ang and Chen (2016), Despotis et al., (2016a; 2016b; 2016c) and Li et al. (2012). 

In the methods introduced by Despotis et al. (2016a), (2016b) for series processes, the stage efficiencies 

are treated as distinct objective functions, and vector-optimization (multi-objective programming-MOP) 

techniques are used to locate the stage efficiencies as close as possible to their independent counterparts, 

i.e. the ideal point in terms of MOP terminology. Thus, the notion of Pareto optimality is introduced in the 

divisional efficiencies space. That given, we argue that the point defined by the individual stage efficiencies 

scores, irrespectively of the method used to assess them, should lie on the Pareto front in the divisional 

efficiencies space. As the stage efficiencies are determinant of the system’s overall efficiency, the higher 

the stage efficiencies are, the higher the overall efficiency of the evaluated DMU is expected to be. 

Consequently, the stage efficiencies should be non-dominated, whatever the optimality criterion of the 

assessment model is. Otherwise, we would face the paradox that there are higher stage efficiency scores 

associated with a lower than the optimal system efficiency. Thus, we argue that, whatever is the approach 

followed, top-down or bottom-up, the assessment model should comply with the dominance property in the 

divisional efficiencies space.  

In this paper, we investigate the dominance property of the stage efficiency scores in the relational model 

and the additive efficiency decomposition method for general two-stage series processes. We provide an 

illustrative counter example that reveals the violation of the dominance property, i.e. there are feasible stage 
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efficiencies that dominate the stage efficiencies estimated by these models, at a lower overall system 

efficiency. In these cases, we show that the violation of the dominance property leads to controversial 

results and irregularities. 

The paper unfolds as follows. In the next section we introduce the dominance property in the divisional 

efficiencies space. Then, we investigate the dominance property in the relational model and in the additive 

efficiency decomposition method. The paper ends with our main conclusions. 

THE DOMINANCE PROPERTY IN THE DIVISIONAL EFFICIENCIES SPACE 

In this section we introduce the dominance property at the divisional efficiencies level in network DEA and 

we argue that a successful efficiency assessment should satisfy this property. For this, let us start with the 

independent assessments approach, where the connections among the divisions are neglected and the 

divisional and the system efficiencies are assessed independently with standard DEA models. This approach 

has been criticized because it often leads to controversial results. There are examples where the system may 

be rendered efficient even though some of the divisions are inefficient (Wang et al., 1997; Kao & Hwang, 

2008; Kao, 2014b). Moreover, there are cases where all the divisions of a DMU A are less efficient than 

the corresponding divisions of another DMU B, but A appears with a higher overall efficiency score than 

B (Kao &Hwang, 2010).  

Treating these irregularities was the core motive for developing the network DEA models that take into 

account the internal structure of the system and the flow of intermediate measures among its divisions. So, 

a successful assessment in the frame of network DEA should secure that DMUs with higher divisional 

efficiencies should show higher overall system efficiency. Consequently, increasing the divisional 

efficiencies in a system should lead to higher overall system efficiency. Related to this is the Kao’s (2014b) 

comment: “The processes responsible for most of the inefficiency in a system are identified from the 

efficiency decomposition. Improving the efficiency of these processes will thus be the most effective way to 

improve the performance of the system”. At the edge of this property lies the fundamental property, that a 

DMU is efficient if and only if all its divisions are efficient. To illustrate the above, consider a DMU with 

two divisions, and A and B two different feasible states of efficiency that the DMU can come to:  

State A: [𝑒𝑜(𝐴), 𝑒1(𝐴), 𝑒2(𝐴)] 

State B: [𝑒𝑜(𝐵), 𝑒1(𝐵), 𝑒2(𝐵)] 

where 𝑒𝑜(. ), 𝑒1(. )  and 𝑒2(. )  denote respectively the system overall efficiency and the divisional 

efficiencies. The dominance property at the divisional efficiencies level is stated as follows: 

𝑒1(𝐴) > 𝑒1(𝐵)   𝑎𝑛𝑑  𝑒2(𝐴) ≥ 𝑒2(𝐵)
𝑜𝑟

𝑒1(𝐴) ≥ 𝑒1(𝐵)   𝑎𝑛𝑑  𝑒2(𝐴) > 𝑒2(𝐵)
   } ⟹ 𝑒𝑜(𝐴) > 𝑒𝑜(𝐵) 

This means that if the state of efficiency A dominates the state B at the divisional efficiency level, then the 

overall system efficiency in state A is greater than that in state B. This property is not method-depended 

and in that sense, it is universal. If the optimal state of divisional efficiencies assessed by the network DEA 

model define a non-dominated point on the Pareto front in the divisional efficiencies space, the dominance 
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property is satisfied. Otherwise, the above fundamental property is violated. Notice that the above property 

is expressed in terms of different states of efficiency of the same DMU (intra-DMU dominance). However, 

the dominance property should also hold across the optimal states of efficiency of different DMUs (inter-

DMU dominance). For instance, if the divisional efficiency scores of DMU A dominate the divisional 

efficiency scores of DMU B, then the overall efficiency of DMU A should be higher than the overall 

efficiency of DMU B. That is, a successful efficiency assessment should secure that the dominance property 

is satisfied at both the intra-DMU and the inter-DMU levels.  

In the following sections, we will show that there are network DEA methods of the top-down approach that 

do not satisfy the aforementioned dominance property, bringing in the spotlight anomalies observed and 

criticized in the independent assessments approach. Particularly, we will show that when an optimal state 

of efficiency is achieved at the system level and the divisional efficiencies derive as offspring of that state, 

there might be other feasible state of efficiency dominating the optimal one at the divisional efficiencies 

space at a lower (suboptimal) system efficiency. We will present our observations for the general Type IV 

two-stage series structure shown in Fig. 1 (c.f. Despotis et al., 2016c). 

 

Figure 1: Two-stage series processes of varying complexity 

THE RELATIONAL MODEL 

We start our investigation with the general two-stage series structure (Type IV) as presented in Figure 1. 

The stage efficiencies as well as the overall system efficiency are defined as follows: 
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Kao (2014b) proposed the following linear program for the efficiency assessment of DMUs with the Type 

IV structure. 



 

67 

 

0 0

0 0

max  

. .

1

0,  1,2,...,

0, 1,2,...,

, , , ,

j j

j j

j j j

j j j

uY K

s t

vX L

wZ K vX j n

uY wZ L j n

v w u









  

+

+ =

+ −  =

− −  =



    (1) 

We provide an example below, which shows that model (1) fails to locate the efficiencies of the real 

processes (divisions-stages) on the Pareto front in the (e1, e2) space. This can be validated by applying the 

model (1) on the synthetic data presented in Table 1 where the role of the measures X=(X1, X2), Z=(Z1, Z2), 

K=(K1, K2), L=(L1, L2) and Y=(Y1, Y2) is as depicted in the Type IV structure of Fig. 1. 

 

Table 1: Synthetic data set for the Type IV structure 

DMUs X1 X2 Z1 Z2 K1 K2 L1 L2 Y1 Y2 

1 95.26 93.39 24.15 36.88 89.34 72.04 76.19 65.74 52.66 79.49 

2 49.34 42.8 96.67 87.47 71.34 36.71 64.8 31.34 28.5 98.88 

3 74.45 51.44 99.18 86.45 67.32 78.91 41.61 31.76 33.3 35.65 

4 44.08 20.33 91.16 33.27 40.07 29.08 38.95 45.45 89.32 41.41 

5 23.8 44.32 39.03 47.07 67.77 40.5 72.88 97.18 21.16 86.2 

6 79.46 26.72 26.77 83.13 44.18 59.69 28.72 73.99 96.53 33.73 

7 24.62 72.15 61.75 62.51 52.15 68.53 65.81 98.84 72.21 44.35 

8 38.97 33.2 68.35 97.64 63.29 28.5 55.29 74.09 31.87 24.43 

9 92.04 50.5 47.72 46.74 60.78 66.92 95.67 55.25 57.25 78.07 

10 47.17 41.54 24.93 92.69 38.35 42.73 34.32 24.25 48.67 31.15 

11 55.36 23.74 89.16 87.82 81.52 40.88 62.44 45.19 35.7 79.06 

12 57.26 70.69 51.25 52.65 95.21 39.01 97.87 95.06 35.14 90.61 

13 80.95 58.37 68.48 33.27 97.99 35.21 59.82 27.35 87.02 40.46 

14 24.51 76.05 89.54 80.93 21.3 37.11 88.75 56.97 25.18 92.62 

15 45.35 97.8 77.02 33.51 21.65 44.51 38.39 78.58 74.7 43.95 

 

In Table 2, the columns 2-3 present the real efficiency scores of the first and the second stage respectively 

whereas the column 4 indicates the overall efficiency of the system. For the DMU 8, the real stage 

efficiencies and the overall system efficiency are respectively 1 2
8 8,  0.8646 0.2867e e= =  and 0

8 0.8645e = . 

However, there is a feasible solution in model (7), which provides higher divisional efficiency scores at a 

lower overall system efficiency ( 1
8̂ 1e = , 2

8̂ 0.3401e = , 0
8 0 63ˆ .52e = ). The same anomaly is observed in the 

DMUs 1, 3 and 13 as presented in Table 3. There are feasible (achievable) divisional efficiencies in model 

(1) that provide a lower system efficiency, despite they dominate those obtained by model (7). Thus, when 

the relational model is applied to two-stage processes of the general Type IV, it does not satisfy the 

dominance property. We also notice that DMU 3 achieves higher overall efficiency than DMU 14, even 

though the latter achieves higher stage efficiency scores. This peculiarity has been spotted and criticized by 

Kao and Hwang (2010) for the independent assessment approach. 
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Table 2: Results obtained from model (1) 

DMUs e1 e2 e0 

1 0.4152 0.7136 0.7134 

2 1 1 1 

3 1 0.4046 0.9998 

4 1 1 1 

5 1 1 1 

6 1 1 1 

7 1 0.6027 0.9999 

8 0.8646 0.2867 0.8645 

9 0.7840 0.9231 0.7840 

10 0.7020 0.9234 0.9233 

11 1 0.8318 0.9999 

12 0.7405 0.7754 0.7404 

13 0.4650 1 0.9997 

14 1 0.8298 0.8550 

15 0.4475 0.8734 0.8732 

 

The same anomalies are observed when the relational model is applied in two-stage processes of Types II 

and III. Specifically, the point defined by the individual stage efficiencies scores, by the relational method 

does not lie on the Pareto front in the divisional efficiencies space. Additionally, it can be observed that a 

DMU with higher divisional efficiencies scores than another one, may quaintly achieve a lower overall 

efficiency score than the second one. To this end, in general, the relational does not comly with the 

dominance property. However, in the elementary Type I structure, the relational model does comply both 

with the inter-DMU and inter-DMU dominance property.  

 

Table 3: Dominating stage efficiencies that are feasible in model (1) 

DMUs 𝒆̂
𝟏
 𝒆̂

𝟐
  𝒆̂

𝟎
 

1 0.6255 1  0.6255 

3 1 0.6522  0.6530 

8 1 0.3401  0.5263 

13 0.6905 1  0.6905 

 

THE ADDITIVE EFFICIENCY DECOMPOSITION METHOD 

Chen et al. (2009) introduced the additive efficiency decomposition method for the elementary two-stage 

process of Type I, which, however, is straightforwardly extendable to the other Types II-IV. The overall 

efficiency of the evaluated DMU j0 (system) is defined as a weighted average of the stage efficiencies, i.e. 

0 0 0 0 0

0 1 1 2 2
j j j j je t e t e= +  with 

0 0

1 2 1j jt t+ = , where the weights ( )
0 0

1 2,  j jt t  are defined endogenously as functions of 

the decision variables. Regarding the Type IV structure, the stage efficiencies as well as the overall one are 
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linear model (2).  
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We use the fifteen synthetic DMUs depicted in Table 1 to show that model (2) does not provide stage 

efficiencies scores on the Pareto front in the divisional efficiencies space. Table 4 exhibits the results 

obtained by model (2) for the data depicted in Table 1, i.e. the stage efficiencies (columns 2-3), the overall 

efficiency (column 4) and the weights assigned to the two stages (columns 5-6). In this example, we observe 

the aforementioned anomaly in four DMUs, namely the DMUs 1, 3, 8 and 13. The Table 5 depicts 

dominating stage efficiencies for these DMUs, which are feasible in model (2), as well as their overall 

efficiency and the weights assigned to the stage efficiencies. Notice that the stage efficiency scores 

presented in Table 5 coincide with the independent efficiency scores of the two stages for each DMU and 

the Pareto front degenerates to the ideal point in the two-dimensional space 1 2( , )e e . 

Table 4: Results obtained from model (2) 

DMUs e1 e2 e0 t1 t2 

1 0.4152 0.7136 0.7134 0.0008 0.9992 

2 1 1 1 0.0010 0.9990 

3 1 0.4046 0.9998 0.9997 0.0003 

4 1 1 1 0.1790 0.8210 

5 1 1 1 0.3093 0.6907 

6 1 1 1 0.9997 0.0003 

7 1 0.6027 0.9999 0.9997 0.0003 

8 0.8646 0.2867 0.8645 0.9997 0.0003 

9 0.7559 0.9837 0.7854 0.8703 0.1297 

10 0.7020 0.9234 0.9233 0.0004 0.9996 

11 1 0.8318 0.9999 0.9996 0.0004 

12 0.6480 0.8046 0.7414 0.4040 0.5960 

13 0.4650 1 0.9997 0.0005 0.9995 

14 1 0.8298 0.9058 0.4466 0.5534 

15 0.4475 0.8734 0.8732 0.0004 0.9996 

 

The figures in Table 5 reveal the paradox that higher stage efficiencies provide lower system efficiency. 

Thus, the additive decomposition method does not comply with the dominance property when is applied in 

two-stage processes of type IV. As a result, comparisons among DMUs may also lead to unjustifiable 
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results. For instance, DMU 9 has higher performance in both stages than DMU 10, but the latter one 

achieves a higher overall efficiency score (see Table 4).  

 

Table 5: Feasible dominating stage efficiencies in model (2) 

DMUs 𝒆̂𝟏 𝒆̂𝟐 𝒆̂𝟎 𝒕̂𝟏 𝒕̂𝟐 

1 0.6255 1.0000 0.6256 0.9996 0.0004 

3 1 0.6522 0.6531 0.0028 0.9972 

8 1 0.3401 0.6174 0.4202 0.5798 

13 0.6905 1 0.6906 0.9996 0.0004 

The results of the additive efficiency decomposition method when applied to Type II-III structures have the 

same peculiarities. However, this method complies with the dominance property when it is applied to the 

elementary Type I structure. 

CONCLUSIONS 

We revisited in this paper some characteristic NDEA methods, whose formulation is originally based on 

the multiplier form of the DEA models, to investigate whether they possess the dominance property at the 

divisional efficiencies level. It is of no doubt that the divisional efficiencies in a multi-division system are 

determinants of the overall system efficiency. Thus, the higher are the efficiencies of the divisions the 

higher is the system efficiency. Based on this basic principle, we introduced the dominance property as a 

minimal requirement that the NDEA methods should satisfy, regardless the optimality criterion used to 

assess the overall and the divisional efficiencies of a system. The dominance property should be satisfied 

at two levels; the intra-DMU and inter-DMU level. The intra-DMU dominance property secures that there 

should not exist any other feasible solution in the assessment model, suboptimal in terms of the optimality 

criterion, that provides stage efficiencies scores at least as high as the assessed ones and higher for at least 

one stage. Analogously, the inter-DMU dominance property ensures that across DMU comparisons the 

higher the divisional efficiency scores are, the higher is the system efficiency.  

We restrained our investigation to two-stage processes of varying complexity and two representative 

methods that follow the top-down approach, namely, the relational model and the additive efficiency 

decomposition approach. We provided a counter example to show that the additive efficiency 

decomposition method and the relational model do not satisfy the dominance property when they are 

applied to Type IV two-stage processes. The dominance property is also violated when these two methods 

are applied to Type II-III structures. However, regarding the elementary Type I structure, both methods 

comply with the dominance property (see also Koronakos et al. 2018). The modification of the additive 

efficiency decomposition method and the relational model so as to comply with the dominance property in 

general structures are issues for future research. 

Representative methods that follow the bottom-up approach are the leader-follower method (Liang et al., 

2008), the Multiplicative aggregation method (Li et al., 2012), the Additive aggregation method (Ang and 

Chen, 2016; Guo et al., 2017) the min-max method (Despotis et al., 2016c) and the weak-link method 
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(Despotis et al., 2016b). These methods resort to multi-objective programming techniques to locate a point 

on the Pareto front in the divisional efficiency space. Thus, they comply with the dominance property at 

the intra-DMU level. Moreover, deriving the overall efficiency in these methods by an increasing function 

of the divisional efficiencies, the dominance property is satisfied at the inter-DMU level as well. 

Consequently, the methods that follow the bottom-up approach comply with the dominance property. 
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