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Chapter I 

INTRODUCTION 

I. Quantifying uncertainty: probability 
II. Limitations of judgment under uncertainty and reasoning errors 

IlL Why use decision analysis? 
IV. Expected utility theory 
V. Brief historical review 

VI. Decision analysis and protocols 
VII. Fields related to decision analysis 

VIII. Application of decision analysis in medicine 
IX. Decision analytical methods in diagnostic radiology: outline of this thesis 
X. References 

Decision making in medicine frequently involves coping with uncertainty. Uncertainty exists 
about the diagnosis, the consequences of the disease and the risks and benefits of further workup 
and treatment. Clinical decision analysis is an explicit technique for making choices in the face 
of uncertainty. It makes explicit the possible consequences and outcomes of the various options, 
as well as the likelihood of the outcomes and their values. Even though we often do not know 
everything with certainty, "the decision has to be made" (23) and the goal of decision analysis 
is to help in making that decision. 

I. Quantifying uncertainty: probability 

Initial clinical judgment is based on a patient's presenting signs and symptoms. Based on training 
and experience, the physician will have a sense of the likelihood that the patient has a particular 
disease given those signs and symptoms. The physician will develop a list of differential 
diagnoses, with the most likely disease at the top, and considers which tests might help in 
distinguishing among the possibilities. The next step is to adjust the initial clinical impression 
with the information obtained from the diagnostic tests. But diagnostic tests are seldom perfect 
and the possibility of a false positive or false negative test result has to be kept in mind. Again 
the physician will question him/herself as to how often a false positive or false negative test 
result occurs in the situation at hand. Lastly, treatment options and their likelihood of success 
and complications are assessed. 
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When considering the above questions, physicians often speak in terms of "probably", "very 
likely" or "can't be excluded". Different physicians may have different interpretations for the 
same probabilistic term, for example, likely may mean 60% for one and 75% for another (12). 
Thus, quantifying uncertainty forces physicians to be more precise. Uncertainty is quantified 
by expressing it as a probability. In decision analysis we assume that the "relative frequency" 
can be used to estimate the "probability". The notion is: if I had 100 patients identical to the 
patient sitting in front of me, how many would have the disease? If, for example, 20 would have 
the disease, then the probability of the disease in this patient would be 0.21

• The concept 
"probability" is fundamental to decision analysis. Thinking in terms of probabilistic information 
distinguishes clinical decision analysis from the more familiar deductive reasoning in medicine, 
that is, cause-effect type of reasoning. 

II. Limitations of judgment under uncertainty and reasoning errors 

Physicians are subject to the same cognitive errors and limitations that affect all human reasoning. 
They are subject to bias when estimating the probability of events or disease and have difficulty 
integrating probabilistic information (1 ,2, 1 0,35). People use heuristics, that is "rules of thumb", 
to estimate the probability of an event, which may be useful, but, however, may also lead to 
incorrect estimates. Heuristics can be categorized as representativeness, availability, anchoring 
and adjustment heuristics (35). 

Using the representativeness heuristic, the probability that A belongs to group B is judged by 
how representative A is of group B (35). However, by relying on representativeness to estimate 
probability we may neglect other important information or make elementary statistical errors, 
leading to biased probability estimates. Physicians may not take into account the prior proba
bilityl of disease appropriately (8), eg. a clinician instituted an extensive workup for a patient 
with hypertension and a positive phentolamine test and was surprised that a phaeochromocytoma 
was not found, forgetting the low prior probability of this type of tumor (1 0). We expect a short 
sequence of events to be representative of the whole process, which is not necessarily so, as 
shown by the gambler's fallacy: "if it has been tails many times in sequence, it is bound to be 
heads next" (this is not true: the probability that it will be heads equals 0.50, provided a fair coin 
is being tossed) (35). We do not intuitively infer from experience principles such as regression 
towards the mean , eg. we are surprised that in teaching a resident, positive reinforcement is 

1 A probability is always larger or equal to 0, and smaller or equal to 1. "Never" is equivalent to 
a probability of 0 and "always" is equivalent to a probability of 1. 

:orhe prior probability of disease is the relative frequency of the disease in the population that 
the patient belongs to. The population may be defined by clinical features such as age, sex, race, 
signs and symptoms. 
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often followed by worse performance (35). The effect of sample size on sampling variability 
escapes our attention, that is, we forget that a small sample is more likely to give an incorrect 
estimate of a probability than a large sample, eg. a ratio of 3:2 of male to female newborns, is 
more likely to occur in a small community than in a large community, although we tend to think 
it should be 1:1 in both (35). Representativeness is usually considered equivalent to predict
ability, eg. "the case we had last month was just like this case" (as if what happened to last 
month's case will have any value in predicting what will happen to this case !). 

Availability is appraised as equivalent to frequency, that is, the more cases that spring to mind 
the higher we judge the frequency to be (35). Instances of greater impact (such as seeing children 
with brain tumors in neuroradiology) and recent occurrences, cause us to overestimate the 
probability of that occurrence. Risks involved in doing a procedure may be underestimated if 
one has difficulty in imagining the possible dangers or if one neglects to think of these, eg. the 
inexperienced interventional minded radiology resident doing an invasive procedure may 
underestimate the risk involved. 

People judging a probability with the anchoring and adjustment heuristic start from an initial 
value and then adjust the value to derive the estimate (35). However, the adjustments tend to 
be insufficient. Furthermore, when asked to give a range of possible estimates we tend to give 
a narrow confidence interval, reflecting more confidence in our estimate than we ought to have 
based on our information (35). 

Apart from the inaccuracies that may occur when relying on heuristics, other factors may 
contribute to biased probability estimates, such as ego bias, hindsight bias and regret (1). Ego 
bias occurs when a probability estimate is distorted in a self-serving manner (1). For example, 
a radiologist might think his/her probability of success in performing an angioplasty higher than 
the reported average. Hindsight bias occurs frequently in medicine: after the diagnosis has been 
made, we tend to overestimate the probability we would assign to the diagnosis were we to be 
confronted with the problem anew. After an event has occurred we tend to say we had predicted 
it, or could have predicted it, beforehand (1). Regret may influence our probability estimates in 
that if an event has an undesirable outcome, we may overestimate the probability of its occur
rence(!). 

Apart from the inaccuracy of our probability estimates, we are unable to intuitively combine 
numerous facts (2,20). Humans can only consider five to nine pieces of information at one given 
time (20). A number of the facts will simply be ignored: this is a necessary process when 
confronted with an overwhelming amount of information but will not invariably provide us with 
the optimal decision. Furthermore, common components of various options are disregarded and 
we focus on the differences of the options: this simplifies the decision making problem but is 
not necessarily the best thing to do (9,36). 
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Ill. Why use decision analysis? 

Decision analysis is an explicit way of decision making as opposed to the intuitive decision 
making familiar to us all. Most of decision making in medicine is based on uncertain facts: there 
is a certain probability that the patient actually has the disease and a probability that if we 
intervene he might benefit from it, or die as a result of our efforts. Risks and benefits constantly 
have to be weighed and balanced, with respect to both the probabilities that the events will occur 
and to the outcomes. Doctors are daily integrating information from their training, books, articles 
and experience to come up with what seems to them the most appropriate course of action (8). 
However, integrating information implicitly is associated with the limitations of judgment and 
reasoning errors discussed above. Furthermore, explaining the logic of implicit decision making 
to others concerned is difficult, if not impossible. 

The limitations of judgment discussed above motivate the use of decision analysis. However, 
the same arguments are used against clinical decision analysis. Analysts sometimes rely, at least 
in part, on subjective probability estimates if objective data are unavailable and, thus, the decision 
analytical solution may be prone to the same biases as intuitive decision making. However, this 
usually involves only a limited number of probabilities and a method exists to test how sensitive 
the decision is to the particular piece of information, namely sensitivity analysis. Similar to 
intuitive decision making, modelling a decision often necessitates omitting less important 
information. Without simplifications, the decision tree and calculations may be become 
intractable. However, the amount of information that can be included in a decision analysis is 
far greater than the amount we can remember and integrate in our heads. 

Doctors tend to defend their decisions on the grounds of experience. But what is experience? It 
is an implicit integration of frequencies, probabilities and outcomes as seen by that one physician 
and therefore limited to his/her experience and subject to bias and distortion. 

Clinical decision analysis helps with the difficult task of decision making under uncertainty. It 
makes explicit the information used in the decision and indicates the optimal decision, based 
on the likelihood of different outcomes and their values. It helps us structure and analyze the 
overwhelming amount of medical information that exists and may be used as a means of dis
cussing the problem with those concerned. The consequences of different assumptions and 
likelihood of events can be examined. Decision analysis does not always produce a definitive 
solution to the problem. However, it gives insight into the decision, identifies the trade-offs 
involved and information needed, and provides a consistency check of intuitive decision making. 
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IV. Expected utility theory 

Decision analysis is based on expected utility theory (9,37). The utility of an outcome is the 
value associated with that outcome. The utility can be expressed as a gain or as a loss. A disutility 
refers to a utility expressed as a loss. The overall expected utility of a deCision equals the sum 
of all the possible outcomes, each outcome weighted for the probability that it will occur. Folding 
back and averaging out refers to the arithmetic of multiplying each outcome by the probability 
that it will occur and adding the results, giving the expected utility of the option. The main axiom 
of expected utility theory is that an individual wishes to maximize expected utility if outcomes 
are expressed as gains, or equivalently, minimize expected disutility if outcomes are expressed 
as losses. 

The utility, or value of an outcome, may be expressed on a single-attribute scale, such as fractional 
survival or lifes saved, or it may be on a multi-attribute scale, such as lifes saved, hospitalization 
days averted and dollars spent. In the latter case the utility of the various attributes must be 
combined in some fashion, so that the scale represents the values of the outcomes, taking the 
various attributes into account (34). 

V. Brief historical review 

The methods used in clinical decision analysis originate from operations research, game theory 
and mathematical decision analysis. 

One of the first articles about medical decision making, written by Lusted (a radiologist) and 
Ledley (a mathematician), was published in 1959 (13) in Science. Raiffa wrote "Decision 
analysis: Introductory lectures on choices under uncertainty" in the late 60's (25), one of the 
first books about decision theory. In 1971 the article "Decision-making studies in patient 
management", written by Lusted, appeared in a leading medical journal, the New England 
Journal of Medicine ( 14 ). Weinstein and Fineberg's "Clinical Decision Analysis" (37) published 
in 1980 has become a standard textbook for medical decision theory. A more recent book is that 
by Sox et al (28). Nowadays, books on epidemiology or medical statistics usually contain a 
chapter explaining decision analysis. Furthermore, medical schools are including decision 
analysis in their curriculum, or have been advised to do so. Recently, leading journals have 
published review articles describing the applications of decision analysis and the progress that 
is being made (5,11,21). 

Decision analysis is slowly having an impact on clinical reasoning. Initial efforts to analyze 
individual case problems showed that performing a good analysis takes so much time that the 
decision is often made before the results of the analysis are clear (24). However, a brief analysis 
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("quick and dirty analysis") gives insight into the problem and may solve it. Progress has been 
made with the analysis of commonly recurring clinical problems, in which case the analysis is 
applicable to a group of patients, and the results of the analysis may influence clinical practice. 

The advent of the computer age probably led, in part, to the development of clinical decision 
analysis, because of the associated logical reasoning and easy access to information. With the 
advances made in computer technology, decision analysis is becoming easier to perform. 
Hospital information systems make it possible to obtain relevant data. The literature can quickly 
be reviewed with a medical database, such as Medline (19). Mathematics software, such as 
MathCAD (15) and spreadsheets (32), facilitate modelling of data. Software specialized in 
decision analysis, such as Decision Maker (3) and Supertree (31), free the analyst from the 
calculational burden of analyzing decision trees and because trees can be saved and modified, 
they encourage experimentation with alternative models. 

VI. Decision analysis and protocols 

A protocol should be distinguished from a decision analysis. Protocols are algorithms, that is a 
flow chart of the steps to be taken given a particular problem. Protocols can vary from simple 
rules of thumb to extensive flow charts with multiple subdivisions. Examples are found in many 
standard textbooks (6,18). 

A protocol can be written as a report of a consensus meeting, defined by an authority on the 
subject, or simply defined by the policy maker of the ward. Usually in a protocol a number of 
points exist at which the optimal decision for further workup or treatment is uncertain. Decision 
analysis can be used to decide which workup or treatment strategy will be optimal. Furthermore, 
a protocol may be valid for most cases, but not necessarily for the individual patient. For 
individuals decision analysis may be used to decide on the optimal management. 

VII. Fields related to decision analysis 

Fields related to decision analysis are clinical epidemiology, biostatistics, artificial intelligence 
and technology assessment. 

Clinical epidemiology is concerned with quantifying the frequency of disease, the prognosis 
and the effects of treatment as a function of the determinants (26) and plays a major role in the 
methodology of clinical trials. Biostatistics is concerned with the statistical analysis of medical 
research data. Both clinical epidemiology and biostatistics are basic medical sciences important 
to clinical decision analysis. 
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Artificial intelligence programs, or expert systems, are designed to aid in diagnosis and man
agement and attempt to emulate a clinical expert. Among the many expert systems developed, 
a large number are rule-based computer systems (27,33), in which "rule" refers to an "if-then" 
statement: "if' identifies a situation based on signs, symptoms and/or laboratory results, and 
"then" specifies the diagnosis or management. An example of a rule-based system is MYCIN 
(27,33). More recent efforts to emulate clinical reasoning concentrate on programs organized 
around models of disease (33). These programs consist of hierarchical structures, including 
clinical states and the corresponding pathophysiological states on a more detailed level. 
INTERNIST is an example of such a program (27 ,33). Expert systems are useful as a decision 
making aid, as a database, or as an alternative to a textbook. Furthermore, the development of 
expert systems has contributed to our understanding of medical reasoning. 

Technology assessment is a comprehensive analysis of a technology, such as drugs, diagnostic 
tests, procedures or health care delivery systems. The assessment ideally encompasses technical, 
clinical, economic, social and ethical issues and may include activities as data acquisition, 
decision or cost-effectiveness analysis, synthesis of information (meta-analysis) and consensus 
meetings (22,30,38). Technology assessment is usually coordinated by government-linked 
bodies, research councils, advisory bodies or professional groups (30,38). 

VIII. Application of decision analysis in medicine 

The application of clinical decision analysis takes place on three different levels: 

1. the individual patient 

2. a group of similar patients 

3. public health in general 

Of course, some examples fit into more than one category, but this classification helps identify 
the scope of decision analytical models. 

1. The individual patient 

Decision analyses for individual patients have been done for decisions involving uncertainty 
about the diagnosis, uncertainty about treatment efficacy or treatment risks, increased risk of a 
test or treatment, limited benefit of therapy, competing risks and benefits, uncertainty about the 
optimal timing or optimal sequencing of procedures, explicit patient preferences, uncertain 
medical information, or involving a rare, unique, or new problem (24). A clinical decision 
consultation service has been offered to clinicians since 1978 by the Division of Clinical Decision 
Making at the New England Medical Center (Tufts University) in Boston (24). Many of the 
more interesting problems analyzed at the Division have been published in the form of "Clinical 
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Decision Making Rounds" in the journal "Medical Decision Making". More recently, the Center 
for Clinical Decision Analysis at the Erasmus University and Dijkzigt University Hospital in 
Rotterdam has started a similar service. 

2. A group of similar patients 

Generic decision models typically address common clinical problems. It is useful to perform 
the analysis for different types of patients, ie. for different age, sex, disease severity and/or risk 
groups. The model should be extensively tested and reviewed before it is used to give general 
recommendations for standard practice. An example is the indication for coronary angiography 
in patients with chest pain (4). 

3. Health policy problems 

Health policy problems often concern screening or vaccination programs, such as screening for 
hypertension (17,29), and usually require a cost-effectiveness or cost-benefit analysis. A cost
effectiveness analysis examines financial costs in relationship to the expected benefit of a 
program, expressing the results as the ratio of marginal (monetary) costs to the marginal 
effectiveness (37). A cost-benefit analysis also examines financial costs in relationship to the 
expected benefit of a program, but expresses the results in monetary value which necessitates 
valuing life in dollars (or another currency) (37). 

IX. Decision analytical methods in diagnostic radiology: 
outline of this thesis 

A number of radiologists have made important contributions to the field of medical decision 
making (5,14,16). The two most useful decision analytical techniques in diagnostic radiology 
are: 
1. decision trees and Markov processes, especially concerning generic problems 
2. receiver operating characteristic (ROC) methodology 

Besides the two decision analytical methods mentioned various other techniques are used in 
radiology to evaluate data and facilitate decision making. Examples of such techniques are 
logistic regression analysis, discriminant analysis, and Bayes theorem (5). 

The number of papers applying decision analytical tools to problems related to diagnostic 
radiology is slowly increasing. Receiver operating characteristic (ROC) analysis is probably the 
most extensively applied tool in diagnostic radiology, and used more and more often to evaluate 
and compare diagnostic tests. However, a number of methodological issues related to ROC 



Introduction 9 

analysis are now becoming evident. Some of these issues are discussed in this thesis. The use 
of decision trees and Markov processes to examine common clinical problems has only been 
done sparingly. Examples of both types of models, applied to radiological problems, are pres
ented in this thesis. 

The subjects of this thesis are decision analysis and receiver operating characteristic (ROC) 
methodology applied to radiological problems. This thesis is intended for those interested in 
applying decision analytical techniques in diagnostic radiology, and in medicine in general. 

Chapter II deals with the theory of decision trees and Markov processes. The basic concepts are 
briefly explained and a few selected topics are discussed in more detaiL Chapter III describes 
a decision model for the diagnostic workup and treatment of renovascular hypertension. Chapter 
IV presents a Markov analysis of the decision whether, and when, to intervene in acute urinary 
tract obstruction. Chapter V deals with the theory of receiver operating characteristic (ROC) 
methodology. Basic concepts are explained and a number of selected issues are discussed in 
detaiL Chapter VI presents an ROC analysis of the assessment of tumor extension in neoplastic 
disease of the nose, paranasal sinuses, nasopharynx and parapharyngeal space, comparing 
computer tomography (CT) and magnetic resonance imaging (MRI). Chapter VII presents the 
results of an ROC analysis of orbital space-occupying lesions comparing the diagnosis made 
by means of clinical evaluation, computer tomography (CT) and magnetic resonance imaging 
(MRI). Chapter VIII presents the results of a study on fetal pulmonary maturity testing, involving 
a number of interesting methodological issues of ROC analysis. A general discussion follows 
in chapter IX. 
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Chapter II 

THEORY of DECISION ANALYSIS 

I. DECISION TREES - BASIC CONCEPTS 
1. Structuring the decision tree 
2. Assigning probabilities 
3. Outcome values I utility assessment 
4. Expected utility and folding back 
5. Sensitivity analysis 
II. MARKOV MODELS 

IlL RATES AND PROBABILITIES 
1. The prior probability and prevalence 
2. The cumulative incidence or cumulative failure function 
3. The incidence density, hazard function or hazard rate 

IV. MODELLING TIME-DEPENDENT TRANSITION PROBABILITIES 
IN MARKOV PROCESSES 

V. MODELLING LIFE EXPECTANCY 
1. The declining exponential approximation of life expectancy: DEALE-method 
2. Disease specific excess mortality rates 
3. The Gompertz model 
4. The Weibull model 

VI. MODELLING PATIENT PREFERENCES 
1. Quality of life with morbidity 
2. Risk aversion and risk seeking attitudes 

VII. THE AXIOMS OF EXPECTED UTILITY THEORY AND 
AN ALTERNATIVE THEORY: PROSPECT THEORY 

VIII. REFERENCES 

The basic theory of decision analysis is extensively explained in Weinstein and Feinberg's 
textbook "Clinical Decision Analysis" and in the more recent textbook by Sox et. al. "Medical 
Decision Making". Sections I and II of this chapter briefly summarize the basic concepts of 
decision analysis. For further detail on the basic concepts I refer to the standard textbooks and 
the references. Section III reviews concepts from clinical epidemiology which, although basic 
to decision analysis, are not included in textbooks on decision analysis. In section IV an equation 
is derived for calculating time-dependent probabilities in Markov processes. I have included 
this because the derivation is neither immediately obvious nor have I found it in the literature. 
Section V explains three commonly used models of life expectancy. Section V.l explains the 
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DEALE-method as introduced by Beck et.aL Section V.2 discusses two methods for calculating 
excess mortality rates. I have included this explanation because the calculation of excess 
mortality rates from survival data is often done incorrectly when applying the DEALE-method. 
Furthermore, although practical, the second method is not commonly described or used. In 
section VI.l patient preferences towards quality of life and the existing approaches to elicit 
preferences are discussed. A new unit is introduced, namely PAL Y's (preference-adjusted life 
years). In section VL2 attitudes towards risk are explained and a new type of utility curve, the 
"intern's utility curve" is introduced. Section VII discusses the axioms of expected utility theory. 

I. DECISION TREES -BASIC CONCEPTS 

Decision analysis uses decision trees to represent clinical strategies and their expected outcomes. 
Decision trees help clarify and delineate complicated problems by explicitly structuring the 
many probabilistic events and outcomes. However, seemingly clear-cut decisions may also 
benefit from structuring the relevant information in the form of a decision modeL To illustrate 
the basic concepts of decision trees, consider the following example. 

Figure 1. Chest X-ray of a car accident victim suggesting thoracic aortic rupture. The image shows a 
large apical cap on the left, widening of the superior mediastinum, deviation of the trachea to the right 
and poor delineation of the aorta. 
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A car accident victim, suffering from deceleration trauma, is brought to the emergency ward. 
His chest X-ray suggests thoracic aortic rupture (figure 1). The surgeon on call requests aCT 
scan of the chest, with contrast, to determine if the rupture is proximal or distal to the left 
subclavian artery. If the rupture is proximal to the left subclavian, a heart-lung-bypass machine 
would be necessary to perform surgery. The latter is not available at the hospital where the 
patient is admitted, so he would have to be transferred to another hospital if the rupture is 
proximaL The radiologist, however, would prefer not to perform the CT, because the patient 
might die while the examination is being performed. The problem stated: should aCT be per
formed or should the patient go to surgery immediately, presuming that the rupture is distal to 
the left subclavian artery? 

1. Structuring the decision tree 

A decision tree (figure 2) represents potential clinical strategies, and their consequences (21 ,25). 
Time proceeds chronologically from left to right. The tree starts, at the left, with a decision node 
, customarily depicted with a square. This node represents the point in time at which the decision 
is to be made. The branches of the decision node delineate the possible clinical strategies, under 
the control of the decision maker, for the particular problem, in this case CT -scan or immediate 
surgery. Chance nodes, represented by circles, represent uncertain states of health or events that 
result from the initial decision. The numbers underneath each branch represent the probability 
of that event. All probabilities at chance nodes must sum to one. In the example, the modelled 
events are death due to delay of surgery, the presence of a proximal versus distal rupture and 
death due to transfer to another hospital. At the end of each path of the tree is a terminal node 
which represents the outcome, or endpoint, of the events and disease states that precede it. In 
this example, the outcomes are dead or alive. Dead is assigned a value of zero and alive a value 
of one. Label nodes are sometimes interposed to arrange the tree conveniently and clearly, but 
they have otherwise no function. Decision nodes may be implied if the preceding event deter
mines the decision, for example "transfer" is an implied decision node. Another type of node is 
a Boolean node, that is, a node at which a logical variable determines which path is followed. 
For example, in the above model, a Boolean node involving blood pressure as logical variable 
could have been included. If the blood pressure were greater than a specified amount, then a 
delay may be acceptable, although still perhaps a risky strategy. 

For illustrative purposes this simple example does not include many events such as surgical 
mortality, allergy to contrast and the test characteristics (sensitivity and specificity) of CT scan 
in diagnosing thoracic aortic rupture. A decision model is always a compromise between sim
plicity and reality. Essential is that the trade-off of the clinical decision problem is modelled. 
In the example the trade-off is the information obtained from doing the CT scan versus the risk 
of death due to delay of surgery. Every model is based on a number of assumptions to simplify 
the problem, which must always be stated explicitly. In this example the assumptions are: 
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starting- decisio~ chance--- disease --- implied ---chance-- outcome 
point events state decision events 

death due to dela 
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CTscan distal ery 
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0.20 

Figure 2. A simple decision tree to illustrate the basic concepts. Modelled is the trade-off between 
obtaining information by performing aCT scan and the probability of death due to the delay. 

1) Performing aCT scan takes about half an hour, including transport to and from the CT 
unit. Transferring the patient to another hospital also takes about half an hour. 
2) Patients who have a rupture distal to the left subclavian artery who are operated on 
without delay (in the hospital where admitted), all survive. Patients with a proximal rupture 
who are operated immediately without heart-lung-bypass machine (in the hospital where 
admitted), all die. Patients with a proximal rupture who are operated on with a heart
lung-bypass machine (in another hospital), survive. 

Setting up a tree with binary chance nodes, common subtrees and similar modelling for each 
strategy, helps avoid errors in the modeL Furthermore, it is advisable to model trees in strategic 
form, that is, there should be only one decision node, namely the one up front, and no decision 
nodes downstream, again to avoid errors. Modelling in strategic form can be accomplished using 
Boolean nodes and implied decision nodes. At a chance node the depicted chance events should 



Theory of Decision Analysis 17 

be mutually exclusive. One should define the time horizon of the analysis, that is, define clearly 
until what point in time the problem is modelled. As mentioned before, modelling a problem 
involves some trade-off between reality and simplicity and this should be kept in mind. 

2. Assigning probabilities 

Probabilities of chance events in the decision tree are derived by reviewing the literature, 
gathering data from a hospital information system or asking experts in the field to estimate the 
probability based on their experience (21,25). As mentioned in chapter I, we assume that the 
relative frequency of an event among patients similar to the patient under consideration can be 
used to estimate the probability of the event in the case patient. Clinical judgment, common 
sense and knowledge of statistics and study design are needed to decide whether a reported 
relative frequency is applicable to the case at hand. Occasionally a certain amount of manipu
lation of the available data is needed so that it can be applied to the decision problem (see chapter 
IV). 

Considering the case example, 80% of patients with a traumatic aortic rupture have a rupture 
distal to the left subclavian artery (6), and therefore we set the probability for this patient at 
0.80. For this example, we assume that the probability of death due to half an hour delay is 0.25, 
in other words, one-quarter of similar patients will die if surgery is delayed half an hour, and of 
the remaining patients another quarter will die if surgery is delayed an additional half hour. 

3. Outcome values I utility assessment 

Outcomes have to be valued in some quantitative way to perform the analysis. The utility of an 
outcome is the value assigned to the outcome (21,25). The simplest method to value outcomes 
is using a binary approach, either the patient is alive or dead, as done in the example. Alterna
tively, one could use arbitrary units on a linear scale. However, arbitrary units have no intrinsic 
meaning and the results of the analysis are, therefore, difficult to interpret and to explain to 
physicians unfamiliar with decision analysis. Occasionally an ordinal ranking of the outcomes 
yields dominance of one strategy, that is, all the better outcomes are more likely. However, in 
many analyses such dominance of one strategy does not exist, in which case the scale has to be 
proportional to the actual value of the outcomes and an ordinal scale is inadequate. Another 
approach is to use the survival probability after a fixed period of time. This measure of utility 
also has associated problems in that, for example, the probability of survival at 5 years does not 
give information about the survival at 1 year, nor that at 10 years. Furthermore, the patient may 
value short-term survival more than long-term survival, as is often the case (13). 
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Life expectancy is a convenient measure of utility, which most people understand intuitively. 
Life expectancy (LE) summarizes the average future life years a person may expect to live, at 
a specified age, with or without specified diseases (21). If a group of patients is followed for 
many years, and the fraction of surviving patients is determined after each year, one can estimate 
the life expectancy in years of such patients by summing the determined fractions. Life 
expectancy is usually expressed in units of years. 

thoracic 
aorta rupture 
due to trauma 

death due to delay co.m 0.25 

CTs~ distal surgery 

(0.95) 
surv~ 

0.80 

0.75 

~rd~is~t=a~~--------------------~ 
Immediate surge~ 0

·
80 

!proximal ~ 
l...l'::'--~=--------~ 

0.20 

Figure 3. Folding back for the presented example. 

Although life expectancy is an objective measure of outcome, patient preferences such as risk 
aversive and risk seeking attitudes towards life, and the quality of life associated with morbidity, 
are major factors affecting the patient's perceived value of an outcome (11,12,13,14,16). Most 
people value the first few coming years to a larger extent than years in the distant future. This 
attitude is termed risk aversiveness (13). Others, however, are willing to take a fairly large risk 
now to gain a small increase in life expectancy. This attitude is termed risk seeking. To take 
into account the patient's attitude towards the quality oflife with morbidity, we need to know 
how he/she values being in an ill state of health (14). The patient's attitude towards ill-health 
can be quantified by determining the period of time in full health which, for the patient, is 
equivalent to a year with illness, conventionally expressed in units of quality-adjusted life years 
(QALY's). 
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4. Expected utility and folding back 

The expected utility of a strategy is the outcome expected on average (21,25). The expected 
utility is simply the weighted sum of the values of all possible outcomes, with each outcome 
weighted for the probability that it will occur. The process of calculating the expected utility is 
called folding back and averaging out (21,25). In the example, folding back for the strategy 
"immediate surgery" gives an expected utility of 0.80 (= 0.80xl + 0.20x0) (figure 3). Folding 
back for the strategy "CT scan" gives an expected utility of 0.71 (= 0.25x0 + 0.75 x (0.80xl + 
0.20 x (0.25x0 + 0.75xl) ) ). The unit of the expected utility of a strategy is the same unit as 
that in which the outcomes are expressed. In the example, the outcomes are expressed as one if 
alive and zero if dead and the unit of expected utility is, therefore, the fraction of a cohort 
expected to be alive. 

5. Sensitivity analysis 

1 
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utility 
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Figure 4. Sensitivity analysis for the probability of a distal rupture of the thoracic aorta. 
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As noted above, the value of a variable used in an analysis may be subjective, and subject to 
controversy. Changing the value and recalculating the expected utility may alter the preferred 
strategy. By repeating the process over a range of values, one performs what is called a sensitivity 
analysis (21,25). In this example the probability of a distal rupture was estimated at 0.80. If we 
recalculate the tree for values of this probability from 0 to 1 and graph the expected utility as a 
function of the probability, we get the graph shown in figure 4. The x-axis represents the analyzed 
variable, ie. the probability of a distal rupture. The y-axis represents the expected utility in 
fractional survival. The lines, namely "immediate surgery" and "CT scan", plot the expected 
utility of the strategy as function of the probability of distal rupture. 

If the rupture is likely to be proximal (ie. the probability of a distal rupture is low) performing 
aCT scan to determine the exact site of the rupture, and transferring the patient if necessary, is 
better than immediate surgery. If, however, the probability of a distal rupture is high, it is better 
to proceed immediately to surgery. Patients with a proximal rupture have lower chances of 
surviving, whatever strategy one chooses, because all patients would die from immediate surgery 
while transferring the patient brings with it a risk of death. This implies that the expected utility 
of both strategies increases with increasing probability of a distal rupture. 

The point at which the expected utilities are equal for both strategies is called the threshold value 
for the variable analyzed (21,25). The results are "sensitive" to a variable if a threshold exists, 
in which case the analyst should try to confirm the exact value of the parameter. The results are 
"insensitive" to a variable if no threshold exists, in which case the analyst can feel fairly confident 
of the results. A two-way sensitivity analysis implies calculating the threshold of a variable for 
various values of a second variable. For example, we could calculate the threshold of the 
probability of a distal rupture for various values of the probability of death due to delay. This 
principle can be extended to a three-way, or even a multi-way, sensitivity analysis. 

The presented patient underwent a CT scan (figure 5). The images show a distal thoracic aortic 
rupture. Unfortunately the patient died immediately after the imaging procedure. 

Chapter III presents a decision model illustrating the use of a decision tree, in which the choice 
of workup and treatment for suspected renovascular hypertension is examined. Sensitivity 
analysis is extensively used to examine the effect of different values of the variables. 
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Figure 5. CT scan images of the car accident victim showing distal thoracic aortic rupture. The images 
demonstrate extravasation of contrast ( ~ t ) and an intimal flap ( ..,.. ) distal to the origin of the left 
subclavian artery. 
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II. MARKOV MODELS 

Markov models are commonly used to model prognosis of chronic diseases. However, problems 
with a short time horizon may also be conveniently modelled with such models. Markov models 
are especially useful for modelling prognosis when a risk recurs repetitively over a long period 
of time, when the likelihood of an event changes over time or when the utility of the associated 
outcome depends on when the event occurs. In technical terms, a Markov model is convenient 
when a decision problem is recursive and/or encompasses time-dependent risks. 

a 
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0.80 0.19 

~// 
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~ 

Figure 6. Illustration of a Markov process. U denotes the incremental utility of being in that state for 
one cycle. 

To illustrate the principles of a Markov model, consider a patient with rheumatoid arthritis. 
Assume we want to calculate the life expectancy of this patient, taking into account the quality 
of life when disabled by the disease. The patient can be WELL, DISABLED or DEAD, which 
can be defined as the Markov states of this particular model (figure 6). 
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Suppose we analyze the prognosis of the patient by increments of 1 year, then the cycle length 
of the Markov model is 1 year. During each cycle a probability exists that the patient goes from 
one state to another, called a transition probability. For example (figure 6), if the patient starts 
out in the WELL state, the (transition) probability that the patient stays in the WELL state equals 
0.80. Each state may add a different incremental utility to the overall expected utility. The 
incremental utility refers to the utility of spending one cycle length in a particular state. For a 
cycle length of 1 year, the WELL state has an incremental utility of 1 year. The incremental 
utility of the DEAD state is 0. For the DISABLED state the incremental utility could be a year 
adjusted for the quality oflife for being in the DISABLED state, for example, this could be 0.90 
quality-adjusted life years. The DEAD state is called an absorbing state because once the patient 
is dead, he/she remains in that state and no additional utility is added from being in that state. 

Table 1. Calculating quality-adjusted life expectancy with a Markov cohort simulation, assuming the 
WELL state has an incremental utility of 1 and the DISABLED state has an incremental utility of 0.90 

CYCLE FRACTION in STATE INCREMENTAL UTILITY 

WELL DIS- DEAD WELL DIS- DEAD 
ABLED ABLED 

0 1 0 0 
1 0.80 0.19 0.01 0.80 0.17 0 
2 0.68 0.29 0.03 0.68 0.27 0 
3 0.60 0.35 0.05 0.60 0.31 0 
4 0.55 0.38 0.07 0.55 0.34 0 

40 0.18 0.15 0.67 0.18 0.14 0 

UTILITY 
of STATE 19.83 14.25 0 

EXPECTED UTILITY= 19.83 + 14.25 = 34.1 QALY's 

The basic property of a Markov model is that it has no memory for previous states, which is 
termed the Markovian assumption. In other words, all patients in the DISABLED state have the 
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same prognosis regardless of their history. Clearly, this assumption is not always valid in clinical 
problems. However, if the model is not realistic enough and some history needs to be included, 
one can create an additional state to depict a state of health with a different previous history. 

If the transition probabilities are all constant over time, the Markov model is called a Markov 
chain (or homogeneous Markov model) and the expected utility can be calculated with matrix 
algebra (3). However, Markov chains are exceptional cases because usually the transition 
probabilities change over time, in which case the model is called a Markov process. The expected 
utility of a Markov process may be calculated by a cohort simulation. A cohort simulation begins 
with an initial distribution of the states. During each cycle the cohort is redistributed according 
to the transition probabilities. During each cycle the incremental utility of each state, multiplied 
by the fraction of the cohort in that state, is added to the overall expected utility. For example, 
if all patients of a cohort start out in the WELL state, the WELL state has an incremental utility 
of 1 and the DISABLED state has an incremental utility of 0.90, we calculate the quality adjusted 
life expectancy as in table 1. 

It is also possible to model a problem as a combination of a Markov process and a decision tree. 
Usually the events within one cycle are structured in a decision tree, which is termed the cycle 
tree. Chapter IV illustrates the application of a Markov process in modelling a problem with a 
short time horizon and time-dependent probabilities, including a recursive cycle tree in the 
model. 

III. RATES AND PROBABILITIES 

In clinical epidemiology there are three basic concepts for expressing a probability. These are: 
1) the prior probability and prevalence 
2) the cumulative incidence, or cumulative failure function, and 
3) the incidence density, hazard function or hazard rate. 
All concepts of probability can be derived from these three basic concepts. The mentioned 
concepts, in my opinion basic to decision analysis, are not found in textbooks on decision 
analysis. In this section the concepts are described, using the terminology from clinical epide
miology and survival data analysis, and the relevance to decision analysis is discussed. 

Note that the term "rate" is generally used in an ambiguous manner. Sometimes the term "rate" 
refers to an observed relative frequency or proportion (24). In decision analysis the observed 
relative frequency of events in a group of patients is used to estimate the probability, or 
cumulative incidence, of an event in the individual. At other times the term "rate" refers to a 
quantity measured with respect to time (24), referring to the incidence density or hazard rate. 
Usually the precise meaning of the word "rate" is clear from the context in which it is used. 
Where necessary, to avoid ambiguity, the terminology described below should be used. 
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1. The prior probability and prevalence 

The prior probability is the probability that a disease D is present at one point in time, which is 
a unitless entity. The term prevalence is used to mean the probability that a diseaseD is present 

at one point in time in a specified population. If the specified population is specific enough for 
the case at hand, that is the signs and symptoms of the patient are identical to that seen in the 
specified population, then the prevalence can be used as estimate of the prior probability of 
disease in the patient. Otherwise, the prevalence must be adjusted to take into account the signs 
and symptoms of the patient. For example, the prior probability of a renal artery stenosis in a 
hypertensive female patient of 45 years, will be larger than the prevalence of renal artery stenosis 
in the general population. (For a discussion on the likelihood ratio and odds see chapter V.) 

2. The cumulative incidence or cumulative failure function 

The cumulative incidence, or cumulative failure function, is the probability of an event within 
a set time interval. It is a unitless entity with a value from 0 to 1. The term "failure" means failure 
to remain in the initial state of health. Expressed as a function of time, the cumulative incidence, 
or failure function, F(t), is the probability that the event occurs before or at time t (9). If the 
event is "death" then an estimate ofF(t) is 

, ( ) number of patients dead at t F t = -----''-------
total number of patients 

The value ofF(t) is larger than or equal to zero and smaller than or equal to one (0 $. F(t) $. 1). 

The cumulative survival function S(t) is the probability that an individual survives longer than 
t (9). S(t) and F(t) are each others complement: 

S(t)=l-F(t) 

The survival function depicts what fraction of the initial cohort is alive at a specified time after 
t = 0. The area under the survival function is the life expectancy of the patient. A life-table is a 
non-parametric estimate of the survival function, specifying the observed fraction alive after 
specified time intervals. Parametric survival functions are functions definable by an equation, 
such as the declining exponential function, the Gompertz function and the Weibull function. 

Estimates of parametric survival curves have the form of smooth functions, rather than step 
functions. 
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"Survival" and "failure" should be considered in a broad sense to allow for functions modelling 
an event other than death. For example, if we consider the event "spontaneous passage of an 
ureteral stone", the concept "failure" would mean failure of the stone to remain in the ureter, in 
other words spontaneous passage. "Survival" would mean that the stone remains in the ureter 
(see chapter IV). 

It is convenient to know the definition of another function, the probability density function, even 
though this function is used infrequently in clinical decision analysis. Understanding the 
probability density function helps understanding the hazard function and the associated equa
tions. The probability density function f(t) is the probability of an event in a small interval, 
expressed per unit time. 

From the definition it follows that the probability density function, f(t), is the first derivative of 
the cumulative failure function, F(t) (9) 

f(t) has the following properties: 

and 

f(t) =F'(t) 

f(t) C. 0 for t C. 0 

f(t) = 0 for t < 0 

~ 

f f(t). dt = 1 
0 

3. The incidence density, hazard function or hazard rate 

The incidence density, or hazard function, is the probability of the occurrence of an event in a 
small time interval, per unit time, on condition that the event has not occurred before the interval. 
For example, if the event is death, the condition is that the patient is alive at the beginning of 
the interval. Other terms used for the same function, if the event is death, are instantaneous 
mortality rate and force of mortality. The unit in which the incidence density or hazard function 
is expressed, is events per unit time. 

From the definition it follows that the hazard function is the probability density function divided 
by the survival function. 

h(t) = f(t) 
S(t) 

As explained before, the probability density function is the first derivative of the cumulative 
failure function and thus: 



h( ) 
= F'(t) 

t S(t) 
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Because F (t) = 1 - S (t ), it follows that F' (t) = -S '(t ), and therefore 

h(t) = -S'(t) 
S(t) 

Integrating the hazard function from 0 to t, we find1 

Using the following rule from calculus 

d 1 
-lnx=
dx X 

and assuming that at timet= 0 the whole cohort is in the initial state, that is S(O) = 1, we find 

From this we derive 

and 

I 

J h(x)dx =-lnS(t) 
0 

I 

-J h(x)dx 

S(t)=e o 

I 

-J h(x)dx 

F(t)=l-e 0 

1Note that h(t) and h(x) are the same function. xis here used to denote the function variable to 
distinguish it from the integration variable t. 
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If the incidence density or hazard function is a constant, h (x) = ll, then 

S(t) = e-fLt 

F(t) = 1-e-fl-1 

IV. MODELLING TIME-DEPENDENT TRANSITION 
PROBABILITIES IN MARKOV PROCESSES 

In a simple decision tree, time-dependent probabilities are conveniently modelled as the 
cumulative incidence or cumulative failure function. The probability that the event has occurred 
before or at time t is expressed as F(t). Modelling time-dependent transition probabilities in 
Markov processes necessitates some extra thought From a literature review and other gathered 
data, it is usually practical to derive an incidence density or hazard function of the event. The 
question is how to apply this function in the Markov process. Although the translation of a 
constant hazard rate to a transition probability has been described before (3), the translation of 
a non-constant hazard function to a time-dependent transition probability function has not been 
described in detail in the literature. The relevant equation is derived and, for a constant hazard 
rate, shown to be equivalent to the equation previously described in the literature. 

Assume you have two Markov states, survival or death. The transition probability P5 _, 5 from 

the state survival at time t, to the same state (survival) in the next cycle, at time t, + 1 is 

1
i+1 

- f h(x)dx 

e o 

'; 

-J h(x)dx 

e o 

1
i+l 

-J h(x)dx 

=e 
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Because F(t) = 1 - S(t), the transition probability Ps ->F from the state survival at timet; to the 

dead state (ie. failure) at time t;+ 1 is 

ti+l 

-J h(x)dx 

Ps-.F=l-e 
'; 

The derived equation translates the incidence density or hazard function to a cumulative 
incidence or failure function for the time interval t; to ti+J• and is the probability that should be 
used in the Markov process. If the hazard function is a constant )land the cycle length is /'l.t, 
then the transition probability is 

ti+l 

- f J!dx 

Ps-.F=l-e 
'; 

= 1-e-J.L·AI 

Often the hazard function is not constant over time, but if the Markov cycle length /'l.t is small, 

we can estimate the hazard function with a stepwise function. That is, during the Markov cycle 

from t; to t; + 1 we estimate the hazard function with a constant equal to )l~; +~ /'l.t). As long 

as 1-{t; +~/'l.t) · /'l.t is small, this is an adequate estimate. The precise criterion you use to determine 

if the estimate is adequate, depends on how accurate the calculations have to be. A convenient 
way to implement this, is to program the tree so that the cycle length is automatically shortened 

if~;+~ M) · M becomes bigger than the criterion value. 

V. MODELLING LIFE EXPECTANCY 

1. The declining exponential approximation of life expectancy: DEALE-method 

The DEALE-method, introduced by Beck et. al., assumes that the incidence density, hazard 
function or hazard rate for the event death is a constant: 

h(t) = )l 
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11 is also called the rate of failure, mortality rate or force of mortality and is expressed in events 

per unit time. 

The corresponding survival and cumulative incidence or failure functions are: 

S(t) = e-P-' 

F(t)=1-e-P-' 

The convenience of the DEALE-method lies in the fact that life expectancy equals the reciprocal 
of the patient's hazard rate, ie. if the patient's hazard rate is a constant 11 then: 

LE = f S(t)dt 
0 

-[ 1 -P-']= - --e 
!l 0 

1 

!l 

11 is the patient specific hazard or mortality rate. If the patient has no particular disease, 11 is the 

average mortality rate for the rest of the patient's life, which is the reciprocal of the life 
expectancy, specific for age, sex and race. This average mortality is also called the age, sex and 
race specific mortality rate. If the patient has a disease, we add the excess mortality rate specific 
for the disease to the age, sex and race specific mortality rate to calculate the patient specific 
mortality rate. Taking the reciprocal of the patient specific mortality rate we derive the patient 
specific life expectancy. In equations: 

LEASR 

1 
llASR = LEASR 

llvs 

!l = llASR + !lvs 

1 
LE=-

11 

life expectancy specified for age, sex and race, found in life 
table statistics 

average mortality rate, age, sex and race specific 

excess mortality rate, disease specific 

summation gives patient specific mortality rate 

reciprocal gives patient specific life expectancy 
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The declining exponential function assumes that the age of the patient does not affect the hazard 
rate, ie. the hazard rate is constant for the rest of the patient's life. This assumption grossly 
simplifies reality. Distinguishing the average mortality rate calculated with the DEALE-method 
from the instantaneous mortality, as given in life tables, helps understand the effect of the 
assumption. The instantaneous mortality rate increases with age, implying that for young people 
the average mortality rate calculated with the DEALE overestimates the instantaneous mortality 
rate, and for old people the average mortality rate underestimates the instantaneous mortality 
rate. However, in spite of the gross assumption made, the DEALE-method is a convenient 
estimation method. 

2. Disease specific excess mortality rates 

Mortality rates for a specific disease are often reported as overall mortality rates as observed in 
a study population, including mortality from other causes, rather than as excess mortality rates 
for the disease only. The reported rates must, therefore, be adjusted for the mortality rate of a 
healthy population similar to the study population with respect to age, sex and race (1,2). Two 
methods can be applied, which, as will be shown, are equivalent. 

a) Correcting for mortality due to other causes by subtraction 

Of a study population with disease D the surviving fraction at time t is S0 (t). The incidence 

density or instantaneous mortality rate of this population is 

d 
!lo =-dt lnSv(t) 

To correct for mortality due to other causes we subtract the mortality rate of a population similar 
to the study population with respect to age, sex and race, but healthy, and followed for the same 
length of time as the study population: 

llH is derived from survival data in life tables. If the average age of the study population at the 
beginning of the study is AGE and patients are followed for a period l:!.t, the average age at the 
end of the study will be AGE+ l:!.t. The mortality rate for a similar but healthy population !luis 
the cumulative survival att =AGE+ l:!.t divided by the cumulative survival att =AGE (as found 
in life tables). Expressed in an equation: 
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SH(AGE +llt) 

llH = SH(AGE) 

where SH(t) is the survival function of the similar healthy population. The survival probability 
derived from life tables is based on the general population and will, therefore, include among 
the so called "similar healthy population", a certain fraction who have the particular disease we 
are interested in. Strictly speaking, we should exclude from the "similar healthy population" 
patients with the disease we are interested. However, this is cumbersome and usually not done 
in practice. 

Beck et.al. describe the above method in their original article (2). In their example they derive 
!lH by taking the reciprocal of the life expectancy of a healthy population, similar in age and sex 
to the study population. However, this overestimates the actual !lH, and therefore underestimates 
the corresponding excess mortality rate. It is, therefore, prudent to derive !lH from life tables, 
instead of taking the reciprocal of life expectancy. 

b) Correcting for mortality due to other causes by using relative survival 

Survival is sometimes presented as relative survival, that is, relative to a similar but healthy 
population. This means that overall survival of the study cohort is divided by survival of a 
population similar in age, sex and race, but healthy, and followed for the same length of time. 
If Sv(t) andSH(t) are the survival functions ofthe study population with the disease and a similar 
healthy population respectively, then relative survival RS is 

Sv(t) 
RS(t) = SH(t) 

From the relative survival we calculate the disease specific excess mortality rate !lvs with the 

equation 

d 
!lvs =-dt lnRS (t) 

The method described under b) is, in fact, equivalent to the method under a), because 
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d 
=-dt (lnSv(t) -lnSH(t)) 

=(-:tlnSv(t))-(-:tlnSH(t)) 

= lln -llH 

It is convenient to understand both methods, and their equivalence, because data is sometimes 
presented as overall survival and sometimes as relative survivaL 

3. The Gompertz model 

A more general model than the DEALE-method is the Gompertz model, in which the hazard 
rate is not a constant but instead an increasing exponential function of time (or age) (9): 

h(t) = el..+yt 

The corresponding cumulative incidence or failure function is: 
')... 

-"----re11 -1) 
F(t) = 1- e r · 

For y= 0, h(t) reduces to a constant, e\ and the Gompertz is equivalent to the DEALE. 

4. The Weibull model 

Another generalization of the declining exponential (DEALE) method is the Weibull model, in 
which the hazard rate is not a constant, but instead a function of time (or age) (9): 

The corresponding cumulative incidence or failure function is: 

Fory= 1, h(t) reduces to a constant A and the Weibull is equivalent to the DEALE. 
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VI. MODELLING PATIENT PREFERENCES 

Risk aversion versus risk seeking attitudes, and the quality of life with morbidity, are patient 
preferences which may be taken into account when analyzing a decision problem. 

1. Quality of life with morbidity 

In assessing patient preferences with respect to quality it is important to distinguish between 
the anticipated quality of life with morbidity of a hypothetical event as perceived by someone 
faced with a choice, and the average experienced quality of life of a group of people with 
morbidity. An analysis for an individual patient incorporates the individual anticipated quality 
of life, in other words the preference of the patient. Generic models and cost-effectiveness 
analyses incorporate the average quality of life experienced by patients with morbidity. 

The quality factor is the quantity that identifies how much a patient values a year with morbidity 
compared to a year in full health. This factor is multiplied by the life expectancy to calculate 
the quality-adjusted life expectancy: 

LE x quality factor =quality adjusted LE 

which is expressed in units of quality-adjusted life years. However, the unit "quality-adjusted 
life years" is confusing because it does not distinguish between the individual anticipated quality 
oflife and the average experienced quality oflife. We propose a new unit, "preference-adjusted 
life years" (PAL Y's), to express the life expectancy adjusted for the individual anticipated quality 
of life. 

To determine the anticipated quality oflife three basic methods are in use: the direct scaling (or 
category) method, the time trade-off method and the standard reference gamble. With the direct 
scaling method one asks the patient to mark his/her perceived value of the states of ill-health 
on a linear scale from the worst outcome, usually death, to the best outcome, usually full health, 
placing the other states in between (25) proportional to their value. Although easy to concep
tualize, the direct scaling method is inaccurate (18). Towards the outer limits of the scale the 
outcomes tend to be valued further apart than using the other two methods. For quality factors 
in the upper part of the scale, the direct scaling method results in lower quality factors whereas 
for quality factors in the lower part of the scale, the direct scaling method results in higher quality 
factors than using the other two methods. 

The time trade-off method directly assesses what length of time in full health is equivalent to a 
period of ill-health. The question to the patient is "what is the shortest period of lifetime you 
would accept in exchange for your life expectancy now, with ill-health?". For example, if a 
patient in ill-health has a life expectancy of 10 years, but is willing to accept 4 years of full 
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health in exchange, then 1 yearofill-healthisequivalentto0.4quality-adjustedlife years (21,25). 
In practice it is easiest to apply this information by means of a "quality factor" (a measure for 
the quality oflife), which in this case is 0.4, and subsequently multiply life expectancy with the 
quality factor. The time trade-off method is fairly easy to understand for most patients, however, 
the results are usually higher than what one would obtain using the direct scaling method and 
lower than using the standard reference gamble (18). 

,.--:c:c:e..:crtc::ac.:..in""ty-------------1 intermediary outcome 
eg. blind in one eye 

p 
gamble 

1 - p 

Figure 7. The standard reference gamble. 

better outcome 
eg. full vision 

worse outcome 
eg. blind 

The standard reference gamble is considered the "gold standard" when assessing quality of life. 
(The method is also used to determine risk aversive and risk seeking attitudes, see section VL2.) 
The question posed to the patient is to choose between 1) a certain intermediary state, for example, 
blind in one eye or 2) a gamble between a better outcome, for example full vision, with probability 
panda worse outcome, for example blind, with probability 1-p (21,25) (figure 7). If the patient 
is indifferent to the choice for a probability p of say 0.4, then the quality factor of the intermediary 
outcome compared to the better and worse outcome, is 0.4. 

It remains a difficult task to obtain a quality factor for a particular patient because of the difficulty 
of the questions posed, the confrontation with the possible consequences of the disease and 
because the elicitation of preferences takes a lot of time. 

When constructing generic models or performing cost-effectiveness analysis as opposed to 
analyzing individual decisions, it is not realistic to use one patient's preferences as representative 
for a whole group. In this case the average experience of a group of similar patients is used. 
This may be done by questioning patients with the state of ill-health and scoring their experience. 
Rosser and Kind have developed a rating scale for functional impairment and distress and have 
determined the corresponding quality factors (19). They have classified states of illness 
according to disability and distress. Disability and distress are scored as follows: 
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DISABILITY 

1. no disability 
2. slight social disability 
3. sever social disability and/or slight impairment of work 
4. choice of work severely limited 
5. unable to undertake paid employment or continue any education, confined to home except 
for short outings 
6. confined to (wheel) chair 
7. confined to bed 
8. unconscious 

DISTRESS 

1. no distress 
2. mild 
3. moderate 
4. severe 

Table 2. Table of ratio scale for different levels and combinations of disability and distress (modified 
from reference 19). 

DISABILITY DISTRESS 

1 2 3 4 

1 1.000 0.995 0.990 0.967 
2 0.990 0.987 0.973 0.933 
3 0.980 0.972 0.956 0.913 
4 0.964 0.957 0.942 0.870 
5 0.946 0.935 0.900 0.700 
6 0.875 0.845 0.680 0 
7 0.678 0.564 0 -1.486 
8 -1.029 

30 states of health representing different levels and combinations of disability and distress were 
presented to 70 subjects, including patients, doctors, nurses and healthy volunteers. Subjects 
were asked to rank the states from least ill to more ill, rank 1 representing the least ill state. 
Subsequently they were asked to assign values to represent how much more ill someone is, for 
example, in the state ranked 2 compared to the state ranked 1, assuming the states are permanent. 
The given value had to represent their judgment of, for example, the proportion of resources 
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they felt should be allocated to patients in the state ranked 2, compared to patients in the state 
ranked 1. The subjects were interviewed at length and asked to re-evaluate their judgments until 
they felt comfortable with the given results. They were asked to include "well" and "dead" in 
the ranking order and assign values to these in accordance with their other assigned values. The 
values given by these subjects can be used to calculate a ratio scale for various states of health 
as defined by the disability and distress scores. The derived ratio scale can be used as quality 
factors for the various states of health, as determined by disability and distress (table 2). Distress 

can be regarded in a broad sense including pain. A limitation of this scale is the fairly wide range 
of values given, which depended on whether the subject was a patient, doctor, nurse or healthy 
volunteer. However, this apparent limitation can be used to the decision analyst's advantage by 
performing a sensitivity analysis for the range of values, or choosing the results from the group 
most representative for the analysis. 

2. Risk aversion and risk seeking attitudes 

A year in the distant future may be perceived by the patient as having less value than a year 
now. For example the choice between surgical treatment or radiation for lung cancer is often 
based on the 5 year survival, 5 year survival of surgery being greater than the 5 year survival 

of radiation. However, patients might be averse to the immediate risk of surgical mortality and 
consider life during the next few months more important than later years (12,13,16). Such a 
patient would opt for certain short survival in favour of a gamble between death now and longer 
survival. This attitude to life is called risk aversion. 

To deal with this phenomenon in decision analysis we construct a utility curve, that is a curve 
of the value of varying periods of survival. The curve is constructed by presenting hypothetical 
choices between a certain short survival and a gamble on longer survival, called the standard 
reference gamble. 

For example, consider the following hypothetical choice: 

Looking at a glass ball we predict that you will live 3.5 years. There exists a magic pill 
that can make you live 7 years. However, this pill has one serious side effect: 50% of 
people who take it die within 3 days. Do you want to take the magic pill ? The choice is 
therefore: 

A) no risk now and living 3.5 years for certain 

B) a very risky treatment with a chance of dying now of 0.50, but if the treatment is 
successful living 7 years 

Many people would choose A even though the life expectancy of the two options is equal. If A 

was a certain survival of, say, 2 years many would still choose A. This is called risk aversion, 
that is one would rather have the certainty of living the shorter period of 2 years than taking the 

gamble between a risk now of 50% and a longer life expectancy of7 years. The breakeven point, 

that is the value of the certain period of survival of A for which A and B are perceived as equal, 
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a) 

A A 

B B 

b) 

A A A 

B B B 

Figure 8. Schematic representation of the procedure to derive a subject's certainty equivalents. a) shows 
the choices for the example presented and b) shows the choices using conventional notation. CE50 = 
certainty equivalent 50, CE25 = certainty equivalent 25, CE12.5 =certainty equivalent 12.5, LEmax = 
maximum life expectancy. 

is called the certainty equivalent. More specifically, the derived value is the certainty equivalent 
50 (CE50), that is the period of certain survival equivalent to 50% of the uncertain longer survival. 
Say CE50 is 1 year, then the next task would be to estimate x, posing the hypothetical choice: 

A) no risk now and living x years for certain 

B) a very risky treatment with a chance of dying now of 0.50, but if the treatment is 

successful living 1 year 

The derived value of xis called the certainty equivalent 25 (CE25). We can proceed further in 
a similar fashion to derive the complete utility curve. The procedure is presented schematically 

in figure 8. 

An example of a completed utility curve is given in figure 9, whereby the values between the 
known certainty equivalents are derived by linear interpolation. Not every body has a risk aversive 
attitude to life: some people are risk seeking, preferring a 50-50 gamble between death now and 
7 years survival to certain survival of 3.5 years. The utility curve of a risk seeking person lies 

below the diagonal. Note that someone who is risk neutral would have a straight utility curve 
along the diagonal. 

A practical approach to take risk aversiveness into account in a decision model is to assume that 
the utility curve has a parametric form (16), for example the form: 
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Figure 9. Utility curve for a risk averse person with LEmax=7 years, CE50= 1 year and CE25=0.33, with 
linear interpolation between the known certainty equivalents. Sample curves for risk seeking and risk 
neutral subjects are also shown. 

U(t) =k · (1-e-r·t) 

where U(t) is the utility of the period of survival t, k is a scaling constant and r is the aversion 
rate. To derive the values of k and r we need to know two (non-zero) utilities: for example, if 
we know the period of survival with utility 1 (that is the maximum life expectancy LEmax) and 

the period of survival with utility 0.5 (that is the certainty equivalent CE50), we can calculate 

the parameters k and rand the utility curve will be defined. k and rare calculated by substituting 
the two known utilities in the formula defining the curve, from which we get two equations with 
two unknowns, which can be solved. For example, ifLEmax=7 years and CE50=1 year, then 

the equations are: 

U(7) = 1 =k · (1-e-7-r) 

U(1)=0.5=k·(1-e-!·r) 
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Solving for k.and r we get k=l.0082 and r= 0.685. The utility curve U(t) defined by these values 
fork and r is given in figure 10. 
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Figure 10. Utility curve for a risk averse person using the parametric form U(t) = k · (1- e-r "') with 

k=l.0082 and r=0.685, derived by substituting LEmax=7 years and CE50=1 year. 

Another possible attitude towards life, not described previously in the literature, is one that 
varies between risk seeking and risk aversion depending on the period of survivaL One could 
argue that a very short period of survival, say 1.5 years, is too short to do anything worth-while 
and that a gamble between a 50% chance of dying now and living 3 years would be preferred. 
The same person could however be risk averse when asked to choose between a certain survival 
of 3.5 years and the 50-50 gamble between dying now and living 7 years. The resulting utility 
curve would be below the diagonal for short periods of survival and above the diagonal for 
longer periods of survival. For example, an intern would probably be risk seeking for short life 
expectancy but risk averse for longer periods of life expectancy. Young people are more likely 
to have a variable attitude towards risk than older people. The curve could be modelled with a 
smoothed sigmoid curve, for example a cumulative normal probability function of the general 
form: 

U(t) =<It- ~E50) 
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where U(t) is the utility of the period of survival t, CE50 is the certainty equivalent 50 and sis 
a scaling constant. To derive the general form of this function we would need to know the CE50 
and the certainty equivalent of a utility other than 1 or 0 (note: U(LEmax)=1 or U(O)=O). For 
example, if somebody has a CE50 of 3 years and a CE25 of 2.5 years, then substituting these 
values and solving for s gives s=0.746. The corresponding curve is given in figure 11. 

0.9 

0.8 

0.7 

>. 0.6 -·.;:::; 0.5 
::::l 0.4 

0.3 

0.2 

0.1 

0 
0 

risk 
seeking 

risk averse 

2 3 4 5 

• fCESO 

life expectancy 

6 7 

Figure 11. The "intern's utility curve": utility curve for varying attitudes depending on the period of 
survival. This person is risk seeking for short periods of survival but risk averse for longer periods. 

One of the problems with deriving someone's utility curve is the framing of the questions as 
this influences risk aversive versus risk seeking attitudes (11,23). The usual pattern is one of 
risk aversion in choices concerning gains and risk seeking in choices concerning losses. Fur
thermore "losses loom larger than gains" (quote 23), that is, a year of life lost has more impact 
than a year of life gained. If the decision is the same irrelevant of how the choices are framed, 
one can be confident the answer reflects the true preference. However, in eliciting patient's 
preferences one will often find conflicting answers and this issue is as yet unresolved. 

The newly introduced unit preference-adjusted life years (PAL Y's) is also useful when including 
attitudes towards risk. A utility curve converts periods of survival to a utility on a scale from 
zero to one, adjusted for risk aversive and risk seeking attitudes. Multiplying the calculated 
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utilities by the maximum life expectancy will yield life expectancy adjusted for the patient's 
attitude towards risk and, thus, if life expectancy has also been adjusted for anticipated quality 
of life, may be expressed in units of preference-adjusted life years. 

VII. THE AXIOMS OF EXPECTED UTILITY THEORY AND AN 
ALTERNATIVE THEORY: PROSPECT THEORY 

Expected utility theory is the basis of decision analysis. In principle expected utility theory 
provides a "prescriptive" approach to decision making under uncertainty. Whether the "pre
scribed" strategy is followed depends not only on the results of the analysis, but also on the 
confidence the clinician has in the analysis, and possibly factors not included in the analysis, 
such as patient preferences or financial costs. Observations of preferences under uncertainty, 
however, have shown that expected utility theory is not an adequate "descriptive" model of 
decision making (8,23). Various underlying assumptions of expected utility theory are violated 
by decision makers when faced with choices under uncertainty. 

The underlying assumptions, or axioms, of expected utility theory are (8): 

1) the expectation principle: the overall utility of a decision equals the expected utility of its 
outcomes, that is the summation of the utility of the outcomes each weighted for the probability 
that the outcome will occur. 

2) asset integration: utility is a value of the final state, rather than a relative gain or loss compared 
to one's current position 

In economics, there is a third assumption: 

3) risk aversiveness: a subject is risk averse if he prefers a certain outcome to any probable 
outcome with the same expected utility. 

In medical decision making risk aversiveness is usually the observed preference of the patient 
and is, therefore, often taken into account when constructing the decision modeL However, in 
medical decision models risk aversiveness is not considered an axiom. 

In studying subjects' preferences under uncertainty, three effects have been observed which 
violate the basic principles of expected utility theory, the reflection effect, the certainty effect 
and the isolation effect (8,11,23). Rational decision making would imply that choices do not 
depend on the framing of the questions. However, presenting options in terms of losses instead 
of gains, for example, in terms of mortality rates instead of survival rates, reverses the preference 
forthe majority of tested subjects (11,23). In general, people tend to be risk averse when options 
involve gains, and risk seeking when options involve losses. This is termed the reflection effect 
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(8): that is, the reflection of options around zero reverses the preference. Furthermore, a dif
ference is valued greater when it is framed as a loss than when it is framed as a gain, in short 
"losses loom larger than gains" (23). 

Another violation of expected utility theory is the certainty effect. According to expected utility 
theory if X is preferred to Y, then pX is preferred top Y, for any probability p. However, if X 
is a certain gain and Y is an uncertain gain, then reducing the probabilities of both outcomes to 
say, one quarter of the original probabilities, reverses the preference for the majority of subjects. 
For example, given the options: 

X: $ 3000 for certain Y: 0.80 chance of winning$ 4000 

the majority of questioned subjects chose X, whereas given the following options: 

pX: 0.25 chance of winning $ 3000 pY: 0.20 chance of winning$ 4000 

the majority of subjects preferred p Y (8). This observation can, however, not be explained by 
the notion that certainty in itself is desired: instead certainty appears to increase the utility of 
gains, but also increases the disutility of losses. Furthermore, when the probability of a gain is 
large, subjects tend to choose the option where a gain is more probable, while if the probabilities 
are very small, they choose the option that offers the larger gain (8). 

A third observation is the isolation effect: if options have common components these are dis
regarded and decisions are made on the basis of the components that are different. Apparently 
common components are considered as part of the current asset position and decisions are based 
on the changes from the current position rather than the final states (8). 

To account for the observations made of preferences under uncertainty, an alternative to expected 
utility theory has been proposed, namely prospect theory (8). Prospect theory attempts to model 
decision making as observed by empirical data. Each probability is multiplied by a decision 
weight, which is a measure of the impact of the probability on the value of the option. The 
decision weights for each probability together define the "weighting function". Furthermore, 
each outcome is given a value (described by the "value function") depending on the subjective 
utility of the outcome. The value function is defined by deviations from a reference point. 

Prospect theory could be considered a generalization of expected utility theory in that the 
expectation principle is not an axiom, and instead a weighting function is used for the proba
bilities involved. Another distinguishing feature is that it focuses on relative differences from 
an asset position instead of considering final states. 

Important to keep in mind is that prospect theory is a descriptive model. This is essentially 
different from decision making based on expected utility theory, which is in principle pre
scriptive, as opposed to descriptive. The difference is essential because we have no way of 
determining which theory is the "correct" one, that is, which theory will provide optimal decision 
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making. Although prospect theory describes the human decision making process more ade
quately, we are not at all certain that human beings make optimal decisions. To the contrary, 
the empirical data (22) shows that our estimates of probabilities are inaccurate. If our estimated 
probabilities are incorrect, we are likely to be incorrect in interpreting the impact of probabilities. 
In addition, overwhelming amounts of information cannot be combined by the human mind 
( 5, 15). Furthermore, the described reflection effect can be interpreted in two ways: it is a violation 
of expected utility theory, therefore questioning the axiom's of the theory, but it also describes 
the irrationality of our decisions, in that decisions depend on the framing of the question. 

Summarizing, the observed violations of expected utility theory may be used as an argument 
either for or against expected utility theory, depending on one's inclination and point of view. 
Inspite of the described deficiencies and limitations of decision theory, decision analysis helps 
with the task of decision making under uncertainty by making the process explicit. It assists in 
structuring the overwhelming amount of medical information that exists, gives insight into the 
problem and identifies the trade-offs involved and information needed. "Decisions must and 
will be made. If they are not made actively, they will be made by default" (4), and, thus, it seems 
worthwhile to explore and utilize every means that will help us making those decisions. 
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ABSTRACT 

A decision analysis is presented for the choice of diagnostic workup and therapeutic intervention 
in a patient with hypertension possibly caused by renal artery stenosis. The outcome values are 
expressed as life expectancies. The strategy chosen is the one that maximizes life expectancy. 

1Co-author: J Lubsen, Center for Clinical Decision Analysis, Erasmus University and Dijkzigt 
Hospital, Rotterdam. 
Retyped version of publication in Journal of Medical Imaging 1988; 2:61-70. See also Chapter 
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I. INTRODUCTION 

Decision analysis helps to structure clinical problems, to integrate available information and to 
select the optimal strategy. Hypertension, possibly caused by renal artery stenosis, presents 
decision problems as far as the selection of diagnostic tests and appropriate clinical management 
are concerned. Radiologists are often consulted about the controversial issue of which diagnostic 
tests to perform and the feasibility of angioplasty (1). 

In this paper the problem is analyzed using a decision theoretical approach (2). The necessary 
data were derived from the literature. The outcome values of the various decisions are expressed 
in life expectancy. The model is applied to a particular patient. 

CASE PRESENTATION 

A 55 year old woman is seen with severe hypertension. The blood pressure measures 245/140 
mmHg (average of the first two measurements, phase V diastolic). The physical examination 
gives no information as to the possible cause. No biochemical abnormalities are found. Treatment 
is started with sodium intake restriction, a beta-blocker and a diuretic. The average blood pressure 
drops to 200/100 mmHg. A radiologist is consulted. 

II. THE STRUCTURE OF THE PROBLEM 

The following questions have to be answered: 

1. Would intravenous urography (IVU), renography (RG), intravenous digital subtraction 
angiography (DSA), arterial angiography (AG), or a combination of these be the best diagnostic 
workup? 

2. If renovascular disease is subsequently diagnosed, does percutaneous trans luminal angioplasty 
(PTA) offer a better chance of cure than surgical treatment? 

In figure 1 the clinical strategies with their corresponding possible outcomes are summarized 
in the form of a decision tree. Diagnostic tests considered are intravenous urography, renography, 
intravenous digital subtraction angiography, arterial angiography and reasonable combinations 
of these tests. At each stage the workup is continued if the previous test result is positive for 
renal artery stenosis. If the test result is negative, the hypertension is considered idiopathic and 
medication is the treatment choice. If the workup results in the diagnosis renal artery stenosis 
percutaneous transluminal angioplasty or surgical intervention are the therapeutic options 
considered. 
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Ill. SUMMARY OF AVAILABLE DATA AND 
ASSUMED PROBABILITIES 

A summary of the available data used in this analysis is given in Table I. 

1. The prior probability of renal artery stenosis and renovascular hypertension: 

The prior probability of renal artery stenosis depends on the population the patient originates 
from. The prevalence of renal artery stenosis ranges from 0.2% of unselected hypertensive 
patients (diastolic blood pressure of 95 mmHg) registered in a large general hospital to about 
4.5% in a large referral clinic ( 1 ). Higher prevalences have been found by using stricter selection 
criteria (1 ). For the case presented a prior probability of the presence of renal artery stenosis is 
assumed to be 0.03 (=3%). 

Between 60 and 70 % of renal artery stenoses detected are atherosclerotic, the remainder are 
due to fibromuscular dysplasia. Age at onset of hypertension and sex determine the probability 
of a stenosis being due to fibromuscular dysplasia (3). When considering this patient's age at 
onset of hypertension, and assuming she has renal artery stenosis, a probability of 0.63 of having 
atherosclerotic disease has been assumed. 

2. Sensitivity and specificity of diagnostic tests: 

Arterial angiography is considered the gold standard for the diagnosis of renal artery stenosis. 
The sensitivity and specificity of other techniques have been determined by taking arterial 
angiography as the standard. The diagnostic tests considered are assumed to be conditionally 
independent. 

Intravenous urography has a sensitivity of 78% and a specificity of 89% (4,5). The average 
sensitivity of renography is 86% and the average specificity is 82% ( 4,6). The average sensitivity 
and specificity of intravenous digital subtraction angiography is 89% and 93% respectively 
(7 ,8,9). Technical failures, due to intestinal movement, a restless patient, or inaccessible veins 
occur on average in 10% of examinations (7 ,9, 1 0). 

Measuring renal vein renin levels has been advocated prior to doing angiography. However, 
there is a wide variation in results (11). For this reason the measurement of renal vein renin 
levels has not been included as a separate diagnostic test 



50 Applications of Decision Analysis 

Figure 1. The decision tree. A square denotes a decision node, a circle denotes a chance node. 
Further workUp or treatment is instituted if the performed test is positive for the diagnosis. 
Abbreviations used are: IVU =intravenous urography, RG =renography, DSA =intravenous 
digital subtraction angiography, AG =arterial angiography, RAS =renal artery stenosis, MED 
=continued medical therapy, PTA= percutaneous transluminal angioplasty, go to= go to subtree, 
compl = complications, pos =positive test result for renal artery stenosis, neg = negative test 
result for renal artery stenosis. 
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Table 1. Assumed probabilities and mortality rates for the case patient. (For abbreviations see 
legend of figure 1.) 

Event Value References 

prior probability 0.03 
ratio atherosclerosis: 
fibromuscular dysplasia 0.63 3 

DIAGNOSTIC TESTS 

mortality DSA/IVU 0.00001 12 
angiography 0.0003 14 

complications DSA/IVU 0.0003 12 
angiography 0.017 14 

technical failures DSA 0.10 7,9,10,13 
sensitivity IVU 0.78 4 

renography 0.86 4,6 
DSA 0.89 7,8,9 

specificity IVU 0.89 4 
renography 0.82 4,6 
DSA 0.93 7,8,9 



Renovascular Hypertension 53 

TREATMENT 

operative mortality rate 
atherosclerosis 0.045 3,15 
fibromuscular dysplasia 0.012 3,15 

operative complication rate 0.13 15 
operative results: 

normotensive/improve/failure 
atherosclerotic stenosis 0.40/0.33/0.27 3 
fibromuscular stenosis 0.57/0.25/0.18 3 

PTA mortality rate 0.004 17-21 
PTA complication rate 0.04 17-21 
PTA technical failure rate 0.09 17-21 
PTA results: 
normotensive/improve/failure 

atherosclerotic stenosis 0.21/0.47/0.32 17-21 
fibromuscular stenosis 0.45/0.47/0.08 17-21 

AGE and SEX SPECIFIC MORTALITY 

woman 55y, annual average mortality rate 0.037/y 23 

EXCESS MORTALITY RATES 
normotensive 0 16 
diastolic 100 mmHg (MED) 0.0025/y 16 
diastolic 110 mmHg (improve) 0.0045/y 16 
diastolic 140 mmHg (failure) 0.0105/y 16 
antihypertensive medications 0.0025/y see text 
complications treatment 0.06 16 
complications workup 0.03 16 
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3. Complications of diagnostic tests: 

The only serious complication of intravenous urography is adverse contrast reactions. In a survey 
at the Mayo Clinic 1 in 75 000 patients undergoing intravenous urography had a fatal reaction 
and 1 out of 3 000 had a life-threatening reaction (12). 

The major complications of intravenous digital subtraction angiography include adverse contrast 
reactions and extravasation of contrast. The incidence of contrast reactions of intravenous digital 
subtraction angiography is assumed to be the same as that of an intravenous urography. Authors 
agree that morbidity associated with intravenous digital subtraction angiography is rare and of 
no significance (10,13). 

Major complications of conventional angiography include adverse contrast reactions, and 
vascular, cardiac and neurological complications. The most commonly used transfemoral 
approach for renal angiography has a mortality rate of 3 in 10 000 and a morbidity rate of 17 in 
1000 patients examined (14). 

4. Surgery: 

Surgical intervention implies aortorenal bypass, endarterectomy with or without patch grafts, 
end-to-end anastomosis or nephrectomy. 

The assumed probability of operative mortality is the weighted average of the mortality rates 
of various studies: 0.045 for patients with atherosclerotic disease and 0.012 for those with 
fibromuscular dysplasia (3,15). Patients with a history of angina pectoris and/or myocardial 
infarction or an impaired renal function have a higher operative mortality rate of up to 23 % 
(15). 

The diastolic blood pressure is used as a yardstick for therapeutic success ( 16). The criteria used 
to evaluate the results of surgical intervention are as follows: 

"Cure or normotensive" is a diastolic blood pressure of at most 90 mmHg with a decrease (from 
the pre-treatment diastolic pressure) of at least 10 mmHg, without using antihypertensives. 
"Improved" is a diastolic pressure of between 90 and 110 mmHg with a drop of at least 15% or 
normotensive with drug therapy. Others are regarded as "failures" (3). 

In this paper all results are expressed in percentages of post-operative survivors cured, improved 
or not benefitted. Cure rates for fibromuscular dysplasia are higher than those for atherosclerotic 
disease. 

5. Percutaneous transluminal angioplasty (PTA): 

A technically successful balloon dilatation is defined as a post-dilatation stenosis of less than 
50% . The mortality rate of the procedure is about 0.4% and the complication rate about 4 % 
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(17-21). Reported technical failure rates vary from 4% to 33% (17-21). In the case presented 
a value of 9 % is assumed for the technical failure rate (weighted average). Higher failure rates 
have been reported in atherosclerotic lesions, especially in bilateral and ostial or occlusive 
stenoses (21). 

Clinical results are defined in the same manner as post-operative results. As in the case of surgery 
cure rates for fibromuscular dysplasia are higher than those for atherosclerotic disease. 

IV. ASSIGNMENT OF UTILITIES 

1. The DEALE-method: 

Life expectancy was estimated by the declining exponential approximation of life expectancy 
(the DEALE-method) (22). This method assumes that life expectancy can be approximated on 
the basis of a total average constant annual mortality rate. The total mortality rate is the sum of 
the annual (baseline) mortality rate due to causes other than hypertension and excess mortality 
rates due to hypertension and procedural complications. 

The utility for the outcome "normotensive" for a woman of 55 years is assumed to be her life 
expectancy as found in the appropriate life table based on Dutch mortality statistics (23). The 
annual baseline mortality rate, for a woman of 55 years without hypertension, is derived from 
this life expectancy by the DEALE method. For the outcomes in which the patient remains 
hypertensive an excess mortality rate due to hypertension is added to the baseline mortality rate. 
If a procedural complication occurs an excess mortality rate due to the complication is added. 
From the total average annual mortality rate thus obtained, the life expectancy is calculated. 
(See appendix I for a sample calculation. Similar calculations have been performed for every 
outcome.) 

The patient is assumed to be risk neutral and no adjustments for quality of life have been made. 

2. The excess mortality rates: 

A summary of the most important excess mortality rates used in this analysis is given in table 
I. 

The main risk of hypertension is cardiovascular disease. The excess mortality rates for hyper
tension have been derived from the Framingham Study (16). In case of a negative test result, 
and thus continued medication, the already achieved blood pressure with initial medications is 
assumed to remain constant with time and is used as the basis for the calculation of life 
expectancy. 
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The use of antihypertensive drugs carries a certain risk in itself. Based on results of trials on 
antihypertensive drugs the excess mortality rate due to the use of antihypertensive drugs was 
estimated to be of the order of 0.0025 per patient year (24). 

Major complications of therapeutic or diagnostic intervention are assumed to be mainly car
diovascular and neurological disease. The cardiovascular events probably occur about twice as 
often as the neurological (14,18,19,21). The excess mortality rates of these events have been 
derived from a review on mortality rates (16). The excess mortality rate of complications caused 
by a diagnostic test is assumed to be about half of the excess mortality rate of complications 
caused by therapeutic intervention. 

V. RESULTS 

1. Calculating the expected utilities of the strategies: 

Table 2. Expected utility of various strategies expressed in expected life years for the case 
patient using the values listed in table I. 

Strategy Expected utility 
in life years 

renography-DSA-PTA 23.66 
DSA-angiography-PTA 23.65 
IVU -angiography-PTA 23.64 
renography-angiography-PTA 23.63 
DSA-PTA 23.62 
angiography-PTA 23.51 
angiography-operate 23.49 
no test-PTA 23.05 

proven atherosclerotic stenosis: 
PTA 23.40 
operate 21.83 

proven fibromuscular stenosis: 
PTA 24.82 
operate 23.25 
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The expected utilities are calculated by folding back (2). The principle of folding back is simply 
taking the sum of the values of all possible outcomes, weighting each outcome value for the 
probability that the outcome will occur. (For a sample calculation see Appendix II.) 

Folding back for the values assumed for the case patient (Table 1) we derive the expected utilities 
in terms oflife years. The expected utilities of various strategies are given in table 2. The expected 
utility of the strategy "renography - if positive do intravenous digital subtraction angiography 
-if positive do angioplasty" is the highest, that is 23.66life years. Strictly speaking the strategy 
"no test - angioplasty" is a theoretical option equivalent to doing selective renal angiography 
immediately followed by angioplasty if a stenosis is present. 

In the case of a proven stenosis, atherosclerotic or fibromuscular dysplastic, angioplasty has a 
higher expected utility than surgery. 

2. Sensitivity analysis: 

To determine the effect of uncertainty in the probabilities assumed we performed a sensitivity 
analysis. Sensitivity analysis is the calculation of the expected utilities for different values of a 
particular probability. A decision threshold is the value of the probability below which one 
strategy will be the best choice and above which another strategy will be the best choice (2). 
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Figure 2. One-way sensitivity analysis for the treatment strategies varying a) the operative 
mortality rate and b) the operative complication rate. Note that the expected utility of angioplasty 
depends in part on the utility of surgery because if angioplasty fails technically, surgery will 
follow. 
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Figure 2a gives a sensitivity analysis for the operative mortality. Even for very low operative 
mortality rates angioplasty is better than surgery. The expected utility of angioplasty depends 
to a small extent on the utility of surgery because if angioplasty fails technically, surgery will 
follow. Figure 2b shows the results of a sensitivity analysis of the operative complication rate. 
For very low operative complication rates, that is less than 0.015, surgery will be the treatment 
of choice, otherwise angioplasty is preferable. These sensitivity analyses were repeated for 
atherosclerosis and fibromuscular dysplasia separately. The same general trends were found. 
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Figure 3. Two-way sensitivity analysis for the treatment options PTA and surgery varying 
operative mortality rate and technical failure rate of PTA, done for fibromuscular dysplasia and 
atherosclerotic stenoses separately. The areas marked "OPERATE" and "PTA" denote where 
surgery and PTA respectively are the treatment of choice. 

Figure 3 gives the results of a two-way sensitivity analysis for the technical failure rate of 
angioplasty and operative mortality. The threshold values of the technical failure rate of 
angioplasty are given as a function of the operative mortality rate. The analysis has been done 
for both atherosclerotic stenosis and fibromuscular dysplasia separately. Each line divides the 
plot into two areas: above the line the combinations of operative mortality and technical failure 
rate of angioplasty are such that surgery is preferred. Below the line angioplasty is the treatment 
of choice. 
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Figure 4. Two-way sensitivity analysis for the overall strategy varying the diastolic blood 
pressure under initial medical therapy and the prior probability for a renal artery stenosis. (For 
abbreviations see legend of fig 1.) 

A sensitivity analysis for the prior probability of renal artery stenosis has been done. For a prior 
probability below 0.63 the best strategy is "renography - if positive do DSA - if positive do 
angioplasty". For a prior probability in the range of 0.63 to 0.92 the best strategy is "DSA -if 
positive do angioplasty". If one estimates the diagnosis renal artery stenosis to be virtually 
certain, that is over 0.92, one should proceed to angioplasty without any further diagnostic test. 

The calculated thresholds for a change in strategy depend on the diastolic blood pressure with 
initial medical therapy. A two-way sensitivity analysis has been done determining the threshold 
prior probability as function of the diastolic blood pressure with initial medication, the results 
of which are presented in figure 4. The graph is divided into three areas. For the case patient 
the relevant point is in the bottom left corner in the area where the strategy "renography - if 
positive do DSA - if positive do angioplasty" is the best choice. It should be borne in mind that 
this graph has been calculated as an example and applies to a 55 year old Dutch woman. A new 
graph should be calculated for other ages and/or sex. 
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VI. COMMENT 

The purpose of decision analysis is to rank possible clinical strategies in order of decreasing 
utility. The important point is the ranking of the options and not the absolute values of the 
utilities. Rather than choosing arbitrary units life expectancies have been used in this analysis. 

The calculated life expectancies are inaccurate for two reasons. The first reason is the fact that 
the DEALE method yields an approximation of life expectancy which underestimates life 
expectancy compared with the Gompertz model (22). However, because the age and sex specific 
mortality is used as starting value for the calculations of ALL outcomes, a slight inaccuracy in 
the age and sex specific mortality will affect all outcomes alike. The absolute value of the 
expected utilities is slightly incorrect but the ordering of the strategies should not change. This 
was verified by a downward adjustment of the age and sex specific mortality which was found 
not to affect the ordering of the strategies. 

The second reason is that the excess mortality rates used are estimates. However, if the rates 
are correctly ranked the ordering of the preferred strategies will be correct by the same reasoning 
as above. 

No adjustment has been made for the quality of life. If the severity of non-fatal morbidity is 
assumed to be proportional to the rate of fatal morbidity an adjustment for the quality of life 
would affect only the absolute value of the outcomes but will not affect the ranking of the options. 

We have assumed the patient to be risk neutral. However this is not always the case. A person 
can be risk averse or risk seeking (2). To take this into account in a decision analysis one would 
have to obtain a utility curve of how the patient values survival in the immediate coming years 
as opposed to later years (2). 

The utilities in this analysis are based on the results of the Framingham Study on hypertension. 
Clinical trials have shown that life expectancy of hypertensives can be increased by decreasing 
the blood pressure. We assume that the blood pressure decrease attained during therapy can be 
translated to a life expectancy increase using the Framingham risk function, incorporating the 
risk of the particular form of therapy involved. 

In this analysis information concerning chance events has been derived from different sources. 
This may raise doubts as to the applicability of the model to a specific setting. In the ideal 
situation the model would be adjusted for local and situative values of the parameters. 

Clinicians' estimates take a part in the decision. Asking the radiologist, for example, to estimate 
the probability of a successful intravenous digital study and/or a successful angioplasty can be 
very useful. The estimate can be incorporated into the analysis. The calculations done show that 
even if the technical failure rate of angioplasty is high, angioplasty will be preferred to surgery. 



Renovascular Hypertension 61 

As was to be expected this analysis shows that the prior probability of renal artery stenosis is 
of the utmost importance in deciding which workup to perform. With the use of a database, 
registering patient characteristics of patients seen, it should be possible to determine the prior 
probability of a stenosis given the patient's age, sex and prior history. Preferably a clinical 
prediction rule should be derived expressing the prior probability as a function of relevant patient 
characteristics for the patient population concerned. 
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APPENDIX 1. 

As described in the DEALE-method we have used the age and sex specific life expectancy (for 
a healthy person) and the excess mortality rates (for the diseases the patient has) to calculate 
life expectancies for the various outcomes (22). As an example the calculation of the life 
expectancy of the outcome "MEDICATION" (without morbidity from workup or intervention) 
is given here. 

1) average life expectancy 55 year old woman 
(life tables the Netherlands (23)) 

2) average annual baseline mortality rate 
(inverse of (1)) 

3) excess mortality rate for diastolic blood 
pressure of lOOmmHg, woman of 55y (table I) 

4) excess mortality rate for use of anti
hypertensive medications (table I) 

5) total annual mortality rate for outcome 
(sum of (2),(3) and (4)) 

6) life expectancy for outcome 
(inverse of (5)) 

APPENDIX2. 

=27.0 y 

= 0.037/y 

= 0.0025/y 

= 0.0025/y 

= 0.042/y 

= 23.8 y 

,_m_o_rt_al_it._y __________ --t/ 0 years 
0.05 
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rest 
0.95 

0.30 
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As an example folding back for the choice "operate" in the case of proven atherosclerotic stenosis 
is presented here. The subtree has been simplified by ignoring the possibility of complications 
and by using rounded figures. 

The outcome value of every branch is weighted for the probability that the outcome will occur. 
For the branch "normotensive" the weighted outcome is 0.4 x 27 = 11 life years, for the branch 
"improve" 0.3 x 24 = 7 and the branch "failure" 0.3 x 21 = 6life years. The expected utility of 
the branch "rest" is the sum of the weighted values of its branches which is 11 + 7 + 6 = 24 life 
years. In the case of operative mortality the outcome value is zero life years. The sum of the 
weighted values of the branches of the choice "OPERATE" is (0.05 x 0) + (0.95 x 24) giving 
an expected utility of 23 life years. 
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ABSTRACT 

Obstruction of the urinary tract, often caused by urolithiasis, may lead to pyonephrosis, sepsis, 
renal insufficiency and death. Consequently, to relieve the obstruction a temporary drainage 
procedure, namely percutaneous nephrostomy or retrograde ureteral stenting, may be performed. 

'Co-author: John Wong, Division of Clinical Decision Making, Department of Medicine, New 
England Medical Center, Tufts University Medical School, Boston. 
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These procedures, however, carry a risk of haemorrhage or infection. Moreover, with non
invasive medical management, spontaneous passage of the stone may occur making any 
intervention superfluous. The likelihood of spontaneous passage depends mostly on the size and 
position of the stone. The likelihood of complications from the procedures depends on the 
presence or absence of infection, dilatation of the urinary tract and risk factors for increased 
bleeding. Many of the probabilities involved in the analysis depend on the duration of symptoms 
and/or obstruction, which may be conveniently modelled with a Markov process. We examined 
the trade-off between medical management, percutaneous nephrostomy or retrograde ureteral 
stenting with a Markov process decision tree. 

I. INTRODUCTION 

Occurring in 3.5 to 3.8% of all autopsies, urinary tract obstruction is common and is a remediable 
cause of kidney failure (20). Over half of the cases of urinary tract obstruction are caused by 
urolithiasis (70). Other causes include fibrosis from previous surgery or radiation, often for 
malignant disease, especially in the small pelvis. Bilateral obstruction is usually associated with 
loss of renal function and significant morbidity. For example, 60 to 90% of patients with cervical 
cancer die of uraemia if left untreated (8,44,62). In this paper we will focus on urolithiasis as 
cause of urinary tract obstruction. When associated with infection of the tract, which is not 
infrequent, it is defined as pyonephrosis. Timely diagnosis and appropriate treatment are nec
essary to prevent gram-negative sepsis, loss of renal function or death. 

Left untreated, patients with urolithiasis may develop sepsis and/orrenal failure which may be 
fataL Consequently, these patients have, in the past, been treated surgically with nephrectomy. 
Because of the associated high mortality and morbidity rate, more recently less invasive pro
cedures, such as percutaneous nephrostomy (PCN) and retrograde ureteral stenting (RUS), are 
usually performed. The risks of percutaneous nephrostomy include haemorrhage and infections, 
either exacerbation of existing infection or introduction of infection. A lower chance of suc
cessful placement of percutaneous nephrostomy is observed in non-dilated collecting systems. 
The risks of retrograde ureteral stenting include injury to the ureter or renal pelvis and 
exacerbation of existing infection. 

The decision whether to drain the tract immediately, by either PCN or RUS, or delay intervention 
and observe the patient is not clear-cut. Although non-invasive medical management may result 
in sepsis and/or renal failure, the stone causing obstruction may pass spontaneously, obviating 
the need for intervention. An expectant approach may also result in increased dilatation of the 
ureter, facilitating performance and increasing the likelihood of a successful nephrostomy. 

Consider the following four cases: 
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1. 

A 40 year old man with a small stone in the lower ureter has fever, bacteriuria, haematuria and 
flank pain, suggesting pyonephrosis. On ultrasound, dilatation of the urinary tract is seen, 
however, no echogenic material is identified within the tract. 

2. 
A 65 year old man with a history of urolithiasis presents with urosepsis and urinary tract 
obstruction, probably caused by a ureteral stone. However, stones are not seen on the plain film 
of the abdomen. An ultrasound reveals mild dilatation of the collecting system and the presence 
of echogenic material within the tract cannot be judged reliably. The patient has a low platelet 
count and a prolonged bleeding time. 

3. 
A 60 year old man with a solitary kidney and a staghom calculus, one day post extracorporeal 
shockwave lithotripsy (ESWL), develops anuria, flank pain and urosepsis, suggesting acute 
obstruction, but has no evidence of dilatation of the urinary tract. 

4. 

A 40 year old man presents with since a few days complaints of colicky flank pain, with neither 
fever nor pyuria. A plain film of the abdomen shows a small stone in the lower ureter. An 
ultrasound reveals dilatation of the tract, but echo genic material is not identified in the collecting 
system. 

Should each of these patients have a percutaneous nephrostomy or retrograde stenting performed 
or should intervention be delayed? The answer is not clear-cut and involves many uncertainties. 
The trade-offs include the trade-off between the risk of the procedure, which increases with an 
increased bleeding tendency (case 2) or a solitary kidney (case 3), and the risk of medical 
management, which increases with a large stone (case 3), obstruction (all the cases), pyo
nephrosis (case 1) and sepsis (cases 2 & 3). Another trade-off is that between the benefit of 
medical management, in that the stone may pass spontaneously (cases 1,2,4), and the benefit of 
drainage in preventing death from sepsis (cases 1,2,3) and preventing renal impairment (all the 
cases). Although algorithms have been developed and general indications for percutaneous 
nephrostomy have been published (22), a controlled trial comparing drainage of the tract by 
percutaneous nephrostomy or retrograde stenting and medical treatment has not been published. 
Moreover, these general guidelines do not consider individual risks and benefits. 

Decision analysis is an explicit approach to making decisions in the presence of uncertainty. 
With decision analysis we can compare treatments and analyze clinical practices. In this paper 
we present a decision analytic approach to the treatment of urinary tract obstruction caused by 
urolithiasis, focusing on whether a drainage procedure should be done and, if so, which one 
(PCN or RUS) and when. 
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II. THE PROBLEM STATED 

Should a percutaneous nephrostomy (PCN) or retrograde ureteral stenting (RUS) be performed 
in patients with urinary tract obstruction caused by urolithiasis? Medical management of urinary 

tract obstruction may lead to sepsis, renal insufficiency or death, but the obstruction may also 

spontaneously relieve itself by passage of the stone. A percutaneous nephrostomy or retrograde 

stenting procedure relieves the obstruction acutely but may be associated with haemorrhage or 

infection. We examine in detail the influence of pyonephrosis, sepsis, an increased bleeding 

tendency, a non-dilated tract and/or a solitary kidney. Furthermore, we examine the effects of 

the presence or absence of obstruction. We focus on whether a procedure is necessary and, if 

so, when it should be performed. The time horizon of the analysis is restricted to the acute 

problem of urinary tract obstruction. 

Table 1. Summary (and abbreviations) of the strategies. The analyzed strategies are combinations of an 
initial treatment and an alternative treatment if the initial strategy fails or if obstruction recurs. Two 
diagnostic strategies are examined for cases in which ultrasound has not yet been performed. 

initial treatment alternative treatment if initial strategy fails abbreviation 
of strategy 

percutaneous nephrostomy PCN PCN-PCN 
(PCN) RUS PCN-RUS 

OPER PCN-OPER 
MED PCN-MED 

retrograde ureteral stenting PCN RUS-PCN 
(RUS) RUS RUS-RUS 

OPER RUS-OPER 
MED RUS-MED 

surgical management OPER 

medical management (MED) MED MED 
if sepsis occurs, PCN MED-sep-PCN 
if sepsis occurs, RUS MED-sep-RUS 
if pyonephrosis/sepsis occur, PCN MED-pyo-PCN 
if pyonephrosis/sepsis occur, R US MED-pyo-RUS 
if pyonephrosis/sepsis occur, or if stone has 
not passed after 15 days, PCN MED-time-PCN 
if pyonephrosis/sepsis occur, or if stone has 
not passed after 15 days, RUS MED-time-RUS 

if dilated on US, PCN MED USdi1-PCN 
if non-dilated MED US every 5 days, if dilatation occurs, PCN MED-USdil-PCN 
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We examine the following strategies: PCN (percutaneous nephrostomy), RUS (retrograde 
ureteral stenting), surgical intervention, and medical management, with or without a procedure 
performed conditional on the development of complications. The strategies analyzed are 
combinations of an initial treatment and an alternative if the initial strategy fails or if obstruction 
recurs. Table 1 summarizes the 18 strategies. The initial treatment may be PCN, RUS, surgery 
or medical management If an initial drainage procedure fails, or obstruction recurs, the initial 
procedure may be repeated or another treatment may be instituted (table 1). The decision is 
examined partly with a Markov process, each Markov cycle representing 5 days, during which 
two interventional procedures may be chosen. If an interventional strategy is chosen and both 
procedures are unsuccessful, the patient will undergo surgery. 

Ill. SUMMARY OF AVAILABLE DATA 

1. Natural history of ureter stones 

a) Spontaneous passage of ureter stones: 

In 1956, Sandegard details the natural history of ureteral stones demonstrated on radiographic 
films (55). 324 patients were followed until spontaneous passage of the stone occurred or active 
intervention was indicated because of anuria, sepsis or gross anatomic changes requiring surgery. 
Medical treatment consisted of analgesics and spasmolytics. The data includes the number of 
cases of spontaneous passage at 1, 2, 4, and 12 weeks and at 18 months after onset of symptoms, 
and the likelihood of passage is stratified by size, position, shape and primary versus recurrent 
stones. Thus, the data provides the overall cumulative probability of passage and the rate of 
passage over time. Overall, spontaneous passage occurred in 73% of cases. We modelled the 
probability of spontaneous passage depending on size and position of the stone because these 
are the two main features that determine the likelihood of spontaneous passage. Although other 
features increase the likelihood of spontaneous passage, they are usually also associated with 
either smaller size or lower position. 

The size of the stone is determined on radiographic films taken under standardized conditions 
with a focus-film distance of one meter. About 90% of ureteral stones contain enough calcium 
to be visible on a plain film of the abdomen ( 65). Stones are classified by their width: less than 
4 mm is small, more than or equal to 4 mm but less than 6 mm is medium, and more than or 
equal to 6 mm is large. The position in the ureter is classified as "upper" if the stone is above 
the level where the ureter crosses the iliac vessels and otherwise it is classified as "lower". Thus, 
depending on size and position, there are six types of stones. For each of these six groups we 
calculated the observed cumulative probability of spontaneous passage of the stone in relation 
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to the time after onset of symptoms. Subsequently we modelled the cumulative probability (or 
cumulative incidence) of spontaneous passage as a function of time using a Wei bull fit (36), of 
the form: 

pass(t) = c (1- e-{At)J (Eq.1) 

where c is a constant equal to the cumulative probability of passage fort ~ oo, y determines the 

shape of the curve and 'A is a scaling constant. The corresponding hazard function h(t) is: 

h(t) = c"Ay("At)Y-r 
(1-c)e(').t)r +c 

Theoretically, other shapes of the curve are possible. The exponential model: 

pass(t) = c (1-e-") 

(Eq.2) 

(Eq.3) 

would be an alternative form, however this model assumes a constant hazard function or rater. 
The Weibull model is a generalization of the exponential model in which the hazard function 
may vary with time. Note that ify= 1 the Weibull model is equivalent to the exponential modeL 
Although the exponential model is computationally easier, our Weibull model has a lower 
chi-squared statistic1 and thus provides a better fit (36). 

To facilitate determining constants for the Weibull model, we transformed the above equation 
Eq. 1 as follows2

: 

Substituting: 

y = ~! + ~zX 

y = ln(ln(--c--)~ 
c-pass(t) I~ 

ln(ln( c ))~ =yln("A)+yln(t) 
c- pass(t ~ 

1The test statistic for the chi-squared goodness-of-fit test equals: 

xz= I. co -E? 
k E 

with k-r-1 degrees of freedom, where 0 are the observed values, E the expected values on the 
basis of the regression equation, k the number of data points and r the number of estimated 
parameters. 
2Note: ln(x) is the natural logarithm of x 
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x = ln(t) 

131 = yln(A.) 

132 =y 

yields a linear equation with independent variable x, permitting a least squares regression to 
estimate y and A.. 
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Figure 1. Cumulative probability of spontaneous passage of a stone as function of time, depending on 
position and size of the stone. a) Stones in the upper ureter and b) stones in the lower ureter. 

For small ( <4 mm), medium ( 4-6 mm) and large (>6 mm) sized stones, figure 1 presents the 
observed data points and derived cumulative probability functions in a) the upper and b) the 
lower ureter. Large stones in the upper ureter never pass spontaneous! y. Note that the estimated 
constants, y and A., for medium sized stones in the upper ureter and large stones in the lower 
ureter are based on small samples (27 and 9 cases respectively). To model the probabilities for 
these two groups, we assumed that the shape of the curve (and thus y and A.) is the same as that 
of upper ureter or large stones in general. We then scaled the curve down proportional to the 
overall probability of passage in this subgroup. (The estimated parameters provide an adequate 
fit, at the 0.05 level of significance, for all the curves except one: the level of significance for 
the fitted curve for medium sized stones in the upper ureter is 0.20.) 

More recent studies of the natural history of urolithiasis generally agree with the Swedish study. 
In a study of calcium urolithiasis (9), passage occurred in 64-80% of 460 cases compared to the 
73% in the Swedish study. A review (11) summarizes the probability of spontaneous passage 
within one year of onset of symptoms, for stones located in the lower ureter stratified by size 
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(Table 2). Compared to the Swedish study, the probability of passage reported is slightly lower 
for small stones and slightly higher for medium sized and large stones (Table 2). For the analysis 
we used the probability of passage modelled with the data from the Swedish study. 

b) Dilatation: 

Not all urinary tracts dilate immediately as a result of obstruction. Among patients presenting 
with urinary tract obstruction, tracts were not dilated in about 4% of 431 cases at the time of 
percutaneous nephrostomy ( 4,38,42,71). However, if obstruction is not relieved, the likelihood 
of dilatation increases with increasingly prolonged obstruction. 
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Figure 2. Cumulative probability of dilatation in relation to duration of obstruction, observed values 
(squares) with fitted curve. 

Because data on dilatation of the urinary tract in relation to the duration of obstruction in humans 
is sparse, we refer to animal experiments. In 10 dogs, incomplete unilateral ureteral ligation led 
to progressive hydroureteronephrosis (31). Measurements of intrarenal pressure and pelviu
reteric volume at various time intervals (up to 60 days) after ligation demonstrated that pressure 
increases slowly with increasing volume. At a critical capacity, however, the pressure rises much 
more steeply with increasing volume. This critical capacity of the renal pelvis represents a 
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transition point from accommodation to overdistension. Because the precise volume at which 
the renal pelvis is defined as dilated is to a certain extent arbitrary, and because of the above 
relationship between pressure and volume in the animal experiments, we define dilatation (in 
dogs) as any volume greater than or equal to the critical capacity. The average duration of partial 
obstruction after incomplete ligation of the dogs' ureters, at which the critical capacity was 
reached, is 14 days (31 ). Based on the cumulative probability of dilatation as function of time, 
we fitted a sigmoid shaped curve to the observed points, of the form: 

dilate(t) =<It~~) 

wheredilate(t) is the cumulative probability of dilatation aftertdays obstruction, <l> is the standard 
cumulative normal distribution, ~is the mean time interval after which dilatation occurs (14 
days) and cr is the standard deviation of the mean (Figure 2). 

c) Loss of renal function: 

Obstruction of the urinary tract causes increased pressure in the collecting system, a decreased 
glomerular filtration rate and hemodynamic changes, which together affect kidney function. If 
obstruction exists only for a short period of time, functional loss is completely reversible after 
release of the obstruction (30). Prolonged obstruction results in permanent loss of renal function, 
in spite of resolution of the obstruction. The likelihood of permanent functional loss increases 
with the duration of obstruction: the precise relationship, however, is not well known. In addition, 
infection increases the likelihood ofloss offunction. However, the presence of a solitary kidney 
decreases the likelihood of functional loss, presumably due to a compensatory mechanism. Note 
that defining functional loss is somewhat arbitrary: we assume that a kidney which functions 
less than 20% of normal is a remnant kidney (39,46). 

Studies of renal function in humans after release of acute urinary tract obstruction are sparse. 
Most studies have focused on chronic obstruction (17,19,29) rather than acute obstruction. 
Animal experiments in which renal function is measured after varying periods of acute 
obstruction (27,28,50,51,66) suggest that a sigmoid-shaped curve (that is, a cumulative normal 
distribution as used in fitting the probability of dilatation above) reflects the biological process 
(Figure 3a) (the level of significance, using a chi-squared goodness-of-fit test is 0.05). A single 
study (25) reports prognosis of renal function after release of acute obstruction in 74 patients 
without infection and 6 patients with infection. Fitting the probabilities given in the study of 
acute obstruction in man to a sigmoid-shaped curve provides the probability of renal function 
loss after varying periods of acute obstruction for patients without infection (Figure 3b). The 
average duration of obstruction after which permanent renal function loss occurred was 28 days 
for uninfected kidneys and 17.5 days for infected kidneys. Thus, the cumulative probability 
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Figure 3. a) Probability ofloss of renal function in animals after release of acute obstruction, depending 
on the duration of obstruction. ObseiVed values (squares) and fitted cuiVe. b) Probability ofloss of renal 
function in humans after release of acute obstruction, depending on the duration of obstruction and 
presence of infection. ObseiVed values (squares) for patients without infection and fitted cuiVes for 
patients with and without infection. 

curve for patients with infected kidneys is shifted to the left relative to the curve for patients 

with uninfected kidneys. Data from experiments with rats (8) demonstrate that a solitary kidney 

can be obstructed approximately 1.25 times as long as a kidney of a pair before it becomes 

remnant. The curve for solitary kidneys is therefore shifted to the right. Because data for the 

latter two groups are sparse, we assume that the shape of the curve is the same as for patients 
with two kidneys without infection, and that infection and/or the presence of a solitary kidney 

only shifts the curve right or left. 

d) Obstruction, pyonephrosis and sepsis: 

Among 98 patients presenting with acute flank pain, renal colic andhaematuria in the emergency 

ward, 73 had calculus disease of which 62 had evidence of obstruction on excretory urography. 
Even if absent initially, obstruction may develop. We modelled the cumulative probability of 

obstruction given urolithiasis as a time-dependent probability of the form: 

obstruction(t) = 1- e-" 

where t is the time since onset of symptoms related to the presence of a ureteral stone and r is 

the rate of developing obstruction per unit of time. Note that by modelling the probability of 

obstruction with this equation, we assume that, if the stone does not pass spontaneously and is 

not removed, obstruction will occur eventually. The Swedish study suggests that the probability 
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of obstruction depends on the size of the stone (55). Over 18 months, obstruction developed in 
31% of all patients in whom the stone did not pass. Among patients with small, medium and 
large stones, 18%,26% and 45% respectively developed obstruction. We calculated the rate of 
developing obstruction per day from these percentages. The rate varies from 0.0004 per day for 
small stones to 0.0011 per day for large stones (table 2). 

Among patients presenting with obstruction, about 15% have pyonephrosis (71 ). If pyonephrosis 
is suspected clinically because of chills, fever, flank pain and pyuria, the chance of having a 
positive culture on aspiration is about 86% (71). Not all patients with urinary tract obstruction 
develop pyonephrosis. The Swedish study suggests that the probability of developing pyo
nephrosis depends on the size of the stone (55). We modelled the cumulative probability of 
pyonephrosis for various stone sizes, depending on time, with an exponential failure function 
with a constant rate, and assuming that obstruction which is not relieved will eventually lead to 
pyonephrosis: 

pyonephrosis(t) = l-e-r' 

Among patients with obstruction from a stone, 43% developed pyonephrosis during a follow-up 
period of 18 months, giving an overall rate ofO.OOl per day (55) (table 2). 23% of patients with 
small or medium sized stones and 64% of patients with large stones developed pyonephrosis, 
giving rates of 0.0005 and 0.0019 per day respectively. (Note that the rates of developing 
obstruction and pyonephrosis are very low, which implies that the cumulative probability reaches 
unity only after a long period of time.) 

Among 78 patients with benign urinary tract obstruction and pyonephrosis, 51% presented with 
sepsis (34). Of 136 patients who acquired urinary tract infection during urological manipulation, 
25 died of sepsis (49), from which we infer, assuming that these 25 represent the 38.5% of 
patients with sepsis that die, that 65 (48%) of the 136 infected patients had sepsis. Thus, on 
average, the probability of sepsis given infection of the urinary tract, is about 49% (34,49), 
however, according to expert opinion, the probability could be as high as 70% within hours to 
days after the onset of pyonephrosis (46). We modelled the cumulative probability of sepsis 
given pyonephrosis as a time-dependent probability of the form: 

sepsis(t) = c (l-e-r') 

where c is the cumulative probability of sepsis and r the rate at which sepsis occurs. A study 
reports that of the patients who develop bacteriaemia after urological manipulation, 96% had a 
positive blood culture within two days following the procedure (53), from which we estimate 
a rate of 1.6 per day. 

Even with prompt institution of antibiotics, the probability of death due to gram-negative sepsis 
ranges from 15 to 51% (on average 38.5%) (13,32,34,56,68), depending largely on the severity 
of the underlying disease. Fatalities from sepsis usually occur within one to two days after onset 
of bacteriaemia (33). Performing a drainage procedure decreases the probability of death from 
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sepsis. The efficacy of drainage refers to the proportion of patients in who death from sepsis is 
prevented by the procedure. If the efficacy of a procedure is one, the procedure reduces the risk 

of death to zero. If the efficacy is zero, the procedure does not reduce the risk of death. 

2. Ultrasound for urinary tract obstruction and pyonephrosis 

Dilatation of the collecting system on ultrasound does not always indicate obstruction of the 
urinary tract (20). An increased fluid load, vesicoureteric reflux and megacalices are some of 
the reasons for a false positive ultrasound. In addition, obstruction of the urinary tract may exist 
without dilatation of the collecting system. However, in clinical practice the decision to intervene 
is often based on the presence of dilatation on ultrasound examination. We analyzed this approach 
by including a diagnostic strategy: perform an ultrasound, if dilatation is present do PCN, 

otherwise manage medically. The patient may also be examined periodically to determine if 
dilatation has occurred. 

Ultrasound performed to diagnose obstruction of the urinary tract has a true positive fraction of 
96% (4,38,42,71) and a false positive fraction of 26% (15). Thus, the likelihood ratio positive 
for the diagnosis obstruction, given a positive ultrasound, is 3.70, and given a negative ultra
sound, is 0.05. Ultrasound distinguishes obstruction without infection from pyonephrosis, by 
identifying echogenic material in the dilated tract, with a true positive fraction of 83% and a 
false positive fraction of 6% (4,26,63). The likelihood ratio positive for the diagnosis pyo
nephrosis, given an ultrasound positive for pyonephrosis, is 13.88, and given an ultrasound 
negative for pyonephrosis, is 0.18. Pyonephrosis is definitively identified by culture of urine 
obtained directly from the renal pelvis. This requires aspirating urine via a drainage procedure 

and waiting three days for culture results unless macroscopic pyonephrosis exists as evident by 
the presence of pus. 

3. Percutaneous nephrostomy (PCN) 

a) Successful placement of a PCN tube: 

On average, 96% of percutaneous nephrostomy tubes are placed successfully (range 92 to 99%) 
(24,34,42,52,61). In undilated urinary tracts, or in the presence of a staghom calculus, access 
to the tract is more difficult and the probability of success is lower, on average 88% (range 85 
to 91%) (38,42,52). In addition, an initially unsuccessful placement due to inability to cannulate 
the tract, lowers the likelihood of subsequent successful placement. Of 9 unsuccessful place

ments only 3 catheters were successfully placed several days later (24). 
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b) Mortality and short-term morbidity: 

The overall mortality rate for percutaneous nephrostomy is less than 0.2% ( 47). Direct procedure 
related mortality is usually due to massive haemorrhage ( 48,52). Exacerbation of infection is 

the second most frequent cause of death. The probability of death among patients undergoing 
PCN for gram-negative sepsis is 8% (34). 

Sepsis occurred in 2.7% of 1210 patients undergoing a percutaneous nephrostomy 
(24,34,42,48,61 ,71 ). If infection of the tract exists at the time of PCN, transient bacteriaemia is 
unavoidable and approximately 11% of patients develop septicaemia (71). Elevation ofintrarenal 
pressure, for example by injecting excessive contrast material, increases the risk of sepsis. In 
the absence of infection, the likelihood of sepsis is probably lower than the overall observed 
frequency of2.7%, however, the exact frequency cannot be found because studies do not report 
the frequency of sepsis for non-infected patients separately. 

Insignificant haemorrhages and haematuria occur frequently after PCN. Of 1285 PCN's, clin
ically significant haemorrhage occurred in 0.8% of cases (range 0.4% to 2.0%) 
(24,34,42,48,61,71). Approximately 20% of the clinically significant haemorrhages are serious 
enough to necessitate either embolization of the renal artery or surgical nephrectomy 
(24,34,42,48,61,71). If gram-negative sepsis is present, the likelihood of PCN related hae
morrhage and death increases because of associated coagulation disorders (33). Procedure 
related deaths are often due to haemorrhagic complications and usually associated with increased 

bleeding tendency ( 48,52). No published data exists on the probability of death if haemorrhage 
occurs after PCN. Therefore, in patients with a bleeding diathesis we assume that the odds of 
PCN related mortality increases proportionate to the increase in the odds of haemorrhage. 

Inadequate drainage due to dislodgement of the tube, obstruction by debris or blood clots and 
catheter breakage occurred in 2% of 884 procedures (range 0.6% to 17%) (24,34,61). If the 
drain stops functioning the procedure is usually repeated. 

For patients successfully treated with PCN, the average hospital stay is six days (34). In the 
event of short-term morbidity we estimate the length of stay to be twice as long. 

c) Efficacy of PCN in sepsis: 

As mentioned above, the probability of death among patients undergoing PCN for gram-negative 
sepsis is 8% (34). Among patients with gram-negative sepsis not undergoing a drainage pro
cedure (in the same study) death occurred in 40% (34). The efficacy of PCN (ef!PCN), that is, 
the proportion of patients in who death from gram-negative sepsis is prevented by a successfully 

placed nephrostomy tube, is calculated as follows: 
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0.08 = (1 - efjPCN) x 0.40 

and is therefore 0.80. 

d) Renal function: 

In 45 cases treated with PCN, 8.8% of patients tested months to years after the procedure, had 
a remnant kidney (34,71). However, these studies do not document the duration of renal 
obstruction before drainage. Because duration of obstruction is the major variable that affects 
renal function, we assume that if a successful drainage is performed immediately, the probability 
oflosing renal function is negligible. In the presence of obstruction, functional loss may occur 
if intervention is postponed. 

4. Retrograde ureteral stenting (RUS) 

Retrograde ureteral stenting (RUS) is used in emergency situations to drain the urinary tract, to 
relieve acute obstruction, and to stabilize the patient until definitive treatment is started (54). It 
is a relatively safe procedure that is usually performed under local or regional anaesthesia, with 
general anaesthesia being required in uncooperative patients. Unfortunately, quantitative data 
about the complications of stenting in acute obstruction due to ureteral stone disease are sparse 
and most studies combine results of stenting performed for miscellaneous problems, including 
malignant disease. Stents placed for malignant obstruction may cause additional complications 
because the stent remains in place for months, causing erosion and being liable to encrustation 
and obstruction. Ureteroscopy for stone manipulation is a similar procedure to stenting, only 
slightly more risky because, in addition to passing the stone with a guidewire, stone crushing 
and stone retrieval instruments are used. Where appropriate and necessary we use data from 
studies of ureteroscopy as a best estimate for stenting, modified so as not to overestimate the 
risks. 

a) Successful placement of a RUS: 

Reported success rates for retrograde stenting, placed for various indications, range from 80 to 
82% (11 ,40). Successful placement of a stent in acute obstruction due to calculus disease depends 
on whether the stone can be passed with the guidewire and stent, which in turn will depend on 
the amount of inflammatory oedema and the size and position of the stone. Of 101 ureteroscopies 
for ureter stone manipulation only 6% were unsuccessful because the stone could not be passed 
(11). We therefore estimate the success rate of retrograde stent placement for calculus disease 
to be 94%. Similar to PCN placement, we assume that an unsuccessful initial stent placement 
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lowers the likelihood of success of a second attempt. We assume that the odds of a successful 
placement after an initial unsuccessful RUS, will decrease in the same proportion as for a second 
PCN placement after an initial failure. 

b) Mortality and short-term morbidity: 

Procedure related mortality due to retrograde ureteral stenting is caused by infection and 
iatrogenic injury, and in some cases anaesthesia risk. The mortality rate is assumed to be the 
same as for ureteroscopy, which is 0.5% (11). 

The main risks of retrograde stenting include iatrogenic injury to the renal pelvis or ureter and 
sepsis (3,40,60). Serious complications occur in 3 to 5% of patients undergoing retrograde 
stenting (3). About half of these are due to iatrogenic trauma (10,60), that is, in about 2% of 
procedures. Of the patients in whom injury occurs, 17% have to be operated (60). 

Among those undergoing a stenting procedure, 2 to 3% of uninfected patients will become septic 
(3,60,10). However, among patients with infected urinary tracts, approximately 31% will 
become septic (45,56,64). Preexistent urinary tract infection increases the risk of sepsis from 
urological instrumentation by 5 to 22 times over instrumentation in patients without prior 
infection (64). 

After placement 1.5 to 3.8% of stents migrate or obstruct with debris (10,67). The likelihood of 
encrustation and obstruction increases with prolonged stenting, which occurs mostly with 
malignant disease (1). 

We assume the hospital stay for retrograde ureteral stenting for acute urinary tract obstruction 
equals that for PCN, six days for an uncomplicated procedure and an extra six days for a 
complicated one. 

c) Efficacy of RUS in sepsis: 

We assume the efficacy of ureteral stenting in reducing mortality from urosepsis is 0.80, equal 
to that of a percutaneous nephrostomy tube, because the obstruction is relieved by either pro
cedure. 

d) Renal function: 

As with percutaneous nephrostomy we assume that if drainage is performed immediately, and 
is successful, the probability of losing renal function is negligible. 
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5. Surgical intervention in pyonephrosis 

Surgical intervention, either open surgical nephrostomy or nephrectomy, may be indicated if 

both PCN and RUS fail, or if serious ureteral injury caused by retrograde stenting occurs. 

a) Operative mortality and efficacy of surgery in sepsis: 

Death from nephrectomy and operative nephrostomy done for suppurative renal processes occurs 
in 6% of patients (18,21), and rises to 20 to 30% when done in the presence of a perinephric 
abscess (21). In the absence of pyonephrosis we assume the operative mortality is equal to that 
of cholecystectomy, that is 1.7% (41). The case fatality rate of gram-negative sepsis accom
panyingpyonephrosis, treated with surgical drainage is 12% (34 ), and thus the efficacy of surgery 
is 0.70. 

b) Short term morbidity: 

In patients without prior infection, complications occur in about 16% of operations, half of which 
are haemorrhage and injury ( 60). We assume the other half are infectious complications. On the 
other hand, among patients with preexistent infection 25% have complications (52), mostly 

exacerbation of infection. The average hospital stay for surgically treated patients is 13 days 
(34). If complications occur, we assume the hospital stay will be lengthened by another 13 days. 

c) Nephrectomy I loss of renal function: 

Among patients treated surgically for pyonephrosis, 75% undergo nephrectomy (23,70). In the 
remaining cases, open nephrostomy is performed. In patients undergoing open nephrostomy, 
loss of function again depends on the duration of obstruction before intervention. 

6. Excess mortality rates 

To calculate the utilities of the outcomes we need the excess mortality rate for calculus disease, 
for a solitary kidney and for a patient on renal dialysis. Patients with a history of urinary tract 
calculus disease have an excess mortality rate of 0.4/1000 per year (58). Patients with a solitary 
kidney have an excess mortality rate of 2.6/1000 per year (58). The National Dialysis Registry 
(58) provides excess mortality rates for renal dialysis depending on age and sex (see table 3). 
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7. Definitive treatment for a ureteral stone 

Not all ureteral stones need to be treated. Depending on the stone's size and position it may pass 
spontaneously. If neither infection nor obstruction are present, most urologists will observe the 
patient for a few weeks. However, how long one may observe the patient without intervening 
is controversial, especially if signs of obstruction exist. Definitive treatment for a ureteral stone 
may be medical management, extracorporeal shockwave lithotripsy (ESWL), percutaneous 
nephrolithotomy (PCNL), ureteroscopic stone manipulation (URS) and ureterolithotomy. 

The success rate of extracorporeal shockwave lithotripsy (ESWL) depends on the size of the 
stone, ranging from 53% for very large stones to 82% for small stones ( 12, 16). 8% of procedures 
are complicated by obstruction, 1% by pyonephrosis and another 1% by sepsis, all of which are 
treated with percutaneous nephrostomy (16). The average hospital stay is two days, and another 
two days if complications occur. 

Percutaneous nephrolithotomy (PCNL) can only be performed if the stone is situated in the renal 
pelvis or upper ureter. PCNL is very similar to percutaneous nephrostomy (PCN), except that 
in addition to cannulating the urinary tract, stone manipulation and retrieval takes place. Success 
is obtained in about 88% of cases (16,35). PCNL has a low mortality of 0.3% (37). As with 
PCN, sepsis occurs in 2.7% of procedures. Haemorrhage occurs more often than with PCN, 
namely in 1.2% (37). In addition, PCNL may be complicated by injury requiring surgery in 
1.6% ofprocedures (35,37). 

Ureteroscopic stone manipulation (URS) is similar to retrograde ureteral stenting (RUS). 
However, complications are slightly more frequent because in addition to passing the stone with 
a guidewire, stone crushing and stone retrieval instruments are used. Mortality occurs in 0.5%, 
sepsis in 3% and injury in 8% of cases (11,60). Success is obtained in 78%, that is, 51% of 
stones in the upper ureter and 86% of stones in the lower ureter are removed (16,60). 

The mortality among patients undergoing elective ureterolithotomy lies between 0.1% (39) and 
0.5% (41). Sepsis occurs in about 8% of operations and other short-term morbidity in another 
8% (60). Ureterolithotomy fails in 1% of patients, in which case nephrectomy may be performed 
(43). 
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Table 2. Table of variables, baseline value and range of published values. 

description baseline value range of pub- reference 
lished values 

cumulative probability of spontaneous passage of 
a stone, 1 to 1.5 years after onset of symptoms 
(see also figure 1): 

overall 0.73 0.64-0.80 55,9 
upper ureter, < 4 mm 0.81 55 
upper ureter, 4-6 mm 0.22 
upper ureter, > 6 mm 0 
lower ureter, < 4 mm 0.93 0.88-0.90 55,11 
lower ureter, 4-6 mm 0.53 0.58-0.66 
lower ureter, > 6 mm 0.22 0.22-0.29 

rate of developing obstruction from a ureteral 
stone that does not pass, per day 

overall 0.0007 55 
<4mm 0.0004 
4-6mm 0.0006 
>6mm 0.0011 

rate of developing pyonephrosis given obstruc-
tion, per day 

overall 0.0010 55 
<4mm 0.0005 
4-6mm 0.0005 
>6mm 0.0019 

cumulative probability of developing sepsis given 0.49 0.30-0.50 34,49 
pyonephrosis 0.70 46 
rate of developing sepsis given pyonephrosis, per 1.573 53 
day 

probability of death due to sepsis, without inter- 0.385 0.15-0.51 13,32,34, 
vention 56,68 
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ULTRASOUND (US) 

dilatation on US, test for obstruction: 
true positive fraction 0.963 38,42,4,71 

false positive fraction 0.260 15 
likelihood ratio of a positive test 3.70 
likelihood ratio of a negative test 0.05 

internal echoes on US given a dilated system, test 
for pyonephrosis: 

true positive fraction 0.833 4,26,63 
false positive fraction 0.060 
likelihood ratio of a positive test 13.88 
likelihood ratio of a negative test 0.18 

PREDICTIVE VALUES 

probability of obstruction at presentation: 
with minor symptoms 0.02 55 
with flank pain/colic, haematuria 0.63 57 

with dilatation on US 0.87 
without dilatation on US 0.08 

with stone, flank pain/colic, haematuria 0.85 57 
with dilatation on US 0.95 
without dilatation on US 0.22 

with stone, severe flank pain/colic, anuria 1.00 

probability of pyonephrosis at presentation, in the 
presence of obstruction: 

with stone, colic, no fever 0.15 71 
with echo genic material on US 0.71 
without echogenic material on US 0.03 

with stone, flank pain, fever, pyuria 0.86 71 
with echogenic material on US 0.99 
without echo genic material on US 0.53 
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PERCUTANEOUS NEPHROSTOMY (PCN) 
procedure related mortality 0.002 0 47 
efficacy ofPCN, mortality from sepsis prevented 0.80 34 
probability of success of PCN 24,34, 
in dilated tracts 0.96 0.92-0.99 42,52,61 
in undilated tracts 0.88 0.85-0.91 38,42,52 
second attempt after earlier failed PCN 0.33 24 
post-PCN infection, overall 0.017 24,34, 

42,52,61 
post-PCN sepsis, overall 0.027 0.014 24,34, 

42,52,61 
post-PCN sepsis, in clinically suspected pyoneph- 0.108 71 
rosis 
haemorrhage due to PCN 0.008 0.004-0.02 24,34, 

42,52,61 
increase in odds of haemorrhage and of death 5 
from PCN if bleeding diathesis exists 
loss of kidney if haemorrhage occurs (ie. embo- 0.20 24,34, 
lization necessary) 42,52,61 
obstruction of tube I dislodgement I 0.02 0.006-0.017 24,34,61 

catheter breakage 
average hospital stay, PCN 6 days 34 
extra hospital stay for short-term morbidity 6 days 

RETROGRADE URETERAL STENTING 
(RUS) 
procedure related mortality 0.005 0 60,11 
efficacy ofRUS, assumed equal to efficacy of 0.80 
PCN 
probability of success of RUS 0.94 0.80 11,40 
post-RUS sepsis, overall 0.02 3,10,60 
post-RUS sepsis, in clinically suspected pyoneph- 0.101 0.308 64 
rosis 
iatrogenic trauma 0.02 3,10,60 
operation necessary if iatrogenic trauma occurs 0.17 60 
migration I obstruction of stent 0.015 0.038-0.135 67,1,10 
average hospital stay, RUS (same as for PCN) 6 days 
extra hospital stay for short-term morbidity (same 
as forPCN) 6 days 



Acute Urinary Tract Obstruction 85 

SURGERY (OPER) 
operative mortality of a comparative abdominal 
procedure 0.017 41 
suppurative renal process 0.06 0.03-0.30 18,21,2 
efficacy of surgery, decrease in mortality due to 0.70 34 
sepsis 
short-term morbidity, 

non-infected tract 0.16 60 
infected tract 0.25 52 

probability of sepsis due to surgery 
non-infected tract 0.08 52,60 
infected tract 0.17 

average hospital stay, operation, without short- 13 days 2,34 
term morbidity 
extra hospital stay for short-term morbidity 13 days 
nephrectomy is necessary/done as opposed to sur- 0.62 0.75 70,23 
gical nephrostomy 

Table 3. Excess mortality rates per 1000 per year 

for calculus disease 0.0004 58 

for solitary kidney 0.0026 58 

for renal dialysis, AGE MALE FEMALE 58 
15 0.083 0.094 
25 0.087 0.094 
35 0.115 0.114 
45 0.125 0.114 
55 0.138 0.130 
65 0.157 0.169 
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Table 4. Table of the Markov states of the model. 

state description 

no obstruction urolithiasis renal function intact 
2 obstruction urolithiasis, dilated renal function intact 
3 obstruction urolithiasis, dilated loss of function 
4 obstruction urolithiasis, non-dilated renal function intact 
5 obstruction urolithiasis, non-dilated loss of function 
6 pyonephrosis urolithiasis, dilated renal function intact 
7 pyonephrosis urolithiasis, dilated loss of function 
8 pyonephrosis urolithiasis, non-dilated renal function intact 
9 pyonephrosis urolithiasis, non-dilated loss of function 
10 sepsis urolithiasis, dilated renal function intact 
11 sepsis urolithiasis, dilated loss of function 
12 sepsis urolithiasis, non-dilated renal function intact 
13 sepsis urolithiasis, non-dilated loss of function 
14 drained urolithiasis renal function intact 
15 drained urolithiasis loss of function 
16 drained stone passed renal function intact 
17 drained stone passed loss offunction 
18 dead 

IV. THE MODEL 

The decision model combines a Markov process (7) with a recursive decision tree. The time 

horizon for the Markov process is 50 days. The remaining prognosis (the 'tail utility') is cal

culated with the DEALE-method (5,6). A Markov process simulates a cohort of patients as they 
move from one state of health to another. Time is divided into slices called Markov cycles. Table 

4 summarizes the 18 Markov states of health for acute urinary tract obstruction caused by 
urolithiasis. The states of health in this analysis can be characterized by three features and their 

complications: 1) presence or absence of obstruction and its complications, pyonephrosis and 
gram-negative sepsis; 2) presence or absence of urolithiasis, with or without dilatation of the 

tract; and 3) function of the affected kidney. If the tract is successfully drained by means of an 

interventional procedure, or the stone passes spontaneously, obstruction and infection are 
assumed to be relieved. 
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Figure 4a gives an overview of the decision model and figures 4b through f show the subtrees 
for PCN, RUS, surgery, medical management and ultrasound respectively. The model starts 
with a decision node (represented with a square) on the left with 18 strategies (see table 1). The 
Markov process is represented by the Markov node (a square with two circles), the 18 states 
that characterize the states of health in this analysis and the Markov cycle tree. The cycle tree 
starts with the initial treatment and branches according to the ensuing events. An alternative 
treatment may follow depending on whether the procedure is successful, whether obstruction 

recurs, or whether complications develop during medical management. 

The subtrees for PCN and RUS (figure 4b and c) are very similar. The subtrees start on the left 
with a chance node (represented with a circle) for mortality and branch successively depicting 

the events that may occur. The procedure may result in mortality or morbidity. Major morbidity 
includes haemorrhage following PCN and iatrogenic injury following RUS. If life threatening 
haemorrhage occurs following PCN, the renal artery is embolized, in which case function of 
the kidney is lost. If serious iatrogenic injury occurs following RUS, surgical intervention may 
be necessary. The procedure may cause infection or exacerbate an existing infection. Placement 

of the drainage tube may be successful or not. Even if placement is initially successful, the tube 
may obstruct or break, in which case urinary tract obstruction will recur. If tube placement is 
successful, death from sepsis is prevented in a proportion of the patients. If placement is 
unsuccessful or obstruction recurs, an alternative treatment may be chosen. 

The surgery subtree (figure 4d) starts on the left with a chance node depicting operative mortality. 
The following branches represent the possible development of sepsis and/or other short-term 
morbidity, and whether surgical intervention consists of nephrectomy or nephrostomy. 

As with the other subtrees, the events which may occur during medical management are rep
resented with chance nodes (circles) and successive branching (figure 4e). Medical management 

may result in death from sepsis, depicted with a chance node on the left. In a proportion of cases, 

however, spontaneous passage of the stone occurs, in which case the obstruction and infection 
are relieved. If obstruction is not present initially, it may develop in due course as a result of 
the stone. Depending on the duration of obstruction, renal function may become impaired. A 

non-dilated tract may dilate during expectant management and pyonephrosis and sepsis can 
complicate the course of a non-invasive approach. Depending on the initial circumstances and 
on the chosen strategy (table 1), if sepsis or pyonephrosis occur, or if the stone does not pass 

within 5 to 15 days, a drainage procedure is performed. 

Figure 4f presents the diagnostic strategy "if an ultrasound shows a dilated tract, perform PCN". 
The subtree starts on the left with a chance node for the test result: either ultrasound shows 
dilatation or not. If the ultrasound shows dilatation, PCN is performed. Patients with non-dilated 
tracts are managed medically, with or without repeating the ultrasound periodically. Although 
a dilated tract is usually a sign of obstruction, non-obstructed tracts may be dilated, in which 
case PCN will be performed although obstruction does not exist. In addition, some obstructed 

tracts are not dilated, in which case intervention is postponed. 
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With some small modifications, the presented model applies to the decision whether or not a 
patient with a ureteral stone should undergo definitive treatment. Treatment options are medical 
management, extracorporeal shockwave lithotripsy (ESWL), percutaneous nephrolithotomy 
(PCNL), ureteroscopic stone manipulation (URS) and ureterolithotomy. The ESWL subtree is 
analogous to that of medical management. Obstruction, pyonephrosis and sepsis may complicate 
ESWL, in which case PCN will be performed. Percutaneous nephrolithotomy (PCNL) can only 
be performed if the stone is in the renal pelvis or upper ureter. The procedure is very similar to 
PCN. In addition to the complications of PCN, PCNL may be complicated by injury requiring 
surgery. Ureteroscopic stone manipulation (URS) is very similar to retrograde ureteral stenting 
(RUS). Utilizing the analogous structure of the choice of temporary drainage for obstruction 
and the choice of definitive treatment for urolithiasis, we also examined the latter decision. 

V. TECHNICAL DETAILS 

The probabilities modelled above and presented in graphs 1 to 4, are cumulative probabilities, 
or cumulative incidence functions, of the event. To perform the calculations of the Markov 
process we need to know the transition probability, in other words the probability that the event 
will occur during one cycle. To calculate the transition probability, the cumulative probability 
function is converted to the corresponding hazard rate h(t) (or incidence density function) with 
the following equation (36): 

h(t) = F'(t) 
1-F(t) 

Subsequently, the transition probability p(i) during cycle i, from time ti.J to ti> is calculated as 
follows: 

'; 

- f h(l)dl 

p(i) == 1- e '•-! 

If event B is conditional on prior event or state A, then the transition probability for event B as 
calculated with the above equation, applies for all patients in state A since the beginning of the 
Markov process. However, if event or state A is initially absent but occurs subsequently during 
cycle x, the hazard rate for event B during cycle i, is h(~.x)· For example, the probability of renal 
impairment depends on the duration of obstruction and, thus, if obstruction is not present initially 
but develops during cycle x, the probability of renal impairment will depend on the period of 
time elapsed since cycle x. Furthermore, obstruction may have developed during any cycle x 
from 0 to i. Thus, the group of patients with obstruction is a heterogeneous mixture of patients 
with obstruction of varying duration, each with a corresponding probability of renal impairment. 
The transition probability of renal impairment (event B) during cycle i is, therefore, a summation 
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of products. The products are the probability of obstruction (event A) during cycle x, multiplied 
by the probability of renal impairment (event B) given obstruction during i-x cycles. The products 
are summed over all cycles x from 0 to i, in equation: 

i 

pB (i) = I, pA (x) · pB I A (i - x) 
x=O 

As discussed in section III.Ld) the rate of obstruction, and therefore the transition probability 
during each cycle, is constant. Therefore, if p(obstruction) is the transition probability of 
obstruction during a cycle, then: 

i 
pB(i) = p(obstruction) · I, pB I obstruction(i -x) 

x=O 

This equation applies to the transition probability of renal impairment and of dilatation, because 
both depend on the duration of obstruction. By calculating the transition probability to dilatation 
and to renal impairment in this way, we actually introduce a form of memory into our model, 
making it a semi-Markov process rather than a Markov process. The method is also known as 
a Markov memory matrix (59). An alternative method would be to create a new state for every 
duration of obstruction, which would, however, increase the number of states to 126, making 
the model impracticaL 

VI. ASSUMPTIONS 

To make the problem tractable, we make the following simplifying assumptions: 

1. Pyonephrosis implies an infected obstructed renal collecting system. 

2. The pathophysiology of hydronephrosis in humans is similar to that in dogs. 

3. A kidney functioning at less than 20% of normal is assumed to be a remnant kidney. 

4. The probability oflosing renal function with immediate successful drainage is negligible. If 
intervention is postponed, the probability of functional loss increases with the duration of 
obstruction. If obstruction recurs following a drainage procedure, the probability of renal 
impairment depends on the period of time elapsed since the initial obstruction. 

5. If the stone passes spontaneously, or if the tract is successfully drained by means of an 
interventional procedure, obstruction and infection are relieved. 

6. If the stone neither passes spontaneously nor is removed, and the tract is not drained, 
obstruction and infection will eventually occur. 

7. The efficacy of ureteral stents in reducing mortality from urosepsis equals that of a percu
taneous nephrostomy tube. 

8. If the patient develops sepsis as a complication of a procedure, the drainage procedure helps 
resolve the sepsis with the same efficacy as for patients with sepsis prior to the procedure. 
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9. All false positive ultrasound results for the diagnosis obstruction will be false positive at 
presentation and, therefore, dilatation on ultrasound that develops during the time horizon of 
the analysis implies obstruction of the tract. 

10. Definitive treatment will be instituted within 7 weeks. 

VII. RESULTS 

1. The best strategies 

Using the baseline values in table 2, and folding back and averaging out for each of the examples, 
we calculate the following results. 

Case 1: For a 40 year old male presenting with a small stone in the lower ureter, clinical signs 
of pyonephrosis, dilatation on US but no echogenic material in the dilated tract, the best strategy 
is non-operative intervention, with either PCN or RUS (table 5). PCN is preferred over RUS by 
only 0.09 life years (0.3% of the outcome value). Either procedure is better than surgery by at 
least 2.5 years and better than medical management by at least 7.8 years. Postponing intervention 
until sepsis occurs yields 1.3 years less. If PCN is done initially but subsequently obstruction 
recurs, or if placement of the tube fails, RUS should be performed. 

Case 2: For a 65 year old male with urosepsis presumably due to an obstructing stone and an 
increased bleeding tendency, our model suggests that RUS should be performed (table 5). RUS 
is safer than PCN for this patient, because the risks of haemorrhage are greater for PCN than 
RUS. However, if RUS is not available, PCN should be performed in spite of the increased 
bleeding tendency. The difference in life expectancy for these two strategies is only 0.06 years 
(0.5% of the outcome). Both procedures are better than surgical management by at least 0.6 
years and better than medical management by at least 8 years. 

Case 3: Our model suggests that a 60 year old male with a staghom calculus in a solitary kidney, 
who presents with anuria, flank pain and urosepsis after ESWL, is best treated with PCN or 
RUS (table 5). The difference in life expectancy between these two strategies is 0.04 years (0.3% 
of the outcome). Surgical and medical management yield, respectively, 6.5 and 14 fewer life 
years. 

Case 4: A 40 year old man with a small stone in the lower ureter, renal colic and dilatation on 
US, is best managed medically (table 5). If pyonephrosis or sepsis occur, or ifthe stone has not 
passed after 15 days, intervention is indicated. However, the difference in expected utility with 
immediate drainage is only 0.06life years (0.2% of the outcome). Medical management without 
intervention yields 1.4 fewer life years and surgery yields 2 years less. Postponing drainage until 
signs of pyonephrosis occur yields 0.9 fewer years. 
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Table 5. Expected utility, that is life expectancy in years, of the most relevant strategies for the four case 
examples. For abbreviations of the strategies see table 1. 

CASE STRATEGY LIFE EXPECTANCY 

1: 40 year old male, PCN-RUS 32.44 
4 mm stone in the lower ureter, RUS-PCN 32.35 

clinically pyonephrosis, MED-sep-PCN 31.15 
dilated tract OPER 29.80 

MED 24.48 

2: 65 year old male, RUS-PCN 12.76 
flank pain, urosepsis, PCN-RUS 12.70 

increased bleeding tendency, OPER 12.09 
mildly dilated tract, MED 4.51 

3: 60 year old male, PCN-RUS 14.76 
staghom calculus, post ESWL, RUS-PCN 14.72 

anuria, flank pain, urosepsis, OPER 8.14 
solitary kidney MED 0.60 

4: 40 year old male, MED-time-PCN 32.60 
4 mm stone in the lower ureter, renal colic, PCN-RUS 32.54 

haematuria, MED-pyo-PCN 31.73 
dilated tract MED 31.18 

OPER 30.60 

A number of the values used in the analysis are uncertain. Sensitivity analysis is the process of 

calculating the expected utility of the strategies for a range of values of a variable to determine 
if altering the value affects the choice of optimal strategy. We analyzed the effect of different 

values of the probabilities using this method. 

2. Probability of pyonephrosis and obstruction at presentation 

Figure Sa presents the results of a one-way sensitivity analysis for the first case example for the 

probability of pyonephrosis at presentation, given obstruction. The x-axis represents the variable 

analyzed, ie. the probability of pyonephrosis, and the y-axis represents the expected utility 

expressed as life expectancy in years. Each line represents the expected utility for a particular 

strategy. As the probability of pyonephrosis increases, the expected utility of each strategy falls. 

In addition, the higher the probability of pyonephrosis, the larger the difference between an 
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Figure Sa. One-way sensitivity analysis forthe probability of pyonephrosis atpresentationin the presence 
of obstruction, for a 40 year old man with a small stone in the lower ureter, dilatation of the collecting 
system and clinical signs of pyonephrosis (case 1). For abbreviations of the strategies see table I. 

interventional strategy and medical management, thus increasing the benefit of early inter
vention. A patient with signs of pyonephrosis but no echogenic material visible in the collecting 
system on ultrasound, has a probability of pyonephrosis of 0.53 (table 2), indicating (figure 5a) 
intervention as preferred strategy. If, however, pyonephrosis is doubtful, with a probability of 
lower than 0.04, observing the patient for 15 days seems worthwhile, giving the stone a chance 
to pass spontaneously. 

Figure 5b presents the results of a one-way sensitivity analysis for the probability of obstruction 
for the fourth case. The probability of obstruction may be estimated based on clinical signs and 
symptoms, the duration of symptoms, and the result of an ultrasound examination. For example, 
a patient with a ureteral stone, renal colic, haematuria and dilatation on ultrasound has a prob

ability of obstruction of 0.95 (table 2), and therefore (figure 5b) the patient may be treated 
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Figure Sb. One-way sensitivity analysis for the probability of obstruction at presentation for a 40 year 
old man with a small stone in the lower ureter, with dilatation of the collecting system on ultrasound but 
without clinical signs of pyonephrosis (case 4). For abbreviations of the strategies see table 1. 

medically for 15 days; however, intervention is necessary if pyonephrosis or sepsis occur, or if 

the stone does not pass. If the probability of obstruction is below 0.08, the patient may be treated 
medically with intervention being necessary only if complications occur. 

Figure 5c presents a two-way sensitivity analysis for the probability of obstruction and of 
pyonephrosis. With a two-way sensitivity analysis two parameters are varied simultaneously. 
The graph defines areas where, depending on the combination of the probabilities, a strategy is 
optimal. If both the probability of obstruction and pyonephrosis are low (the left bottom corner 
ofthe graph marked MED-time-PCN) one should postpone intervention and observe the patient, 

to give the stone a chance to pass spontaneously. However, for higher probabilities (the area 
marked PCN-RUS), one should intervene immediately. 
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Figure Sc. Two-way sensitivity analysis for the probability of obstruction and of pyonephrosis at pre
sentation, for a 40 year old man with a small stone in the lower ureter. For abbreviations of the strategies 
see table 1. 

3. Ultrasound examination and dilatation of the collecting system 

In clinical practice the decision to intervene is often based on the presence of dilatation on 
ultrasound (US) examination. We analyzed this approach by including the strategies 1) if an 
ultrasound shows dilatation perform PCN, otherwise manage medically and 2) if an ultrasound 
shows dilatation perform PCN, otherwise manage medically and repeat the ultrasound peri
odically with subsequent PCN if dilatation occurs. Whether or not one should perform an 
ultrasound examination depends on the prior probability of obstruction (figure 6). Patients with 
a prior probability of obstruction lower than 0.02 should be managed medically, regardless of 
the ultrasound result. For prior probabilities above 0.02 an ultrasound should be done with a 
positive result dictating intervention, and a negative result medical management and observation 
with periodic ultrasounds. Above a prior probability of 0.58, drainage should be performed if 
the stone has not passed within 15 days, irrespective of the US result. If observation and repeating 
the ultrasound is impractical, the latter threshold shifts to 0.42. 
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Figure 6. One way sensitivity analysis for the prior probability of obstruction for the strategies 1) if 
ultrasound reveals dilatation perform PCN (USdil-PCN) 2) medical management with ultrasound 
examination every 5 days, if ultrasound reveals dilatation, then perform PCN (MED-USdil-PCN) 3) 
medical management (MED) and 4) medical management, PCN if pyonephrosis or sepsis occur or if the 
stone has not passed after 15 days (MED-time-PCN). 

Our model suggests that if pyonephrosis is likely, postponing PCN until dilatation develops, to 
increase the chance of successful placement of a nephrostomy tube, does not provide any benefit 

over immediate PCN. The probability of successfully placing a PCN tube in an undilated tract 
is only slightly lower than in a dilated tract (88% compared to 96%). Therefore, PCN may be 

attempted even though dilatation is not present. The slight decrease in successful placement in 

the absence of dilatation is outweighed by the risk of sepsis and renal failure. 
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4. Mortality due to sepsis and the probability of developing sepsis 
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Figure 7a. One-way sen
sitivity analysis for the 
probability of death if 
gram-negative sepsis were 
to occur, for a 40 year old 
man with a small stone in 
the lower ureter, dilatation 
of the collecting system and 
clinical signs of pyoneph
rosis (case 1). 

Figure 7b. One-way sen
sitivity analysis for the 
cumulative probability of 
sepsis during medical 
management, for a 40 year 
old man with a small stone 
in the lower ureter, dilata
tion of the collecting sys
tem and clinical signs of 
pyonephrosis (case 1). 
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If the clinical presentation suggests pyonephrosis (eg. case 1) and the mortality due to sepsis is 
greater than 0.004 (figure 7a), or the probability of developing sepsis is greater than 0.04 (figure 
7b), intervention provides a higher survivaL The ranges of published values, for both the 
mortality due to sepsis and the probability of developing sepsis, lie far above the calculated 
thresholds, implying that the decision is not sensitive to the precise value of these probabilities. 

5. Solitary kidney 

For patients with an obstructed infected solitary kidney, intervention is indicated to prevent 
renal failure from prolonged obstruction. For example, case 3 presents a patient with a solitary 
kidney, for whom intervention is better than an expectant approach. For cases 1 and 2, assuming 
they have a solitary kidney, intervention is also preferred to an expectant approach. Furthermore, 
the difference in life expectancy between intervention and medical management increases (10 
to 50%) if the patient has a solitary kidney as opposed to two kidneys. Renal function of a solitary 
obstructed kidney remains intact longer than that of one of a pair, presumably due to a com
pensatory mechanism. However, losing function of a solitary kidney has graver consequences. 
The loss of a solitary kidney results in renal failure and necessitates dialysis. Therefore, 
pyonephrosis in a solitary kidney calls for prompt intervention. However, our model suggests 
that patients with an obstructed non-infected solitary kidney may be managed medically, 
intervention being necessary should complications occur. 

6. Increased bleeding tendency and increased risk of PCN/RUS 

Urosepsis is frequently associated with an increased bleeding tendency. For patients with an 
increased bleeding tendency, RUS has a higher expected utility than PCN (table 6), because 
PCN is more likely to be complicated by haemorrhage which may require embolization of the 
renal artery_ If the odds of haemorrhage are increased by a factor offive, the difference in survival 
betweenPCN andRUS is approximately0.2 years (that is 0.5% of the outcome value). In general, 
if a patient has an increased bleeding tendency, RUS should be attempted first, if this fails PCN 
may be performed. The potential benefit of PCN outweighs the risks of medical or surgical 
management, even with an increased risk of haemorrhage. 
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Table 6. Results of the analysis depending on whether there is dilatation and signs of pyonephrosis or 
sepsis for a 40 year old male with a stone in the lower ureter and an increased bleeding diathesis. For 
the abbreviations of the strategies see table 1. 

SIGNS and SYMPTOMS STRATEGY LIFE EXPECf ANCY 

colic, haematuria, MED-time-RUS 32.47 
no dilatation on US, MED-pyo-RUS 32.44 

no fever RUS-PCN 32.43 
PCN-RUS 32.24 

colic, haematuria, MED-time-RUS 32.44 
dilatation on US, RUS-PCN 32.42 

no fever PCN-RUS 32.24 
MED-pyo-RUS 31.22 

clinically pyonephrosis, dilatation on US, RUS-PCN 32.33 
no echo genic material PCN-RUS 32.16 

OPER 29.80 
MED 21.18 

urosepsis RUS-PCN 30.35 
PCN-RUS 30.19 

OPER 28.00 
MED 11.07 

In the model we linked the risk of death from PCN to the risk of haemorrhage so that increasing 

the odds of death increases the odds of haemorrhage by the same proportion. An increase in the 
mortality of PCN is most likely to be due to an increase in the risk of haemorrhage. By linking 
these two probabilities we are able to perform a sensitivity analysis on both risks simultaneously 
by varying the probability of death. The threshold value of PCN mortality above which RUS is 

preferred is 0.005. Similarly, we linked the risk of death from RUS to the risk of injury and 
performed a sensitivity analysis on the mortality of RUS. The threshold value of RUS mortality 

above which PCN is preferred is 0.002. Both PCN and RUS are low risk procedures and the 
benefit of drainage clearly outweighs the low risk of these procedures when faced with pyo
nephrosis. Figure 8 presents a two-way sensitivity analysis showing that the procedure related 
mortality must be quite high before medical management is preferred. 
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Figure 8. Two-way sensitivity analysis for the probability of death from PCN and the probability of 
death from RUS, for a40 year old man with a small stone in the lower ureter, dilatation of the collecting 
system and clinical signs of pyonephrosis (case 1). 

7. Size and position of the stone 

Table 7 summarizes the results of the analysis for different stone sizes and positions, for patients 

with a normal bleeding tendency. Patients with or without dilatation, patients with clinical signs 

of pyonephrosis and patients with sepsis are considered. Patients without dilatation of the tract 
and without signs of pyonephrosis, should be managed medically, a drainage procedure being 
indicated should signs of pyonephrosis or sepsis develop, unless the stone is large and in the 
upper ureter. Large stones in the upper ureter virtually never pass spontaneously and, thus, 
intervention is indicated even in the absence of dilatation. Dilatation on ultrasound, caused by 
a large stone in the upper or lower ureter calls for intervention. However, patients with dilatation 
caused by a small or medium sized stone in the upper or lower ureter, may be observed for 15 

days, giving the stone a chance to pass spontaneously. Obstruction with pyonephrosis or sepsis, 
whatever the size or position of the stone, necessitates intervention to prevent death from sepsis 
and prevent functional impairment of the affected kidney. 
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Table 7. Results of the analysis depending on position and size of the stone, whether there is dilatation, 
clinical signs of pyonephrosis or sepsis for patients with a normal bleeding diathesis. For the abbreviations 
of the strategies see table 1. 

position and 
size of the stone 

upper ureter 
<4mm 
4-6mm 
>6mm 

lower ureter 
<4mm 
4-6mm 
>6mm 

1 case 1 
3 case 3 
4 case 4 

colic, 
haematuria, 
no fever, 

no dilatation 

MED-time-PCN 
MED-time-PCN 

PCN-RUS 

MED-time-PC~ 
MED-time-PCN 
MED-time-PCN 

colic, 
haematuria, 

no fever, 
dilatation, 

no echogenic 
material 

MED-time-PCN 
MED-time-PCN 

PCN-RUS 

MED-time-PCN 
MED-time-PCN 

PCN-RUS 

8. Definitive treatment and timing of intervention 

clinically urosepsis3 

pyonephrosis, 
dilatation, 

no echogenic 
material 

PCN-RUS PCN-RUS 
PCN-RUS PCN-RUS 
PCN-RUS PCN-RUS 

PCN-RUS1 PCN-RUS 
PCN-RUS PCN-RUS 
PCN-RUS PCN-RUS 

As explained, the models for a temporary drainage procedure and for definitive treatment are 

very similar. Modifying the model to examine definitive treatment and analyzing the problem 

for case 4 at the time of onset of symptoms, we find that the patient should be treated medically. 
Depending on the size and position of the stone, patients may be treated in various ways (table 
8). For a given size and position of the stone, the reported strategies differ little in expected 

utility. However, the results depend on the procedure related mortality. An extensive sensitivity 

analysis of the relevant probabilities of definitive treatment is beyond the scope of this article. 
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Table 8. Results of the analysis, examining definitive treatment, depending on position and size of the 
stone and whether ultrasound reveals dilatation. The treatment options are: medical management, 
ultrasound every 15 days, if dilatation occurs treat (MED-dil-TREAT); medical management, if the stone 
has not passed after 15 days treat (MED-TREAT); extracorporeal shockwave lithotripsy (ESWL); 
percutaneous nephrolithotomy (PCNL); ureteroscopic stone removal (URS) or ureterolithotomy (LITH). 
Treatment strategies consist of an initial treatment and an alternative, if the initial fails. The strategies 
are tabulated in order of decreasing expected utility. Only the strategies with an expected utility close 
to the best strategy are reported, that is with a difference in life expectancy ofless than one week. 

position and size no dilatation on ultrasound dilatation on ultrasound 
of the stone 

UPPER URETER 
<4mm MED-dil-ESWL MED-LITH 

MED-ESWL 
MED-PCNL 

4-6mm MED-dil-ESWL ESWL-LITH 
ESWL-PCNL 
PCNL-LITH 
MED-LITH 
MED-ESWL 
MED-PCNL 

>6mm MED-dil-ESWL ESWL-LITH 
ESWL-LITH ESWL-PCNL 

PCNL-LITH 

LOWER URETER 
<4mm MED-dil-ESWL 4MED-LITH 

MED-ESWL 
4-6mm MED-dil-ESWL MED-LITH 

MED-ESWL 
ESWL-LITH 

>6mm MED-dil-ESWL ESWL-LITH 
ESWL-URS 

However, how long one may postpone intervention does relate to the issue of this paper. Figure 

9 shows a sensitivity analysis for the time one postpones intervention for a 40 year old man with 

colic, haematuria and dilatation on ultrasound. The horizontal axis represents the number of 

days intervention is postponed. The curves plot life expectancy as a function of the number of 
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33 

time treatment is postponed (days) 

Figure 9. Sensitivity analysis for the time one postpones treatment for a patient with dilatation of the 
collecting system, without clinical signs of pyonephrosis, for small (<4 mm), medium (4-6 mm) and 
large (>6 mm) stones in the upper (Upp) and lower (Low) ureter. 

days definitive treatment is postponed. The curves shown are for small, medium and large stones 

in the lower and upper ureter. The length of time one may wait to allow for spontaneous passage 
varies from 15 days for small stones in the lower ureter to 5 days for large stones in the upper 
ureter. If the stone has not passed within 5 to 15 days, the likelihood that it will pass spontaneously 
is very small and the probability of complications increases, especially if the stone is large and 

in the upper ureter. The strategy of medical management followed by a drainage procedure 
follows a similar curve as for medical management followed by definitive treatment, except for 
a slightly lower expected utility. The reason for a lower expected utility is that a proportion of 

patients will not pass the stone spontaneously after drainage and will still have to undergo another 
procedure to remove the stone, implying that the drainage procedure incurs risk without the 
benefit of definitive treatment. 
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Vlll. DISCUSSION 

Using a decision analytic model, we have examined whether to intervene or adopt an expectant 
approach in patients with acute urinary tract obstruction. Many of the relevant probabilities, 
such as the probability ofloss of renal function, the probability of dilatation and the probability 
that the stone will pass spontaneously are time-dependent, either related to the duration of 
obstruction or to the time since onset of symptoms. Because of the time dependency of the 
probabilities, we used a Markov process. Markov processes are conventionally used to model 
the prognosis of patients with chronic diseases. Clearly, the problem addressed in this paper is 
acute rather than chronic. Even so, we found using a Markov process to model part of the problem 
convenient for this analysis, because it allows for modelling of a process with repetitive risks 
that evolve over time. 

Our model is limited by several difficulties inherent in deriving probability estimates from the 
literature. The medical literature often reports success and complication rates of new techniques 
as overall experience or experience after the learning phase has passed. Which estimate then is 
the appropriate one to use? The overall experience is less optimistic, but probably reflects the 
average hospital more reliably. After all, the published reports are usually from clinics with 
more experience in the technique than that of the average hospitaL Another problem with finding 
accurate data is that entities are often defined differently by the different authors. Some define 
pyonephrosis, for example, as an infected obstructed renal collecting system; others only apply 
this term to grossly affected and non-functioning kidneys. Moreover, if authors do not clearly 
state the definitions used, readers cannot be certain which patient groups their results are 
applicable to. The denominator problem is a similar issue. Studies often do not report explicitly 
which cohort the denominator refers to when calculating percentages. This can be misleading 
and lead to inappropriate relative frequencies. 

A related problem is that of double counting. For example, a death may be counted as a PCN 
death, and at the same time as an operative death. Another example of double counting occurs 
when authors use the same cases for multiple publications. 

We based our estimates of the effect of obstruction duration to dilatation of the urinary tract on 
animal experiments. We assumed that the pathophysiology of hydronephrosis in dogs is similar 
to that in humans. Is this assumption valid? And are the derived estimates appropriate? Because 
clinical judgement is partly based on knowledge from these animal experiments, and because 
it is the closest approximation to human physiology that is available, we used data based on 
these experiments. 

Apart from the limitations of our model inherent in deriving probability estimates from the 
literature, our model is restricted to the problem of acute urinary tract obstruction caused by 
urolithiasis. We have chosen not to analyze in depth the associated clinical decision concerning 
the definitive treatment of the ureteral stone. We briefly discussed the various treatment options 
for patients with urolithiasis, and examined the timing of definitive treatment in the case of 
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urinary tract obstruction without infection. Our preliminary analysis suggests that the various 
definitive treatment options differ little in expected utility. However, an extensive sensitivity 
analysis of the relevant probabilities is beyond the scope of this article. Furthermore, a number 
of other issues should be included in an analysis of treatment for urolithiasis, such as pain, 
quality of life, financial costs of treatment and days lost due to morbidity. Thus, the analysis of 
treatment of ureteral stones could be the subject of a future paper. 

Another clinical decision problem related to the one addressed is that of urinary tract obstruction 
caused by malignant disease. The employed drainage procedures are similar, except that an 
internal stent is preferred in such cases, which can be placed either via an ante grade or retrograde 
approach. Long-term complications, such as encrustation and obstruction of the stent, play an 
important role in this decision problem. However, the major issue is the quality of life for the 
short period of time that remains for the patient, and the preference of the patient to die of 
uraemia versus another direct cause of death. 

In spite of the mentioned limitations our model suggests that the difference in benefits and risks 
between PCN and RUS are small. Both are low risk procedures and both are effective. Thus, 
the main point made in our analysis concerns not which of these two procedures should be 
performed, but rather whether intervention is indicated and when it should be performed. 
Whether intervention is indicated depends mainly on the probability of obstruction and pyo
nephrosis at presentation. Our model suggests that, faced with evidence of acute urinary tract 
obstruction, any sign of pyonephrosis is an indication for prompt drainage. If signs of obstruction 
without pyonephrosis exist, observing the patient for 5 to 15 days seems worthwhile to give the 
stone a chance to pass spontaneously. If the probability of obstruction is above 0.08 and no 
passage occurs within 5 to 15 days, our model suggests intervention at that time. 

In a small fraction of cases obstruction of the urinary tract exists without dilatation of the col
lecting system, and the diagnosis of obstruction may be missed. Furthermore, many clinicians 
may wait until dilatation develops before performing PCN, because dilatation improves the 
likelihood of success. The literature, however, suggests that the probability of successfully 
placing a PCN tube in an undilated tract is only slightly lower than that in a dilated tract. Our 
model suggests that an undilated tract should not be a reason for postponing PCN if pyonephrosis 
is likely because the high risk of sepsis and renal impairment outweighs the small decrease in 
likelihood of a successfully placed PCN tube. 

Urosepsis is frequently associated with an increased bleeding tendency, either due to throm
bocytopenia or due to a derangement of coagulation factors. If a patient with signs of pyo
nephrosis has an increased bleeding tendency, RUS is preferred over PCN because haemorrhage 
is one of the major complications ofPCN which may lead to death or loss of the kidney. However, 
ifRUS fails, orifRUS is unavailable, PCN should be performed because, in spite of the increased 
bleeding tendency, the risk of PCN is smaller than the risks of medical or surgical management. 
Thus, an increased bleeding tendency constitutes a relative rather than an absolute, contrain
dication for PCN. 
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Although intuitively a solitary kidney may seem a contraindication to performing PCN, our 
model suggests that a solitary obstructed infected kidney should be drained mainly because if 
the affected kidney loses its function, the patient will develop renal failure and will require 
dialysis. 

In conclusion, acute urinary tract obstruction with pyonephrosis is a remediable cause of uro
sepsis and renal failure. Percutaneous nephrostomy and retrograde ureteral stenting are both 
low risk drainage procedures, effective in urinary tract obstruction. If obstruction and 
pyonephrosis are likely, percutaneous nephrostomy should not be postponed because of a 
non-dilated tract: the probability of successful placement of a nephrostomy tube in a non-dilated 
tract is only slightly lower compared to a dilated tract. In patients with an increased bleeding 
tendency, retrograde ureteral stenting is preferred to percutaneous nephrostomy. However, if 
placement of the stent fails, or if stenting is unavailable, percutaneous nephrostomy may be 
attempted in spite of the increased risk. In a patient with pyonephrosis and a solitary functioning 
kidney, intervention is preferred over medical management because the risk of sepsis and the 
risk of loss of renal function with medical management exceeds the risk of intervention. In the 
presence of urinary tract obstruction without signs of pyonephrosis, postponing intervention 
between 5 to 15 days is appropriate, giving the stone a chance to pass spontaneously. 
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Receiver operating characteristic (ROC) methodology concerns the evaluation of diagnostic test 
performance and, thus, is important in diagnostic radiology. During the last 1 Oyears an increasing 
interest has been shown by radiologists to use ROC analysis. In section I of this chapter the 
principle of Bayesian thinking is discussed in terms of likelihood ratios. A new term is defined, 
namely the "interval likelihood ratio", because the term "likelihood ratio" used in the literature 
refers to two different entities. In sections II to VII the basic concepts of ROC methodology are 
explained. The remaining part of the chapter deals with two selected methodological issues. 
Verification bias is discussed at length because it plays an important role in chapters VII and 
VIII. The correction method for verification bias was introduced by Begg et.al. (2,10), however, 
I introduce an equivalent but easier method (section VIII.2 and VIII.3). Moreover, the newly 
introduced method facilitates the correction for verification bias for a fully stratified data set in 
spite of small cell frequencies, by using a logistic regression analysis to model the probability 
of verification, which is utilized in the ROC analysis in chapter VIII. Furthermore, I derive an 
equation to show how the corrected and apparent rates relate, illustrating how verification bias 
affects the calculated rates depending on the ratio of verification of positive and negative test 
results. 
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I. Bayesian thinking and likelihood ratios 

In the initial phase of the diagnostic process a clinician integrates information from the history 
and physical examination to list a differential diagnosis, listing the most probable diagnosis up 
front. Further workup is a sequential process of adjusting the existing clinical impression with 
the new data from the performed diagnostic tests. Each piece of new information will be con
sidered in the light of two questions: 

1) How often have I seen this finding in patients who had the disease? 
2) How often have I seen this finding in patients who did not have the disease? 

If the answers to these questions are more or less equal, then the new finding is useless. If the 
finding is seen often in patients who have the disease and seldom in patients without the disease, 
then the new finding is an argument in favor of the diagnosis. Vice versa, if the finding is seldom 
seen in patients who have the disease and often in patients without the disease, the new finding 
is an argument against the diagnosis. The existing clinical impression is thus adjusted using the 
information from the new finding. 

The above train of thought can be summarized in probability notation in the form of Bayes rule. 
The initial, or existing, impression is expressed as the probability of disease P(D+), or as the 
odds favoring disease, with 

(Eq.1) 

The probability of the new finding T in patients with the disease is, in probability notation, 
P(TID+), also known as the "true positive rate", and in those without the disease P(TID.), the 
"false positive rate". (Note that the "true and false positive rates" are actually observed relative 
frequencies, used to estimate probabilities.) The likelihood ratio LR is: 

LR = P(T ID+) 
P(T I D-) 

(Eq.2) 

A likelihood ratio LR = 1 implies that the new finding is seen equally often in patients with and 
without the disease. If the LR > 1 the new finding argues in favor of the diagnosis. If the LR is 
infmity the new finding is pathognomic for the disease. If the LR < 1 the new finding argues 
against the diagnosis and if the LR = 0 the new finding excludes the disease. Adjusting the 
existing clinical impression with the information from the new finding is equivalent to multi
plying the odds with the LR: 

adjusted odds= odds xLR (Eq .3) 
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Thus far we have discussed a dichotomous finding, ie. the finding is either present or absent. 
Analogously, a test result may be dichotomous, ie. the test result is either positive or negative. 
However, often a test result is on a scale, which can be either ordinal or continuous. A radiologist 
often intuitively expresses his/her confidence in the diagnosis on an ordinal scale. Results of 
biochemical tests are usually given on a continuous scale, which may be reduced to an ordinal 
scale by categorizing the test variable. If the test variable is ordinal or continuous, we have to 
consider many test results Ri , where i can be any value from 1 to the number of categories. A 
test result on an ordinal scale is simply a generalization of a dichotomous test result. A test result 
on a continuous scale can be considered a result on an ordinal scale with an infinite number of 
very narrow categories. 

The term "likelihood ratio" has been used in the literature to mean two different quantities. We 
propose making a distinction between the "interval likelihood ratio" (interval LR) and the 
"likelihood ratio" (LR). In probability notation, the interval likelihood ratio (interval LRi) of the 
test result Ri is: 

(Eq.4) 

where P(RdD+) is the probability of the test result Ri given disease, and P(RiiD.) is the probability 

of the test result Ri given no disease. 

The likelihood ratio LRi is the ratio of the true positive rate and false positive rate at the cutoff 
value i. LRi expressed in probability notation is: 

i 

I, P(Rk I D+) 
LR. =-k;_J ___ _ 

' i 
(Eq.5) 

I, P(Rk I D-) 
k;J 

which is equivalent to equation 2. 

The distinction between the likelihood ratio and interval likelihood ratio is important in ROC 
methodology, as will become apparent in this chapter. 
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II. What is an ROC curve? 
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Figure 1. An ROC curve, the likelihood ratio (LR) and interval LR for an ordinal test result. 

An receiver operating characteristic (ROC) curve is a plot of the true and false positive rates, 
that is, P(T'ID+) is plotted as function of P(T'ID"), for different cutoff values of the test result 
(8, 11, 13, 16,22). Each pair of {P(T'!D+),P(T'!D.)} is an operating point of the ROC curve. In the 
ROC plot, the likelihood ratio (LR) is the ratio of the values of the coordinates. The interval 
likelihood ratio (interval LR) is the marginal true positive rate divided by the marginal false 
positive rate between two adjacent points on the ROC curve (figure 1). The closer the operating 
points on the ROC curve are, the smoother the curve and the closer the interval LR becomes to 
the slope of the curve. For a continuous test variable the interval likelihood ratio is equal to the 
slope of the ROC curve at any particular operating point (figure 2). Going from (0,0) to (1,1) 
the interval LR and thus the slope of the ROC curve, usually decreases monotonically, that is, 
for increasing P(T'!D+), the marginal increase of P(T'!D+), compared to the marginal increase 
of P(T'!D-), diminishes. 
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Figure 2. An ROC curve, the likelihood ratio (l..R) and interval LR for a continuous test result. 

m. Sensitivity, specificity and ROC curves 

In describing the performance of diagnostic test systems various indices are in use (16). Sen
sitivity and specificity are indices well known in radiological literature. Using a 2 x 2 table (table 
1) the terms are easily understood. Sensitivity is the probability that the test result is positive 
conditional on the fact that the patient has the disease (also known as the true positive rate) 
(table 1b). Specificity is the probability that the test is negative conditional on the fact that the 
patient does not have the disease (also known as the true negative rate) (table 1b). The false 
positive rate equals one minus the specificity (table 1b). 

Sensitivity and specificity, and thus the true and false positive rates, depend not only on the 
capacity of the test to distinguish diseased from non-diseased, but also on the decision criterion 
chosen by the observer. In other words, the imaging process itself determines part of overall 
test performance whereas the observer of the image (apart from his/her ability to do the task at 
hand) has to decide whether to "label" the patient as diseased or not (16). The decision to label 
a patient as diseased depends not only on seeing signs of the disease on the image, but also on 
the consequences of making the particular diagnosis. On average the expected benefits of making 
the diagnosis, rightly or wrongly, have to outweigh the expected costs. In general, if the disease 
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Table la. 2 x 2 table of true and false positive and true and false negative frequencies in the 
evaluation of a diagnostic test. 

TEST RESULT 

FINAL test test total 
DIAGNOSIS positive negative 

disease n.P(T\D} n.P(T,D) n.P(D} 

no disease n.P(Tt,D·) n.P(T,D") n.P(D") 

total n.P(T'") n.P(T) n 

Table lb. Sensitivity and specificity, true and false positive rates and predictive values. 

true positive rate= sensitivity P(T'"ID+) n.P(T'",D+)/n.P(D+) 

false positive rate = !-specificity P(T'"ID") n.P(T'",D.)/n.P(D.) 

specificity P(TID") n.P(T ,D-)/n.P(D") 

predictive value positive 
given a positive test result P(D+IT'") n.P(r,D+)/n.P(T'") 

predictive value negative 
given a negative test result P(D.IT) n.P(T ,D-)/n.P(T) 

is common, if it is associated with a bad outcome when the diagnosis is missed, and if it has an 
affordable low risk treatment, the observer will use lenient criteria to make the diagnosis. The 
result will be many true positive diagnoses (high sensitivity) but also many false positives (low 
specificity). Vice versa, if the disease is sporadic, has a good prognosis if untreated, and the 
available treatment has a high risk, the observer will use strict criteria resulting in a low true 
positive rate and low false positive rate. Thus, with an increase in true positive rate, the false 
positive rate also increases. This phenomenon is analogous to shifting a cutoff value of a test 
variable, of for example a biochemical test, for which the normal and abnormal populations 
have overlapping distributions (figure 3). Although in radiology we usually do not have a numeric 
variable, we can conceive of the observer's subjective judgement of the likelihood of disease 
as having a continuous scale of measurement, and so the radiologist can express his/her con
fidence in the diagnosis on a rating scale. 
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threshold or 
cutoff value 

normal 

test variable 

Figure 3. Overlapping distributions of normal and abnormal test results. When the threshold, or cutoff 
value, is shifted to higher values, both true and false positive rates increase. 

Receiver operating characteristic (ROC) methodology provides an alternative method to sen
sitivity and specificity in describing a test system's performance, independent of the ultimately 
chosen confidence threshold (16). A ROC curve is a plot of true positive rates as a function of 
the corresponding false positive rates (figure 4). The ROC curve plots pairs of true positive and 
false positive rates at different confidence thresholds, thereby evaluating overall system per
formance, unaffected by the decision criterion. 

The points (0,0) and (1, 1) are inherent to all ROC curves, simply representing the two situations 
that all patients are labelled non-diseased and diseased, respectively. Points on the curve in the 
lower left corner (figure 4) represent situations in which strict criteria are used to make the 
diagnosis: there will be few false positives, but also few true positives. Points on the curve in 
the upper right hand corner represent situations in which lenient criteria are used to make the 
diagnosis: many true positive diagnoses are made but also many false positives. 

Curves that go up steeply from (0,0) and reach near (0,1) describe test systems with good dis
criminating power. Curves close to the diagonal have little or no discriminating power (figure 
4). The area under the ROC curve gives some indication of how good the test performance is, 
independent of the chosen operating point on the curve. An area of 1 represents the ideal, while 
an area of 0.5 indicates a test with no discriminating power. 
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Figure 4. An ROC curve (solid line). The dashed diagonal represents the ROC curve of a test with no 
discriminating power. 

Receiver operating characteristic analysis (in the past also known as relative operating char
acteristic analysis) was developed in signal detection theory (7,8,11,22). The technique is also 
used in psychology, polygraph lie detection and weather forecasting. In the last 10 years the 
technique has increasingly been applied to medical imaging (16). 

IV. Obtaining data for an ROC analysis 

If the diagnostic test result is a value, such as with biochemical tests, these values are used to 
determine if a test is positive or negative for any particular cutoff point. With diagnostic imaging 
this approach is usually not possible, because no numerical value indicating the presence or 
absence of disease is produced. However, the reader of the image can (and in the clinical routine 
usually does) express his/her confidence in the diagnosis. 
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Table2. The true and false positives for two of the four thresholds: a) for the threshold between equivocal 
and probably negative and b) for the threshold between equivocal and probably positive, for an hypo
thetical example. 

a) 

FINAL positive 

I 
probably 

I 
equi- probably 

I 
negative 

DIAGNOSIS positive vocal negative 

positive 6 24 4 6 2 

true positives false negatives 

negative 8 53 79 115 361 

false positives true negatives 

b) 

FINAL positive 

I 
probably equi-

I 
probably 

I 
negative 

DIAGNOSIS positive vocal negative 

positive 6 24 4 6 2 

true positives false negatives 

negative 8 53 79 115 361 

false positives true negatives 

One method of obtaining points on the ROC curve of an imaging test is with the "yes-no method": 

this would imply presenting the same set of images to the observer several times, in which the 

observer would be requested to choose a different confidence threshold each time the set of 

images is read (16). Clearly, this is not a very efficient method and many radiologists will soon 
lose interest in the research project. 

A more convenient method is the "rating method" (16). Every time an observer reads an image, 

he marks his confidence in the diagnosis on a rating scale. For example, a scale often used is: 

1/ definitively positive 
2/ probably positive 

3/ equivocal 

4/ probably negative 

5/ definitively negative 
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Dividing the scale into five to seven categories is usually enough and more categories will not 
give more information (19), provided that the results are more or less evenly spread over the 
categories. (The additional categories on a seven category scale could, for example, be "very 
probably positive" and "very probably negative".) 

The true and false positive rates are subsequently calculated by shifting the threshold for the 
diagnosis (table 2), which is analogous to shifting the cutoff value of a test variable as shown 
in figure 3. Each possible threshold defines a combination of false and true positive rates, or 
equivalently, of sensitivity and specificity. 

V. ROC curve models and indices 

The area under the ROC curve, and the standard error of the area, are the customarily used 
measures to describe overall test performance. The area under the ROC curve is equivalent to 
the probability that a randomly chosen pair of normal and abnormal images will be correctly 
diagnosed, in other words, that they will be correctly ranked on the confidence scale ( 13 ). Various 
models of ROC curves and the related indices exist (8). These can be divided into two types: 
the nonparametric methods and the parametric methods. 

1. Nonparametric estimates: the Mann-Whitney method 

The most convenient way of calculating the area under the ROC curve is by connecting the 
calculated points and adding the areas of the trapezoids underneath each part of the curve. This 
is a nonparametric method, that is, no assumptions are made as to the underlying distributions 
of test results. The method is equivalent to the Mann-Whitney-Wilcoxon U statistic (1 ). The U 
statistic is normally used to test whether the value of a quantitative variable is generally larger 
in one population compared to another population. Its value in this context is that in addition to 
providing a formula for calculating the area, we can also easily determine its standard error 
according to the Hanley-McNeil algorithm (13). The Mann-Whitney method is adequate pro
vided enough data points are present and the points are spread along the curve (5). The area 
under the ROC curve is slightly underestimated with this method, but if comparing tests is the 
major issue, the underestimation of the area is of little concern. 

2. Parametric estimates: ROC curves based on underlying distributions 

Parametric methods are based on the assumption that the test results conform to some well 
defined underlying distribution. The most commonly used parametric method is the one 
introduced by Dorfman and Alf (7), which assumes that the underlying distributions of the test 
results are Gaussian, or normal. Although the distributions of test results are often not Gaussian, 
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it has recently been shown that the binormal ROC model gives accurate results for many non

Gaussian distributions (14). Other underlying distributions include chi-squared, lognormal and 
the negative exponential (8,9). 

When using the binormal ROC model the basic procedure is to convert the true and false positive 

rates to their corresponding normal deviate values. The ROC curve plotted on binormal deviate 
axes, is a straight line (21,22). A maximum likelihood estimation algorithm is conventionally 
used to calculate the slope and intercept of the line (7). However, in many circumstances a 
simpler, non-iterative least squares regression will produce an adequate fit. This is especially 
useful since in a number of situations the maximum likelihood estimation procedure will fail to 

converge (15). 

VI. Comparing ROC curves 

In comparing the area under two ROC curves a two-sided paired t-test is used. If the test results 
were derived from the same set of patients, one should take into account the correlation between 
test results (12). The z statistic is calculated using the formula: 

A1 -A2 
z = ----r===::==='=::====""=== 

,j SEl + SE'J- 2r SE,SE2 

where A1 and A2 are the areas under the ROC curves of the two tests, SE1 and SEz are the standard 
errors of the areas, and r is the correlation coefficient as found in table I of reference 12, a 

coefficient representing the correlation between the areas under two ROC curves derived from 
the same cases. r is based on the average area of the two ROC curves and the average of r Nand 
rn, the Kendall tau (for ordinal scales) or Pearson product moment correlation (for continuous 

scales) between the two test results, calculated separately for non-diseased (r N) and diseased (r n) 
patients. 

VII. The optimal operating point 

The optimal operating point is the point on the ROC curve which we choose as working point, 

taking into account the utility of true and false positive, and true and false negative outcomes. 
The utility structure should consist of costs, risks and benefits. 

The optimal operating point is calculated as follows (20). If the utilities of the true and false 
positive outcomes are U(r,D+) and U(r,D·), and the utilities of the true and false negative 

outcomes are U(T,D.) and U(T,D+), then the overall utility U of performing the test is (figure 

5): 
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u =P(D+). [P(T+ 1 D). ucr+,D)+ (1-P(T+ ID+)). ucr,D)] 

+(1-P(D+)). [P(T+ I D-). ucr+,Dl+ (1-P(T+ 1 D-))- ucr,D-)1 

where 
P(D+) is the prior probability of the disease 
P(T'"ID+) is the true positive rate and 
P(T'"ID.) is the false positive rate 

TESTPOS 

DISEASE P(T+ID+) 

P(D+) TEST NEG 

P(T·JD+) 

TESTPOS 

NO DISEASE P(T+JD-) 

P(D-) TEST NEG 

P(T-JD-) 

I U(Tt,D+) I I 

I U(T-,D+) I I 

I 
I I 

U(Tt,D-) 

I 
J l U(T-,D-) 

Figure 5. Calculating the optimal operating point: the tree structure of performing a test 

The optimal operating point is the point (P(T'"ID-),P(T'"ID+)) such that the utility of the tree is 

maximized. In other words, we wish to maximize U with respect to both P(T'"ID+) and P(T'"ID"). 
This implies setting the first derivative ofU, with respect to P(T'"ID+) and P(T'"ID.), to zero: 

su 
0 

su 
0 and 

oP(r+ 1 D+) oPcr+ 1 D-) 

Taking the first derivative ofU with respect to P(T'"ID+) we find: 

su 

( 
8P(r+ I D-) oP(T+ I D-)J = P(D) · (U(T+,D)- U(T-,D)) + (1- P(D)) · U(T+,Dl· U(T-,Dl· ----'-----'----'-
oP(r+ I D) oP(r+ I D+) 

=P(D+) · (U(T+,D+)- U(r,D+)) + (1-P(D+)) · (U(T+,D-)- U(r,D-)) · :~~~:: ~:~ 

Setting 



we derive 

8P(T+JD~ 

8P(r+jD-) 

'bU 
----=0 
'bP(r+ I D+) 
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1-P(D~ U(r,D-)-U(T+,D-) 

P(D~ U(r+,D~-U(r,D~ 

Note that taking the first derivative ofU with respect to P('I*ID-) gives exactly the same result 

As explained in sections Land IL, ()p (T+ I D+)!'bP (T+ I D-) is the slope of the ROC curve, which 

equals the interval likelihood ratio_ Using the above equation, we calculate the slope, and thus 
the interval likelihood ratio, at the optimal operating point, from which follows the value, or 
category, of the test result that should be used to maximize the utility of the test_ 

VID. Workup bias or verification bias 

Workup bias or verification bias occurs when only a subset of all tested subjects are selected 
for further workup and verification of the test result (4,18)_ Often the test result, possibly in 
combination with other test results and clinical features, influence the decision to do a workup 
or not and thus the test result will in part determine the chance that the diagnosis will be verified 
or not Biased selection for verification can have an effect on the calculated test characteristics 
if we simply ignore the unverified cases_ If we assume that the decision to verify the diagnosis 
depends only on the test results and clinical information, we can calculate unbiased estimates 
of the test parameters (2, 1 0)_ First, the basic assumption is discussed in more detaiL In paragraph 
2 an example is presented_ 

1. The basic assumption and an equivalent assumption 

The basic assumption for the correction of verification bias, as introduced by Begg and Greenes 
(2), is: 

In words: the probability of verification is conditionally independent of true disease status D_ 
The decision to verify depends only on the test result Ri- The influence of true disease status on 
selection for verification is only through the effect the disease has on the test result_ 
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In practice, selection for verification will be biased not only by the test result but also by clinical 
features, such as signs, symptoms, age or sex. (The term "test" should be considered in a broad 
sense. Clinical evaluation including, signs and symptoms, could also be called a "test".) To 
correct for verification bias produced by multiple factors, eg. test result R; and clinical infor
mation Xj, the basic assumption for the correction is: 

In words: the probability of verification does not depend on the true disease status D, but only 
on the test result R; and clinical information Xj. 

Although not immediately obvious, the above assumption is equivalent to saying that the pre
dictive values are unaffected by verification bias (2). In probability notation this can be proven 
as follows. Assuming 

then 

P(V\R;,X) P(V+,R;,Xj,D) 

P(R;,Xj) P(R;,Xj,D) 

P(D,R;,Xj) P(D,V+,R;,Xj) 

P(R;,Xj) P(V+,R;,Xj) 

and therefore 

which means that the probability of disease, given test result R; and clinical information Xj, does 
not depend on whether the diagnosis is verified or not. 

2. An example: ultrasound done for appendiceal disease. 

Consider the following example: Puylaert et.al. reported the results of a study on ultrasound 
(US) examination in 111 patients in the diagnosis of possible acute appendicitis, perforating 
appendicitis or appendiceal mass (17). Although the authors did not correct the data for veri
fication bias, they did report the frequency of unverified ultrasound results. In 83 cases a definite 
diagnosis was made at operation or laparoscopy or during further radiological and clinical 
workup. In 28 cases no definite diagnosis could be made. The results are given in table 3. The 
authors of the article have distinguished between unequivocal and dubious results, and a non
visualized appendix. Their reported sensitivity of 0.75 and specificity of 1 is based on including 
among the positive test results only those with unequivocal signs on US, and including among 
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the negative results those with a dubious US or a non-visualized appendix. For the sake of the 

argument we will consider both unequivocal and dubious test results as positive test results, and 

a non-visualized appendix as a negative test result. 

Table 3. Results of a study on ultrasound for appendiceal disease, a) original data and b) data as used 
for illustrative purposes. 

a) 

us us appendix total 
unequivocal dubious not 

visualized 

appendiceal 
disease 39 3 10 52 

no appendiceal 
disease 0 3 28 31 

unverified 4 1 23 28 

total 43 7 61 Ill 

b) 

FINAL us us total 
DIAGNOSIS positive negative 

appendiceal dis-
ease 42 10 52 

no appendiceal 
disease 3 28 31 

total verified 45 38 83 

unverified 5 23 28 

total 50 61 Ill 

Considering the verified cases only, we calculate the true positive rate (sensitivity), the false 
positive rate (!-specificity), the likelihood ratio and the predictive values as follows: 

true positive rate (sensitivity) 

false positive rate (!-specificity) 
likelihood ratio 

P(T'"ID+) 

P(T'"ID.) 

LR 

42/52 

3/31 
.81/.10 

0.81 

0.10 
8.1 
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predictive value positive 
given a positive test 

predictive value negative 
42/45 0_93 

given a negative test P(D-IT) 28/38 = 0_74 

From table 3b it is clear that far more negative test results are left unverified than positive test 
results, that is 23 versus 5_ Intuitively this makes sense since if the result of the US is negative 
the surgeons will not be keen to operate and further workup for appendiceal disease will not be 
performed_ The probability that the diagnosis is verified can be expressed conditional on the 
test result as follows: 

probability of verification 
given a positive test= P(V+I'r+)= 45/50 = 0_90 
given a negative test= P(VIT)= 38/61 = 0_62 

Now the question is if we know that 90% of the positive test results and 62% of the negative 
test results are verified, can we estimate what the results would have been had all patients been 
verified_ We can, provided we assume that verification depends only on the test result If a 
sample is a fraction f of a source population, the source population will be 1/f times the size of 
the sample_ Thus, to estimate the cell frequencies had all patients been verified, we divide the 
observed cell frequencies among the verified patients by the probability of verification given 
the test result_ That is, we divide the positive test results by 0-90 ( = P(V+Ir)) and the negative 
test results by 0_62 (= P(V+IT))- The estimated results, had all patients been verified, are given 
in table 4_ Written in probability notation, forD= D+ and D = D-, the calculations are: 

+ +Trt 1 
n -P (D, T ) = n -P (fJ, T , v ) -_P_(V_+_I_T-+) 

n -P (D, r) = n -P (D, r, V+) -
1 

P(V+I r) 

The correction method is equivalent to distributing the unverified cases over the D+ and n
classes in such a way that the predictive values stay the same_ Important to remember when 
using this estimation procedure, is the underlying assumption that the probability of verification 
depends only on the test result, that is, only indirectly on true disease status through the effect 
the disease has on the test result_ 

From the corrected table we calculate the true positive rate (sensitivity), the false positive rate 
(1-specificity), the likelihood ratio and the predictive values as follows: 

true positive rate (sensitivity) 

false positive rate (1-specificity) 
likelihood ratio 

46_7/63 

33/48 
-74/_07 

0_74 

0_07 
10_6 
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Table 4. Cell frequencies corrected for verification bias, assuming that verification depends only on the 
test result. 

us 
positive 

appendiceal 42/0.90 
disease =46.7 

no appendiceal 3/0.90 
disease =3.3 

total 50 

predictive value positive 
given a positive test 

predictive value negative 

us total 
negative 

10/0.62 
= 16.1 63 

28/0.62 
=45.0 48 

61 111 

46.7/50 0.93 

given a negative test P(D.IT) 45.0/61 = 0.74 

Comparing the corrected test characteristics to those calculated from the verified patients we 
note that the true positive rate (P(T'"ID+)) and false positive rate (P(T'"ID) =1-specificity) are 
both lower than the group of verified patients suggested. In other words, the sensitivity is actually 
lower and the specificity is higher than the group of verified patients suggested1

• However, the 
predictive values are the same for the verified patients and estimated population. The LR 
increases in this example, however, the LR may increase or decrease depending on the probability 
of disease among the verified cases and the actual probability of disease. 

3. Correcting ROC curves for verification bias 

The easiest method to correct ROC curves for verification bias is to estimate the frequency table 
had all patients been verified, as done in the example in paragraph 2. This method also holds 
for a 5 x 2 table, or for any number of dimensions and any number of categories. This is proven 
as follows. 

1If only unequivocal test results are considered positive test results (as the authors of the article 
have done) the corrected sensitivity is 68% and corrected specificity 100%. Because the spec
ificity is the maximum attainable, the corrected specificity will not be higher. (We chose to 
consider dubious test results as positive so that the effect on specificity would also become 
clear.) 
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Assume n is the total number of cases and D is the true disease status, either n+ or n· _ From the 
observations we know the following: 

n -P (D ,Ri ,Xi, v+) = the number of verified cases with test result Ri and clinical information 

xj and 

the probability of verification given test result Ri and clinical information 

xj. 

To correct the ROC curve we need to estimate 

n ·P(D ,Ri,X)= the number with disease status D, test result Ri and clinical information 

xj. had all patients been verified. 

According to conditional probability theory: 

From the basic assumption followed the equivalent assumption (paragraph 1) 

and thus 

and therefore: 

with 

n- P(D ,Ri ,X)= n- P(D I Ri,Xi, V) · P(Ri,X) 

P(D ,Ri,Xi, V+) 
=n · -P(R. x.) 

P(R· X· v+) '' 1 

'' 1' 

1 
=n ·P(D R. X. v+)-----

' '' '' P cv+ 1 R;,X) 

+ 1 
n- P(D ,Ri ,X)= n · P(D ,Ri ,Xi, V) · __ + __ _ 

P(V IRi,Xi) 



n ·P(D ,R;,X) = 
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the estimated cell frequency, had all patients been verified, of the cell 

RiandXi, 

n · P(D ,R; ,Xj, v+) = the observed cell frequency, among verified patients, of the cell Ri and 

Xi and 

the probability of verification given R; and Xi. 

The derived formula holds for all i and j and forD+ and n·, so that all cell frequencies of the 
frequency table for the projected results, had all patients been verified, can be calculated. 

The equation for the correction method described in the original papers on verification bias 
(2,10) is derived by substituting the assumption (see paragraph 1) 

in Bayes theorem. The derived equation is: 

P(R; I D) 
"LP (R; ,Xj) . P (D 1 R; ,xj, v+) 
1 

I,I,P(R;,Xj) · P(D IR; ,Xj,V+) 
i j 

It is more convenient correcting the frequency table of an ROC analysis by dividing by the 
probability of verification, as introduced in this thesis, than using the formula described in the 
original papers. The calculations of the ROC curve from the corrected frequency table are 
equivalent to the calculations for the verified group of patients, which can be done with a simple 
spreadsheet template (6) or any simple mathematics program. Furthermore, we obtain an esti
mate of the projected population from the corrected table, which helps understanding verification 
bias and facilitates presentation of the results. A simple example of correction for verification 
using this formulation is presented in chapter VII. Another advantage of the here presented 
formulation is its convenience in correcting for verification for a data set that is fully stratified, 
for example for many tests and/or many test results. A problem which often arises when cor
recting a fully stratified data set, is that the cell frequencies become very small, with the result 
that the calculated probabilities of verification for any particular cell are inaccurate. A solution 
to this problem is to perform a logistic regression analysis on the probability of verification, 
which takes into account all the available data. Subsequently, the frequency table can be corrected 
with the above presented method. An example of a logistic regression analysis of the probability 
of verification, and subsequent correction for verification, is given in chapter VIII. 



132 Applications of Decision Analysis 

4. The relationship between the corrected and apparent likelihood ratio 

The relationship between the corrected and apparent LR is easily derived from the equivalent 
assumption stated in paragraph 1. The equivalent assumption stated that the predictive value is 
the same in the verified patients and after correction for verification bias. Thus, for test result 

Ri 

From this follows ( 1 0) 

with 
LR = corrected likelihood ratio, had all patients been verified 
LRv = apparent likelihood ratio, among the verified patients 
P(D+) = true prior probability of disease, either estimated or derived from another source 
P(D+ I v+) = apparent prior probability of disease 

5. How do the corrected P(T+ID+) and P(T+ID.) relate to the apparent P(T+ID+,V+) and 

P(rln·,v+)? 

Although the effect of verification bias on the true and false positive rates has been discussed 
in the literature (2, 1 0), the direction in which the bias affects the rates is not immediately obvious. 
A simple equation expressing the corrected rates in terms of the apparent rates has not been 
described before. In this section I derive the relevant equations and discuss their implications. 

Consider a population of n patients consisting of n · P (D +) diseased and n · P (D-) non-diseased 

patients (figure 6), with P (D+) andP (D-) the probability of disease and non-disease respectively. 
A diagnostic test T, performed to detect diseaseD, has a dichotomous result with a true positive 
rate (or sensitivity) of P(T+ I D+) and a false positive rate (or !-specificity) of P(r+ I D-). The 
probability of verification given a positive test result is P cv+ 1 r+) and given a negative test result 
is P(V+ 1 r). 

Among the group of verified patients there are n · P(T+ ,D+, v+) true positive cases and 

n · P (r ,D+, V+) false negative cases. The apparent true positive rate, calculated from the 
verified cases only, is therefore 
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n patients ) 
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verified TP 
n.P(T t,Dt,Vt} 

verified FN 
n.P(T-,Dt,V+) 

verified FP 
n.P{Tt,D-,Vt} 

verified TN 
n.P(T-,D-,Vt} 

Figure 6. illustration of verification bias. 

Substituting the path probabilities, as defined above and shown in figure 6 we find 

p T+ D+ v+ = P(D+) · P(r+ I D+) · P(V+ IT+) 
( I ' ) P(D+) · P(r+ I D+) · P(V+ I r+) + P(D+) · P(r-1 D+) · P(V+ IT-) 

P(T+ I D+) · P(V+ IT+) 
=----------~~~--~~~--------

P(r+ I D+). P(V+ I r+)+ (1-P(T+ I D+)). P(V+ I r-) 

1 
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Let VR be the verification ratio with 

then 

and therefore 

with 

P(T'"\D+,v+) =apparent true positive rate (among the verified patients), 

P(T'"\D+) =corrected true positive rate (the unbiased estimate) and 
VR = the verification ratio as defined above. 

In a similar fashion we derive the equation for the false positive rate: 

The derived equations are useful if we wish to calculate unbiased estimates of the P(T'"\D+) and 

P(T'"\D-) at one particular threshold. They give insight as to the relationship of the corrected 
P(T'"\D+) compared to the apparent P(T'"\D\ v+). From the equations it follows that the verification 
ratio determines the direction of the effect of verification bias. 

If the test results are verified randomly with respect to the test result the verification ratio VR 
= 1. In this case the corrected P(T'"\D+) and P(T'"\U) will equal the apparent P(T'"JD+,V+) and 
P(T'"\D-,V+). 
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In diagnostic radiology verification bias usually results in positive test results being verified 
whereas negative test results tend to be unverified. In the above example patients who had 
ultrasound studies consistent with appendiceal disease were operated on whereas patients with 
a negative ultrasound tended to be unverified. The verification ratio VR is thus larger than 1 for 
many radiological diagnostic tests. From the equations we infer that the corrected P(T"jD+) and 
P(rjD-) will be smaller than the apparent P(rjD+,v+) and P(rjD-,v+). (For VR = 1 we derived 
P(rjD+) = P(T"JD+,v+), thus for VR > 1 we deriveP(rjD+) <the P(rjD+,v+). Likewise, P(rjD-) 

<P(rjD-, v+).) Intuitively this makes sense, because if mainly negative test results are unverified, 
we miss false negatives and therefore P(rjD+,v+) is an overestimate of P(rjD+). At the same 

time we miss true negatives thereby underestimating specificity, which is equivalent to over
estimating P(rjD-). Correcting for verification bias will thus result in lower P(rjD+) and 
P(rjD-) than those calculated from the group of verified patients, if the probability of verification 

is larger in those with a positive test result than in those with a negative test result. 

An example of a diagnostic test in which the verification ratio VR < 1 is the L/S ratio performed 
to test for fetal pulmonary maturity. The gold standard for this diagnostic test is the development 
of respiratory distress syndrome in the newborn. A L/S ratio may be considered verified if the 
baby is delivered within a short time after performing the test. Waiting longer would mean that 
the lungs can mature further, implying that the test result no longer represents the lung maturity 
at birth. If the test result is positive (ie. suggesting immaturity of the fetal lungs) the obstetrician 
will do his/her best to delay delivery and the test result will be unverified. Verification of the 
diagnosis "fetal pulmonary immaturity" will thus tend to be greater among negative (mature) 
test results than among positive (immature) tests. 

A radiological example of a diagnostic test in which the verification ratio VR < 1 is CT evaluation 
for invasive malignant disease of eg. the cervix or ovaries. If the test result is positive (ie. the 
test shows evidence of invasive disease) the patient will be treated with radiotherapy and/or 
chemotherapy, and operative verification will not necessarily be performed. Thus verification 

of the diagnosis "invasive malignant disease" will tend to be greater among negative test results 
than among positive results. 

From the derived equations we deduce that if VR < 1 the corrected true and false positive rates 
are larger than the apparent rates. (For VR = 1 we derived P(rjD+) = P(rjD+,v+), thus for VR 
< 1 we derive P(rJD+) > P(rjD+,v+). Likewise P(T"JD-) > P(rJD-,V+) .) 

6. Implications of correcting for verification bias 

If verification depends on test outcome, correcting for this bias will change the sensitivity and 
specificity of any particular cutoff value of the test variable. However, correcting the data does 

not necessarily change the ROC curve to a large extent. If the uncorrected and corrected curves 

are similar, verification bias shifts the operating points along the ROC curve, but does not effect 

overall test performance. In such cases, although individual sensitivities and specificities can 
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be seriously biased, the area under the ROC curve is a measure of performance which is less 
sensitive to bias. Correcting the data set for verification bias implies adjusting the chosen cutoff 
value of the test variable to a different criterion. This means that if we were to construct a utility 

structure, the optimal operating point could be seriously affected by verification bias. 

IX. Uninterpretability bias 

Uninterpretability bias may arise when not all subjects or specimens tested provide interpretable 
test results. Uninterpretability occurs, for example, when bowel gas interferes with an ultrasound 
examination; due to bowel movement while performing a digital subtraction angiography; or 
an unsuccessful transhepatic cholangiography because the bile tract is undilated. By simply 
ignoring uninterpretable tests the calculated test characteristics may be biased (4,3). This is 
especially important when comparing diagnostic tests. 

An approach to this possible bias is to consider uninterpretable tests as an additional test result 

(3). Using this approach one has to consider the repeatability of the test and whether or not the 
uninterpretability is related to true disease status. If the reason for uninterpretability is intrinsic, 
then repeating the test would again result in an uninterpretable test result. If it is also random 
with respect to disease, then the estimated test parameters are unbiased. Examples of such sit
uations are: claustrophobia in a patient undergoing an MRI or an ultrasound of the pancreas 
which is uninterpretable because of obesity of the patient. 

Situations in which uninterpretability is intrinsic, but possibly correlated with true disease status, 
are different. In the example of ultrasound for appendiceal disease, the test is uninterpretable if 

the appendix is not visualized (17). Repeating the ultrasound would again result in an uninter
pretable test. However, the fact that the appendix cannot be visualized, in itself, contains 

diagnostic information because a healthy appendix is very thin and therefore difficult to visualize, 
as opposed to a swollen inflamed appendix. 

By calculating the interval likelihood ratio (interval LR) of the uninterpretable results one can 
determine if uninterpretability is associated with disease or not. The interval likelihood ratio of 
uninterpretable test results r is (see section I.): 

The original results of the study on ultrasound examination for appendiceal disease, are given 
in table 5. For a positive US result the interval LR equals infinity, for a dubious test result the 
interval LR equals 0.60 and foruninterpretable results it equals 0.21. This implies that the ranking 
of the test results according to decreasing interval LR is as follows: positive US, dubious US, 

uninterpretable US. In other words, an uninterpretable test result (ie. a non-visualized appendix) 
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is most likely to occur in the absence of appendiceal disease, and can therefore be used as a 
negative test result. Without calculating interval likelihood ratio's, the authors of the paper have 
come to the same conclusion based on pathophysiological considerations. 

Table 5. Ultrasound for appendiceal disease. 

us us appendix 
positive dubious not visualized 

appendiceal 
disease 39 3 10 

no appendiceal 
disease 0 3 28 

P(RiiD+) 0.75 0.06 0.19 

P(R;ID") 0.00 0.10 0.90 

intervalLR infinity 0.60 0.21 

Constructing ROC curves involves more test results than in the given example. However, the 
method is identical. After calculating the interval LR's of all test results and uninterpretable 
results, we rank the uninterpretable results among the other test results, according to decreasing 
interval LR. Subsequently, we include the uninterpretable results into the ROC analysis as an 
additional test result. 
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CT AND MRI ASSESSMENT OF ENT TUMORS 
USING ROC METHODOLOGY1 
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ABSTRACT 

Neoplastic disease of the nasopharynx, the paranasal sinuses and the parapharyngeal space 
requires thorough assessment of location and extension in order to plan appropriate treatment. 
This study evaluates computer tomography (CT) and magnetic resonance imaging (MRI) in the 
workup of malignant and non-malignant tumors of the nasopharynx, the paranasal sinuses and 
the parapharyngeal space in 76 patients. An attempt is made to characterize histopathology on 
MRI by analysing the signal intensities on Tl- and T2-weighted images relative to muscle and 
brain tissue. The test performance of CT and MRI in the assessment of tumor extension are 
compared with ROC methodology. 

Although no definitive conclusions can be made as to the histopathology on the basis of the 
signal intensities on MRI, some tumors show characteristic images. ROC analysis of the per
formance of CT and MRI in the assessment of extension of neoplastic disease of the nasopharynx, 
the paranasal sinuses and the parapharyngeal space, demonstrates no statistical significant 

1Co-authors: Ragnhild GM de Slegte, Geerten J Gerritsen, Henk Speelman; Dept of Diagnostic 
Radiology and Dept of Otolaryngology & Head and Neck Surgery, Free University Hospital, 
Amsterdam. 
Submitted for publication. 
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difference in overall test performance. However, in evaluating regions involving predominantly 
soft tissue structures and comparatively large bony structures MRI is superior to CT, while in 
evaluating regions involving thin bony structures, CT performs better than MRL 

I. INTRODUCTION 

Computer tomography (CT) has an established role in assessing benign and malignant lesions 
of nose and paranasal sinuses, the nasopharynx and the parapharyngeal space (3). Magnetic 
resonance imaging (MRI) has in this respect possible advantages over CT (11,15), however, 
these have as yet not been unambiguously demonstrated. The potential advantages of MRI over 
CT in the assessment of ENT tumors are the possibility for three plane imaging, less artifacts 
in the region of the skull base and better delineation of soft tissues. However, MRI also has 
drawbacks: in the evaluation of thin bony structures and in the identification of calcification, 
CT seems better than MRL 

The most common malignant neoplasms of nose and paranasal sinuses, the nasopharynx and 
the parapharyngeal space are squamous cell carcinomas and adenocarcinomas (15). Malig
nancies of the paranasal sinus, nasopharynx and parapharyngeal space grow invasively and on 
admission patients usually present with advanced disease. The diagnostic workup requires a 
thorough assessment of tumor location and extension into adjacent areas in order to plan 
appropriate treatment. Most patients seen at our hospital present with advanced disease for which 
the treatment of choice is surgery with post-operative irradiation. However the choice between 
radical surgery, radiotherapy, chemotherapy or a combination of these depends on histopa
thological findings and staging. 

Benign neoplastic disease of nose and paranasal sinuses, parapharyngeal space and nasopharynx 
include such lesions as poliposis and inverting papilloma. These lesions can be extensive and, 
as with malignant neoplasms, the extent of disease has to be assessed before proceeding to 
surgery. Glomus tumors, another benign entity, often occur in multiple locations requiring 
assessment before proceeding to treatment. 

This paper presents the results of a comparative study of CT and MRI in the preoperative workup 
of patients with space-occupying lesions of nose and paranasal sinuses, the nasopharynx and 
the parapharyngeal space. The goals of the study are twofold: tumor characterization on MRI 
and comparison of CT and MRI test performance in assessing tumor extension. The signal 
intensities on T1- and T2-weighted MR images are analysed to determine if particular tumors 
can be characterized by theirrelative signal intensities. We compare the signal intensities relative 
to muscle and relative to brain. Tumor extension is graded according to the UICC classification 
system (International Union against Cancer)(lO), modified to suit treatment protocols in our 
hospital. The performance of CT and MRI in the assessment of tumor extension are compared 
with receiver operating characteristic (ROC) methodology. 
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II. MATERIAL AND METHODS 

1. The study population 

From 1985 to 1988 seventy-six patients with suspected malignant or benign lesions of nose and 
paranasal sinuses, the nasopharynx and the parapharyngeal space were studied. The study 
population consisted of 44 males and 32 females, their age varying from 4 months to 88 years. 
Informed consent was given orally. 

All tumors, except the glomus tumors, were biopsied to determine the nature of the neoplasm 
and to compare the true histopathology with the pattern of the signal intensities on MRI Tl- and 
T2-weighted images. The definitive diagnosis in suspected glomus tumors was made by means 

of angiography. Table 1 gives the histopathology of the cases and the frequency of each. 

Table 1. Tumor histopathology and frequency of each. 

MALIGNANT DISEASE NON MALIGNANT DISEASE 

squamous cell carcinoma 17 glomus tumor 5 
adenocarcinoma 9 poliposis 4 
adenocystic carcinoma rhabdomyosar- 6 inflammation 2 

coma 4 encephalocele 2 
melanoma 3 osteoma 1 

chondrosarcoma 2 papilloma inversum 2 
plasmocytoma 2 osteomyelitis 2 
malignant lymphoma 2 pleomorphic adenoma 2 
fibrosarcoma 1 cyst/mucocele 2 
fibrous histiocytoma 1 lipoma 1 
ameloblastoma 1 nasal glioma 1 

haemangioma I 

angiofibroma I 
granuloma I 
giant cell tumor I 

TOTAL MALIGNANT 48 TOTAL NON MALIGNANT 28 
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2. CT and MRI technique 

Cf scanning and MR imaging were performed to evaluate the extent of the lesions. 73 of the 
76 patients underwent both CT and MR imaging. Two patients refused the CT examination and 
in one patient MR imaging failed due to claustrophobia. These 3 patients were excluded from 
the comparative analysis. 

The CT examinations were performed on a Philips 350 Tomoscan (high resolution mode). The 
images were made in transverse and coronal directions with a slice thickness of 3 mm and a 
slice-increment of 6 mm. If not enough information was obtained additional3 mm consecutive 
slices were made. 

The MR images were made on a 0.6 Tesla Technicare superconductive system in transverse, 
coronal and sagittal directions with a slice thickness of 1 em before December 1986 and a slice 
thickness of0.4 to 0.75 em since 1987. 

The pulse sequences used are: 

- T1-weighted images: 

- T2-weighted images : 

-late T2-weighted images : 

TR:s;600msec 

TE:s;38 msec 

TR ~ 1000 msec 

TE~ 64msec 

TR ~ 2000 msec 

TE more than 4 echoes 

CT scanning was usually performed before the MRI study. The CT and MR images were 
evaluated in the clinical setting by a panel of 3 readers, the reported diagnosis being one of 
majority rule. The images were read without prior knowledge of the final diagnosis or the result 
of the other diagnostic test. 

3. Compartments of tumor extension 

To define the location of tumor extension we used the classification system of the International 
Union against Cancer (UICC) (10), modified to suit treatment protocols in our hospitaL The 
classification we used applies to tumors considered to arise within the maxillary sinus. However, 
tumors originating at the alveolar ridge or upper jaw and tumors in the ethmoid region, although 
not strictly part of the UICC classification system, can be staged in a similar fashion. 

In the UICC classification (10): 
- stage T1 tumors are confined to the antral mucosa; 
- stage T2 tumors show erosion or destruction of the infrastructure including the hard palate 
and/or the middle nasal meatus; 
- stage T3 tumors invade the cheek, the posterior wall of the maxillary sinus, the floor or medial 
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wall of the orbit and/or the anterior ethmoid sinus; 
- stage T 4 tumors extend to the orbital contents and/or the cribriform plate, the posterior ethmoid 
or sphenoid sinuses, the nasopharynx, the soft palate, the pterygomaxillary or temporal fossae 
and/or the base of the skull. 

Based on the UICC classification system we defined 5 compartments to which tumor can extend 
as follows: 

Compartment 1: Involvement of the maxilla or soft tissue of the cheek, (corresponds with stage 
T2 or stage T3 according to UICC staging) 
Compartment 2: Involvement of the medial wall of the maxillary sinus with tumor extension 
into the nasal cavity or palate, or primary tumor of the nasal cavity (corresponds with stage T2) 
Compartment 3: Involvement of the anterior ethmoid cells and/or orbital involvement or primary 
tumor localized in ethmoidal or frontal sinuses (corresponds with stage T3) 
Compartment 4: Involvement of pterygopalatine fossa, infratemporal fossa or nasopharynx 
(corresponds with stage T4) 
Compartment 5: Involvement of the middle cranial fossa, cribriform plate, clivus or skull base 
(corresponds with stage T 4) 

Divisions into the listed compartments has practical consequences for the treatment choice in 
our hospital. In patients with tumor extension to compartments 1, 2 or 3 radical surgery is 
attempted. Patients with tumor extension to compartments 4 and 5 are treated with a de bulking 
procedure, combined with radiotherapy and/or chemotherapy. Tumors originating in com
partment 4, that is in the nasopharynx, are irradiated only. Contra-indications for radical surgery 
are distant metastasis and/or extension to compartments 4 and/or 5. 

The location and extent of benign lesions were classified according to the same 5 compartments. 

4. Verification of tumor extension 

Tumor extension was, whenever possible, verified by histology of resected tissue obtained at 
surgery or obtained through endoscopy, together with macroscopic findings. The gold standard 
for compartments 1 to 4 was histology as described. The gold standard for compartment 5 was 
histology, if obtained, or unambiguous neurological signs related to the cranial nerves, if present. 
Glomus tumors were verified by means of angiography. In 56 of the 76 patients the presence 
or absence of tumor could be verified for all 5 compartments. In the remaining cases only 
verification for 2, 3 or 4 compartments was possible. Considering extension to each compartment 
as a separate case a total of 285 diagnoses made on CT and MRI could be compared to the gold 
standard. 
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5. ROC analysis 

Receiver Operating Characteristic (ROC) methodology is used to compare CT and MRI test 
performance in the assessment of tumor extension. 

A ROC curve plots pairs of true positive and false positive rates at various confidence thresholds 

for the diagnosis. The area under the ROC curve is a measure of diagnostic system performance, 
a useful parameter for comparing diagnostic tests (12). 

A likelihood was assigned for the diagnosis "extension of tumor" to each compartment, using 
a five point rating scale (Table 2): 
1. definitively, or almost definitively, negative (no extension), 

2. probably negative (extension unlikely), 

3. equivocal (extension possible), 

4. probably positive (extension likely), 

5. definitively, or almost definitively, positive (extension present). 

Table 2. Cross tabulation of CT and MRI results. 

(a) CT DIAGNOSIS 

positive probably equi- probably negative 
positive vocal negative 

FINAL DIAGNOSIS 
positive 89 11 4 4 6 
negative 4 6 2 6 143 

UNVERIFIED 26 4 9 4 32 

(b) MRI DIAGNOSIS 

positive probably equi- probably negative 
positive vocal negative 

FINAL DIAGNOSIS 
positive 75 15 9 10 5 
negative 3 3 7 10 138 

UNVERIFIED 23 5 15 5 27 
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To construct the ROC curve the true positive and false positive rates are calculated at all possible 
cutoff values on the likelihood scale. In this study the area under the ROC curve and the standard 
error of the area are calculated using the Mann-Whitney U statistic. The Mann Whitney method 
is a convenient method and has the advantage of being non-parametric (4,5,8), meaning that no 
assumptions are made as to the underlying distribution of test results. The area under the ROC 
curve is underestimated with the Mann-Whitney method compared to the classically used 
maximum likelihood estimation method ( 4,6). However, if comparison of two curves is the point 
of interest this is of little consequence. 

CT and MRI test performance in assessing tumor extension are first compared for all the data 
pooled in one analysis and then for benign and malignant lesions separately. Subsequently, the 
tests are compared for the five mentioned compartments separately and, furthermore, for various 
compartments pooled. Subdividing the study population for compartment and malignancy is 
precluded because of sparseness of the data. 

We use a one-sided paired t-test to test for a difference in area under the ROC curves of CT and 
MRI, taking into account the correlation between test results derived from the same cases (7). 
Taking the correlation between test results into account makes the statistical test more powerful 
in detecting a difference, if one is present. In using a one-sided, as opposed to a two-sided, t-test 
we assume, on theoretical grounds, that one test will perform equal or better than the other test. 
More specifically, for the combined data and for soft tissue or large bony structures, we assume 
that MRI will perform equal or better than CT, but for fine bony structures we assume that CT 
will perform equal or better than MRL If this assumption is not considered valid the given 
p-values should be multiplied by 2. 

Ill. RESULTS 

1. Results of the signal analysis 

We attempt to characterize the histopathology of the tumors on MRI by analysing the signal 
intensities of the tumors comparative to muscle and brain on Tl-, T2- and late T2-weighted 
images. Distinguishing benign from malignant lesions on Tl-weighted images (Table 3) is 
impossible on the basis of the signal intensity of the tumor. On T2-weighted images (Table 3) 
more than half of the malignant tumors have signal intensities hyperintense relative to muscle 
and isointense relative to brain while less than a quarter of the benign lesions have the same 
signal intensity pattern on T2-weighted images. On late T2-weighted images signal intensities 
hyperintense relative to muscle and isointense relative to brain also occur more frequently in 
malignant lesions. On late T2-weighted images benign lesions have either an isointense or white 
signal relative to muscle. 
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Table 3. Signal intensities on MR images of malignant and non malignant lesions. Table of the relative 
frequency (in percentages) that a signal intensity occurs on Tl-, T2- and late T2-weighted images among 
malignant and non-malignant lesions. For example, of all malignant lesions 64.3% have a hyperintense 
signal compared to muscle and an isointense signal compared to brain on T2-weighted images. 

signal relative signal relative frequency(%) frequency(%) 
to muscle· to brain· among malignant among non malig-

image lesions nant lesions 

T1- 2 4 2.6 
weighted 3 2 33.3 12.5 

3 3 8.3 
3 4 2.6 
4 1 4.2 
4 2 10.3 8.3 
4 3 46.2 50.0 
4 4 2.6 12.5 
5 4 2.6 
5 5 4.2 

T2- 3 2 4.8 
weighted 3 3 2.4 4.8 

4 2 4.8 
4 3 64.3 19.0 
4 4 14.3 23.8 
4 5 4.8 
5 3 4.8 9.5 
5 4 9.5 14.3 
5 5 19.0 

late T2- 3 3 11.1 

weighted 3 4 11.1 
4 2 11.1 
4 3 33.3 
4 4 11.1 
5 2 3.7 
5 3 7.4 
5 4 25.9 33.3 
5 5 7.4 44.4 

·l=black 2=hypointense 3=isointense 4=hyperintense 5=white 
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Table 4. Signal intensities on MR images for squamous cell carcinoma, adeno- carcinoma and adena
cystic carcinoma. Table of the relative frequency (in percentages) that a signal intensity occurs on T1-, 
T2- and late T2-weighted images among squamous-, adeno- and adenocystic carcinomas. For example, 
of all squamous cell carcinomas 64.3% have a hyperintense signal compared to muscle and an isointense 
signal compared to brain on Tl-weighted images. 

signal rela- signal rela- frequency(%) frequency(%) frequency(%) 
tive to mus- tive to among squamous among adeno car- among adenocys-

image cle· brain· carcinomas cinomas tic carcinomas 

Tl- 2 4 7.1 
weighted 3 2 14.3 62.5 60.0 

3 4 7.1 
4 2 7.1 25.0 
4 3 64.3 12.5 40.0 

T2- 3 2 11.1 
weighted 4 3 66.7 44.4 100.0 

4 4 33.3 11.1 
5 3 11.1 
5 4 22.2 

late T2- 4 2 10.0 33.3 
weighted 4 3 50.0 28.6 

4 4 10.0 14.3 
5 2 14.3 
5 3 10.0 14.3 
5 4 20.0 14.3 66.7 
5 5 14.3 

·l=black 2=hypointense 3=isointense 4=hyperintense 5=white 

The squamous cell carcinomas are usually hyperintense relative to muscle and isointense relative 

to brain on Tl-, T2- and late T2-weighted images (Table 4). Adenocarcinoma (Table 4) are 

often isointense relative to muscle and hypointense relative to brain on Tl-weighted images, 

but have a wide variety of signals on T2- and late T2-weighted images. Adenocystic carcinomas 

(Table 4) are often isointense relative to muscle and hypointense relative to brain on Tl-weighted 
images. On T2-weighted images these carcinomas show hyperintense signal relative to muscle 

and isointense signal relative to brain. Furthermore, these lesions often show mixed signal 

intensities and the mucous produced by the tumors can be distinguished on the late T2-weighted 
images by its hyperintense or white signal. 
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In general, mucous producing disease and retained secretions, including benign lesions such as 

mucoceles and sinusitis, can be distinguished because mucous has a hyperintense or white signal 
intensity on T2- and late T2-weighted images. Glomus tumors show a characteristic image due 

to the flow void phenomenon of flowing blood which results in a lack of signal in the vessel 

lumen. With MR imaging, tumors primarily originating from the soft tissues, such as fibro

sarcomas, rhabdomyosarcomas and lymphomas can be distinguished from normal soft tissue 
structures by their hyperintense signal relative to muscle on T2- and late T2-weighted images. 

About the remaining tumors in our study no conclusions can be made as to the signal intensities 
because the subgroups are too small. 

2. Tumor extension and results of the ROC analysis 

Table 5. Results of the ROC analysis. Tabulated are the number of positive and negative cases con
tributing to the curve, area under the ROC curve and the standard error, for all the data combined, stratified 
for benign versus malignant disease, stratified by compartment and for various compartments combined. 
The p-values given are for one-sided paired t tests. 

ROC curve posi- neg a- CT: CT: MRI: MRI: 

tive tive area error area error p 

all data combined 114 161 0.95 0.02 0.95 0.01 ns 

malignant disease 81 84 0.94 0.02 0.93 0.02 ns 
benign disease 33 77 0.97 0.03 0.98 O.D2 ns 

compartment: 
1) maxilla/ cheek 21 33 0.94 0.04 0.96 0.03 0.25 
2) medial wall maxillary sinus/ 34 21 0.97 0.03 0.94 0.03 0.18 
nasal cavity/ palate 
3) orbit/ ethmoid/ frontal 24 30 0.92 0.05 0.94 0.03 0.21 
4) pterygopalatine/ infratemporaV 18 36 0.95 0.03 0.95 0.03 ns 
nasopharynx 
5) skull base/ middle cranial fossa/ 17 41 0.99 0.01 0.98 0.01 0.21 
cribiform/ clivus 

compartments combined: 
1&3 45 63 0.93 0.03 0.96 O.D2 0.14 
2&5 51 62 0.97 0.02 0.95 0.02 0.17 
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Of the verified cases the percentage that actually had extension of tumor growth to the five 
compartments is as follows: 

- Compartment 1: the maxilla or soft tissue of the cheek: 39% 
- Compartment 2: the medial wall of the maxillary sinus, nasal cavity or palate: 62% 
- Compartment 3: the orbital involvement, ethmoidal or frontal sinuses: 44% 
- Compartment 4: the pterygopalatine and infratemporal fossa or nasopharynx: 33%. 
-Compartment 5: the middle cranial fossa, cribriform plate, clivus or skull base: 29% 

In three cases extension of tumor on both CT and MRI was reported as definitively positive 
(Table 2) while at surgery thickened mucosa as a result of inflammation was found. In one case 
CT was reported definitively positive for extension to compartment 1, MRI being equivocal, 
while no extension was found. This was in a patient with chondrosarcoma of the nasal cavity. 
Extension was falsely reported as definitively negative in 6 cases on CT and 5 cases on MRI 
(Table 2), the pathology in these cases being adenocarcinoma, squamous cell carcinoma or 
poliposis. There was no clear pattern identifying the cause of error in the false negative cases. 

Q) 

~ 
Q) 

> :;:::: 
"(j) 

CT-· 
1 

MRI 
0.8/ 

0.6 

0 
0.. 0.4 
Q) 
::::l 
'-- 0.2 

0 
0 0.2 0.4 0.6 0.8 

false positive rate 

Figure I. ROC curves ofCT (dashed line) and MRI (solid line) in the evaluation ofENT tumor extension. 

The ROC curves of CT and MRI in assessing tumor extension are presented in figure 1. The 
ROC curves shown are for the five compartments combined. No difference between CT and 
MRI test performance can be demonstrated, the area under the ROC curves being 0.95 for both 
CT andMRI (Table 5) with standard errors of0.02 forCT and 0.01 for MRL The ROC analysis 
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was done-separately for benign and malignanttumors (Table 5). Forneither benign nor malignant 
lesions can a statistically significant difference between CT and MRI be demonstrated. Both 
modalities perform better for benign disease than for malignant disease. The ROC analysis was 
also done for the 5 compartments separately (Table 5). Comparing CT and MRI for each 
compartment we found that CT performs better than MRI in evaluating the medial wall of the 
maxillary sinus, nasal cavity and palate, but the significance level is only 0.18 (one-sided). The 
lack of statistical significant differences is partly due to sparseness of the data. For this reason 
we pooled the data for compartments 1 and 3, areas involving predominantly soft tissue and 
relatively large bony structures, and for compartments 2 and 5, which involve many thin bony 
structures. For compartments 1 and 3 (that is the maxilla, cheek, orbit, ethmoid and frontal 
sinuses) MRI performs better than CT at a significance level of 0.14 (one-sided) (Table 5). 
However, for the compartments 2 and 5 (that is the medial wall of the maxillary sinus, the nasal 
cavity, palate, middle cranial fossa, cribriform plate, clivus and skull base) CT performs better 
than MRI, but only at a significance level of 0.17 (one-sided). 

IV. DISCUSSION 

In an attempt to characterize the histopathology ofENT tumors on MRI we analysed the signal 
intensity of the tumors on Tl- and T2-weighted images. We compared the signal intensity relative 
to muscle and brain tissue. Although no definitive conclusion can be made as to tumor histology 
on the basis of the MRI signal, some tumors show characteristic images. Squamous and ade
nocystic carcinoma tend to be hyperintense relative to muscle on T2-weighted images and either 
hyperintense or white (relative to muscle) on late T2-weighted images. As has been reported 
elsewhere (11) we found that mucous producing lesions and retained secretions have high signal 
(hyperintense or white) on T2- and late T2-weighted images. Glomus tumors are distinguished 
by the flow void phenomena. In general, the anatomy of soft tissue structures is easier to dis
tinguish on MRI than on CT. 

The study presented was done within the clinical setting which implies that internal noise was 
not controlled for. Day-to-day variations in reader performance and variations in the performance 
of the panel of readers could possibly have degraded the test performance and/or masked dif
ferences between the two tests evaluated. However, we have chosen to read the images in the 
daily routine so as to evaluate test performance in the clinical context, with its variations (9). 
Between reader variance was not considered (9,14) because all images were read by the same 
panel of readers. It is possible that the performance of the tests is inflated because of panel 
judgement, however, this is not likely to have a large effect. Furthermore, it is not uncommon 
in clinical practise that images are discussed and reported by a team of radiologists. All things 
considered our conclusions are somewhat limited in that they are, strictly speaking, only 
applicable to the readers studied. However, we feel that our readers are representative for readers 
in many academic centers and that our general conclusions hold for other settings than our own. 
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Extension of tumor was not verified for all compartments in all patients which made us consider 
the potential problem of verification bias (1,2). However, the unverified cases are distributed 
over all test results (Table 2) and therefore selection for verification is not biased in this analysis, 
implying that the unverified cases can be disregarded without affecting the results. 

In the assessment of tumor extension most false positive and false negative reports occurred 
simultaneously in CT and MRI examinations, suggesting that the errors of one test will not be 
captured by the other test False positive results were mainly caused by thickened mucosa which 
was mistaken for tumor extension. False negative results did not show any clear pattern iden
tifying the cause of error. 

The areas under the ROC curves of CT and MRI in evaluating tumor extension show no sta
tistically significant differences for all the data combined, for most of the compartments sepa
rately and for malignant and benign disease separately. In analysing the compartments 
independently, CT performs better than MRI in evaluating the medial wall of the maxillary 
sinus, the nasal cavity and palate, but the significance level is low. Because our sample size is 
somewhat limited, especially when subdivided by compartment, a small difference in area can 
go undetected (7). Pooling for the five compartments creates a larger sample size, making the 
statistical test more powerful, but has the disadvantage of masking differences because of an 
averaging effect. For this reason we pooled the data for various subsets of the five compartments, 
pooling compartments for which there is a theoretical basis that one test will perform better than 
the other. Analysing the pooled subsets we found that MRI performs better than CT in evaluating 
the maxilla, cheek, orbit, ethmoid and frontal sinuses, which involve predominantly soft tissue 
structures and comparatively large bony structures. However, in evaluating the medial wall of 
the maxillary sinus, the nasal cavity, palate, skull base, middle cranial fossa, cribriform plate 
and clivus, regions involving many thin bony structures, CT performs better than MRL 

Summarizing, although we cannot prove it formally due to limited sample size, CT and MRI 
do not seem to differ in overall test performance in staging ENT tumors of the nasopharynx, 
paranasal sinuses and parapharyngeal space. However, in evaluating regions involving pre
dominantly soft tissue structures and comparatively large bony structures MRI is superior to 
CT, while in evaluating regions involving many thin bony structures, CT performs better than 
MRL 
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ABSTRACT 

A study was done comparing clinical evaluation, computer tomography (CT) and magnetic 
resonance imaging (MRI) performed for suspected orbital space-occupying lesions (SOL). Some 
illustrative cases are presented. Receiver operating characteristic (ROC) curves are used to 
compare the diagnostic tests. The methodological issue of verification bias is addressed and the 
constructed ROC curves are adjusted for biased selection for verification. The test performance 
of CT and MRI do not differ significantly from that of clinical evaluation. Correcting for ver
ification bias MRI shows an advantage over CT, however the statistical significance is low (p 
value=0.15, one-sided test). 

In conclusion, although MRI performs better than CT, neither MRI nor CT can be demonstrated 
to provide significantly more information than clinical evaluation in the diagnosis of orbital 
SOL. 

1Co-authors: Ragnhild GM de Slegte and Marion F Hoogesteger, Department of Diagnostic 
Radiology and Department of Ophthalmology, Free University Hospital, Amsterdam. 
Reproduced with permission from the journal ORBIT, in press 1989; 8/3: 173-187. Copyright 
by Aeolus Press. 
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I. INTRODUCTION 

Although magnetic resonance imaging (MRI) produces beautiful images of orbital anatomy and 
pathology, the clinical significance of MRI for orbital space-occupying lesions (SOL) is as yet 
not clear. In previous papers on MRI of orbital SOL attention has been paid to characterization 
of lesions on the basis of signal intensity on T1- and T2-weighted images. A number of lesions 
appear to have characteristic combinations of signal intensities (4,13,14). 

Ocular melanotic melanoma, a common malignant orbital tumor in adults, has an intermediate 
signal on T1-weighted images and a low signal on T2-weighted images ( 4,7). This characteristic 
combination of signal intensities is due to the paramagnetic properties of free radicals in melanin 
which shorten Tl and T2 relaxation times. Retinoblastoma, which occurs at a very young age, 
has an intermediate signal on Tl- and a low signal on T2-weighted images. Dermoids have a 
high signal intensity on both T1- and T2-weighted images. 

In retrobulbar lesions the main advantages of MRI over CT are the oblique view parallel to the 
optic nerve and demonstration of the intracanalicularportion of the nerve. As yet characterization 
of optic nerve tumors is not possible (1). Optic nerve glioma and optic nerve sheath meningioma 
both have low signal intensity on Tl- and T2-weighted images. 

Although numerous reports have been published describing MRI images of orbital SOL, no 
attempt has as yet been made to actually measure MRI test performance in comparison to other 
diagnostic methods. This paper presents a pilot study in which the performance of clinical 
assessment, CT and MRI in the evaluation of malignant SOL of the orbit are compared using 
receiver operating characteristic (ROC) methodology. Instead of comparing only imaging 
techniques as is often done we assess the incremental value of CT and MRI over and above the 
information provided by clinical evaluation. 

II. MATERIAL and METHODS 

1. The study population and diagnostic procedures 

All patients clinically suspected of having orbital SOL who underwent clinical evaluation, CT 
and MRI in the years 1985, 1986 and 1987 were included in the study. The test results were 
reviewed retrospectively by at least two of the authors, taking into account the written reports. 
Informed consent was given orally. 

Clinical evaluation consisted of taking the history, slit lamp examination of the eye and oph
thalmoscopy. 
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Table 1. DIAGNOSES, FREQUENCIES AND SIGNAL INTENSITIES. Defmitive diagnoses made 
and the frequency of each diagnosis. Signal intensities of the lesions on Tl- and T2-weighted MRI images 
are given where relevant. 

DEFINITIVE DIAGNOSIS FREQUENCY MRI signal MRI signal 
T1 image(*) T2 image(*) 

POSITIVE 
melanotic melanoma 9 3/4 2 
retinoblastoma 1 3 2 
retrobulbar rhabdomyosarcoma 2 2/3 v 
carcinoma of the lacrimal gland 2 3 M 
invasion of the bony orbita 1 

NEGATIVE 
retinal detachment 8 3/4 3/4 
persistent hyperplastic 

primary vitreous 2 2/3 v 
colaboma 1 2 4 
retrobulbar pseudotumor 2 2 2 
optical nerve neurinoma 1 2/3 5 
benign histiocytoma 1 2 1 
varicose vein plus thrombus 1 3 4 
arteriovenous malformation 1 1 1 
carotid fistula 1 1 1 
no retrobulbar invasion from 

malignant ocular tumor 10 
miscellaneous 5 

* MRI signal intensities: 1=black, 2=low signal, 3=intermediate signal, 4=high signal, 5=whitc, 
M=mixed signal, V=variable between cases. 

The CT examination was done on a Philips 350 Tomoscan before and after intravenous contrast 

administration. Axial and coronal slices were made using a slice thickness of 1.5 mm and a 
slice increment of 3 mm. 

MRI examination was performed on a 0.6 Tesla Technicare machine in most cases using surface 
coils. If necessary patients were asked to remove eye cosmetics because cosmetics give artefacts. 

Axial, coronal and oblique (parallel to the optic nerve) slices were made. The slice thickness 

was 5 mm and the acquisition matrix 256 x 192. Images were made with spin echo sequences. 

Tl-weightedimages were made using a TR varying between 300 and 650 msec and aTE between 
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24 and 38 msec. T2-weighted images were made using a TR varying between 1000 and 3000 
msec and aTE between 30 and 148 msec with multiple echoes. MRI failed in 3 patients because 
of claustrophobia and/or patient movement. 

The diagnostic procedures were always done in the same sequence, namely clinical evaluation 
followed by CT followed by MRL Clinical presentation was taken into account in making the 
CT and MRI diagnosis as this is everyday practice. Our objective was to assess the increment 
in information after doing CT or MRI as compared to the information provided by clinical 
evaluation alone. 

In total 58 diagnoses were made in 50 patients. The diagnoses made or rejected included 
malignant orbital lesions (such as malignant melanoma), invasive disease from malignant orbital 
lesion (such as retrobulbar extension of malignant ocular tumor), and benign orbital lesions 
(such as retinal detachment and pseudotumor). Thus, in addition to discriminating benign from 
malignant disease, extension of tumor was also considered a diagnosis. 

Of the 58 diagnoses made 48 were verified (see table 1) whilst 10 cases were not verified. In 
43 cases the diagnosis was verified histologically. In one case the definitive diagnosis was made 
at surgery, the diagnosis being a varicose vein. In 2 cases angiography provided the definitive 
diagnosis: one was a carotid fistula and the other an arteriovenous malformation. In 2 cases 
complete regression after corticosteroid treatment was considered diagnostic for pseudotumor. 
In 10 cases the diagnosis was not verified because a malignant SOL was considered so unlikely 
that doing any further procedures would not have been justified. 

2. ROC methodology 

Test performance can be characterized by several parameters, sensitivity and specificity being 
the most commonly used. However, these test parameters depend not only on the capacity of 
the test to distinguish diseased from non-diseased but also on the confidence threshold that the 
observer uses to decide whether to label a patient as diseased or not (10). Receiver operating 
characteristic (ROC) curves provide an alternative method to describe test performance. A ROC 
curve plots the true positive fraction as a function of the false positive fraction. The area under 
the ROC curve is a measure of diagnostic system performance and is independent of the ulti
mately chosen confidence threshold. By comparing the areas under the ROC curves of different 
diagnostic tests one can compare the performance of these tests (8,9,10). 

In deriving a ROC curve the easiest approach is to divide the diagnostic truth into two categories. 
The choice of the division should be clinically relevant, preferably determining the choice of 
treatment. In this study the diagnostic truths are: 

1/ diagnosis positive: 
malignant SOL of the orbit or 
retrobulbar extension of malignant ocular tumor or 
bony invasion by malignant orbital tumor 
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Table 2. RANKING ON THE LIKELIHOOD SCALE. Frequency tables of ranking on the likelihood 
scale versus the final diagnosis for the a) clinical b) CT and c) MRI diagnosis. Both verified and unverified 
cases are tabulated. 

(a) CLINICAL DIAGNOSIS 

positive probably equivocal probably negative 
positive negative 

FINAL DIAGNOSIS 

positive 1 11 3 0 0 
negative 0 1 11 6 15 

UNVERIFIED 0 0 5 2 3 

(b) CT DIAGNOSIS 

positive probably equivocal probably negative 
positive negative 

FINAL DIAGNOSIS 
positive 9 2 2 0 2 
negative 0 0 5 8 20 

UNVERIFIED 0 0 2 1 7 

(c) MRI DIAGNOSIS 

positive probably equivocal probably negative 
positive negative 

FINAL DIAGNOSIS 
positive 9 2 3 1 0 
negative 0 2 5 8 18 

UNVERIFIED 0 0 1 2 7 
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versus 
2/ diagnosis negative: 

benign SOL of the orbit or 
retinal detachment or 
no extension of malignant tumor 

In general the distinction between malignant and benign SOL is clinically relevant in that a 
malignant lesion always requires enucleation of the orbit whilst that is not the case with benign 
lesions ( 1 ). 

A likelihood was assigned for the diagnosis using a five point scale: 

1. definitively, or almost definitively, negative 
2. probably negative 
3. equivocal 
4. probably positive 
5. definitively, or almost definitively, positive 

All patients were thus categorized into 1 of 5 test results (ie. likelihood of diagnosis) for each 
diagnostic test and into 1 of 2 diagnostic truths (see table 2). 

To draw the ROC curve the confidence threshold was shifted several times. At all possible 
cut-off points on the likelihood scale the true positive rate (TPR) and false positive rate (FPR) 
were calculated. With a 5 point likelihood scale one can derive 4 pairs of {TPR,FPR} giving 4 
points of the ROC curve (1 0). The points { 0,0} and { 1,1} are additional points inherent to all 
ROC curves. 

The area under the ROC curve was calculated using the Mann-Whitney U statistic (2). This 
technique for calculating the area under the ROC curve has several advantages: it is relatively 
simple to calculate and it is non-parametric, implying that a normal distribution of the study 
population is not a prerequisite (6). Furthermore it is for practical purposes reliable enough (5). 

In comparing the areas under the ROC curves a correction was performed for the fact that the 
data were derived from the same cases. This correction adjusts the standard error and is based 
on the correlation coefficients between test results obtained from the same cases (8). 

3. Correction for verification bias 

The data were corrected for verification bias (3,11,12). Verification bias occurs when only a 
subset of all tested subjects are selected to undergo the definitive procedure to assess true disease 
status (11,12). If after workup a malignant SOL is considered unlikely, the patient will not 
undergo any invasive procedures to verify the diagnosis as this is ethically unacceptable. The 
result of the CT and MRI exams in combination with the clinical diagnosis will influence the 
decision to do a definitive procedure to assess disease status and thus the test results will 
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determine the probability that the diagnosis will be verified or not. Biased selection for verifi

cation can have an effect on the calculated test characteristics if we simply ignore the unverified 

cases. A technique exists to mathematically correct for verification bias (11,12). 

The basic assumption for the mathematical correction for verification bias is: the probability of 

verification is independent of true disease status and the decision to verify depends only on the 
test result and clinical features. In other words: the influence of true disease status on selection 

for verification is only through the effect the disease has on the test result and clinical features. 

This basic assumption is equivalent to saying that the predictive values will not be affected. 

To understand how the correction for verification works it is useful to consider a situation where 

selection for verification depends only on the test under consideration and the test result is 

dichotomous (ie. either positive or negative). For example, consider in this study the MRI exam 
with the cutoff between probably positive and equivocal test results and suppose that the MRI 
test result is going to play the decisive role in selection for surgery. The cross tabulation of test 
results versus true disease status in the verified sample is given in table 3a together with the 
number of unverified cases. 

Table 3. ILLUSTRATION OF CORRECfiON FOR VERIFICATION BIAS. Cross tabulation of test 
results versus true disease status in a) the study sample and b) the estimated source population. 

(a) STUDY SAMPLE 

MRI MRI total 
positive negative 

diagnosis positive 11 4 15 
diagnosis negative 2 31 33 

total verified 13 35 48 
unverified 0 10 10 

total 13 45 58 

(b) ESTIMATED SOURCE 

MRI MRI total 
positive negative 

diagnosis positive 11/1.00= 11 4/0.78 = 5 16 
diagnosis negative 2/1.00= 2 31/0.78 = 40 42 

total 13 45 58 
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Considering the verified cases only we calculate sensitivity, specificity and the predictive values 
as follows: 

sensitivity 11/15 0.73 
specificity 31/33 0.94 
predictive value positive 11/13 0.85 
predictive value negative 31/35 0.89 

From the table it is clear that although 10 negative test results are left unverified all the positive 
test results are verified. This is intuitively sensible since if the result of the MRI is negative the 
ophthalmologists will not be keen to operate and any further invasive procedures will be 
unjustified. The probability that the diagnosis is verified can be expressed conditional on the 
test result as follows: 

probability of verification given a positive test == 13/13 == 1.00 
probability of verification given a negative test== 35/45 == 0.78 

Knowing that 100% of the positive test results and 78% of the negative test results are verified, 
we can estimate what the source population (including the unverified cases) might look like. If 
a sample is a fraction f of the source population, the source population will be 1 If of the sample. 
In other words, to estimate the cell frequencies of the source population we divide the cell 
frequencies of the positive test results by 1.00 and of the negative test results by 0.78. Note that 
in estimating the source population in this way we assume that the probability of verification 
depends only on the test result and not on the true disease status. The cross tabulation of the 
estimated source population is given in table 3b. 

From the corrected table we calculate sensitivity, specificity and the predictive values as follows: 

sensitivity 
specificity 

11/16 
40/42 

0.69 
0.95 

predictive value positive 11/13 0.85 
predictive value negative 40/45 0.89 

Comparing the corrected test characteristics to those calculated from the verified sample we 
note that the sensitivity is actually lower and the specificity is higher than the verified sample 
alone suggested. In ROC-curve-terminology the true positive rate (TPR) and false positive rate 
(FPR == 1-specificity) are both lower than the verified sample suggested. However the predictive 
values are the same for the verified sample and estimated source population. 

The demonstrated correction method can easily be extended to more test results than the 
dichotomous case, to more diagnostic tests and to include clinical features. With 5 test results 
the same arithmetic is used but instead of correcting a 2 x 2 table we correct a 2 x 5 table. With 
k test results and n tests we would correct a 2 x k x n table. The correction was performed firstly 
assuming the test under consideration plays the decisive role in selection and secondly assuming 
all 3 tests simultaneously influence selection for verification. 
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III. RESULTS 

Table 1 summarizes the definitive diagnoses made, the frequency of each diagnosis and, where 
relevant, the pattern of signal intensities on MRI Tl- and T2-weighted images. The patterns of 
signal intensities on MRI found in this study are in agreement with those reported in previous 
papers. 

Some illustrative examples of orbital SOL are presented in figures 1 through 4. 

Figure 1 shows CT and MRI images and macroscopy of a 66-year-old woman who presented 
with a retinal detachment Clinically a malignant ocular melanoma was suspected (probably 
positive on the likelihood scale). Both CT and MRI show the typical "butterfly pattern" of a 
retinal detachment involving the optic disc. On CT the tumor appears as a relatively hypodense 
area after administration of intravenous contrast On MRI signal intensities are seen typical for 
melanotic melanoma, ie. intermediate signal intensity on T1- and low signal intensity on T2-
weighted images. The diagnosis "malignant SOL" was considered almost definitively positive 
on both CT and MRL The images of both techniques correlate well with the macroscopic findings, 
which shows a melanoma and retinal detachment 

Figure 2 shows CT, MRI and macroscopy of an infant clinically suspected of having a retino
blastoma although persistent hyperplastic primary vitreous (PHPV) could not be excluded. CT 
and MRI show a microphthalmus on the left side. On CT a faint hyperdense triangular structure 
is seen in the middle of the vitreous and PHPV was considered probable. MRI shows an area 
of intermediate signal on Tl- and high signal intensity on T2-weighted images laterally in the 
globe which made the reading radiologist at the time of the examination report retinoblastoma 
as being likely. Histology however shows PHPV. The area of intermediate and high signal 
intensity in the globe on MRI images correlates with haemorrhage as shown by histology. 
Retrospectively the MRI images would not be considered suspect for retinoblastoma as the 
lesion does not show the typical signal pattern for retinoblastoma and because of the presence 
of a microphthalmus. This case constitutes one of the false positive MRI results. 

Figure 3 shows images of a 76-year-old woman presenting with an exophthalmus on the right 
side. Clinically a retrobulbar lesion was suspected, malignancy being equivocal. Both CT and 
MRI show a retrobulbar lesion. On CT a benign lesion was considered probable because of the 
smooth contours and homogeneous contrast enhancement. MRI shows a lesion with low signal 
intensity on all images. However MRI signal intensities do not allow differentiation between 
malignant and benign optic nerve tumors and malignancy was therefore considered equivocaL 
Histology proved this to be a benign histiocytoma. 
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(la) (lb) 

(lc) (ld) 

Figure 1. Images of a 66-year-old woman who presented with retinal detachment on the left side. 

Clinically an ocular melanoma was probable. a) The cr image after i.v. contrast administration shows 

an intraocular lesion (+)and a retinal detachment ( ll ). b) The MRI Tl-weighted image shows the 

butterfly pattern of retinal detachment C/ ). c) The MRI T2-weighted image shows an area with low 

signal intensity ( __.,... ). d) Macroscopy demonstrates retinal detachment with underlying melanotic 

melanoma ( • ). 
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(2a) (2b) 

~~ ~~ 
Figure 2. 1-month-old infant presenting with a leukokoria on the left side. Clinically retinoblastoma was 

likely, however persistent hyperplastic primary vitreous (PHPV) could not be excluded. a) The CTimage 

after i.v. contrast administration shows microphthalmus, higher density of the vitreous compared to the 

normal eye and a faint hyperdense triangular structure in the vitreous ( ~ ). b) & c) The MRI TI

and T2-weighted images respectively show microphthalmus and an abnormal signal intensity of the 

vitreous compared to the normal eye. Laterally in the globe an area of intermediate signal on Tl- (-) 

and high signal on T2-weighted images is seen ( - ). d) Macroscopy and histology show PHPV with 

haemorrhage laterally ( • ). 
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(3a) 

(3b) (3c) 

Figure 3. 76-year-old woman presenting with an exophthalmus on the right side. The clinical diagnosis 

was a retrobulbar lesion, malignancy being equivocal. a) The CT image after i. v. contrast administration 

shows a homogeneously enhancing retrobulbar lesion. b) & c) The MRI Tl- and T2-weighted images 

respectively show a retrobulbar lesion with low signal intensity on both images. Histology proved this 

to be a benign histiocytoma. 



ROC Analysis of orbital SOL 165 

(4a) (4b) 

(4c) (4d) 

Figure 4. 24-year-old man with decreased visual acuity of the left eye. a) The CT axial image after i.v. 

contrast administration shows a slightly enlarged optic nerve and a small enhancing lesion in the apex 

of the orbit ( \ ). b) The CT coronal image after i.v. contrast administration shows a small enhancing 

area in the region of the anterior clinoid ( \ I ). c) The MRI axial Tl-weighted image shows a vascular 

lesion in the apex of the orbit ( kl ). d) The MRI oblique Tl-weighted image shows a vascular lesion 

in the region of the anterior clinoid ( ~ ). 
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Figure 4. e) Selective left internal carotid angiography (lateral projection) confirmed the presence of an 
arteriovenous malformation ( _. ). 

Figure 4 shows images of a young man presenting with decreased visual acuity of his left eye. 
A history of trauma to his left eye was noted. CT shows an enlarged optic nerve (possibly a 
glioma) and probably a vascular tumor in the apex of the orbit as well as an area offaint contrast 
enhancement intracranially in the region of the sella. MRI shows a vascular tumor apical in the 
orbit and in the region of the sella (almost definitively positive on the likelihood scale). The 
definitive diagnosis was made by angiography which shows an arteriovenous malformation 
apical in the orbit extending intracranially. 

Table 2 gives the cross tabulation of the test results versus the final diagnosis, including the 
unverified cases. Note that the unverified cases have equivocal, probably negative or negative 
test results. All cases with positive or probably positive test results are verified. 

Figure 5 shows the ROC curves ofthe clinical, CTandMRI diagnosis without and with correction 
for verification bias. Table 4 summarizes the areas under the ROC curves for the uncorrected 
data, the data corrected for verification bias for one test and corrected for all three tests simul
taneously. With and without correction for verification bias the ROC curves ofMRI and clinical 
evaluation, and the corresponding areas under the curves, are very similar. The areas under the 
ROC curves of MRI and clinical evaluation are always larger than that of CT, however no 
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Table 4. RESULTS. Calculated areas under the ROC curves, the standard errors and p-values in com
paring the tests. The p-values tabulated are corrected for correlation between test results. 

VERIFIED CASES ONLY 

diagnostic test area under the standard error comparison between p-value 

ROC curve 

clinical 0.95 0.03 clinical-Cf 0.18 
CT 0.90 0.06 Cf-:MRI 0.19 

:MRI 0.95 0.03 clinical-:MRI 0.50 

CORRECTED FOR VERIFICATION BIAS FOR ONE TEST (ie. assuming selection for verification 
is determined by the test itself) 

diagnostic test area under the standard error comparison between p-value 
ROC curve 

clinical 0.94 O.D3 clinicai-Cf 0.17 
CT 0.88 0.07 Cf-:MRI 0.15 

:MRI 0.95 0.03 clinical-MRI 0.39 

CORRECTED FOR VERIFICATION BIAS FOR ALL THREE TESTS (ie. assuming all three tests 
simultaneously influence selection for verification) 

diagnostic test area under the standard error comparison between p-valuc 
ROC curve 

clinical 0.95 0.03 clinical-Cf 0.21 
CT 0.90 0.07 Cf-:MRI 0.23 

:MRI 0.95 0.03 clinical-MRI 0.50 

statistically significant difference can be demonstrated for the uncorrected curves. Likewise, 

after correcting for verification bias, assuming all 3 tests influence selection for verification, no 

statistically significant difference can be demonstrated. Assuming that only the test under 

consideration influences selection for verification the area under the ROC curve ofMRI is larger 

than that of CT at a statistical significance level of p=0.15 using a one-sided test. 
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Figure 5. Receiver operating characteristic curves for the clinical diagnosis, CT diagnosis and MRI 
diagnosis a) uncorrected ROC curves b) corrected for verification bias for one factor (ie. the test under 
consideration) c) corrected for verification bias for multiple factors (ie. for all three tests) 
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IV. DISCUSSION 

For orbital SOL the clinical, CT and MRI diagnoses were compared using receiver operating 
characteristic (ROC) methodology. The likelihood of the diagnosis malignant SOL of the orbit 

or extension of an orbital malignancy was assessed taking into account the clinical presentation. 
The CT and MRI images were read in the normal everyday routine. The result is therefore a 
measurement of the performance of the diagnostic system in the clinical context, including the 
reader and his/her day-to-day variations of performance (10), rather than the diagnostic test 
alone. The above implies that the conclusions from this study are only valid for the clinical 
context in which the study was set. The diagnostic procedures were always done in the same 
sequence, first clinical evaluation then CT then MRL Our objective was to assess the increment 
in information after doing CT or MRI as compared to the information provided by clinical 
evaluation alone. 

One of the false positive MRI results was a case of persistent hyperplastic primary vitreous 
(PHPV) which was diagnosed as retinoblastoma (see figure 2). In retrospect the diagnosis 

retinoblastoma would not be made on the basis of the MR images and a similar case which 
presented a few months later was diagnosed correctly. We have not adjusted the results for this 
"learning effect" assuming that such mistakes tend to occur in the daily routine even after an 
initial learning phase. 

Histology, surgery or angiography were considered the golden standard. However, not all cases 
could be verified because performing an invasive procedure would have been unethical in the 
cases concerned. A mathematical correction for this verification bias was applied. The key 
assumption of this method is that selection for verification is determined by "visible factors" as 

the test result and clinical presentation. This is a valid assumption because at the time of workup 
the definitive diagnosis is unknown and the decision to operate or do another procedure is 

determined by the test results and clinical findings. 

To construct the ROC curves we divided the diagnostic truth into two categories. The choice 
of the division should be clinically relevant, preferably determining the choice of treatment. In 
this study the diagnostic truths were malignant SOL of the orbit or extension of a malignant 
orbital lesion versus no malignant disease of the orbit. The diagnosis malignant SOL of the orbit 
implies a poor prognosis for survival without treatment: enucleation of the orbit should be 

performed. A benign SOL of the orbit does not always require such an aggressive approach: 
aggressive treatment is indicated only if vision is threatened. However, there is some overlap 
between the two chosen groups: adult optic glioma, histologically a benign lesion, has a poor 
prognosis for both vision and survival and should probably be treated more aggressively than 
a benign lesion (1). 
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No statistically significant difference in test performance of either CT or MRI compared to 
clinical evaluation could be demonstrated suggesting that clinical presentation, taking into 
account clinical features as age, is a good predictor in evaluating orbital lesions. However, the 
group studied was quite limited so that a small difference in area under the ROC curves could 
go undetected (9). Furthermore, two factors probably augmented the performance of clinical 
evaluation. Firstly, all patients in our series could be examined very well by means of oph
thalmoscopy, which is not always the case in the daily routine. Secondly, our series does not 
include many potential pitfalls for clinical evaluation for example retinal detachment with 

haemorrhage can clinically easily be confused with melanoma whilst MRI can theoretically 

distinguish the two. 

In this analysis we have concentrated on the incremental value of CT and MRI over clinical 

evaluation alone and found that by doing a CT or MRI no extra information was obtained. With 

increasing budget constraints it could be valuable to assess the incremental information provided 
by expensive technologies as CT and MRI over and above the information provided by clinical 
evaluation alone instead of only comparing imaging techniques. This may lead the way to more 
efficient use of modern technology. 

In conclusion, although MRI performs better than CT, neither MRI nor CT can be demonstrated 
to provide significantly more information than clinical evaluation in the diagnosis of orbital 
SOL. Further assessment of the test performance of CT and MRI could provide us with a limited 
set of indications for using these technologies in the evaluation of orbital SOL. 
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ABSTRACT 

The L/S ratio and the SPC measurement, amniotic fluid tests performed to assess fetal pulmonary 
maturity, are evaluated with an ROC analysis. The effect of covariates on the ROC curves is 
analyzed with a regression methodology, which takes into account all the available data when 
constructing an ROC curve for each subgroup. To correct for verification bias we use a logistic 
regression analysis to model the probability of verification, thereby permitting correction for 
verification bias of a fully stratified data set in spite of small cell frequencies. We examine 
combination testing with prediction rules using prospective logistic modelling, including as 
variables test results and clinical features. 
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The LIS ratio is a significantly better test than the SPC test. For high gestational age the L/S 
and SPC tests perform better than for low gestational age. Contamination of the specimen 
degrades the ROC curves. Correcting for verification bias does not influence the ROC curves 
significantly but changes the cutoff value of the test variable for any particular operating point. 
The use of prediction rules to evaluate combination testing shows that performing the SPC test 
in addition to the L/S test adds no significant information compared to performing only the L/S 
test. Including gestational age in the prediction rule of either test improves the prediction. 

I. INTRODUCTION 

An infant with immature lungs has a risk of developing respiratory distress syndrome (RDS) of 
the newborn. Faced with the decision to continue or prematurely deliver a complicated preg
nancy, obstetricians often use amniotic fluid testing to assess pulmonary maturity, thereby 
permitting delivery of infants at low risk for respiratory distress syndrome (RDS). The 
lecithin/sphingomyelin (L/S) ratio is the biochemical test most used. Numerous alternative 
amniotic fluid tests, such as the saturated phosphatidyl choline (SPC) assay, have been reported 
but none have come into widespread use. 

Published studies concerning the L/S ratio and related tests (7,19,25) report sensitivity and 
specificity using a single conventional cutoff value to distinguish between diseased and non 
diseased. Unfortunately, the use of numerous variations in assay technique for the LIS ratio by 
different investigators makes direct comparisons between studies meaningless (7). Furthermore, 
the appropriate cutoff value in practice depends on the clinical context and patient population 
in which the test is used. Receiver operating characteristic (ROC) methodology circumvents 
these problems, as it presents pairs of true positives and false positives for the full range of 
possible cutoff values, and the ROC indices do not depend on the choice of a particular operating 
point (16). The area under the ROC curve is a convenient summary measure of test perforn1ance 
and is useful for comparing tests (10,11,16). 

The use of ROC analysis, however, is not a panacea. A number of methodological problems 
exist which are the focus of this paper. Covariates can have a major impact on the ROC curve 
(20). Various forms of bias can influence the evaluation of test performance, of which verification 
bias is an important one (3). Furthermore, when multiple diagnostic tests are available it is of 
interest not only to choose the best test but also to consider combination testing. 

In testing for fetal pulmonary maturity, gestational age of the fetus is a critical covariate (26). 
Investigators reporting the evaluation of the L/S ratio and related tests have generally assumed 
that sensitivity and specificity do not change with increasing gestational age (7,25,26). In view 
of the biological changes of lung maturation with increasing gestational age, this assumption is 
probably incorrect (23). However, in stratifying the data set for the covariate gestational age, 
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the subgroups are likely to become so small that calculations become meaningless. To cope with 
this problem, we use a general regression methodology (24) to determine the effect of gestational 
age on the ROC curves of the L/S ratio and related tests. 

Contamination of the amniotic fluid specimen with blood or meconium can be considered a 
second covariate. Because contaminated specimens give inaccurate results, these have con
ventionally been eliminated from the analysis when evaluating fetal lung maturity (25). How

ever, as many as 20 % of specimens are contaminated. Obtaining no results from such a 
substantial proportion of tests is a serious clinical handicap, so a few centers assay the specimens 
and report the results accompanied by cautionary disclaimers. Therefore, the clinician needs a 
measure of how good the test is for uncontaminated and contaminated specimens separately. 
Instead of disregarding the contaminated specimens, we constructed a separate ROC curve for 
these specimens. 

Many types of bias can influence the estimates of the test parameters, such as verification bias, 
uninterpretability bias, test review bias and absence of a definitive gold standard (3,20). Ofthese 

biases, verification bias is of major concern in this analysis. 

Verification bias exists when not all subjects tested undergo the definitive procedure to assess 
true disease status (1). In testing for fetal pulmonary maturity the gold standard is the devel
opment of respiratory distress syndrome (RDS) of the newborn and delivery is therefore the 
definitive procedure to assess true disease status. The result of amniotic fluid testing is considered 
verified if the baby is delivered within a set time limit after collection of the specimen, con

ventionally 48 to 72 hours. Waiting longer would mean that the lungs can mature further and 
the test result would no longer be representative of pulmonary status at birth. If the test results 
indicate immaturity of the fetus, every effort will be undertaken to delay delivery, thus resulting 
in a test result which has not been verified by the gold standard. Delivery of a fetus with an 
immature test result usually occurs from circumstances beyond the clinician's controL Immature 

(positive) test results are thus less likely to be verified than mature (negative) test results. 
Consequently, true and false positive test results will be missed to a greater extent than true and 
false negatives, implying that the true positive and false positive rates calculated from the verified 
sample will be biased in that they are underestimates ofthe actual rates. That is, the sensitivity 
(true positive rate) will be underestimated and the specificity (1-false positive rate) will be 
overestimated. A mathematical correction (1) for this bias can be applied to the data set. 

Faced with different diagnostic procedures to test for a disease, it is important not only to choose 
the best test but also consider combinations of tests. Although combination testing of amniotic 
fluid tests has been studied (9, 14 ), the problem has not been addressed using ROC methodology. 
Various approaches are possible to select an optimal combination of tests taking clinical features 
into account (5, 12). A convenient approach is to create prediction rules based on clinical features 
and test values by means of regression analysis. Creating prediction rules is not novel in fetal 
pulmonary maturity testing (18,23), but ROC curves of the prediction rules have not been 

constructed and gestational age has only sporadically been included as a variable (23). In studying 
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fetal pulmonary maturity tests we developed a prediction rule based on the gestational age, the 
LIS ratio and SPC test. With multivariate regression techniques and ROC curves of the prediction 
rules we determined which tests add significant information to the predicted probability of RDS. 

II. METHODS 

1. The study population and baseline ROC analysis 

The log book of the Fetal Lung Maturity Laboratory of the Boston Lying-In Hospital and 
subsequently the Brigham and Women's Hospital was used to identify all women who had 
delivered within 72 hours following amniotic fluid testing in the years 1979 to 1983 and calender 
year 1987. Specimens were analyzed for L/S according to the technique of Gluck and for SPC 
according to the technique of Torday, and were processed regardless of contamination with 
blood or meconium. Mother's and infant's charts were abstracted. All newborns requiring 
oxygen were reviewed by a single reviewer, as were all deaths. In addition, test results of fetuses 
tested but not delivered within 72 hours were recorded during the period 1981 to 1982. In total 
854 verified cases and 653 unverified cases were recorded. 

A positive test in this setting is a test result that su5gests pulmonary immaturity (ie. that predicts 
the development of respiratory distress syndrome of the newborn.) The "gold standard" is the 
development of RDS in the newborn. 

The definitive diagnosis or outcome is one of two disease classes: disease (respiratory distress 
syndrome of the newborn (RDS)); no disease (no RDS). Respiratory problems such as transient 
tachypnea ofthe newborn (TIN), ventilatory support for apnea, chronic pulmonary insufficiency 
of extreme prematurity, pneumonia and neonatal hydrops were counted as "no RDS". Infants 
with congenital anomalies of the cardiopulmonary system were excluded. Eleven patients had 
an atypical clinical picture of RDS and these were omitted from the baseline ROC analysis. 
Also omitted from the baseline analysis were uninterpretable test results, contaminated speci
mens and unverified cases. 

2. Covariates 

Covariates may affect the performance, and thus the ROC curves, of diagnostic tests (20,24). 
The simplest approach to analyze this effect is to stratify the data set into subgroups. In this 
analysis gestational age is the major covariate. We stratified the data set into subgroups by 
gestational age as follows: ::; 28 weeks; > 28 but::; 32 weeks; > 32 but::; 36 weeks; > 36 weeks. 
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Contamination of the amniotic fluid specimen with blood or meconium is a second covariate. 
If the specimen is contaminated by blood or meconium the test is not entirely uninterpretable, 
but the test result may be altered by the contaminant. In particular, blood and meconium have 
an L/S ratio of about 2, and so will change the specimen's L/S ratio towards this value. The L/S 
ratio of contaminated specimens may, therefore, be less adequate in discriminating disease from 
non-disease. Theoretically, contamination should not influence the SPC measurements. We 
subdivided the data into contaminated specimens (either blood or meconium) and uncontami
nated specimens and constructed ROC curves for both type of specimens. 

A problem of dividing the data by covariates is that the subgroups are often so small that the 
ROC curves and related statistics become too imprecise to interpret reliably. Furthermore, if the 
covariate is continuous, this property will not be accounted for. The use of a regression meth
odologyis helpful in adjustingforcovariates (15,24). Such an approach allows one to additionally 
adjust for other covariates. We implemented the regression methodology using the software 
package PLUM (15,24). PLUM is an interactive program for the analysis of ordinal data, which 
may be used to model ROC curves. The data is entered as a frequency table, together with the 
covariates, and interactively a model is fitted. The program produces parameter estimates that 
define the model, which are then used to generate the ROC curve. 

3. Verification bias 

Workup bias or verification bias ( 1 ,8,20) exists when not all subjects tested undergo the definitive 
procedure to assess true disease status. The test result, often in combination with clinical features, 
can influence the decision to verify the diagnosis. 

An amniotic fluid test is considered verified if delivery of the baby occurs within 72 hours of 
specimen collection. If the baby is delivered later than 72 hours after collection of the specimen 
further maturation will occur and the test is not representative: such a test result is therefore 
unverified, meaning that there is no gold standard against which to determine the correctness 
of the test result for such a case. In the setting of this analysis the selection for verification 
(delivery) is greater among negative (mature) test results than among positive (immature) test 
results (3), and the true positive and false positive rates calculated from the verified sample will 
be underestimates of the actual rates. The decision to delay delivery (if at all possible) will be 
influenced by gestational age and the test results. 

The mathematics of the correction for verification bias is best explained with an example, which 
is given in Appendix 1. The basic assumption is that selection for verification (and thus the 
probability of verification) depends on clinical factors and test results, and does not depend 
directly on true disease status. An equivalent assumption is that the predictive values are the 
same for the verified and source population (1,8). As shown in appendix 1, if we subdivide the 
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population into cells containing the frequency of a particular combination of clinical features 
and test results, the estimated frequency of that cell in the source population is the cell frequency 
in the verified sample divided by the probability of verification for that cell. 

Assuming that gestational age, the L/S test and the SPC test together influence the decision to 
deliver the baby, we need to correct the data set for all three. The estimated frequency in the 
projected source population of a particular combination of gestational age, L/S and SPC results, 
is the frequency in the verified sample, divided by the probability of verification given that 
combination. 

An arithmetical problem arises when we attempt to determine the probability of verification by 
sub grouping into categories for gestational age and the two test results: the subgroups are very 
small and some cells are empty. A solution to this problem is to perform a logistic regression 
analysis on the probability of verification, which takes into account all the available data. We 
have chosen to do the regression analysis using the values of the variables on the continuous 
scale (not categorized). Subsequently we corrected the frequency tables for each test by dividing 
by the expected probability of verification as determined by the regression model. This corrects 
the data of each test for verification bias caused by multiple factors: gestational age, L/S ratio 
and SPC measurement. 

The standard error of the area under the corrected ROC curve can never be smaller than that of 
the baseline ROC and the greater the proportion of unverified cases present, the more uncertain 
we will be of the actual state of affairs. The corrections for verification bias inflate the apparent 
sample size and will result in an underestimate of the standard error. Furthermore, because the 
unverified cases were recorded during only one third of the total study, we counted each 
unverified case as approximately 3 cases. This further inflates the apparent sample size. To 
estimate the standard error of the corrected curve we deflated our projected source population 
to be equivalent in total size to the verified sample. To validate this crude estimate we also 
calculated the standard error using formulas published elsewhere (1). 

4. Combinations of tests and prediction rules 

We used logistic modelling to derive a prediction rule for RDS. The dependent, or predicted, 
variable was the probability of RDS, and the independent variables were gestational age, the 
L/S ratio and the SPC measurement. Subsequently, prediction rules were derived using as 
variables 1) gestational age only, 2) the L/S ratio only, 3) the SPC measurement only, 4) ges
tational age and the L/S ratio, 5) gestational age and the SPC measurement and 6) the L/S ratio 
and the SPC measurement. Only verified cases were included to estimate the parameters of the 
prediction rules. With standard regression techniques we determined if a variable was significant 
in the regression equation compared to the (less complex) model without it (using the Likelihood 
ratio test (13,22) ). The predicted probability of disease was then used as a combination test result 
and an ROC curve of the prediction rule was constructed by using different cutoff points on the 
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predicted probability scale. For example, for a cutoff point p the test is positive if the predicted 
probability is :2: p and negative if the probability < p. The difference between the ROC curve 
based on the prediction rule of gestational age and both tests compared to the ROC based on 
gestational age and only one test, is a measure of how much information is obtained from 
performing the extra test. 

5. Technical details 

The test results in this analysis are on a continuous rather than an ordinal scale. We have chosen 
to treat the data as ordinal where applicable. The test results were divided into 15 categories. 
For the analyses of subgroups we divided the test results into 10 categories, since the sample 
size is smaller in these cases. A more refined division will not give much more information (21 ). 
The cutoff points were chosen in such a way that the pairs of true positive and false positive 
rates are fairly evenly distributed along the ROC curve. 

The Mann Whitney U statistic (equivalent to the trapezoidal rule) was used to calculate the area 
under the ROC curve (4,10). We checked a number of our calculations with the Dorfman Alf 
algorithm (6) and found that with 10 to 15 cutoff points that are evenly distributed the two 
methods give practically the same results. The standard error of the area was calculated using 
the Hanley-MeN eil algorithm (1 0). Smooth curves were constructed with a least squares estimate 
of the normal deviate values of the true and false positive rates. 

We used a two-sided paired t-test to compare the areas under two ROC curves, taking into 
account the correlation between test results performed on the same cases (11). The correlation 
coefficient used in the t-test was found in table I of reference 11, which is a coefficient repre
senting the correlation between the areas under two ROC curves derived from the same cases. 

The ROC indices of the baseline curves and the curves stratified for covariates, as well as the 
corresponding t-test statistics for comparing the curves, were calculated using standard tech
niques as described above. After applying the regression methodology for gestational age, we 
calculated the indices and statistics using the standard techniques, assuming that the correlation 
between test results derived from the same cases is the same as without modelling. The sig
nificance of gestational age on the ROC curves was calculated from the parameter estimates of 
the regression model. The data corrected for verification bias was treated as if it were raw data, 
after having deflated the projected source population to be equivalent in total size to the verified 
sample (as described in paragraph 3). For the comparative statistic between the LIS and SPC 
test after correction for verification, we used the same correlation coefficient as for the baseline 
curves. To compare the baseline curve with the curve corrected for verification bias, we used 
two alternative assumptions: a correlation coefficient equal to 0, and equal to the fraction of 
verified cases. The significance of including an extra variable in the prediction rule was derived 
directly from the logistic model. 
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Table 1. Frequency tables of test results in the verified sample. For illustrative purposes the results have 
been divided into 5 categories for the L/S and 6 for the SPC, instead of 15 as used in the analysis. 

a) LIS ratio 

L/S ratio: range 0.1-0.9 1.0-1.7 1.8-2.2 2.3-2.9 3.0-9.9 

disease 7 26 7 5 2 

no disease 8 53 80 120 363 

b)SPC 

SPC: range 1 251 501 751 1001 >1250 
-250 -500 -750 -1000 -1250 

disease 14 18 6 6 1 2 

no disease 21 57 104 124 79 239 

Table 2. Areas under the ROC curves and their standard errors. 

ROC description L/S SPC 
area( error) area( error) 

1. Baseline .90 (.02) .85 (.03)1 

2. Effect of covariates 
a) gestational age: 

stratification: 
25-28 weeks .76 (.10) .65 (.11) 
28-32 weeks .84 (.05) .84 (.04) 
32-36 weeks .87 (.04) .83 (.05) 

regression(PLUMi: 
25-28 weeks .70 (.09) .65 (.10) 
28-32 weeks .85 (.04) .85 (.04) 

32-36 weeks .87 (.04) .80 (.05) 

b) contaminated specimens .84 (.04) .79 (.07) 
3. Corrected for verification bias .88 (.02) .83 (.03)2 

1 comparing L/S and SPC: p=0.02 
2 comparing L/S and SPC: p=0.005 
3 effect of gestational age: L/S: p=0.0005 SPC: p=0.025 
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Ill. RESULTS 

1. The baseline ROC curves 

Table 1 enumerates the frequencies of the test results versus disease and figure 1 presents the 
baseline ROC curves for L/S and SPC. These curves are based on all gestational ages, and 
restricted to uncontaminated specimens and verified cases. The calculated areas (table 2) are 
0.90 for the L/S and 0.85 for the SPC test. All subsequent analyses and corrections were done 
using the baseline ROC's as starting point. 
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Figure 1. Baseline ROC curves of the L/S ratio and SPC measurement in testing for fetal pulmonary 
maturity. Observed points (symbols) and smoothed curves. 
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2. Covariates 

a) Gestational age 

We stratified the data set into subgroups by gestational age. The ROC curves of the subgroups 
are shown in figure 2 and the indices tabulated in table 2. In the subgroup of gestational ages 
beyond 36 weeks there are no cases of RDS and it is therefore impossible to draw an ROC curve 
for this subgroup. For both the L/S and the SPC the area under each of the 3 ROC curves is 
smaller than the area under the baseline curve because the cases contributing strongly to 
specificity of the baseline curve are those beyond 36 weeks gestational age. 
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Figure 2. ROC curves for different gestational ages using stratified data set. 1: ~ 28 weeks, 2: > 28 ~ 32 
weeks, 3: > 32 ~ 36 weeks. 

As can be seen from figure 2 the L/S curve for the youngest gestational age group is not a 
"proper" ROC curve, that is, the curve is not uniformly convex towards the upper left corner 
(17). This often happens when drawing curves for small samples. Using the software package 
PLUM we performed a regression analysis for the covariate gestational age. The resulting curves 
are shown in figure 3 and the indices are summarized in table 2. The effect of gestational age 
on the area under the ROC curve is statistically significant (p=0.025), after modelling with 
PLUM, for both the L/S and the SPC: both improve with increasing gestational age. 
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Figure 3. ROC curves for different gestational ages generated by PLUM rgeression technique. 1: ~ 28 
weeks, 2: > 28 ~ 32 weeks, 3: > 32 ~ 36 weeks. 

b) Contamination 

19% of all verified specimens were contaminated with blood and 3% were contaminated with 
meconium. The contaminated specimens were omitted in the baseline analysis, as is customary 
in reports on fetal pulmonary maturity testing. Although not statistically significant, the ROC 
curve for each test is worse for contaminated specimens than for uncontaminated specimens 
(table 2). The results of contaminated specimens, however, provide discriminatory power 
compared to the null result if the specimen is discarded. 

3. Correcting for verification bias 

We performed a logistic regression analysis on the probability of verification, modelling the 
variables gestational age (GA), the L/S ratio (LS) and the SPC value (SPC) using the values on 
the continuous scale. The logistic regression equation is of the form 
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Table3. Frequency tables of test results in the projected source population after correction forverification 
bias for a) the L/S test and b) the SPC test (compare with table 1). 

a) LIS ratio 

L/S ratio: range 0.1-0.9 L0-1.7 1.8-2.2 

disease 42 149 33 

no disease 44 266 341 

b) SPC 

SPC: range 1 251 501 751 
-250 -500 -750 -1000 

disease 85 101 26 26 

no disease 114 266 408 406 

The parameter estimates from the logistic regression analysis are: 

~0 =-4.225 

~1 =0.074 

~2=0.179 

~3 =0.00030 

2.3-2.9 

21 

426 

1001 
-1250 

3 

224 

(Note that theWs are not comparable because they are in different units.) 

3.0-9.9 

6 

922 

>1250 

9 

581 

To illustrate this regression model, consider a fetus of 28 weeks gestational age with an L/S 
ratio of 1.8 and an SPC value of600. Substituting these values in the above equation we determine 
that a fetus with this combination of test results and clinical features will have a 16% probability 
of being delivered (in other words the probability of verification is 16% ). If the gestational age 

is 34 weeks, the L/S 6.4 and the SPC 1125 the probability of delivery is 44%. The model predicts 
that the more mature the test results are, the more likely the tests will be verified by delivering 

the baby. 
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Figure 4. Baseline ROC curve and ROC curve after correction for verification bias for the L/S ratio. 
Three operating points are indicated to illustrate their shift after correction for verification. Note that 
these are observed points, that is before the curve is smoothed. Open squares are uncorrected and solid 
squares are corrected operating points. 

We corrected the cell frequencies of the cross tabulation by dividing by the probability of 
verification as determined by the logistic model, substituting the median values of gestational 

age, L/S ratio and SPC value for each cell in the above equation. Table 3 gives the frequency 
table of test results in the projected source population. After correction for verification bias the 
ROC curves (Figure 4) and the calculated areas (Table 2) are similar to the baseline ROC curves 
and areas. However, the location of the operating points have shifted up on the ROC curve 
(Figure 4). This implies that although the shape of the ROC curve is not greatly affected by 

verification bias in this analysis, the sensitivity and specificity at any particular cutoff value of 
the test variable are clearly affected (see also Appendix 1). 
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Figure 5. Predicting RDS based on gestational age and either the L/S ratio or the SPC measurement 
The curves shown are for 27, 31, 35 and 39 weeks gestational age. 
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Table 4. Results of statistical tests of the prediction rules, comparing a less complex model 1 with a 
more complex model2. Area under the ROC curves and the standard error of the area. The variables are 
GA=gestational age, L/S=L/S ratio and SPC=SPC measurement. 

variables in model 1 variables in model2 pvalue 

GA GAandL/S <0.0001 
GA GA andSPC <0.0001 
L/S GA andL/S <0.0001 
L/S L/S and SPC 0.6 
SPC GA andSPC <0.0001 
SPC L/S and SPC <0.0001 

GAandL/S GA, L/S and SPC 0.4 
GA andSPC GA, L/S and SPC <0.0001 
LIS and SPC GA, L/S and SPC <0.0001 

ROC curves of the prediction rules: area (error) 

GA .85 (.02) 
L/S .90 (.02) 
SPC .85 (.03) 

GAandL/S .92 (.02) 
GAand SPC .90 (.02) 
L/S and SPC .90 (.02) 

GA, L/S and SPC .92 (.02) 

4. Combination testing and prediction rules 

The logistic regression equation used to predict RDS on the basis of gestational age (GA), the 

LIS ratio (LS) and SPC measurement (SPC) is of the form: 

+ 1 
P(D I GA,LS,SPC) = 

1 
-(~o+~1 ·GA+~z·LS+J)3 .spc) +e 

In addition to this comprehensive prediction rule, we derived 6 other prediction rules using as 

variables: 

1) gestational age only 

2) the L/S ratio only 

3) the SPC measurement only 
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4) gestational age and the L/S ratio 
5) gestational age and the SPC 
6) the L/S ratio and the SPC measurement 

The logistic regression was performed including the verified cases only. Plotting the predicted 
probability of RDS as function of the selected variable(s) for the prediction rules 4 and 5, we 
derive the graphs given in figure 5. The graphs show, as one would expect, that forlow gestational 
age or low L/S or low SPC, the probability of disease is high, and that the predicted probability 
of disease decreases with an increase in any of the three variables. 

Results of the statistical tests and the indices of the ROC curves "f the prediction rules are 
summarized in table 4. The analysis demonstrates that including gestational age as variable into 
the prediction rule is significant. The L/S test adds significant information even if the SPC test 
and gestational age are in the prediction rule. However, the addition of the SPC test if the L/S 
is in the prediction rule is not significant. 

IV. DISCUSSION 

ROC analysis is a convenient method for comparing diagnostic tests and may provide insight 
into the practical use of diagnostic tests. However, as mentioned before, it is not a panacea and 
a number of methodological issues exist. Covariates may influence the ROC analysis consid
erably. Verification of only a subgroup of the tested subjects may bias the test parameters and 
ROC curve. Furthermore, when multiple diagnostic tests are available one has to consider 
combination testing. 

ROC analysis of the data on fetal pulmonary maturity testing provides interesting insights into 
the clinical use of the L/S ratio and SPC measurement. A baseline analysis of all gestational 
ages, restricted to verified cases and uncontaminated specimens, showed that the LIS ratio is 
significantly better than the SPC test. As illustrated by the analysis, evaluating diagnostic tests 
with ROC analysis brings with it a number of methodological issues that can substantially affect 
the ROC curve and its indices. 

The effect of covariates on an ROC curve can be examined in two ways: by dividing the pop
ulation into subgroups or by use of a regression methodology. The former approach is often 
impractical, as the sample sizes of the subgroups tend to be too smalL Using a regression 
methodology takes into account all the available data when constructing an ROC curve for each 
subgroup. This leads to more meaningful ROC curves with smaller standard errors of the cal
culated ROC indices. 

Analyzing the data set stratified for covariates showed that gestational age influences the ROC 
curves. Both the L/S and SPC tests perform better for higher gestational ages. Analysis of the 
data set with prediction rules also showed that gestational age should be taken into account when 
interpreting the test results. 
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As expected, the test performance of the LIS test for contaminated specimens is worse than the 
same test with uncontaminated specimens. Contrary to what we expected, the SPC test was also 
worse for contaminated specimens, although the difference is not significant. The difference in 
test performance for contaminated specimens between the L/S ratio and the SPC is not statis
tically significant. 

When correcting for verification bias in this multiply stratified data set, there was a problem of 
small cell frequencies. A logistic regression analysis was used to model the probability of 
verification, in order to make appropriate corrections. 

If verification is subject to selection bias, as is often the case, correcting for this bias may result 
in a similar or identical ROC curve with the same overall test performance. However, verification 
bias will change the sensitivity and specificity of any particular cutoff value of the test variable 
and shift the operating points along the ROC curve. We observed this phenomenon in our 
analysis. Consider, for example, the routinely used cutoff value of 2 for the L/S test. A cutoff 
value of2 for the LIS test corresponds to a point on the baseline ROC curve with slope 0.9. The 
same operating point on the corrected ROC curve (that is the point with the same slope of 0.9) 
corresponds to a cutoff value of 1.8 for the L/S test. Correcting this data set for verification bias 
implies adjusting the chosen cutoff value of the test variable to a stricter criterion. Thus, if we 
were to perform a utility analysis, the optimal operating point could be affected by verification 
bias. 

A number of other biases are relevant in ROC analysis (2,3). We analyzed the data set to account 
for uninterpretable test results, test review bias and bias due to absence of an unequivocal gold 
standard. These three types of bias had little effect on the results and are therefore not presented 
in detail. 

Prediction rules based on test results and clinical features are convenient in analyzing combi
nation testing. Using standard regression techniques one can determine whether the inclusion 
of a test variable in the prediction rule is significant. ROC analysis of the prediction rules is 
another method of estimating the additional information obtained by performing an extra test. 

The use of prediction rules to evaluate combination testing shows that performing the SPC test 
in addition to the LIS test adds no significant information compared to the LIS test only. Taking 
gestational age into account in the prediction rule improves the prediction as compared to using 
only the test result(s). From the prediction model we derived graphs convenient for clinical use 
in predicting fetal pulmonary immaturity based on gestational age and either the L/S test or the 
SPC test (Figure 5). Using the prediction rule ofthe L/S ratio only, we calculate that the routinely 
used L/S ratio of 2 corresponds to a predicted probability of RDS of 11%. If we assume that the 
routinely used cutoff value of 2 for the L/S test corresponds with the desired cutoff value of 
predicted probability of RDS, then the same predicted probability should apply for different 
gestational ages. A predicted probability of 11% would correspond, for gestational ages of 27, 
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31, 35 and 39 weeks, to LIS cutoff values of 2.8, 2.2, 1.6 and 1.0 respectively (Figure Sa). In 
other words, the higher the gestational age, the stricter the criterion for a positive (immature) 
L/S ratio should be. 

In conclusion, various issues should be considered when evaluating diagnostic test performance 
with ROC methodology, such as the effects of covariates on test performance, corrections for 
verification bias and combination testing. In performing an ROC analysis of the L/S ratio and 
the SPC measurement for fetal pulmonary maturity testing we found that these methodological 
issues affect results substantially enough to impact clinical decision making. The L/S ratio is a 
better test than the SPC test. For high gestational age the L/S and SPC tests perform better than 
for low gestational age. Contamination of the specimen degrades the ROC curves but still 
provides clinically important information compared to discarding the specimen. Correcting for 
verification bias does not influence the ROC curves significantly but changes the cutoff value 
of the test variable. The use of prediction rules to evaluate combination testing shows that 
performing both the L/S and SPC test adds no significant information compared to performing 
only the L/S test, and that including gestational age into the prediction rule of either test improves 
the prediction. 
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VI. APPENDIX 

1. Illustration of mathematical correction for verification bias 

In this appendix we describe the mathematical correction for verification bias with an example. 
The basic assumption is that selection for verification (and thus the probability of verification) 
depends on clinical factors and test results, and does not depend directly on true disease status. 
An equivalent assumption is that the predictive values are the same for the verified and source 
population (V.,8). 

To understand how the correction for verification works, it is useful to consider a situation where 
selection for verification depends only on the test result and the test result is dichotomous. For 
example, consider the LIS ratio using a cutoff value of 2 to distinguish positive from negative 
tests; that is, an L/S ratio s 2 is an immature test result and an LIS ratio > 2 is a mature test 
result. Assume, for this example, that the decision to deliver the baby depends only on the test 
result. The cross tabulation, based on our data set, is given in Table a. 

Neglecting the unverified cases we calculate the true positive rate, false positive rate and the 
predictive values as follows: 

true positive rate 32 I 42 0.76 
false positive rate 106 I 616 0.17 
predictive value positive 32 I 138 0.23 
predictive value negative 510 I 520 0.98 

The probability that the diagnosis is verified (that is the baby is delivered) can be expressed 
conditionally on the test result as follows: 

probability of verification 
given a positive test result 138 I 912 = 0.1513 
given a negative test result 520 I 1368 = 0.3801 

If a sample is a fraction f of a source population, the source population will be 1/f times the size 
of the sample. Thus, given the assumption that the probability of verification depends only on 
the test result, we estimate the source population by dividing each cell frequency by the prob
ability of verification given the test result. The 2 x 2 frequency table of the projected source 
population is given in table b. 

Calculating the true positive rate, false positive rate and the predictive values of the projected 
source population we get: 

true positive rate 2111237 0.89 
false positive rate 70112043 0.34 
predictive value positive 211 I 912 0.23 
predictive value negative 134211368 0.98 
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Table a) Verified sample and number of unverified cases. 

disease 
no disease 

TOTAL VERIFIED 
UNVERIFIED 

Table b) Estimated source population. 

disease 
no disease 

positive 

32 
106 

138 
774 

positive 

32/0.1513 = 211 
106/0.1513 = 701 

negative 

10 
510 

520 
848 

negative 

10/0.3801 = 26 
510/0.3801 = 1342 

Therefore, the observed true and false positive rates calculated from the verified sample are 
lower than the actual rates calculated from the projected source population whilst the predictive 
values are the same. This example only shows what happens for a 2 x 2 table, but for any 
categorization of the test results the same arithmetic is applicable. If the test result is divided 
into k categories and the clinical features into n subgroups, we would correct a 2 x k x n table 
using the same method. In general we can subdivide the population into cells containing the 
frequency of a particular combination of clinical features and test results. The probability of 
verification for a particular cell is the number of verified cases divided by the number of verified 
plus unverified cases of that cell. The estimated frequency of that cell in the source population 
is the cell frequency in the verified sample divided by the appropriate probability of verification. 
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The number of decision analyses published in medical journals is gradually increasing. Many 
clinicians, however, tend to be skeptical about the methodology. There are numerous reasons 
for the somewhat slow acceptance. Some theoretical aspects of decision theory are poorly 
understood by clinicians who are not used to thinking in mathematical terms. The validity of 
the method is questioned by critics, as discussed in section 1.2 of this chapter. Besides the 
theoretical aspects, many practical problems exist in applying decision theory in medicine, 
discussed in sections 1.1,3,4 and 5. Finding appropriate data (1.3) and assessing patient prefer
ences (1.4) are major issues that remain problematic. However, advances are being made with 
the development and application of decision analytical techniques, computer software and 
teaching. The first part of this chapter discusses theoretical aspects of decision theory and 
practical aspects in applying clinical decision analysis. The second part of the chapter discusses 
theoretical and practical aspects of the use of receiver operating characteristic (ROC) method
ology. 
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I. DECISION ANALYSIS 

1. Structuring the decision 

Modelling a decision always involves a compromise between simplicity and reality. In modelling 
a clinical decision one should ensure that the trade-offs involved arc represented fairly. Sim

plifying assumptions should be stated explicitly and the impact of the simplifying assumptions 
on the outcome of the analysis should be discussed. Even a simple crude decision analysis may 
solve the greater part of the problem. An illustrative example of a decision analysis was presented 

in chapter III, which concerned the workup in suspected renovascular hypertension, modelling 

the trade-off ofthe risk of a workup versus the benefit of being able to treat a renal artery stenosis, 

if present. 

A decision tree, Markov model or combination of the two are the means of structuring a decision. 

Choosing which type of model to use may be difficult. If the decision concerns a problem with 

a short time horizon and a non-recursive structure, then a decision tree provides the more 

convenient model. In chapter III the choice of workup and treatment in suspected renovascular 

hypertension is modelled with a decision tree. We chose to keep the time horizon short, namely 
workup and treatment, and the model does not take into account the possibility of treatment for 
long-term restenosis after angioplasty. Instead, the model includes the overall long-term clinical 

success. 

If structuring the problem in a decision tree results in multiple branches due to recursive events, 

modelling the problem, or part of the problem, with a Markov process usually yields a more 

convenient and computationally quicker model. Markov processes are commonly used to model 

prognosis of chronic diseases. However, a problem with a short time horizon may also be 

conveniently modelled as a Markov process if the events are recursive and/or the problem 

encompasses many time-dependent risks. Chapter IV presents an example of a problem with a 

short time horizon, modelled with a combination of a Markov process and decision tree structure. 

The problem concerns the decision whether to intervene for acute urinary tract obstruction and 
involves time-dependent risks, such as the risk of losing renal function of the affected kidney 
which depends on the duration of the obstruction. If the decision can be modelled as either a 

decision tree or (partly) as a Markov process, it helps structuring the problem using more than 
one method. If the models agree, this supports the results. 

To simplify a decision analysis a useful technique is to bias the strategies such that the model 

underestimates the expected utility of the strategy likely to be best and overestimates the expected 

utility ofthe other strategies. The bias may involve the structuring of the problem and/or deciding 

on which data are appropriate for the analysis. For example, in chapter IV we biased the options 

away from intervention and towards medical management by assuming that if obstruction of 

the urinary tract recurs after a drainage procedure, the probability of renal impairment will be 
determined by the period of time evolved since the initial decision. This implies that the applied 
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probability of renal impairment is largerthan in reality, because obstruction has been temporarily 
relieved in the meantime. Biasing the options as described was practical in that it helped restrict 
the number of Markov states. Another bias could be to use lower limits for variables involving 
risks of expectant management, and upper limits for variables involving risks of interventional 
procedures. If the analysis shows that a strategy is best, in spite of the bias against it, we can be 
fairly confident of the result. 

2. Can individual probabilities be based on relative frequencies? 

The probabilities used in a decision analysis are derived from relative frequency estimates, based 
on observations of cohorts of patients similar to the case under consideration. The empirical 
findings are subsequently applied to an individual patient, assuming that what happened on 
average in the cohort, predicts what can be expected to happen to the individuaL Critics of 
clinical decision analysis question the validity of this assumption, arguing that each patient is 
a unique individuaL However, a clinician uses the same train of thought when implicitly using 
his/her experience of similar patients to decide on the management of the case at hand. In fact, 
the above assumption constitutes the cornerstone of the empirical scientific foundation of modern 
medicine. 

For a patient different in some way from the cohort about which data are published, it may be 
possible to adjust the available data. For example, in chapter IV one of the probabilities used in 
the model is the probability of haemorrhage as a result of performing a percutaneous neph
rostomy. From the literature we estimate this probability to be 0.008. If a patient has an increased 
bleeding tendency, this probability will be higher. However, exact data on the higher probability 
are not available. We can adjust the estimated probability of haemorrhage by using a clinician's 
assessment of the likelihood of haemorrhage based on the severity of the bleeding tendency, as 
illustrated in chapter IV. At times it may even be necessary to use data from animal experiments 
to derive probability estimates, an example of which is given in chapter IV. 

3. Finding appropriate data 

In deriving probability estimates from the literature, a number of issues play a role. 

A particular relevant piece of information for a decision analysis may simply never have been 
determined. Often data exists, but are reported ambiguously or in a cryptic manner. Furthermore, 
which of the different reported values should be used, or whether a formal meta-analysis should 
be performed, need not always be evident. 

The probability of success or complications of new techniques may be reported as overall 
experience, or as experience after the learning phase. Again one may question which estimate 
should be used. The overall experience represents a less optimistic estimate, and probably reflects 
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the average hospital more reliably. After all, the published reports are usually from clinics with 
more experience in the reported technique: as has been said "you cannot always be sure that 

your patient belongs to the last hundred seen in the best clinic." Furthermore, in reporting results 
of diagnostic tests, unverified cases and uninterpretable test results tend to be disregarded, which 

may lead to over- or underestimates of the reported test parameters (see sections II.2 and 3). 

A related issue is that of publication bias (1,2). Publication bias occurs when study results 
influence the likelihood of publication. Positive findings or striking results increase the prob
ability that a paper will be written and submitted by the investigators, and the chance that the 
paper will be accepted by an editor. The chance of publication is greater if the reported results 
are statistically significant. Statistical variation alone ensures that among the trials of an inef
fective agent a number will yield false positive results, ie. will demonstrate a statistically sig
nificant effect, and due to publication bias, these false positive results may be published more 

frequently than trials demonstrating true negative results. Publication bias has consequences for 
every summary of data and, thus, for decision analysis. 

Disease entities, indications for treatment, the nature of complications and the criteria for success 

are often poorly defined by the authors of a paper, presenting another problem with finding 
reliable data. If authors do not clearly state their definition of used terminology, their results 
cannot be generalized to other similar situations. 

The denominator problem is a similar issue. Case reports and short series generally provide no 
information on the relevant denominator. Studies in which a denominator is mentioned, often 
do not report explicitly which cohort the denominator represents in calculating percentages. 
This can be very misleading, and give relative frequencies that make no sense if the chosen 
denominator is not appropriate in the context of the problem analyzed. 

Double counting constitutes a related problem. For example, a death may be counted as a per
cutaneous nephrostomy death, and at the same time as an operative death, which will lead to an 

overestimate of mortality. Double counting may occur when authors report on the same cases 

in various publications, without explicitly stating if and when patients have been reported more 
than once. For example, a patient with a fatal complication may be counted in two series, which 
may lead to an overestimate of mortality if both series are included in deriving an average 
mortality. Unfortunately, it is usually impossible to correct the data for double counting and we 
have to make do with the data there are. 

Performing a decision analysis frequently results in questions about probabilities that cannot be 
answered with a literature review. A hospital information system or an expert in the field may 

be the only source of information in these circumstances. Hospital information systems can 
provide a wealth of information but are not always easily accessible. Limitations in retrieval of 
information from these systems are the quality of the derived information, due to non-uniformity 

of definitions, and privacy constraints. However, progress is being made and methods are being 
developed in this respect. 
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When using probability estimates supplied by experts, we have to keep in mind the limitations 
of the given estimates. The consulted expert may be subject to bias, especially if he/she requested 
the analysis. Decision analysts argue that physicians, similar to other human beings, are poor 
intuitive estimators of probability (34), influenced by all sorts of biases and over-confident of 
our estimates (see Chapter 1). However, this argument cuts in two ways: on the one hand it 
motivates the use of decision analysis, but on the other hand it also suggests that we should not 
rely too heavily on expert opinion for probability estimates. If probability estimates given by 
an expert are the only data available, it is prudent to perform a sensitivity analysis over a wide 
range of values of the parameter to assess the influence of the parameter. 

An advantage of using decision analysis lies in the factthat missing data, essential to the decision, 
are identified. In this way a decision analysis ofthe problem can give direction to future research. 

4. Assessing patient preferences 

Patient preferences are major issues in decision making which are difficult to model explicitly. 
Although progress is being made, many problems remain unsolved. 

In assessing patient preferences with respect to quality of life, one should distinguish between 
the anticipated quality of life of a hypothetical event as perceived by someone faced with a 
choice, and the average experienced quality of life of a group of people with morbidity. An 
analysis for an individual patient incorporates the individual anticipated quality of life, elicited 
with the methods as described in chapter II. A generic model or cost -effectiveness analysis may 
require knowledge of the average experience of patients with morbidity, usually determined 
using questionnaires or interviews and a scoring method. Applying a protocol, based on the 
average experience of a group of patients, to an individual, may impair the freedom of choice 
for that individual. In other words, generic decision models and cost-effectiveness analyses rna y 
determine which strategy, on average, optimizes management, but the individual retains the 
right to choose and must make that choice in anticipation of things to come. A decision analysis 
that incorporates the individual anticipated quality of life, is meant to help the individual make 
that choice. The unit PALY's (preference-adjusted life years) introduced in chapter II is more 
meaningful than the unit QALY's (quality-adjusted life years) in distinguishing individual 
anticipated quality oflife from the average experienced quality oflife. Furthermore, as explained 
(chapter II) PAL Y' s can also incorporate a patient's attitude towards risk. 

The framing of the questions presents a problem in assessing patient preferences, because 
framing influences the results (26,35). If an individual chooses the same option irrespective of 
how the choices are framed, one can be confident the answer reflects the true preference. 
However, in eliciting a patient's preference one will often find conflicting answers. How to deal 

with this phenomenon remains, as yet, unresolved. 
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An associated problem is that the presented questions usually involve some probability of the 
event occurring. The perceived probability of the event may intermingle with the anticipated 
value of the outcome, which may subsequently influence the elicited preference. 

A third problem is that the available approaches to assess the anticipated quality of life with 
morbidity give different results (29). To determine the quality of life three basic methods are in 
use (see chapter II): the direct scaling (or category) method, the time trade-off method and the 
standard reference gamble. With the direct scaling method one asks the patient to mark his/her 
anticipated value of the states of ill-health on a linear scale so that the distance between the 
marks are proportional to the difference between the values of the outcomes. This procedure, 
although easy to conceptualize, tends to give lower results (in the upper part of the scale) than 
using the other two methods (29). The time trade-off method directly assesses what length of 
time in full health the patient perceives as equivalent to a specified period of ill-health. This 
method, fairly easy to comprehend for most patients, results in lower values than when using 
the standard reference gamble (29). Decision analysts consider the standard reference gamble 
the "gold standard" in assessing patient preferences (29). The question posed to the patient is 
to choose between 1) a certain intermediary outcome or 2) a gamble between a better outcome 
with probability panda worse outcome with probability 1-p. The quality factor equals the value 
of p for which the patient indicates indifference between the certain intermediary outcome and 
the gamble. The standard reference gamble appears to be difficult to comprehend and it requires 
more time to elicit a patient's preference. 

Another problem in assessing the utilities in the context of a decision analysis is whether the 
average experience of patients who have experienced the event or morbidity should be taken 
into account in one way or another. The anticipated valuation of a hypothetical event in the 
future may be quite different from that when the subject is actually confronted with the event, 
or the valuation once the event has taken place. A study done to investigate women's attitudes 
to anaesthesia during childbirth presents a good example of the effect of when the questions are 
asked (3). Questioned whether they wanted to use anaesthesia during childbirth, the attitudes 
of the women changed from declining anaesthesia one month before labor, to wanting anaesthesia 
during labor, to again declining anaesthesia one month after delivery. In mutilating procedures 
the patient might view the quality of life quite differently once he has actually undergone the 
procedure and adapted to the resulting way of life. This plays a role, for example, in larynx 
cancer when deciding between laryngectomy (ie. surgical removal of the larynx), resulting in 
loss of speech, and radiation of the larynx, which preserves speech but results in shorter survival 
(21 ). Clearly, the patient should be asked his/her preference before laryngectomy, because once 
removed, replacing the larynx is impossible. However, it is not clear-cut whether the attitude 
and experience of similar patients who have undergone the procedure, should in some way be 
taken into account. A practical approach would be to inform the patient of the experience of 
those who have undergone the procedure before assessing his/her own preferences. Apparently, 
short-term and long-term preferences are not always the same, which may have consequences 
for the decision. 
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In eliciting patient preferences the question arises whether it is ethical to confront a patient 
seriously ill with hypothetical choices. The hypothetical choices are at present the only means 
of eliciting measures of quality and aversion. The questions posed deal with life, death and 
morbidity. Most patients do not appreciate being confronted with their illness and possible death. 
Even healthy subjects are not always willing to respond to these questions. 

Summarizing, assessing patient preferences is an important issue in decision making. Quality 
of life with morbidity and attitudes towards risk are difficult to quantify. These issues are the 
most problematic and controversial issues in the field of medical decision making. 

5. A decision analysis: a point in time versus a continuing story 

A published decision analysis gives the situation at one point in time, based on the available 
data and assumptions at that moment. In fact, a decision analysis is a continuing story, and 
preferably one should redo the analysis periodically, updating the data and modifying the model 
to accommodate new concepts, new technology and new results. This applies to the model on 
renovascular hypertension pre sen ted in chapter III. One of the reasons for performing the analysis 
was that previously published decision analyses on the subject were outdated ( 19,20,31 ). MeN eil 
performed an analysis on renovascular hypertension (19,20), comparing medical treatment 
without diagnostic workup to diagnostic workup followed by surgical treatment should a renal 
artery stenosis be found. She concluded that to screen all hypertensive Americans with a diastolic 
blood pressure over 90 mmHg for renal artery stenosis would be far too costly. Diagnostic tests 
considered were intravenous pyelogram, isotope renogram and/or angiogram. Weinstein and 
Stason performed a cost-effectiveness analysis of detection and treatment of hypertension (31), 
concluding that a program designed to improve patient adherence to their medication may be 
better use of limited resources than wide-scale programs to detect hypertension. Since the time 
of McNeil and Weinstein's analyses, 1975, technology has changed: a new treatment for renal 
artery stenosis exists, namely percutaneous angioplasty, and a new diagnostic test has been 
introduced for renal artery disease, namely intravenous digital subtraction angiography. In 
addition, operative mortality is currently lower and anti-hypertensive medication has improved. 
We analyzed the decision of workup and treatment in suspected renovascular hypertension, 
taking into account these new aspects (chapter III), and focussing on the choice of workup and 
the choice of treatment. From the analysis we concluded that the prior probability of renal artery 
stenosis, together with the diastolic blood pressure while the patient is taking antihypertensive 
medication, determine the choice of workup. In most cases angioplasty is preferable to surgical 
intervention, except in ostial and occlusive atherosclerotic disease. 

However, since we performed the analysis three years ago, new reports on the subject have been 
published and are being published. Surgery has become safer and the clinical results of surgical 
intervention are better than three years ago (12,18,25). Angioplasty technology has changed 
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with safer guidewires and more flexible and thinner catheters, but whether this improves the 
clinical results must still be determined1

• The probability of restenosis months to years after 
angioplasty of a renal artery stenosis, has recently been quantified (7, 17). Restenosis after 
angioplasty appears to be a major problem, occurring in 18% of patients with fibromuscular 
disease and 43% of patients with atherosclerotic disease (7, 17). (Note that restenosis after bypass 
surgery occurs in about 14% of patients (7,30), often necessitating nephrectomy.) Furthermore, 
the indications of angioplasty currently include prevention of renal failure due to renal artery 
stenosis, especially in diabetics. The changing indications of angioplasty may influence the 
clinical results. Long-term results of angioplasty in improving renal function are currently being 
determined (17). 

A recently published cost-effectiveness study comparing surgery and angioplasty for renal 
revascularization (7) suggests that surgical intervention should be performed on older patients 
and patients with atherosclerotic renovascular disease. However, these results are based on a 
small group of 52 patients and the clinical results of angioplasty incorporated in the analysis are 
poorer than in previous reports of angioplasty. 

Besides the more recent data on angioplasty and surgery for renal artery stenosis, more data are 
being published on the diagnostic tests involved. In addition, more data are available on the 
risks of renal failure due to the use of radiographic contrast (23). With the current use of low 
osmolar contrast medium, the risks of angiography and intravenous digital subtraction angio
graphy (DSA) are possibly lower and the discomfort appears to be less, however, low-osmolar 
contrast media are three to fifteen times as costly as high-osmolar contrast media (14,16). 
Furthermore, digital subtraction technique is improving (5): with a reported sensitivity of 100% 
and specificity of 93%. The value of renal vein renin measurements remains controversial (28). 

Angiotensin converting enzyme (ACE) inhibitors have been added to the list of antihypertensive 
medications ( 6,8, 1 0). Their use in the treatment of renovascular hypertension is controversial, 
because renal function may deteriorate (11). However, ACE inhibitors are currently used in the 
diagnosis of renovascular hypertension. Captopril, an ACE inhibitor, induces changes during 
radioisotope renography (9) in the presence of renal artery stenosis. Kidneys with renal artery 
stenosis demonstrate impaired excretion after administration of captopril, which can be 
explained as follows. A stenosis causes a decrease in perfusion and glomerular filtration rate 
(GFR), which, by autoregulation, induces an intrarenal increase in angiotensin II to sustain 
perfusion and filtration. With the administration of an ACE inhibitor this autoregulatory phe
nomenon is interrupted, and excretion will thus be impaired (9). The specificity of a renogram 

1Note that in our analysis (chapter III) we included major angioplasty related complications 
(such as rupture of the renal artery) among the angioplasty technical failures, because surgery 
is necessary for both major procedure related complications and for technical failures. Another 
simplification was to consider among the medical complications of invasive procedures only 
permanent major complications that would affect life expectancy, that is myocardial infarction 
and cerebrovascular accidents. A small renal infarct or transient renal failure was assumed not 
to affect life expectancy substantially. 
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performed after administration of captopril is higher than without captopril (100% compared to 
82%) (9 and chapter III). However, the reported sensitivity is lower than that of conventional 
renography (80 % compared to 86%) (9 and chapter III). 

Captopril is also used in a response test: a raised plasma renin level one hour after oral 
administration of captopril indicates the presence of renovascular hypertension (4,24). The 
sensitivity of this test lies between 84% and 100% and the specificity between 93% to 95% 
(4,24). However, in the presence of renal impairment, both sensitivity and specificity are lower 
(79% and 67% respectively) (24). With the advent of the captopril-renogram and captopril 
response test, screening to exclude renovascular hypertension with these tests has become less 
risky compared to performing angiography, and is superior to performing an intravenous pye
logram both in terms of informativeness and in terms of risk. However, should renovascular 
hypertension be suspected, an imaging procedure will eventually have to be performed if either 
angioplasty or surgery is considered. (Note that imaging may be part of the angioplasty pro
cedure, as in the "no test-angioplasty" strategy in chapter III.) In this respect our analysis remains 
valid, except that patients referred to the radiology department will have a higherpriorprobability 
of renovascular disease due to more adequate clinical selection. 

Not only are data constantly being published, but concepts on modelling in decision analysis 
are changing and advanced software has become available, making more realistic modelling 
feasible. The most noteworthy progress is the use of Markov processes to calculate prognosis. 

We reanalyzed the renovascular hypertension problem after adjusting the model for the new 
data and concepts discussed above. In particular we took into account renal failure as compli
cation, the captopril test, the captopril renogram, the new data on intravenous DSA, long-term 
restenosis, and the most recent data on risks and clinical results of angioplasty and surgery. We 
assume that bypass surgery will be performed if restenosis occurs after angioplasty, and that 
nephrectomy will be performed if restenosis occurs after surgery. Furthermore, we calculated 
life expectancy with a Markov process, taking into account the changing mortality rate as a 
person ages. The excess mortality rate due to hypertension depending on the diastolic blood 
pressure is now modelled with a polynomial, extrapolating for age with an exponential function. 
This provides a better fit of the observed data and reflects the changes in mortality rates as a 
person ages more accurately than the previously used linear regression model. (Even more 
precise would be to model survival with hypertension using a logistic regression analysis with 
age, sex and blood pressure as independent variables and survival as dependent variable, using 
a database currently available in the Netherlands (27).) 

The most pertinent results of the analysis are shown in figures 1 to 3. Figure 1 shows a two-way 
sensitivity analysis for the operative mortality and the probability of technical failure of 
angioplasty. The figures of both the previous and revised analysis are shown and the baseline 
values of the analyzed variables, ie. the values assumed to be applicable, are indicated. Clearly 
the results have changed: angioplasty is less favorable than before, especially for atherosclerotic 
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Figure 1. Two-way sensitivity analysis for the operative mortality and the probability of technical failure 
at angioplasty for a) the previous analysis and b) the revised analysis for atherosclerotic (AS) renovascular 
disease, and c) the previous analysis and d) the revised analysis for fibromuscular dysplasia (FMD). For 
the area marked "OPERATE", the operative mortality and probability of technical failure at angioplasty 
are such that operation is preferred. Similarly, for the area marked "PTA", angioplasty is preferred. The 
baseline values of operative mortality and the probability of technical failure at angioplasty, ie. the values 
assumed to be applicable, are indicated. 

disease. The difference in results can be explained by the high probability of restenosis after 

angioplasty, the decreased risk of complications with surgery and the improved clinical results 

of surgery. 
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Figure 2. Two-way sensitivity analysis for the operative mortality and the probability of long-term 
restenosis after angioplasty for a) atherosclerotic renovascular disease (AS) and b) fibromuscular 
dysplasia (FMD). For the area marked "OPERATE", the operative mortality and probability of restenosis 
after angioplasty are such that operation is preferred. Similarly, for the area marked "PTA" angioplasty 
is preferred. 

Figure 2 presents the results of a two-way sensitivity analysis for the operative mortality and 
the probability of restenosis after percutaneous angioplasty. At present, the probability of 
restenosis constitutes a more controversial piece of information than the probability of technical 
failure atangioplasty. The results suggest that atherosclerotic disease should be treated with a 
surgical bypass and fibromuscular dysplasia with angioplasty. 

Similar to figure 4 of the previous analysis (see chapter III), figure 3 presents the results of a 
two-way sensiti'{ity analysis for the diastolic blood pressure with antihypertensive medication 
and the prior probability of a renal artery stenosis (assuming 63% of stenoses are atherosclerotic). 
Compared to the previous results,intravenous digital subtraction angiography (DSA) is preferred 
for a wider range of the prior probability. The option "no test- angioplasty" is optimal only for 
very high prior probabilities. The captopril test has taken the place of renography, also reno
graphy performed after administration of captopril. The results indicate that for a very low prior 
probability, less than 0.01, and low to intermediate diastolic blood pressure, captopril renography 
may be preferred as initial test because of the high specificity, claimed to be 100%. However, 
for such a low prior probability the difference in expected utility of workup and continued 
medical treatment without workup, is negligible, suggesting that, were we to take monetary 
costs into account, medical treatment without workup would be preferable. 
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Figure 3. Two-way sensitivity analysis for the diastolic blood pressure with antihypertensive medication 
and the prior probability of a renal artery stenosis (assuming 63% of stenoses are atherosclerotic). The 
strategies shown are "continued medical treatment" (MED), "captopril renography -if positive intra
venous digital subtraction angiography- if positive angioplasty" (RG-DSA-PTA), "captopril test- if 
positive intravenous digital subtraction angiography - if positive angioplasty" (CAP-DSA-PT A), 
"intravenous digital subtraction angiography- if positive angioplasty" (DSA-PT A) and "no test- imaging 
and angioplasty in the same session" (no test-PTA). 

In summary, the results of the revised analysis differs from the previous one mainly in the choice 
of treatment for atherosclerotic renovascular disease. The results suggest that a surgical bypass 
should be performed for atherosclerotic stenoses of the renal artery and angioplasty for fibro
muscular dysplasia. The lower risk and improved results of modern vascular surgery, together 

with the recent data on long-term restenosis after angioplasty, have led to this change of results. 
As far as the workup for renovascular hypertension is concerned, the main conclusion of our 
previous analysis still holds: the diastolic blood pressure while taking antihypertensive medi
cation, together with the prior probability of a stenosis, determine the choice of workup. The 
captopril test, with high sensitivity and specificity and negligible risk, serves as a useful screening 
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test for renovascular hypertension when faced with a low prior probability of renovascular 
disease. For intermediate and high prior probability, intravenous digital subtraction angiography 
should be performed initially. 

In addition to the idea that an analysis is a continuing story, an analysis may be generic and have 
to be individualized for a particular patient. Generic models can be used to develop general 
protocols, however, the decision for an individual patient may require a separate analysis, using 
data applicable for that particular patient. This may be accomplished by adjusting the risks of 
intervention, as is done in chapter III for operative mortality if the patient has atherosclerosis 
and in chapter IV for the percutaneous nephrostomy risks in a patient with an increased bleeding 
tendency. However, sometimes the analysis has to be redone to model the trade-offs involved 
for the particular patient. 

6. Decision analysis and clinical practice 

Even though formal decision analysis is a relatively new field in medicine, the basic concepts 
and reasoning of decision analysis have been used intuitively by wise and experienced clinicians 
all along. Traditionally, "clinical judgement" or "clinical intuition" was the process by which 
medical decisions were made, the process being one of ill-understood hidden logic, pattern 
recognition and heuristics. In medical school cause-effect type of reasoning is taught, whereas 
decision making in clinical practice requires reasoning in terms of probabilistic information, 
which remains a neglected aspect in the training of physicians. While formerly decision making 
was the domain of wise and experienced clinicians, the introduction of clinical decision analysis 
gives insight to such decision making, so that it can be critically assessed by all concerned. 

Decision analysis may have a major impact on clinical reasoning. Even though a clinician cannot 
be expected to build a tree for every patient he/she sees, the concepts and reasoning of decision 
analysis are helpful in clinical practice. Structuring a problem in a logical explicit fashion may 
give new insights. Merely constructing a decision tree can help a physician understand the pros 
and cons of the various options. Structuring a problem identifies the information necessary for 
the decision. Even if some data are imprecise, a crude decision analysis may suggest the optimal 
management. A decision analytical approach may pinpoint the reason for disagreement, making 
discussion among decision makers more constructive. Furthermore, it may be helpful in 
explaining possible management strategies to the patient and family, thereby obtaining informed 
consent. 

In spite of the above mentioned advantages of decision analysis, numerous problems remain 
when applying the technique, which has consequences for its practical application at present 
and in the future. Analyzing individual case problems is usually time consuming, so that the 
decision has often been made before completing the analysis. With increasing experience and 
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improvement of computer facilities, analyses for individual case problems may become standard 
clinical practice, but this probably still requires years of research and development. More feasible 
than decision analyses of individual problems, are analyses of common recurring clinical 
problems. Such generic decision analyses can help develop clinical guidelines and protocols. 
Although this is already being done to a certain extent, a majorpartof decision analytical research 
in the future could very well focus on the development of guidelines and protocols. This includes 
guidelines as to the implications of routine test results, whether the report of a chest X-ray or 
the measured ST depression during exercise testing. Furthermore, with increasing budget 
constraints, policy makers are showing an interest in cost-effectiveness analyses, the results of 
which could have a major impact on determining which health programs should have priority. 

The major areas of potential technical development in decision analysis include modelling 
techniques, data retrieval systems, software and the reporting methods. The techniques used to 
model decisions, probabilistic data and outcome values could be improved by incorporating 
available methods from mathematics. Access to data retrieval systems, both medical information 
databases and hospital information systems, must be improved if decision analysis is to become 
a practical tool in the future. Further development of advanced and user-friendly software will 
facilitate performing the calculations and may ease experimenting with alternative hypotheses, 
even for the novice. Improvement of the methods used to report the results of a formal analysis 
should assist the acceptance of decision analysis, and its recommendations, by clinicians 
unfamiliar with the technique. 

An unresolved issue is whether clinical decision analysis provides better judgement than con
ventional decision making. Choosing a method to decide which of the two is better confounds 
matters. Performing a randomized controlled clinical trial in which management in half of the 
subjects is determined by conventional decision making and in the other half by decision ana
lytical techniques, is far from practical. Decision analysis is not advanced enough to cope with 
a wide variety of clinical problems. If only one clinical problem is considered the trial would 
not test the general question posed. Furthermore, what outcome should be considered? For 
example, suppose conventional decision making suggests medical management, whereas a 
decision analysis prescribes operation. The patient is operated and dies. Does this prove that 
conventional decision making is better than decision analysis? The decision analysis took the 
risk of death into account, and the risk remains present once the decision has been made. Another 
approach would be to build a decision tree to decide which technique optimizes management. 
However, using a theory to prove the same theory is obviously invalid (13). In conclusion, 
deciding whether to use decision analysis or conventional decision making seems more a matter 
of opinion than a question to be answered by scientific research. 
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II. RECEIVER OPERATING CHARACTERISTIC (ROC) ANALYSIS 

Receiver operating characteristic (ROC) methodology is a method of evaluating and describing 
test performance and, thus, is important in diagnostic radiology. Radiologists are becoming 
aware that a likelihood ratio, or equivalently a pair of sensitivity and specificity values, alone 
does not determine how good a test system performs. The likelihood ratio, sensitivity and 
specificity depend not only on the performance of the test, but also on the chosen threshold for 
declaring the test result positive or negative. ROC methodology provides an alternative to the 
conventionally used parameters. An ROC curve plots pairs of true and false positive rates (see 
chapter V). The area under the ROC curve provides a measure of overall test performance, an 
area of 1 representing a perfect test and an area of 0.5 representing a test with no discriminating 
power. 

1. ROC curves in comparing diagnostic tests 

Diagnostic tests can conveniently be compared by comparing their ROC curves and specifically 
the areas under the curves. This was done in chapters VI to VITI for various clinical problems 
and diagnostic tests. Chapter VI and VII showed that the test performance of promising new 
technology (in this case MRI) may be less than the high initial expectations, emphasizing that 
new diagnostic tests should be evaluated rigorously before becoming part ofthe accepted daily 
routine. The clinical diagnosis may be considered a diagnostic test and, if appropriate, should 
be included in the comparison of available tests. For example, in chapter VII we showed that 
the information obtained by performing CT or MRI in the diagnosis of orbital space-occupying 
lesions, did not provide incremental information over the clinical diagnosis. Sometimes clinical 
information does not provide a separate diagnostic test, but may have additional value when 
interpreting a test. For example, in chapter VIII we showed that using gestational age to predict 
fetal pulmonary immaturity added information to amniotic fluid tests, while a second test (the 
SPC test) did not add significant information. Especially with increasing budget constraints, it 
seems valuable to assess the information provided by clinical evaluation, along with the 
incremental information provided by expensive new technologies, instead of only comparing 
imaging and/or biochemical tests. This may lead the way to more efficient use of modem 
technology. 

2. Verification bias 

Test parameters and the ROC curve may be biased when not all subjects tested undergo the 
definitive procedure to determine "true" disease status. The test result, together with clinical 
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features, usually determine whether a diagnosis is verified or not. If we assume that the prob
ability of verification depends only on the test result and clinical features, but is conditionally 
independent of true disease status, we can calculate unbiased estimates of the test parameters. 
The assumption implies that the disease itself only indirectly influences the decision to verify 
the diagnosis, through its effect on the test result and clinical features. This assumption seems 
valid when one considers daily practice: we have to decide to proceed with the workup at a time 
that we know the clinical features and test result, but do not yet know the true disease status. If 
it is not considered valid, all patients have to undergo the definitive procedure to determine 
unbiased estimates of the test parameters. 

The implication of verification bias for clinical radiology lies mainly in the methods used to 
evaluate diagnostic tests. Obtaining a "gold standard" for every patient tested is generally 
considered sound scientific practice. However, this need not always be practical. Patients may 
be lost to follow-up or it may be unethical to request a gold standard. For example, obtaining 
histology for all patients who underwent computer tomography and magnetic resonance imaging 
for a suspected orbital tumor, would have been meticulous (chapter VII) as far as scientific 
standards are concerned. However, one can hardly expect a patient to undergo enucleation of 
the orbit, for scientific reasons, when all tests suggest that a malignant lesion is highly unlikely. 
Numerous other diagnostic tests involve similar problems when being evaluated. Unverified 
cases of a test under evaluation, unverified for whatever reason, should be reported, and not 
simply disregarded. This implies that when evaluating a test for its discriminating power for a 
particular diagnosis, care must be taken to record all patients undergoing the test for that 
diagnosis. Thus, cases should not be considered immaterial to the series on the grounds that a 
gold standard is unavailable. Reporting the unverified cases gives an indication of the presence 
of bias and, if biased, the test parameters and ROC curve can be corrected, provided the 
assumption as explained above is considered valid. The correction method is fairly simple (see 
chapter V) and can usually be performed, as long as the unverified cases are not disregarded. 

Correcting for verification bias does not necessarily change the ROC curve, even though the 
individual pairs of true and false positive rates change substantially. If the corrected and 
uncorrected curves are similar, verification bias shifts the operating points along the curve, but 
may not substantially effect overall test performance. In such cases, although individual sen
sitivities and specificities can be seriously biased, the area under the ROC curve provides a 
measure of test performance less sensitive to bias. We saw this phenomenon in chapter VIII, in 
which the ROC curves of the amniotic fluid tests were insensitive to verification bias. However, 
the points on the ROC curve associated with particular cutoff values shifted considerably, and 
thus, the cutoff value for a particular sensitivity and specificity shifts. Correcting for verification 
bias, therefore, implies adjusting the chosen cutoff value of the test variable to a different cri
terion. 
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3. Uninterpretability 

U ninterpretable test results, and unsuccessful procedures, are common occurrences in diagnostic 
radiology. For example, a patient may have too much bowel gas for a reliable ultrasound or may 
be unable to retain a barium enema. Sometimes the uninterpretability itself contains diagnostic 
information. For example, an inaccessible bile tract during transhepatic cholangiography usually 
indicates an undilated bile tract, implying that extra-hepatic obstruction is unlikely. Inability to 
retain a barium enema may be due to an obstructive process in the sigmoid. To determine whether 
an uninterpretable test result contains diagnostic information, we need to determine whether 
uninterpretability is related to either the disease or absence of the disease. This can be done by 
calculating the (interval) likelihood ratio of uninterpretable test results, ie. the probability of an 
uninterpretable test result given disease divided by the probability of an uninterpretable test 
result given the absence of disease. If uninterpretability is a random phenomenon, ie. it is not 
related to disease, the (interval) likelihood ratio equals 1. As explained in chapter V, if unin
terpretability contains information, uninterpretable test results can be included in the ROC 
analysis as an additional test result, ranked among the other results according to the (interval) 
likelihood ratio's. 

The clinical implications of uninterpretable test results are 1) uninterpretable results should be 
reported in publications and 2) an uninterpretable test result may contain diagnostic information. 
The clinical implication of using uninterpretable test results was shown with the data from the 
literature on ultrasound for appendiceal disease (chapter V), in which a non-visualized appendix 
contained information, ie. unlikely to be diseased. In the analysis of amniotic fluid tests for fetal 
pulmonary maturity (chapter VITI), uninterpretable tests where those in which the amniotic fluid 
was stained with blood or meconium. The presence of blood was not related to fetal pulmonary 
maturity or immaturity, ie. blood staining of amniotic fluid is a random phenomenon with respect 
to disease. This was concluded because the (interval) likelihood ratio of blood stained amniotic 
fluid tests equals more or less 1. However, the presence of meconium was related to absence of 
disease, ie. the likelihood ratio was zero. This implies that meconium stained amniotic fluid 
contains information and suggests that the fetal lungs are mature (equivalent to a negative test 
result). However, only 25 amniotic fluid samples ofthe total of854 verified cases were meconium 
stained and including meconium stained fluid as an additional test result in the ROC analysis 
did not influence the results. 

Summarizing, physicians should be aware of the potential information contained in an unin
terpretable test result and use this information when appropriate. 

4. ROC curves and daily practice 

ROC curves are mainly useful for comparing diagnostic tests. In daily clinical practice an (in
terval) likelihood ratio may be more useful than an ROC curve. An (interval) likelihood ratio 
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is the ratio of the probability of seeing a particular test result in patients with the disease and 
seeing it in patients without the disease. Using an (interval) likelihood ratio we can adjust the 
initial clinical impression with the information from the test Further workup and/or treatment 
are begun only if the probability of the disease is large enough to warrant further intervention. 
Given a particular prior probability of disease, the (interval) likelihood ratio above which further 
workup and treatment are indicated, should be determined not only by how good a test performs, 
but also by the costs, risks and benefits of true and false positive, and true and false negative 
test results. For each clinical setting in which the test is used, these costs, risks and benefits 
should be determined, from which follows the optimal operating point on the ROC curve for 
that particular clinical problem. From the optimal operating point directly follows the optimal 
(interval) likelihood ratio, and the cutoff value of the test variable to be used in clinical practice. 

ROC methodology is slowly having an impact in diagnostic radiology. Imaging techniques are 
increasingly being compared using ROC curves and the radiological community accepts the 
method. Even though numerous articles reporting sensitivity and specificity are still being 
published, articles reporting ROC curves are accumulating. Methodological issues are also being 
addressed, both to explain the method and to discuss unresolved methodological problems. 

One of the unresolved methodological issues is that, not only should a diagnosis be made, but 
the location of the process should also be correctly identified. For example, if the diagnosis 
bronchogenic carcinoma is made, but the reader of the image identifies the right upper lobe as 
the location while the process is in the left upper lobe, the test result will lead to removal of a 
healthy part of the lung instead of the diseased part. The LROC, ie. the location receiver operating 
characteristic curve, also known as the joint ROC, provides a method of including the location 
in the ROC curve (22,33). In the LROC a true positive test result refers to a test result in which 
both the diagnosis and the location are correctly identified. A LROC curve is similar to a ROC 
curve, however, if the reader does not always correctly identify the location, the maximum true 
positive fraction of the LROC will have a value less than 1. The area under the LROC curve 
provides a measure of the test performance and can be used to compare tests. 

The problem of multiclassification remains one of the major unresolved issues of ROC meth
odology. An ROC curve as currently used necessitates dividing the final diagnosis in two 
categories. Usually the division separates the final diagnosis into the presence or absence of 
disease. The division should have clinical consequences, for example, determining whether a 
treatment will be instituted. However, in daily radiological practice an imaging test may suggest 
various diagnoses, together with the radiologist's confidence in each of these diagnoses. The 
probability of each of the multiple diagnoses, given the test result, and the radiologist's confi
dence in each, are not independent, but rather interrelated. The performance of a test used to 
distinguish between multiple diseases can not simply be represented with an ROC curve. A few 
methods have been developed to construct ROC curves appropriate for multiclassification 
problems, but these are, as yet, not generally applicable (15,32). Research in this area is a 
challenge for ROC methodologists. 
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Ill. CONCLUSIONS 

Decision analysis is an explicit method of making decisions involving uncertainty, in which 
risks and benefits are quantitatively balanced. Structuring a decision in the form of a decision 
tree helps identify the trade-offs involved and the information needed. Finding appropriate data 
for the analysis may be problematic because of difference in used terminology and ambiguous 
reporting. Assessing patient preferences is a major issue in decision making: preferences are 
difficult to quantify and the methods used are controversial. The potential impact of decision 
analysis lies in the method of reasoning, in changing clinical practice and developing protocols, 
in analyzing complicated individual problems and in cost-effectiveness analysis. 

ROC analysis is a method of evaluating and comparing diagnostic tests. ROC analysis can 
identify what cutoff value of a test variable should be used in clinical practice. Test parameters 
and ROC curves may be biased if not all subjects tested undergo the definitive procedure to 
determine "true" disease status. Such unverified cases should be reported and unbiased test 
parameters and ROC curve may be estimated. Uninterpretable test results may contain diagnostic 
information if the cause of uninterpretability is related to disease or absence of disease. Unin
terpretable test results should be reported and may be used as an extra test result in the ROC 
analysis. The major impact of ROC analysis lies in the comparison of diagnostic tests. 
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SUMMARY 

Clinical decision analysis is an explicit method of making decisions involving uncertainty about 
a diagnosis, prognosis, and the risks and benefits of diagnostic tests and/or treatment. Expected 
utility theory forms the basis of decision analysis (chapter II), the most important assumption 
being that a person wishes to maximize expected utility or minimize expected disutility. Clinical 
decision analysis uses decision trees and Markov processes to represent potential clinical 
strategies, their consequences and outcomes. A simple or non-recursive decision tree represents 
the potential events with successive branching. A Markov process models different states of 
health and different transition probabilities for moving from one state to another. The latter 
model facilitates simulating risks which recur repetitively or change over time. Structuring a 
decision problem in the form of a model helps identify trade-offs and the necessary critical 
information. Assessing patient preferences and attitudes towards risks are major issues in 
decision making, however, preferences and attitudes are difficult to quantify and the methods 
used are controversiaL 

An analysis of the optimal evaluation and treatment of suspected renovascular hypertension 
(chapter III) illustrates the application of decision trees to examine a common problem. Con
clusions of the analysis are 1) the choice of workup depends on the prior probability of reno
vascular disease and the diastolic blood pressure attained while the patient is on antihypertensive 
medication, and 2) percutaneous transluminal angioplasty is in most cases of renal artery stenosis 
preferable to surgery or medical treatment. A revision of the analysis (chapter IX) illustrates 
how the results may change if new data become available. The revised analysis differs from the 
previous one mainly in the choice of treatment for atherosclerotic renovascular disease. The 
results suggest that a surgical bypass should be performed for atherosclerotic stenoses of the 
renal artery and angioplasty for fibromuscular dysplasia. The lower risk and improved results 
of modem vascular surgery, together with the recent data on long-term restenosis after angio
plasty, have led to this change of results. As far as the workup for renovascular hypertension is 
concerned, the main conclusion of our previous analysis still holds: the diastolic blood pressure 
attained while the patient is on antihypertensive medication, together with the prior probability 
of a stenosis, determine the choice of workup. The captopril test, with high sensitivity and 
specificity and negligible risk, serves as a useful screening test for renovascular hypertension 
when faced with a low prior probability of renovascular disease. For intermediate and high prior 
probability of renovascular disease, intravenous digital subtraction angiography should be 
performed initially. 

An analysis of the optimal intervention and the timing of that intervention in patients with urinary 
tract obstruction caused by urolithiasis (chapter IV) illustrates the usefulness of a Markov process 
in modelling time-dependent risks. The analysis highlights that percutaneous and retrograde 
drainage of the urinary tract are both low risk procedures effective in treating urinary tract 
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obstruction. The model suggests that even for very low likelihoods of pyonephrosis, the urinary 
tract should be drained to prevent renal impairment and death from sepsis. However, in patients 
with urinary tract obstruction without signs of pyonephrosis, postponing intervention between 
5 to 15 days may be a reasonable alternative, giving the stone an opportunity to pass sponta
neously. 

Receiver operating characteristic (ROC) methodology evaluates and describes test performance 
and, thus, is important in diagnostic radiology (chapter V). An ROC curve plots the true versus 
the false positive rates, with the area under the curve providing a measure of overall test per
formance. Test parameters and the ROC curve may be biased if not all subjects tested undergo 
the "gold standard" procedure to determine "true" disease status, which is called verification 
bias. If we assume that the probability of verification depends on the test results and clinical 
features, but is conditionally independent of true disease status, we can calculate unbiased 
estimates of the test parameters and ROC curve. Uninterpretable test results may contain 
diagnostic information if the cause of uninterpretability is related to either disease or absence 
of disease, in which case uninterpretability may be used as an additional test result in the ROC 
analysis. 

An ROC analysis of the performance of computer tomography and magnetic resonance imaging 
in the assessment of extension of neoplastic disease of the nasopharynx, nose and paranasal 
sinuses and the parapharyngeal space (chapter VI), demonstrates no statistical significant dif
ference in overall test performance. However, magnetic resonance imaging is superior to 
computer tomography in evaluating regions involving predominantly soft tissue structures and 
comparatively large bony structures, whereas computer tomography performs better than 
magnetic resonance imaging in evaluating regions involving thin bony structures. 

An ROC analysis of the clinical diagnosis and the diagnosis made on computer tomography and 
magnetic resonance imaging of orbital space-occupying lesions (chapter VII) shows that, after 
correcting for verification bias, magnetic resonance imaging performs slightly better than 
computer tomography. However, neither magnetic resonance imaging nor computer tomography 
provide significant incremental information over and above that of the clinical evaluation in the 
diagnosis of orbital tumors. It should be pointed out that the group studied was limited in size 
and that all patients could be examined very well by means of ophthalmoscopy. 

The lecithin/sphingomyelin (L/S) ratio and the saturated phosphatidyl choline (SPC) mea
surement are amniotic fluid tests used to assess fetal pulmonary maturity and predict the 
development of respiratory distress syndrome of the newborn. The L/S and SPC tests are 
evaluated with an ROC analysis (chapter VIII) involving the effect of covariates, verification 
bias and combination testing. The effect of covariates on the ROC curves is analyzed with a 
regression methodology, which includes all available data in the construction of an ROC curve 
for each subgroup. We used a logistic regression analysis to model the probability of verification, 
which facilitates correcting for verification bias of a fully stratified data set in spite of small cell 
frequencies. We examine combination testing with prediction rules using prospective logistic 
modelling, with the test results and clinical features as independent variables and the probability 
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of respiratory distress syndrome as dependent variable. Our analysis indicates that the L/S ratio 
is a significantly better test than the SPC test, suggesting that the L/S ratio should be used in 
clinical practice. For high gestational age the L/S and SPC tests perform better than for low 
gestational age. Contamination of the specimen, with blood and/or meconium, degrades the 
ROC curves. Correcting for verification bias does not influence the ROC curves significantly 
but changes the cutoff value of the test variable for any particular operating point substantially. 
The use of prediction rules to evaluate combination testing shows that performing the SPC test 
in addition to the L/S test adds no significant information compared to performing only the L/S 
test. Including gestational age in the prediction rule of either test improves the prediction sig
nificantly. 

In conclusion, decision analysis explicitly models the risks and benefits of alternative clinical 
practices and may help in determining the optimal management of clinical problems. The major 
impact of ROC methodology lies in evaluating and comparing diagnostic tests. Correcting for 
verification bias and including uninterpretable test results in the ROC analysis may influence 
the results. 
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NEDERLANDSE SAMENV ATTING 

Klinische besliskunde is een expliciete methode ten dienste van de besluitvonning in de 
geneeskunde. Hierbij worden betrokken de onzekerheid over een gestelde diagnose, de con
sequenties van een potentiele ziekte, de risico's en baten van diagnostisch onderzoek en/of die 
van behandeling. De belangrijkste onderliggende veronderstelling van besliskunde is dat een 
mens kiest voor de optie met de grootst mogelijke verwachte waarde. In de klinische besliskunde 
(hoofdstuk II) worden beslisbomen en Markov processen gebruikt om potentiele strategieen, 
hun consequenties en de uitkomsten te representeren. Een beslisboom representeert mogelijke 
hypothetische gebeurtenissen in de toekomst door middel van successievelijke vertakkingen. 
Een Markov proces modelleert de verschillende gezondheidstoestanden en de overgangen van 
de een naar de ander, wat goed bruikbaar is als een risico zich herhaalt of verandert in de tijd. 
Een beslissing structureren in de vonn van een model identificeert de overwegingen van de 
beslissing en de benodigde infonnatie. Het vaststellen van de voorkeuren van patienten en 
attituden jegens risico's zijn belangrijke aspecten van klinische besluitvonning, echter, voor
keuren en attituden zijn moeilijk te quantificeren en de gebruikte methoden zijn controversieel. 

Een model betreffende diagnostisch onderzoek en behandeling van hypertensie vennoedelijk 
veroorzaaktdooreen nierarteriestenose (hoofdstukiii) illustreert de toepassing van beslisbomen 
om een veel voorkomend probleem te analyseren. Conclusies van de analyse zijn 1) de keuze 
van diagnostisch onderzoek hangt af van de a priori kans op een nierarteriestenose en de bereikte 
diastolische bloeddruk bij gebruik van antihypertensiva, en 2) percutane transluminale angio
plastiek (Dotteren) is voor de meeste patienten met een nierarteriestenose te verkiezen hoven 
operatie of medische behandeling. Een herziene versie van de analyse (hoofdstuk IX) illustreert 
hoe de resultaten kunnen veranderen als nieuwe infonnatie beschikbaar komt. De herziene 
analyse verschilt met de vorige voornamelijk wat betreft de keuze van behandeling voor ath
erosclerotische nierarteriestenosen. De resultaten suggereren dat een atherosclerotische nier
arteriestenose chirurgisch behandeld dient te worden terwijl voor fibromusculaire dysplasie 
angioplastiek de beste keuze is. De lage risico en verbeterde resultaten van moderne 
vaatchirurgie, samen met gegevens over restenosering na angioplastiek, hebben geleid tot deze 
veranderde inzichten. Wat betreft de keuze van diagnostiek blijft de voornaamste conclusie van 
de vorige analyse geldig: de keuze hangt af van de a priori kans op een nierarteriestenose en de 
bereikte diastolische bloeddruk bij gebruik van antihypertensiva. De captopril test, met hoge 
sensitiviteit en specificiteit en verwaarloosbare risico's, is een goede screenings test voor 
renovasculaire hypertensie als de a priori kans op een nierarteriestenose klein is. Voor een 
intennediaire of hoge kans op een nierarteriestenose is intraveneuze digitale subtractie angio
grafie te verkiezen als initieel diagnostisch onderzoek. 
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Een analyse betreffende de vraag wanneer het gei"ndiceerd is in te grijpen voor urineweg 
obstructie veroorzaakt door een uretersteen (hoofdstuk IV) illustreert de bruikbaarheid van een 
Markov proces voor het modelleren van tijds-afhankelijke risico's. De analyse benadrukt dat 
percutaan en retrograad draineren van de urineweg ingrepen zijn met weinig risico en effectief 
in de behandeling van een geobstrueerde urineweg. Als er mogelijk infectie van de urineweg 
aanwezig is, moet de urineweg gedraineerd worden om functie verlies van de nier en fataal 
verloop van de infectie te voorkomen. Een patient met een geobstrueerde urineweg zonder 
tekenen van infectie kan 5 tot 15 dagen geobserveerd worden voordat wordt ingegrepen, om de 
patient een kans te geven de steen spontaan te lozen. 

Receiver operating characteristic (ROC) analyse (hoofdstuk V) is een methode om diagnostische 
testen te evalueren en te vergelijken, en dus belangrijk in de radiodiagnostiek. Een ROC curve 
is een grafiek van de kans op een positieve test gegeven de ziekte, uitgezet als functie van de 
kans op een positieve test gegeven afwezigheid van de ziekte. Het oppervlak onder de curve is 
een maat voor het discriminerend verrnogen van de test. Testparameters en de ROC curve kunnen 
vertekend zijn als niet aile onderzochte patienten ook de "gouden standaard" procedure 
ondergaan om de "ware" toestand (wei of niet ziek) vast te stellen. Dit heet verificatie verte
kening. Als wij aannemen dat de beslissing _om te verifieren wordt bepaald door het resultaat 
van diagnostische testen en de klinische gegevens, echter conditioneel onafhankelijk is van de 
ware ziektetoestand, dan kunnen wij zuivere schattingen berekenen van de testparameters en 
ROC curve. Testresultaten die niet interpreteerbaar zijn kunnen diagnostische inforrnatie 
bevatten als de oorzaak hiervoor gerelateerd is aan de ziektetoestand, en kunnen opgenomen 
worden als een additioneel testresultaat in de ROC analyse. 

Een ROC analyse van de beoordeling van doorgroei van tumoren in het gebied van nasopharynx, 
neus en paranasale sinussen en de parapharyngeale ruimte door computer tomografie en mag
netische resonantie (hoofdstuk VI) laat, over het geheel genomen, geen statistisch significant 
verschil zien tussen de twee beeldvorrnende technieken. Echter, gebieden met voornamelijk 
weke delen en relatief grote bot structuren zijn beter te beoordelen met magnetische resonantie 
dan met computer tomografie, terwijl gebieden met fijne benige structuren beter met computer 
tomografie zijn te beoordelen. 

Een ROC analyse van de klinische diagnose en de diagnoses gesteld met computer tomografie 
en magnetische resonantie van ruimte innemende processen van de orbita (hoofdstuk VII) laat 
zien dat, na correctie voor verificatie vertekening, magnetische resonantie beter is dan computer 
tomografie. Echter, er kan niet worden aangetoond dat computer tomografie of magnetische 
resonantie een statistisch significante hoeveelheid inforrnatie bijdraagt aan de klinische diag
nostiek van orbita tumoren. Er moet worden opgemerkt dat deze studie een vrij kleine groep 
patienten betrof die allen goed waren te onderzoeken met oogspiegelen. 

Diagnostische testen op vruchtwater (de lecithine/sphingomyeline (LIS) ratio en gesatureerde 
phosphatidyl choline (SPC) meting) worden gebruikt om de rijpheid van de foetale longen te 
bepalen en het ontwikkelen van respiratory distress syndroom van de pasgeborene te voorspellen. 
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Een ROC analyse om deze testen te vergelijken (hoofdstuk VIII) brengt een aantal methodol
ogische problemen met zich mee, namelijk het effect van covariabelen, verificatie vertekening, 
en de waarde van combinaties van testen. Het effect van covariabelen op de ROC curve werd 
geanalyseerd met behulp van een regressie techniek, welke rekening houdt met alle beschikbare 
informatie bij het berekenen van een ROC curve van een deelgroep. Om te corrigeren voor 
verificatie vertekening werd een logistische regressie techniek gebruikt om de kans op verificatie 
te modelleren, waarbij correctie mogelijk is voor een volledig gestratificeerd gegevensbestand 
ondanks kleine celfrequenties. Om combinaties van testen te evalueren zijn er eerst voorspel
lingsregels afgeleid, met de testresultaten en klinische gegevens als onafhankelijke variabelen 
en de kans op respiratory distress syndroom als afhankelijke variabel. Vervolgens hebben wij 
de extra informatie berekend die verkregen wordt uit het doen van een additionele test, gebruik 
makend van regressie technieken en de bijbehorende statistische testen. De analyse laat zien dat 
de L/S ratio significant beter is dan de SPC test zodat het aan te bevelen is de L/S ratio te 
gebruiken. Be ide L/S en SPC testen doen het beter voor lange dan voor korte zwangerschapsduur. 
Verontreiniging van het vruchtwatermonster met bloed en/of meconium vermindert de 
betrouwbaarheid van beide testen. Correctie voor verificatie vertekening heeft geen significant 
effect op de ROC curves maar verandert wei, voor een gegeven punt op de ROC curve, de 
grenswaarde van de test grootheid waaronder de diagnose wordt gesteld. Het gebruik van 
voorspellingsregels om combinaties van testen te evalueren laat zien dat de SPC test geen 
informatie bijdraagt aan de L/S ratio en dat het derhalve zinloos is om de SPC test uit te voeren. 
Het opnemen van de zwangerschapsduur in de voorspellingsregel van een vruchtwaterbepaling 
verbetert de nauwkeurigheid van de voorspelling. 

Concluderend, besliskunde kan een bijdrage leveren aan het klinisch redeneren, kan helpen bij 
de evaluatie van de klinische praktijkvoering en kan helpen bij de besluitvorming voor inge
wikkelde individuele klinische problemen. De belangrijkste bijdrage van ROC methodologie 
ligt in het evalueren en vergelijken van diagnostische testen. Correctie voor verificatie 
vertekening en het opnemen van niet interpreteerbare testresultaten in de ROC analyse kan de 
resultaten be'invloeden. 
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CT 

DSA 

ENT 

ESWL 

EU 
interval LR 

IV 

IVU 

LE 
LR 

L/S 

MED 

MRI 

OPER 

PALY 

PCN 
PCNL 

ABBREVIATIONS 

the probability of a positive test result given disease 

synonyms: sensitivity, true positive fraction, true positive rate 

the probability of a positive test result given absence of disease 

synonyms: !-specificity, false positive fraction, false positive rate 

the probability of disease given a positive test result 

synonym: predictive value (positive) of a positive test result 

the probability of disease given a negative test result 

synonym: predictive value (positive) of a negative test result 

angiography 

computer tomography 

digital subtraction angiography 

ear, nose and throat 

extracorporeal shockwave lithotripsy 

expected utility 

interval likelihood ratio, that is 
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the marginal probability of a positive test result given disease divided by 
the marginal probability of a positive test result given absence of disease 

marginal true positive fraction divided by the marginal false positive 

fraction 

intravenous 

intravenous urography 

life expectancy 

likelihood ratio, that is 

the probability of a positive test result given disease divided by the 
probability of a positive test result given absence of disease 

true positive fraction divided by the false positive fraction 

lecithin I sphingomyelin 

medical treatment 

magnetic resonance imaging 

surgical treatment, operation 

preference-adjusted life year 

percutaneous nephrostomy 

percutaneous nephrolithotomy 
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PTA 

QALY 

RDS 

RG 

ROC 

RUS 

SOL 

SPC 

URS 

us 

percutaneous transluminal angioplasty 

quality-adjusted life year 

respiratory distress syndrome of the newborn 

renography 

receiver operating characteristic 

retrograde ureteral stenting 

space-occupying lesions 

saturated phosphatidyl choline 

ureteroscopic stone manipulation 

ultrasound 



ACE inhibitors, 202 
algorithm, 6 
angiography, 48 
angioplasty, 48, 202 

restenosis after, 203 
artificial intelligence, 7 
assumptions, 15 
attitudes towards risk, 18, 37 
averaging out, 5, 19, 93 

baseline value, 93 
Bayes theorem, 114 
bias, 3, 175, 189, 196 

publication, 198 
uninterpretability, 136, 189, 198 
verification, 125,175,198,209 
workup, 125 

biostatistics, 6 

captopril, 202 
response t~st, 203 

category, 122 
category method, 34, 200 
cell frequency, 131 
certainty effect, 43 
certainty equivalent, 38 
clinical epidemiology, 6 
computer tomography, 140, 154 
confidence threshold, 119, 156 
contrast 

adverse reaction, 54, 202 
costs, 202 

cost-benefit analysis, 8 
cost-effectiveness analysis, 8 
covariate, 174, 176 
cumulative failure, 24, 25, 70 
cumulative incidence, 24, 25, 70 

INDEX 

cutoff value, 118 

DEALE-method, 29, 55, 63, 89 
decision tree, 14, 48, 196 
denominator problem, 198 
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descriptive model of decision making, 42, 
43 
dichotomous finding, 115 
dichotomous test, 115 
digital subtraction angiography, 202, 48 
direct scaling method, 34, 200 
disutility, 5 
dominance, 17 
Dorfman and Alf, 122 
DSA,48 

expected utility, 5, 19, 42, 57, 93 
expert systems, 7, 198 

failure function, 24, 25 
false positive rate, 114 
flow chart, 6 
folding back, 5, 19, 57, 64, 93 

generic decision models, 8 
Gompertz, 33 

Hanley-McNeil algorithm, 122 
hazard function, 24, 26, 70, 91 
hazard rate, 24, 26, 70, 91 
heuristics, 2 

anchoring and adjustment, 2 
availability, 2 
representativeness, 2 

hypertension 
renovascular, 48, 201 
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incidence density, 24, 26, 91 
interval likelihood ratio, 115, 136, 211 
intuitive decision making, 4, 207 
isolation effect, 43 

lecithin\sphingomyelin ratio, 17 4 
life expectancy, 18, 22, 30, 55, 203 
likelihood ratio, 114, 209 

and verification bias, 132 

magnetic resonance imaging, 140, 154 
signal intensities, 140, 154 

Mann-Whitney, 122 
and standard error of the area, 122 

Markov 
chain, 24 
cycle length, 23, 29, 69, 89 
homogeneous, 24 
memory matrix, 92 
model, 22, 28, 69, 89, 106, 196, 203 
process, 22, 28, 69, 89, 106, 196, 203 
semi-Markov process, 92 
state, 22, 89 

Markovian assumption, 23 
maximum likelihood estimation, 123 
mortality rate 

average, 30, 55, 63 
excess, 30, 31, 55, 63, 80, 85, 203 
patient specific, 30, 55, 63 

multi-attribute scale, 5 

node 
Boolean, 15 
chance, 15 
decision, 15 
label, 15 
terminal, 15 

odds, 114 
outcome, 17 

outcome value, 17 

percutaneous nephrostomy, 66, 76 
complications, 77 
efficacy, 77 
mortality, 77 
successful placement, 76 

phosphatidyl choline, 174 
prediction rule, 61, 17 5, 178 

logistic regression analysis, 178 
predictive value, 118, 128 
preference-adjusted life year (PAL Y), 34, 
41, 199 
preferences, 18, 34, 199 
prevalence, 24 
prior probability, 2, 24, 49, 59 
probability, 2, 17, 24, 114, 197 

time-dependent, 28, 196 
probability density function, 26 
probability of verification, 128 

logistic regression analysis, 178 
prospecttheory, 43 
protocol, 6 
PTA, 48 
pyonephrosis 

ultrasound, 76 

quality-adjusted life year (QAL Y), 34, 199 
quality factor, 34 
quality of life, 18, 34, 199 

rate, 24 
rating method, 121 
receiver operating characteristic curve, 
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