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ABSTRACT

Cloud-hosted services are being increasingly used in online businesses in e.g., retail,

healthcare, manufacturing, entertainment due to benefits such as scalability and reliability.

These benefits are fueled by innovations in orchestration of cloud platforms that make

them totally programmable as Software Defined everything Infrastructures (SDxI). At the

same time, sophisticated targeted attacks such as Distributed Denial-of-Service (DDoS) are

growing on an unprecedented scale threatening the availability of online businesses. In this

thesis, we present a novel defense system called Dolus to mitigate the impact of DDoS

attacks launched against high-value services hosted in SDxI-based cloud platforms. Our

Dolus system is able to initiate a pretense in a scalable and collaborative manner to deter

the attacker based on threat intelligence obtained from attack feature analysis in a two-stage

ensemble learning scheme.

Using foundations from pretense theory in child play, Dolus takes advantage of elas-

tic capacity provisioning via quarantine virtual machines and SDxI policy co-ordination

across multiple network domains. To maintain the pretense of false sense of success after

attack identification, Dolus uses two strategies: (i) dummy traffic pressure in a quarantine

to mimic target response time profiles that were present before legitimate users were mi-

grated away, and (ii) Scapy-based packet manipulation to generate responses with spoofed

IP addresses of the original target before the attack traffic started being quarantined. From

the time gained through pretense initiation, Dolus enables cloud service providers to de-

cide on a variety of policies to mitigate the attack impact, without disrupting the cloud

services experience for legitimate users. We evaluate the efficacy of Dolus using a GENI

Cloud testbed and demonstrate its real-time capabilities to: (a) detect DDoS attacks and

redirect attack traffic to quarantine resources to engage the attacker under pretense, and (b)

coordinate SDxI policies to possibly block DDoS attacks closer to the attack source(s).
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Chapter 1

Introduction

1.1 DDoS Attacks in Cloud Platforms

Cloud computing has become an essential aspect of online services available to customers

in major consumer fields such as e.g., retail, manufacturing, and entertainment. On-demand

elasticity, and other benefits including diversity of resources, reliability and cost flexibil-

ity have led enterprises to pursue the development and operations of their applications in

a “cloud-first” fashion [1]. In addition to above consumer fields, with the growing trend

of hosting critical applications in e.g., finance, biotechnology, and healthcare on cloud

platforms, there is a need to protect these applications from the security threats of cyber

attacks. Sophisticated targeted attacks such as are growing on an unprecedented scale,

threatening the availability of online businesses. Technological trends indicate that the

aforementioned benefits typically rely on software-centric innovations in the orchestration

of cloud resources. These innovations include cloud platforms based on Software De-

fined everything Infrastructures (SDxI) that allow programmability to achieve capabilities

such as speed and agility [2] in elastic capacity provisioning. Additionally, they provide

opportunities to create Software-Defined Internet Exchange Points (SDXs) between multi-
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Figure 1.1: Akamai DDoS Attack Frequency By Industry Q2 2017-Q1 2017

ple Software-Defined Network (SDN) domains (or Autonomous Systems (ASes)) that can

enable application-specific peering, knowledge sharing of cyber threats, and other cross-

domain collaborations [3]. One of the most common type of cyber attacks targeting cloud

platforms is the Distributed Denial of Service (DDoS) attack [4] that leads to Loss of Avail-

ability (LOA) through starvation of critical application resources serving legitimate users.

Figure 1.1 depicts the Akamai Q2 2017 state of the internet report on DDoS attacks. The

security report [5] reports that records on DDoS attacks have increased once again with

more number of attacks recorded from last year.

The DDoS attack defense challenges within a cloud infrastructure are more severe than

traditional cyber security risks in two ways. Firstly, a cloud infrastructure becomes a ‘vul-

nerability amplifier’ to traditional cyber security threats due to the highly elastic nature of

the infrastructure resources designed to serve a large population of consumers. Secondly,

new means of DDoS attacks exist that specifically target cloud infrastructures in vulnerable

areas of application multi-tenancy within a virtual machine (VM), and within an internal

network of a CSP. Moreover, traditional ‘detect-and-react’ defense approaches [6, 7] are

largely ineffective in consistently maintaining the Service Level Agreements (SLA) when

under DDoS attack due to their lack of: (a) agility in response to attack detection, (b)

cost effectiveness for the CSP, and (c) sophistication to tackle intelligent attack strategies.
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Consequently, as an alternative, the cloud security community and even federal organiza-

tions [8] are exploring ‘Cyber Agility and Defensive Maneuver’ (CAADM) mechanisms

that can allow for real-time service restoration through agile cloud resource adaptations

once an attack is detected. The same mechanisms can also limit proliferation of detected

attacks within the cloud infrastructure through preventive VM resource maneuvers.

1.2 Need for Dolus (Defense using Pretense) System

Given the benefits of SDxI-based cloud platforms, the traditional Intrusion Prevention Sys-

tems (IPS) and Intrusion Detection Systems (IDS) solutions are undergoing major transfor-

mations. Recently, defense strategies such as SDN-based “moving target defense” [9] [10]

have been proposed to protect networks and users against DDoS attacks by migrating net-

works and users from targeted virtual machines (VMs) to other healthy/safe VMs in a cloud

platform. However, such strategies may cause the application response behavior to change

to an extent that alerts the attacker that a high-value target has been hit. Given such a dis-

covery that a service provider is moving a target in order to shelter from the attack impact,

the attacker may then deflect more resources to seek ransom demands in order to stop the

DDoS on the target.

Moreover, if the DDoS attack flows are blacklisted, traditional approaches allow de-

fense only at the attack destination side i.e., any related traffic is dropped at the target-end.

In such cases, the attacker still can escalate the DDoS attacks by crossing many other neigh-

boring domain paths, who may not be inclined to drop the attack flow traffic assuming it

may be legitimate traffic of a peer network. We suppose that SDxI-based cloud platforms

can facilitate capabilities for coordination of policies and creation of incentives to block

such targeted attack flows closer to the attack source side, which can then mitigate the im-

pact on resource flooding for all the providers involved. However, this might require the

target service provider to buy some time in order to bring ‘humans into the loop’ to actually

3



enforce attack traffic blocking measures closer to the attack source side.

In this thesis, we address the above challenges and present a novel defense system

called Dolus (named after the spirit of trickery in Greek Mythology) to mitigate the im-

pact of DDoS attacks launched against high-value services hosted in SDxI-based cloud

platforms. The DDoS attack detection is performed in the Dolus system using the threat

intelligence obtained from attack feature analysis in a two-stage ensemble learning scheme

that we developed. The first stage focuses on anomaly detection to identify salient events

of interest (e.g., connection exhaustion), and the second stage is invoked to distinguish

the DDoS attack event type amongst the 5 common attack vectors: DNS (Domain Name

System), UDP (User Datagram Protocol) fragmentation, NTP (Network Time Protocol),

SYN (short for synchronize), SSDP (simple service discovery protocol). Our Dolus sys-

tem is novel owing to a scalable and collaborative defense strategy that uses foundations

from pretense theory in child play [11] [12] along with SDxI-based cloud platform capa-

bilities for: (a) elastic capacity provisioning via ‘quarantine VMs’, and (b) SDxI policy

co-ordination across multiple network domains. Such a strategy is aimed at preventing the

disruption of cloud-hosted services by deceiving the attacker through creation of a false

sense of success, and by keeping the attacker from recognizing that a high-value target has

been impacted and is being moved.

1.3 Software Defined Network programmability and Fre-
netic

Software Defined Networking (SDN) is an emerging technology which allows programma-

bility in the network through decoupling of data plane and control plane. [13] provides a

novel work by surveying capabilities of SDN programming with focus in defense mech-

anisms against DDoS attacks. SDN capabilities such as software-based traffic analysis,

global viewing of network, centralized control, dynamic updating of forwarding rules make

4



it easy to detect and to react DDoS attacks in cloud platforms.

The programming language we use for our logical centralized controller is Frenetic [14].

Frenetic is a family of network programming languages which allows for programmable

networks using Python and NetKat [15] (also developed by the creators of Frenetic to help

in specifying OpenFlow policies). This allows one to write scripts in Python which can be

run against the packets identified for investigation. These scripts will allow to determine

where the current and future packets should go. Once a decision is made about where a

packet goes, a network device can learn this decision and continue to forward those packets

according to the rule without need of future investigation. Our goal with using Frenetic is

to be able to quickly identify an attackers packets and teach each switch to send that traffic

elsewhere. Frenetic can also run an HTTP Listener with which one can make RESTful

web service calls. We use this functionality in order to GET data about the network as

well as POST policy updates into Frenetic which then sends the policies downstream to the

switches.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2, we describe the thesis

background and literature review, that provide context to the solution approach. In Chapter

3, we elaborate on our solution and provide a detailed description of our approach with an

overview and reference architecture. Chapter 4 evaluates the effectiveness of our system

and show results of outlier detection and classification of our two-stage ensemble method.

Chapter 5 discusses future work and provides information on extending the system for

different targeted attacks. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Background and Literature Survey

In this chapter, we provide some background information on fundamental concepts be-

hind the system. We then discuss the various literature work that have led to the idea and

implementation of this research.

2.1 Flooding Attacks

There are various types of flooding attacks that have been utilized to trigger Loss of Avail-

ability (LOA) in web servers over the years. These attacks are mainly divided into types:

a) Volume based or Volumetric DDoS attacks, b) Protocol attacks and c) Application Layer

attacks. Table 2.1 list DDoS types and a few example of attacks that fall under those types.

Table 2.1: DDoS attack types and examples

DDoS types Example

Volume based/ volumetric DDoS attacks ICMP, UDP and spoofed-packet floods
Protocol Attacks SYN floods, Ping of Death
Application Layer Attacks GET/POST floods, web server vulnerabilities
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Defense against flooding attacks such as DDoS typically involves attack traffic feature

learning that provides intelligence on where the attack is coming from, and the specific

attack type(s) [16] [17] [18]. Analysis of features such as source IP, destination IP, source

port, destination port, size of packets, packet identifiers commonly help in subsequent fil-

tering of flooding attacks. Authors in [19] show that the Internet traffic patterns are dis-

tinguishable, which can help filter and isolate attack traffic flows. Once attack flows are

filtered, blacklists are created [20], which can then be used to “scrub” the flows through

scrubbing SaaS services as a low-cost solution [21].

2.2 Location-based SDN-enabled Defense

Defense against flooding attacks have been utilized focusing on various locations. The

research works using SDN for defense systems include at the Network, the source side and

the destination side of the attack. They have been categorized and covered as below.

2.2.1 Network-based Mechanisms

DDoS defense strategies are typically handled in the network. A number of such in-network

defense involves analysis of traffic and dynamic updation of rules to effectively reroute it.

Such efforts include Choi et al. [22], which proposes a novel architecture that reacts to

targeted attacks using accountability and content-aware supervision. Similarly, using vol-

ume counting, [23] provides a DDoS mechanism to monitor the traffic flow in OpenFlow

switches. In the context of programmability of SDN switches to mitigate targeted attacks,

Shin et al. [24] discusses a novel programming framework to that end. Yu et al. [25] pro-

poses a memory-efficient system that uses Bloom filter and installs a monitoring tools into

switch’s data plane. The work specifically focuses on the programmability and dynamic

rule update characteristics of SDN to mitigate targeted attacks. [26] shows how a moni-
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toring node that communicates with the controller can be used to build a global view of

the network to monitor information from every user in the network. Idziorek et al. takes a

traditional approach of intrusion prevention to prevent DDoS attacks [27].

2.2.2 Destination-based Mechanisms

Leveraging the dynamic rule update feature of SDN, Tian et al. [28] analyzes the probabil-

ity that a flow is traced back across multiple Autonomous System (AS) hops by sampling

the probability and the signature of the attack traffic. NetSight captures packet histories to

investigate events of interest to trace the network state [29].

2.2.3 Source-based Mechanisms

Yan et al. [13] presents a survey of SDN-based mechanisms to detect attacks closer to the

attackers/attack sources. Mehdi et al. [30] shows how to perform real-time traffic analysis

on OpenFlow switches to detect mobile malware. Similarly, [31] uses SDN features such

as dynamic update of rules and global view from centralized controller to effectively tackle

the problem of source address validation.

2.3 Defense through Trickery

Clark et al., in [32], shows the effectiveness of randomizing IP addresses in decoy-based

MTD and tries to introduce the notion of tricking the attackers through IP randomization

methods. However, our approach adds to [32] by preventing potential attack outcomes.

Our notion of pretense is akin to Honeypots and Honeynets which are effective in gaining

information about possible attacks based on minimal active interactions with attackers [33].

Primarily they are used in a setting to either gain more information about potential attacks

or the behavior of attackers. Our work is complementary to Honeypots/Honeynets: we

8



employ pretense to deceive attackers by rerouting and responding to attack traffic using a

QVM. Our pretense theory is more sophisticated where the foundation lies on the child

psychology where we reach the assumption stimulus match [11].

Our work is looking at defense against flooding attacks which is mostly addressed by

finding some attack feature learning that determines where the attack originates from and

its type. Secondly, we use blacklisting and information gathering to block the attack traffic

and to find out the flow and its origin. Thirdly, since we have cloud resources, we use

elastic capacity provisioning, similar to MTD. We initiate pretense to keep the attacker

guessing in a way that he doesn’t figure out the trickery and chase back. We use some

time before the attacker figures out the pretense, to coordinate across the unified SDxI

infrastructure that could potentially help us block the attacker closer to the source. We

instantiate this framework to collectively stop the attacker in collaborative way utilizing

the scaling capability of a cloud, that altogether helps us get them closer to the source.

2.4 Literature Review

In this section, we provide reviews of work that motivated in building our research work on

DDoS defense mechanism that is Dolus.

2.4.1 Moving Target Defense

Moving Target Defense (MTD) based resource obfuscation/adaptation mechanisms can be

effective to protect critical cloud-hosted applications. For instance, MTD-based mecha-

nisms can be used to perform both: (i) proactive resource adaptation, to detect a DDoS

attack and act defensively before major damage is inflicted, and (ii) reactive resource adap-

tation, to act defensively after an attack has occurred. At the same time, MTD-based mech-

anisms are amenable to leverage the emerging SDN paradigm to achieve dynamic network
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resource management. Work in [34] discuss a reactive and proactive defense solution

against DDoS attack by utilizing cloud’s resource adaptation and elastic capacity provi-

sioning. The figure 2.1 show their system architecture that depicts VM migration when an

attack occurs, leveraging SDN capabilities.

Figure 2.1: MTD based VM migration technique against DDoS attacks

Though this work presents both before attack and after attack methods to defend against

DDoS attacks, they are done at the destination side i.e., at the cloud platform. Our work

focus on idea of sharing knowledge across multiple domains for better chances of detecting

attacks at the origin of attack. We use proactive mechanism in providing resource adap-

tation through elastic capacity provisioning in our False Reality establishment which is

explained later in section 3.3.

2.4.2 SDN for DDoS Survey

SDN shows great promise in defending or responding to DDoS attacks. Open Networking

Foundation (ONF) [35] is an organization dedicated to the development and commercial-

ization of SDNs. SDNs are widely popular in defeating DDoS attacks because of their
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good features in maintaining a secured network against different cyber attacks. Current

interesting emerging technology can help reduce DDoS attacks significantly. Figure 2.2

shows classification of defense mechanisms using SDN. The survey in this novel work is

informative and give ideas of different previous research works classifying the works based

on source, destination or at the network.

Figure 2.2: Classification of defense mechanisms against DDoS attacks using SDN

Compiled from [13], SDN provides

• Separation of control and data plane: helps in experimenting attacks and their detec-

tion which when successful, can be made operational. Also provides programmable

networks

• Centralized controller: has global view of the network and permits dynamic quar-

antine of compromised hosts. SDX controller provide added ability to coordinate

between one another across different Autonomous Systems (ASes) and IXPs

• Programmability through external applications: hetwork can be programmed using
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intelligent IDSes

• Software based traffic analysis: traffic can be analyzed to help switch improve its

capabilities through the analysis

• Dynamic updating and forwarding rules

We utilize this survey of SDN capabilities in mitigation of DDoS attacks in cloud plat-

forms and take it a step ahead to provide a global solution to DDoS defense. The following

section gives a briefly discuss an emerging technology based on SDN. Authors in the re-

search propose SDN in Internet Exchange Points (IXPs).

2.4.3 Software Defined Internet Exchange (SDX)

SDNs that are enabled at the Internet Exchange Points (IXP) [36] are called SDX. Key

points that we gather from the paper to utilize in our work are: a) Knowledge sharing of

cyber threats and b) cross-domain collaboration. DDoS attacks can be prevented from en-

tering cloud platforms that are hosting the web services. For a successful mitigation, it is

important that the attack is stopped near to its source rather than at the target destination.

This can be obtained if there is proper knowledge sharing of cyber threats across multi-

ple domains, or Autonomous Systems in our case, to detect the attack at source of attack

origination.

In traditional approaches, if the DDoS attack flows are blacklisted, they are only applied

at the attack destination side i.e., any related traffic is dropped at the target end. In such

cases, the attacker still can escalate the DDoS attacks by crossing many other neighboring

domain paths, who may not be inclined to drop the attack flow traffic assuming it may be

legitimate traffic of a peer network. We suppose that SDxI-based cloud platforms, similar

to our case, can facilitate capabilities for coordination of policies and creation of incentives

to block such targeted attack flows closer to the attack source side, which can then mitigate

the impact on resource flooding for all the providers involved. However, this might require
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the target service provider to buy some time in order to bring ‘humans into the loop’ to

actually enforce attack traffic blocking measures closer to the attack source side.

2.4.4 Pretense Theory

There have been efforts that seek to implement defense mechanisms using some form of

‘trickery’ to engage an attacker as discussed earlier in section 2.3. Dolus system’s pretense

theory is mainly built upon the work in [11] and [12] belonging to the field of child pretend

play psychology. Our novel defense by pretense mechanism for effective mitigation of

DDoS attacks is inspired by the authors’ experiments where they show children (analogous

to our attackers) various pictures of the animals along with a mismatch of the sounds made

by the associated animals. Observations are made on how a pretense is effective based

on how long it takes for a child to understand/protest that the information portrayed is

actually false. In our case, the longer an attacker is tricked by our pretense, the more time a

cloud service provider has to perform MTD mechanisms, strategize on patching identified

vulnerabilities, as well as implement a SDxI-based infrastructure policy coordination for

mitigation of the impact of a DDoS attack.
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Chapter 3

Dolus Defense Methodology

In this chapter, we first present an overview of our proposed Dolus system. Following this,

we describe the attack model that we assume to design our defense. Lastly, we detail our

defense solution that uses a ‘defense by pretense’ scheme.

3.1 Dolus System Overview

The pretense in the Dolus system is designed to create stimulus from the target side that

matches the initial expectation of an attacker that a high-value target has not yet been com-

promised through an automated bot activity. Pretense theory concepts from [11] motivate

us to address the issue of how a cognitive agent can present a pretense world, which is

different from the real world using the following four steps:

(a) The basic assumption(s) or premise(s) that is used by a pretender on what is being

pretended.

(b) Inferential elaboration which details of what goes into or what actually happens in

the process of pretense.
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(c) Appropriate behavior production which answers the question of whether the pre-

tender was successful on the audience being tricked.

(d) Balancing and steering the effects of pretense.

For use cases to guide our design, we borrow ideas from an example experiment from [12],

where a child (i.e., the attacker in our case) is shown the image of a dog that makes the

sound of a duck. In this situation, the child protests saying that it is not the sound that a

dog makes. However, if the same child is shown an image that seemingly looks like a duck

(in reality, it is not) and makes the sound of a duck, then there is no protest and the child

falls for the pretense. However, given additional observation time, the child realizes he/she

has been tricked and protests. Thus, we can see that an effective pretense in our case can

be designed as shown in Figure 3.1 by creating pertinent stimulus from the target side i.e.,

redirecting attack traffic to a quarantine VM that mimics original target behavior, when our

two-stage ensemble learning algorithm can blacklist the attacker flows from benign user

flows. This in turn could help in keeping an attacker distracted for a brief period of time

when the pretense is in effect.

From the time gained through such a pretense initiation, Dolus enables cloud service

providers to decide on a variety of policies by dynamically generating network policies

using Frenetic [14] to mitigate the attack impact, without disrupting the cloud services

experience for legitimate users. In the worst case, destination-side blocking can be en-

forced. Alternately, if the cloud service provider uses the attack intelligence informa-

tion and successful pretense time to coordinate the ‘humans in the loop’ of neighboring

SDN-enabled domains, together they can direct a unified SDN controller that directs SDN-

enabled switches to actually enforce attack traffic blocking measures closer to the attack

source side.
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Figure 3.1: Illustration of the proposed Dolus system scheme wherein the attacker is tricked
by redirection of the attack traffic to a quarantine VM for pretense initiation, while the
providers work collaboratively to block the attack traffic closer to the source side.

3.2 Attack Model

DDoS attacks aim to overwhelm network-accessible devices such as networks, firewalls

and end-systems in enterprises by sending packets at excessively high rates. With cloud-

hosted applications with large monetary value becoming highly common, DDoS attacks

can cause ‘Loss of Availability’ for users/customers and can be used for extortion from

vulnerable online businesses. Common DDoS attack event types are amongst the 5 com-

mon attack vectors: DNS (Domain Name System), UDP (User Datagram Protocol) frag-

mentation, NTP (Network Time Protocol), SYN (short for synchronize), SSDP (simple

service discovery protocol). For the purposes of our work, we assume the DDoS attacker

uses SYN [37] and ICMP/Ping [38] flooding. Such attacks typically inundate a networks’

resources with Echo Request packets. We also assume that the attackers’ traffic is sent

constantly and may or may not solicit a response in return. Such attacks can bring the

network to a standstill due to the high volume of both incoming and outgoing traffic. To

effectively capture the semantics of this attack model and to exhaust the target applica-

tion services, we generate and emit synthetic ping and HTTP traffic using hping3 [39]
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and SlowHTTPTest [40] tools, respectively. Furthermore, to capture the dynamics of an

attacker, we randomly change the number of attack packets emitted by these tools.

Figure 3.2: Cross-domain physical setup in a Dolus system deployment to share threat
intelligence for a unified controller to coordinate policy management with a federation of
ASes to block attack traffic closer to the source side.

3.3 Establishment of dummy-traffic based False Reality

As part of our reactive defense mechanism, we devise a dummy-traffic based false real-

ity environment to trick attackers into thinking their attack is still in progress, while being
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quarantined for monitoring and logging. As part of this pretense environment, a dedicated

VM is used to create and send dummy user packets to the attacked server. This creates a

false perception to the attacker that users are continuing to connect to the attacked server

while in actuality the application has already been migrated to a new server, and all le-

gitimate users properly redirected to it. As soon as the attack is detected, migration and

false reality get triggered simultaneously so as to: (a) prevent attackers from recognizing

attack failure, identification of a high-value target and retrying with greater resources, (b)

sustain affected services for longer time to collect data to analyze the signature and pattern

of attackers, to be prepared for future attacks with minimal increase in the overall CSP cost.

Statistically, an attacker can differentiate between dummy VM and a real VM hosting

an application for multiple users by probing message response times and percentage of

dropped packets. In [41], the authors have proved that if the mean response times for the

dummy and real VMs are equal to 1
rtd

, and 1
rtr

, then the number of responses K needed for

the attacker to distinguish between dummy and real VMs within time T is given as:

K = argmin
k
‖
( rtr

rtd

)k
e−(rtr−rtd)T >C (3.1)

where C is a parameter dependent on the rate of attacker probes and in turn on the attacker’s

attack budget.

Thus, in order for an attacker to quickly distinguish between decoy and real VMs, the

attacker has to either: (a) increase the attack budget, or (b) rely on the difference between

the response times from dummy and real VMs 1
rtd

and 1
rtr

, respectively to be big enough.

In other words, greater the difference, higher are the chances of dummy/real VM identi-

fication. However, for the first option, increasing the attack budget would mean a greater

chance of getting detected for the attacker. Thus, in most cases attackers would rely on

their ability to precisely differentiate between the response times. Therefore, from the per-

spective of a CSP, if the false reality can minimize the difference between the dummy and
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real VM response times, the probability of the attacker detecting a dummy VM within fi-

nite amount of time will decrease. Thus, in our MTD with false reality implementation, we

will use dummy VMs to generate just the adequate amount of dummy traffic to the VM un-

der attack (after application migration and user redirection) that mimics the realistic traffic

pattern of regular users. Such a dummy traffic will ensure that when the attacker returns

to intermittent probing periods between prolonged flooding periods, the attacker does not

experience any noticeable difference between the behaviors of the VM, with/without the

regular users. For simplicity of analysis, we will assume the scenario of a single attacker

for analysis, however our propositions will also be valid for multiple attacker scenarios.

Another important consideration while establishing a false reality environment is its

cost-benefit analysis. Although the benefit of keeping an attacker entrapped and efforts to

minimize the chances of future attacks is well motivated, we make a simplistic approach

below to quantitatively analyze the cost and benefits of implementing our proposed false

reality environment. The overall cost of false reality implementation (CFR) to the CSP

through dummy VM installation and dummy traffic generation is essentially the cost of

CPU utilization (CC
FR) of the VM and the network cost (CN

FR) for dummy traffic generation

that can be expressed as:

CFR =CC
FR +CN

FR (3.2)

On the other hand, qualitative benefits of false reality are the fact that the regular users ex-

perience no or little service interruption boosting the CSP revenue, and continued collection

of attack statistics from the VM under attack for more efficent proactive migration strat-

egy design. However, in order to quantify the benefits, we take the approach of measuring

the “lost opportunity cost” of false reality, i.e., the amount of cloud resource (network and

compute) saved by preventing attacker to migrate with the target application and relaunch

an attack on the new VM, thereby jeopardizing new resources. Such resource saving is
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in turn equal to the cost of a DDoS attack in terms of cloud resource wastage (CC
DDoS for

compute resource an dCN
DDoS for network resource). Thus, if we ignore the benefits of at-

tack statistics collection which is beyond the scope of this work, then the overall benefits of

false reality in terms of “lost opportunity cost” is equal to or greater than the cost of DDoS

attack, and can be expressed as:

BFR > (CC
DDoS +CN

DDoS) (3.3)

Therefore, if we compare the costs and benefits of false reality from Equations (3.2)

and (3.3) respectively, implementing false reality environment will only be cost effective

or optimal, if the CSP defense mechanism obtained from the ‘Attack Profiler’ satisfies the

following conditions:

CC
DDoS >CC

FR & CN
DDoS >CN

FR (3.4)

3.4 Defense by Pretense Scheme

Figure 3.2 depicts the cross-domain setup in a Dolus system deployment to implement a

defense by pretense scheme. To complement Figure 3.2, interactions between different

phases of a Dolus system configured for spoofing pretense are shown in Figure 3.4 and

Algorithm 1, respectively.

Dolus flow diagram is depicted in figure 3.3 and lists different phases of Dolus system.

This brief representation of how the flow of traffic happens in the network includes three

stages.

• Detection: Our two-stage learning scheme analyzes network traffic to detect and

differentiate benign user traffic from the attack traffic.

• Control: Frenetic based controller decides the rerouting of attack traffic to the Quar-
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Figure 3.3: Dolus Scheme Flow Diagram

antine VMs.

• Policy Updating: Through JSON arrays, administrative UI shares knowledge of at-

tack to possibly block the attack closer to the source of attack i.e., at slave switch

closest to the attack origin.

3.4.1 Attack Detection

First, traffic within a cloud provider’s network (which is generated by the SDN switches) or

across multiple transit provider ASes (which are composed of SDX plus SDN switch sub-

strates) is monitored using a Frenetic runtime [14]-enabled monitoring subcomponent (line

24 of Algorithm 1). Next, in order to learn and classify the attacks (line 25 of Algorithm 1),

we employ a two-stage ensemble learning scheme on the incoming traffic, both from the

attackers and from the benign users. In order to differentiate attackers from benign users,

the first stage handles outlier detection to identify salient events of interest (e.g., connection

exhaustion), whereas the second stage handles outlier classification to distinguish different

event types (e.g., DDoS attack).

Outlier Detection

We use basic/static methods such as multivariate Gaussian to detect outliers and build

upon our prior work on detecting network-wide correlated anomaly events [42, 43] that
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Algorithm 1: Dolus system phases for spoofing pretense
Input: attacker ID = attacker ID,
src ip = source IP,
dst ip = destination IP,
no o f packets = number of packets,
spoo f dst ip = spoofed IP,
black ip blacklisted IP list
Result: Attack traffic will be redirected to the quarantine VM and DDoS blocking

policy will be generated
1 function initQuarantine()
2 createVM();
3 updatePolicy(src ip);
4 do
5 redirectTraffic();
6 pretense data = generateUsingScapy();
7 vmResponse(spoof dest ip, src ip, dst ip, pretense data);
8 while timeout == false;
9 end

10 function updatePolicy (src ip)
11 logAttackTraffic();
12 new policy = generateNewPolicy();
13 collaborate(new policy);
14 end
15 function collaborate (new policy)
16 advertisePoliciesToNeighbors(new policy);
17 black ip = updateList(src ip);
18 redirectTraffic();
19 end
20 function redirectTra f f ic ()
21 sendTrafficToQuarantineVM();
22 end
23 function main ()
24 /* Receive incoming data from external machine */

data = monitorPackets(attacker ID, src ip, no of packets, start time, end time);
25 attack = twoStageEnsembleLearning(data);
26 /* Update policy in case of attack detected */

if attack == true then
27 initQuarantine(src ip);
28 end
29 decideToStopOrContinue();
30 end
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are typical of the traffic from multiple attack sources. Specifically, the outlier detection

is a composition of many efficient, multivariate outlier detectors or hypotheses functions:

H = {h1,h2, ...,hn} and the result, F , is an ensemble of the different hypotheses. Further-

more, we note that the traditional methods for ensemble learning use averaging or majority

voting [44]. In our case, to achieve higher accuracy with a minimum size of the training

dataset D, we use the Bayesian voting scheme [45] as the ensemble method to predict the

result for new data x, which can be represented as Equation 3.5.

F = ∑
h∈H

h(x)P(h|D) (3.5)

Final ensemble result F consists of all of the hypotheses in H , and each hypothesis

h weighted by its posterior probability P(h|D). The posterior probability is proportional to

the likelihood of the training data D times the prior probability of h (3.6).

P(h|D) ∝ P(h)P(D|h) (3.6)

Outlier Classification

The outliers detected are classified into either interesting events (e.g., attacks) or erroneous

conditions (e.g., router failure). We use a simple classifier to this end: if the final ensemble

results of consecutive events (detected in the first stage) fall in the same range, we classify

them as an attack; otherwise, we ignore those events. We remark that the above two-

stage ensemble learning scheme requires a sizable amount of data to classify the attacks

effectively. To overcome this challenge, we initially let the attacker(s) to attack the cloud

services. However, we also monitor the incoming traffic carefully and make sure that the

attack does not disrupt the network resources. Once an attack is classified, which are shown

separately in Figure 3.2, we reroute the attack traffic using Frenetic runtime to quarantine

VM (QVM) along with sample server responses (see lines 1 through 22 of Algorithm 1).

23



Figure 3.4: Sequence diagram of the Dolus system interactions for attack detection, quar-
antine setup, pretense initiation/maintenance and DDoS attack impact mitigation.

3.4.2 Quarantine Setup

Dolus calls the quarantine setup procedure (lines 1 to 9) where a new QVM is instantiated

using a cloud platform’s elastic provisioning capability and the update policy routine is

invoked (line 3). In the update policy routine (lines 10 to 14), we log the attack traffic to

prevent future attack events as well as invoke the Frenetic runtime to generate new poli-

cies (line 12). Frenetic executes Python scripts to identify suspicious packets, learn from

patterns and directs switches to redirect packets to QVMs. We then advertise this infor-

mation (attack intelligence) to the neighboring switches (line 13), where, apart from the

policy updates, the IP addresses of the attackers are blacklisted. Following this, based on

the stored attack traffic logs, the QVM uses Scapy libraries [46] to generate responses with

spoofed IP addresses and pretends as the targeted VM under attack from the perspective of

the attacker(s) (lines 20 to 22). Scapy is a python based library which allowed us to write

python scripts to spoof IPs. An instance of Scapy test script is shown in figure 3.5.
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Figure 3.5: Scapy snippet setting up spoofed source IP address

3.4.3 Pretense Initiation

Subsequently, depending on the nature and volume of the incoming data, we decide either

to move forward with the pretense or drop the traffic—which is the third step of production

of appropriate behavior in pretense theory (lines 28 to 30). In order to gain more infor-

mation about the attackers/attacks, we typically continue the process of pretense. While

we continue the pretense, we routinely update attack intelligence such as the attacker’s IP,

targeted VM’s IP where service(s) under attack is hosted, type of attacks, etc. Furthermore,

we assume that an attacker has enough knowledge on how a successful attack should affect

our system, which is another reason why we keep the attacker involved in the system as

long as is usually expected. If we drop the attack traffic too early or keep it in the system

for too long, they might potentially infer our pretense.

3.4.4 Pretense Maintenance

Finally, we redirect the flow of the attack traffic by pushing a new policy from the unified

controller running in the cloud to the switch(es). This will redirect the attacker’s traffic that

is intended for the targeted VM towards the QVM. The QVM then responds to the attacker’s

traffic as though it is the targeted VM/server under attack with spoofed IP address and
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hostname of the target, which creates the pretense effect, from an attacker’s perspective,

that the targeted DDoS attack is successful. Depending on the nature of the attack, we

want the attacker to believe that services are no longer up/available on the targeted VM. We

therefore allow the QVM to continue to respond to the attacker for a limited amount of time

t. We tune t based on the type of attack traffic and how the targeted VM would respond if

it was under attack. For example, if the targeted VM went down after 10 seconds of attack,

the QVM would do the same by not responding at the same time with a variable random

delay factor of [-1,1] seconds added. This allows the attacker to see that the services are

available until, suddenly, they no longer are.

3.4.5 Policy Decision Making

In this sense, our defense maintains the pretense: gives the attacker the confirmation of a

successful attack, when in reality the service has not been affected at all as seen in the Fig-

ure 4.2 considering the scenario that the user is running a video gaming portal application.

This also gives us sufficient time to collect information about the attackers and their attack

patterns. We use the collected information to create a blacklist of attacker information. To

help network administrators effectively manage the network in the face of attacks, our sys-

tem also consists of a Administrator User Interface module and a unified controller module

that can be customized in a Dolus system instance deployment depicted in Figure 3.2. The

User Interface shown in Figure 4.3 can be used for e.g., to enforce users to adhere to the

policies generated by Frenetic runtime when they connect to the cloud. Policies generated

by Frenetic internally are updated through the User Interface using JSON arrays. These

policies (e.g., open/block flows) could be installed in the switches using the unified con-

troller module, which is also linked with a back-end database that logs traffic characteristics

and user profiles.

The after effects of our pretense only lasts for as long as they are needed. During the

pretense, the attackers’ traffic continues to be redirected a QVM near the attacker. However,
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this process need not continue indefinitely. That is, once if it has been determined that the

attack traffic is no longer impacting the network, the policies can be updated to redirect the

attacker traffic back to where it was prior to the start of pretense. There are several reasons

to do this: (i) changes in the dynamics of the attack (e.g., bandwidth usage dropping back

down to normal, absence of SYN packets in a SYN flooding attack, fixing of malware in

an affected machine and hence it is no longer an attacker, etc.) calls for network policy

changes so that the network resources can be effectively used, (ii) changes in traffic e.g., IP

address change in incoming service requests sent from a benign user must be serviced to

meet the service level agreement (SLA), and (iii) to save the operational cost of QVMs by

reusing them for a different purpose e.g., periodic backups.

3.4.6 Threat Intelligence Sharing

Algorithm 1 runs in the monitor component and coordinates/shares intelligence with the

switches deployed in the network and across different providers. This in turn enables a

collaborative environment among providers such that the targeted attacks can be detected

closer to the source without affecting the cloud infrastructure. A natural question is why

would a provider share the attack intelligence, especially in a business that is driven by

competition? We posit that the coordination among different ASes/providers is mutually

beneficial for all the entities involved. Of course, a particular AS/provider can decide not

to share the attack intelligence to others. However, if an AS experiences an attack and if

it shares the intelligence with other ASes, a global and unified hardening of infrastructure

against such targeted attacks can be achieved. In addition, any downtime is money lost

in a business; sharing the attack intelligence in turn provides a cheaper alternative to lost

downtime and business.
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Chapter 4

Dolus System Testbed and Evaluation

In this chapter, we explain our testbed, user interfaces and then finally show the perfor-

mance of the system, its schemes and components. This includes the two-stage ensemble

learning algorithm, reactive false reality scheme and then the evaluation of Dolus imple-

mentation.

We,

• Test the accuracy of outlier detection and outlier classification using different datasets

that include train and test data

• Present perfomance comparison of False Reality and Moving Target Defense and

then the efficiency evaluation of False Reality in terms of cost

• Present results from two sets of experiments that were run for a maximum of 28

seconds to show how our Dolus implementation can be used in real-time to restore

cloud services under DDoS attack situations
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4.1 Experiment Setup

This section provides detailed information of our testbed, user interface and the adminis-

trator UI.

4.1.1 Testbed Setup

Figure 4.1: GENI Cloud testbed setup used to evaluate the Dolus system performance.

We evaluate the efficacy of our Dolus system using a realistic, GENI Cloud [47] testbed

as shown in Figure 4.1. The testbed contains three SDN switches, two slave switches

and a single root switch. The slave switches are each attached to users and attackers, a

quarantine VM, and a connection to the root switch. Likewise, the root switch is connected

to elastic VMs, each of which could serve as a candidate for the target application (i.e., a

video gaming portal) hosting that could be compromised by the attackers. All switches are

connected to a unified SDN controller located in the cloud service provider domain, which

directs the policy updates. To emphasize on use of different ASes, we deploy the testbed

spanned over three GENI aggregates, Missouri, Illinois and Kentucky InstaGENI.
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4.1.2 Consumer UI

Our User Interface is a video streaming application that we use to mimic a gaming server

for a good reason that gaming industries are the most DDoS attacks impacted industries.

Most recent report as discussed in chapter 1 show that in the second quarter of 2017 saw

numbers of gaming sites being repeatedly hit by DDoS attacks. Approximately 82% of

DDoS attacks in that particular quarter were launched at gaming sites.

Figure 4.2: Video gaming portal application running in a SDxI-based cloud platform with
cross-domain network collaboration.

The UI is built using LAMP stack that consists of a play/pause button and a reset but-

ton to provide users the ability to have control over the video. The web service also logs

the timestamp of video at the time of pause or the time when the webpage is refreshed or

closed. This allows users to start from where they left off.
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Figure 4.3: Administrator User Interface of an Dolus system instance.

4.1.3 Administrative UI

The backend of Dolus system, as depicted in figure 4.3 is highly customizable and provides

administrators to have view of network through tracks of different features of network. The

UI is built to keep log of everything that happens in the network and resides at the controller

VM as shown in the testbed 4.1. We use Frenetic to program the system as mentioned ear-

lier, and the UI can be used to enforce users to adhere to the policies generated by Frenetic

runtime when they connect to the cloud. Policies generated by Frenetic are internally up-

dated through the UI using JSON arrays.

Figure 4.4: Administrator User Interface : Quarantined VMs
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The UI is developed to automatically make policy updates in the system, to keep track

of attack traffic and then blacklist the attacker’s IP to stop future possible attacks. We show

various instances of this UI, such as the list of quarantined VMs, the UI settings, and so on.

Figure 4.5: Administrator User Interface : Bandwidth utilization when access to root switch
is disallowed

Figure 4.4 shows the list of quarantined VMs at the time when it was recorded. We use

dummy data just for the purpose of explanation.

Similarly, figure 4.5 shows the network bandwidth utilization when Frenetic doesn’t

allow traffic to enter to the core switch. This figure shows the overall network along with

the utilization at both slave and root switch. We can see that there is no traffic movement

at the root switch since we are able to stop the traffic to get in the root switch.

Figure 4.6: Administrator User Interface : Server History

In addition to the instances of UI explained earlier, we can also have record of servers’
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history. 4.6 shows server histories logged based on their reputation. The reputation of a

particular server is determined by the number of times it has been attacked or was targeted

for an attack.

Admin UI is also capable of listing history of attacks that have occurred in the system.

Origin of attack is logged in the system and through UI and using JSON arrays, policy

updates in the system can automatically be made. Attack history is shown in figure 4.7 The

automation also includes blacklisting of attacker’s IP.

Figure 4.7: Administrator User Interface : Attack History

4.2 Attack Detection and Classification

Using the Dolus system, we monitor different types of data that are permitted to enter the

GENI Cloud testbed depicted in Figure 4.1. We send both normal and attack traffic (i.e.,

our datasets) to the targeted server to test the efficacy of our two-stage ensemble learning

scheme. As shown in Figure 4.8, the algorithm module will be initialized in Stage-1. When

an event is detected as an outlier (the probability is larger than ε , which is tuned in training

phase) or if there is a manual trigger, the algorithm will transition to Stage-2, and may

query more data or features to characterize this outlier event. Our evaluation results span
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Figure 4.8: Two stages transition diagram

over two instances of learning of datasets as explained in the following.

The first instance shows multiple traffic types from a single attacker VM to a single

target node. For this instance, we divide ∼180,000 lines of data into two sets, one for

training and the other to test the accuracy of our scheme. Furthermore, the types of traffic

used to create these instances are composed of SlowHTTPTest, iperf, VLC and ICMP

ping. Figure 4.9 shows the two confusion matrices for attack detection and classification

in a normalized fashion. We note that both the detection and the classification of attack

took less than a second. In addition to the rapid detection and classification, our approach

is highly accurate as shown in Table 4.1, where stage 1 is the detection stage and stage 2 is

the classification stage.

In the second instance, we consider multiple traffic types to multiple hosts. This in-

stance is composed of 2.5 million rows per test, totaling 5 million rows of data. The types

of traffic that we use to create this dataset include SlowHTTPTest, iperf, VLC, scp, wget,
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Figure 4.9: Confusion matrices for attack detection and classification for multiple traffic
flows sent to a single server.
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(b) Attack classification.

Figure 4.10: Confusion matrices for attack detection and classification for multiple traffic
flows sent to multiple hosts.

and ICMP ping. This dataset also contains some unlabeled/undefined data for the scheme

to assess and classify the training data to evaluate the effectiveness of our two-stage ensem-
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Table 4.1: Overall Attack Detection and Classification Time and Accuracy

Tests Time (in Seconds) Accuracy (in %)

Single server stage 1 1 99.99
Single server stage 2 1 99.98

Multiple hosts stage 1 7 89.12
Multiple hosts stage 2 13 98.49

ble learning scheme. Figure 4.10 shows the two confusion matrices in normalized form for

attack detection and classification. Detection and classification of attack took ∼7 and ∼13

seconds, respectively. Despite the slowdown in attack detection/classification in compari-

son with the first instance, the accuracy of our approach is still high as shown in Table 4.1.

While the two-stage ensemble learning scheme is effective in detecting test data, a new

attack that has not been used in training could initially go undetected and impact services.

However, with pertinent labeling of attack traffic flows during training, the accuracy of the

ensemble learning scheme can be improved significantly. We depict the outlier detection

and classification for a trained cased in Figure 4.11, where we make use of 60% of the data

as training data and 40% as test data for the same dataset used in the 2nd instance. For the

purpose of our evaluation, the sorted dataset has randomized time stamps.

Though the dataset that we use is discrete with differences in traffic such as proto-

col, bytes transmitted, number of packets, source and destination addresses, our two-stage

ensemble learning scheme is effective in detecting the attacks with good accuracy and

efficiency. The ensemble learning scheme can further be modified based on other charac-

teristics of network traffic, and such modifications are beyond the scope of the work in this

paper.
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Figure 4.11: Confusion matrices for outlier detection and classification for multiple traffic
flows comprising of familiar attack flows.
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4.3 False reality establishment results

False Reality evaluation supports in determining the amount of dummy traffic that needs

to be synthetically created to instantiate the pretense. In our false reality establishment

evaluation, we compare the results from false reality to a system that offers MTD based de-

fense mechanism [34]. The comparisons are made in terms of the chances for the attacker

to distinguish between VMs with real and dummy traffic. In Figures 4.12, and 4.13, we

compare the average response time and percentage of dropped packets during the idle and

probing phases for the different attack intensity settings. We observe that - for the migra-

tion without false reality, the difference between response times and percentage of dropped

packets before and after migration/redirection is sufficient enough, from [34], for the at-

Figure 4.12: Performance comparison of reactive migration strategies with-and-without
false reality: Average response time
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Figure 4.13: Performance comparison of reactive migration strategies with-and-without
false reality: Percentage of dropped packets

tacker to detect migration/redirection scenarios. Such a detection suggests to the attacker

that a high-value target has been found, and and thus increases the chances of a future

(more intensive) attack. Whereas, for our proposed scheme with false reality, the change

in response time and dropped packets percentage after migration/redirection is negligible.

The effectiveness of our false reality environment shown in Figures 4.12 and 4.13 are direct

outcomes of the intelligent dummy traffic generation insights.

Next, we demonstrate the overall effectiveness of our proposed false reality pretense

in terms of the success rate of an attacker in identifying the presence of dummy traffic in

Figure 4.14. The success rate is calculated by the total number of successful dummy iden-

tifications for the target application consumption by small-to-large number of users. The

results present an average of 20 reactive migration attempts involving different destination
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Figure 4.14: Comparison of successful identification of dummy traffic by the attacker

VMs with varied properties. Figure 4.14 shows that the false reality ensures considerably

lower detection success in terms of identifying the dummy traffic patterns. We observe that

with small number of users, the benefits of false reality is not pronounced enough as with

small amount of traffic generated from small number of users using the target application.

Consequently, the attacker cannot really experience any perceivable difference in response

times when the users are redirected. Thus, it is possible for our schemes with-and-without

false reality to be virtually indistinguishable. Moreover, schemes without false reality per-

form well when number of users using the target application is very small. However, with

large number of users, the attacker can easily identify the migration/redirection with con-

siderable change in response times and dropped packets in the absence of false reality (from

Figures 4.12 and 4.13).
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Figure 4.15: Benefits and costs of false reality in terms of average CPU utilization

Finally in Figure 4.15, we characterize the benefits of the false reality pretense in terms

of the ‘lost opportunity cost’ of a DDoS attack and compare it with the cost of implemen-

tation of the false reality pretense. We perform the comparison in terms of average CPU

utilization in order to ascertain whether the creation of false reality is viable for the CSPs.

We calculated the CPU utilization of the VM hosting the target application during: idle,

probing (200 packets/sec), and flooding periods. We then compared them with the CPU

utilization of the standby VM generating dummy traffic for 100, 300, and 500 users, re-

spectively. From Figure 4.15, it is evident that the utilization of a VM under DDoS attack

is more than 50% higher than an average dummy VM generating traffic for around 300

users, thus satisfying Equation (3.4) for cost effectiveness of the false reality pretense. In-

terestingly while generating high loads of dummy traffic, i.e., mimicking more than 1000
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users’ traffic, the dummy VM’s CPU utilization might be as high as a VM under attack,

thus making false reality less beneficial in those circumstances (at least in terms of CPU

utilization cost). These results overall not only signify the importance of the false reality

pretense in creating an illusion of success for the attacker, but also indicate exactly how

much dummy traffic needs to be generated in a cost effective manner to cope with a given

DDoS attack state.

4.4 Time to restore Cloud-hosted Application Service

Figure 4.16: Comparison of the cloud service restoration time metric with cases of: no
Defense, with MTD and with Dolus.

Figure 4.16 compares the time taken by our Dolus system to stop a DDoS attack versus

MTD-based and no defense strategies. After a warm-up period of 6 seconds, we start

the SlowHTTPTest and hping3 at the 7th second from the attackers. In a SDxI-based cloud

network with no defense strategy, the services are immediately affected by the attack traffic.

Similarly, the MTD-based defense strategy takes ∼6 seconds to mitigate the attack traffic

impact. However, our Dolus system supported service on the other hand, does not suffer
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from any loss of availability in comparison with the other two strategies. This is due to the

sharing of attack intelligence between the slave switches and redirection of attack traffic to

quarantine VMs closer to the attackers, making the cloud network completely oblivious to

the attackers.

4.5 Amount of Traffic Processed at the Root Switch

Figure 4.17: Traffic processed (in Bytes) in one of the slave switches.

Figures 4.17 and 4.18 depict the amount of traffic processed (in Bytes) at one of the

slave switches and the root switch. From Figure 4.18, it is evident that the SDxI-based

cloud network is oblivious to the attack traffic impact, complementing the result in Fig-

ure 4.16. Since the slave switch represented in Figure 4.18 redirects attack traffic to the

quarantine VMs, we observe a 5X increase in the amount of traffic processed in compari-

son with the root switch.
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Figure 4.18: Traffic Processed at the root switch only shows user traffic proving that the
attack traffic is redirected to quarantine VM.

Overall, we find that our Dolus can effectively detect DDoS attack and redirect traffic

in real-time i.e., on the order of seconds depending on the knowledge of the DDoS attack

pattern, and block it closer to the attack source in 1-2 seconds if automated policy updates

are possible in the cross-domain setting. However, if humans need to be brought into the

loop, the time to block the attack can be adjusted so that there is enough time for cross-

domain manual coordination during which an effective pretense of the quarantine VM is

deceiving the attacker with a false sense of success.
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Chapter 5

Summary and concluding remarks

Recent innovations in the orchestration of cloud resources are fueled by the emergence

of the Software-Defined everything (SDx) Infrastructure (SDxI) paradigm. At the same

time, the sophistication of Distributed Denial-of-Service (DDoS) attacks are growing on an

unprecedented scale, and online businesses in retail, healthcare and other fields are under

constant threat. In this paper, we presented a novel defense system called Dolus to miti-

gate the impact of DDoS attacks against high-value services hosted in SDxI-based cloud

platforms. We proposed a defense by pretense mechanism that can be used during defense

against flooding attacks, which involves a two-stage ensemble learning algorithm to an-

alyze features in order to determine where an attack originates from, and the attack type.

Using blacklisting information, our pretense initiation builds upon pretense theory concepts

in child play psychology to trick an attacker through creation of a false sense of success.

Our above approach takes advantage of elastic capacity provisioning in cloud platforms

to implement moving target defense techniques that does not affect the cloud-hosted appli-

cation users, and contains the attack traffic in a quarantine VM(s). With the time gained

through effective pretense initiation, cloud service providers could coordinate across a uni-

fied SDxI infrastructure involving multiple ASes to decide on policies that help in blocking

the attack flows closer to the source side. Performance evaluation results of our Dolus sys-
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tem in a GENI cloud testbed show that our approach can be effective in filtering, detection

and implementation of SDxI-based infrastructure policy coordination for mitigation of the

impact of DDoS attacks.
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Chapter 6

Future Work

Dolus system can be extended where its components address more complex targeted attacks

such as Advanced Persistent Threats (APTs) as part of cyberhunting workflows. This will

require advanced data sampling/analysis, as well as relevant machine learning techniques

to help SDxI-based cloud service providers to visualize collateral effects in invoking one

or more defense mechanisms.

Though there have been many approaches in using methods of pretense, the research

work in the system we built, in our opinion, have just emerged and can be bettered by fully

leveraging and implementing knowledge gathering and threat intelligence sharing across

multiple domains. This will need cooperation from heterogeneous Autonomous systems,

to comply with a base system as the coordination amongst different ASes/providers is mu-

tually beneficial for all entities involved.
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