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a b s t r a c t

DNA within cells is subject to damage from various sources. Organisms have evolved a number of

mechanisms to repair DNA damage. The activity of repair enzymes carries its own risk, however,

because the repair of two nearby lesions may lead to the breakup of DNA and result in cell death. We

propose a mathematical theory of the damage and repair process in the important scenario where

lesions are caused in bursts. We use this model to show that there is an optimum level of repair

enzymes within cells which optimises the cell’s response to damage. This optimal level is explained as

the best trade-off between fast repair and a low probability of causing double-stranded breaks. We

derive our results analytically and test them using stochastic simulations, and compare our predictions

with current biological knowledge.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Many common phenomena in Nature can lead to damage of
the genetic material inside living cells, including UV light, radio-
activity, reactive chemical species with high affinity for DNA, and
highly reactive oxygen species generated in various ways in the
intracellular medium (Sancar, 1996; Sancar et al., 2004). On the
one hand, high-energy particles from radioactive sources can
damage two neighbouring phosphodiester bonds which make
up the DNA backbone (Steel, 1993) — a bi-stranded damage cluster

— resulting in a potentially fatal structural damage known as
double-strand break (DSB) which breaks the DNA molecule apart
(Krasin and Hutchinson, 1977; Pennington and Rosenberg, 2007).
On the other hand, when the energy of the damaging agent is low,
it does not lead directly to the breakup of the DNA backbone. In
this latter case, damage consists of the formation of anomalous
chemical bonds in the affected nucleotides. UV photons, for
example, typically induce the formation of pyrimidine dimers,
where two neighbouring nucleotides become linked (Sancar,
1996). Even though low-energy lesions do not lead directly to
the destruction of the DNA molecule, they hinder crucial cellular
processes such as DNA replication and transcription. We will
focus on low-energy lesions for the remainder of this paper.

Cells have a number of mechanisms to repair low-energy DNA
damage. One of the most important is nucleotide excision repair

(NER) (Sancar, 1994, 1996), illustrated in Fig. 1. NER is the
ll rights reserved.
primary mechanism protecting cells against UV-induced damage,
and will be the focus of our study, although our theory and our
results are also applicable to other repair mechanisms which
work in similar ways, such as base excision repair (Sancar et al.,
2004). As depicted in Fig. 1, NER works by first recognising the
presence of a damaged base, excising a piece of the DNA strand
containing the damaged bases, and then rebuilding the resulting
gap using the complementary strand as a template (Sancar, 1996).
If all goes well, the result of this process is a new undamaged DNA
molecule with a sequence identical to that of the original one.

During the repair process, while the gap left by the excision is
being rebuilt, the DNA has only a single strand in the region of
repair. This opens the possibility that the repair of two close
lesions can cause two overlapping gaps, leading to a DSB (Harm,
1968; Moss and Davies, 1974); this is illustrated in Fig. 1. If DNA is
present in more than one copy, for instance if DNA was being
replicated when the damage occurs, DSBs can be fixed by the
mechanism of homologous repair (Krasin and Hutchinson, 1977;
Wyman and Kanaar, 2006). However, this repair mechanism is
not available in slow-growing cells with limited access to nutri-
ents, and DSBs are then usually fatal. Another repair mechanism
is non-homologous end-joining repair, which does not depend on
the presence of multiple copies of the DNA molecule; but this
mechanism is not present in many bacteria, including Escherichia

coli, the model organism we will focus on for the remainder of
this paper.

Thus, repair itself can lead to death, which suggests that the
relation between repair and the death rate can be counter-
intuitive, requiring a solid mathematical formulation to be prop-
erly understood. Most works in the literature addressing the
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double-strand
break

Fig. 1. Double-strand break caused by repair of two close damage lesions. (a) A

DNA molecule with two close damage sites lying on opposite strands. Repair is

initiated on one of the strands, first by cutting the DNA backbone around the

damage (b), followed by excision of the DNA segment with the damage (c). The

excised region starts to be reconstructed using the other strand as a template (d).

However, if a new repair starts in the other damaged site before the gap created by

the first repair has been closed (d), a portion of the DNA molecule loses both

strands and the molecule is broken into two, creating a double-strand break (e).
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modelling of low-energy DNA damage and repair are concerned
with the dynamics of the detailed biochemical events involved in
DNA repair (Politi et al., 2005; Kesseler et al., 2007; Shimoni et al.,
2009), including adaptation mechanisms such as the SOS
response in bacteria (Aksenov et al., 1997; Ni et al., 2007);
homologous repair has also been studied (Mouri et al., 2009).
The direct relation of repair and death is addressed to a limited
extent in Moss and Davies (1974), where the overlapping of
excised DNA regions as a cause of death is explicitly taken into
account. But their formulation is static, taking a given distribution
of excised gaps as an input, without taking into account how they
are dynamically created by the action of the repair enzymes.
A recent paper took this effect into account in the case of chemically
induced DNA damage in E. coli bacteria (Karschau et al., 2011), and
revealed that the interplay between repair and death leads to
surprising consequences to the dependence of mortality rates on
the concentration of the damage-inducing chemical and on the
number of repair enzymes present in the cell. For example, it was
shown in Karschau et al. (2011) that higher numbers of repair
enzymes can lead to a greater death rate.

In this paper we study a mathematical model of the repair
mechanism, which takes into account the fact that repair itself is
the cause of DSBs, as depicted in Fig. 1. We focus here on the case
where DNA damage is generated in short, concentrated bursts,
which then have to be repaired by the cells. This is a realistic
scenario, corresponding for example to organisms being exposed
to direct sunlight for short intervals, while staying in the shadow
most of the time. After being exposed to damage, some cells in a
population will recover after their DNA is repaired, and some will
die because of the DSBs generated during the repair process. This
transient repair dynamics is very different from the dynamics
investigated in Karschau et al. (2011), where damage is continu-
ously being created by a toxic chemical, and all cells in a
population will eventually die. In the present work, since the
source of damage is localised in time, the repair process takes a
finite time, and so it makes sense to define a survival probability
in this case, and ask how it depends on the amount of damage and
on the number of repair enzymes. This formulation allows us to
ask what is the optimal number of repair enzymes in a given cell:
many repair enzymes result in fast repair times, but increase the
probability of creating DSBs and killing the cell; on the other
hand, low levels of repair enzymes mean that repair may take
too long.

We will show analytically and numerically that the probability
of recovering from the damage and surviving repair is a decreasing

function of the number of repair enzymes NE, a result which bears
some resemblance to the one reported in Karschau et al. (2011).
This result simply stems from the fact that more repair enzymes
make it more likely for DSBs to be created, and therefore increases
the probability of DSBs being created (see Fig. 1). This may seem a
paradoxical result, since it predicts that the more repair activity
there is, the more likely cells are to eventually die, and we would
expect repair to be beneficial to the cells. However, we will show
that the average time it takes to repair all lesions decreases with
NE, and those cells lucky enough to survive will resume their
normal life more quickly. There is thus a competition between
two effects: increasing NE increases the probability of repair-
induced DSBs, but it decreases the time of repair, allowing
surviving cells to resume normal growth sooner. We show in this
paper that there is a maximum value of NE above which the death
rate caused by DSBs generated during repair is so high that overall
growth becomes negative. We also show that there is an optimum
number of repair enzymes for which there is an optimum balance
between the benefit of decreasing the repair time and the
disadvantage of killing cells during repair. This optimum number
turns out to be about 100 molecules, which is compatible with
the number of repair enzymes estimated for bacterial cells. This
suggests that evolution has selected this level of repair enzymes
in order to maximise growth and survival.
2. Model definition

We assume that at an initial time, a short burst of UV light (for
example) damages N0 sites on a cell’s DNA, and that these N0 sites
are homogeneously distributed within the chromosome. A few
minutes in sunlight can result in thousands of DNA lesions in a
single cell, so we regard N0 as large, but still much smaller than
the DNA size N, which is of order 106 in bacteria. The other
important parameter in the system is the number of repair
enzymes NE. In reality there are many enzymes involved in the
repair process, but each individual repair is initiated by a specific
enzyme, which starts the whole process. In the case of bacteria,
for example, this enzyme is UvrA. So NE is the number of
‘‘initiator’’ repair enzymes. When exposed to sudden intense
DNA damage-causing agents, cells can respond by increasing
the expression of genes producing repair enzymes, for example
through the SOS response mechanism in bacteria (Sancar, 1996);
we will assume that this takes place in a burst at the start of the
repair, and that NE remains constant afterwards. One important
characteristic of the repair system is that each repair enzyme can
only repair one site at a time. We take this into account in the



Fig. 2. The probability 1�P that a cell will die and the average time t it takes to

repair a cell, as a function of NE. The repair time tðNEÞ is normalised by tðNE ¼ 2Þ.

Full lines are analytical predictions, and dots are the results of stochastic

simulations. The parameters are a¼ g¼ 0:01 s�1, N0 ¼ 2000, N ¼ 5� 106, L¼9,

which are reasonable for E. coli. We use f¼1 throughout. We have verified that

these results are independent of a, as predicted by Eqs. (6) and (8).
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model through the relation

nRþnE ¼NE, ð1Þ

where nR is the number of repairs currently in progress, and nE is
the number of free repair enzymes, available for new repairs.

The number of damaged bases nD that are not currently under
repair satisfies the equation

dnD

dt
¼�anDnE ¼�anDðNE�nRÞ, ð2Þ

where a is the rate constant for the binding of a repair enzyme to
a damaged base, and we used Eq. (1). The equation for the
number of sites under repair is given by

dnR

dt
¼ anDðNE�nRÞ�gnR, ð3Þ

where g is the repair completion rate.
3. Results

3.1. Repair time and survival probability

Since nDbNE for most of the repair process, a time-scale
analysis of Eqs. (2) and (3) shows that nR reaches a quasi-
steady-state very quickly, and we can consider dnR=dt � 0. Sub-
stituting this in Eqs. (3) and (2) we get

nRðtÞ ¼
NEnD

g
a
þnD

,
dnD

dt
¼�

gNEnD

g
a
þnD

: ð4Þ

For bacterial cells, g is estimated to be 10�2 s�1 (Husain et al.,
1985; Ni et al., 2007). The value of a is harder to quantify, but it is
expected to be of the same order of magnitude as g. We can
therefore assume nDbg=a. In this case we have

nR ¼NE, nDðtÞ ¼N0�gNEt: ð5Þ

Consequently, the conditions nDðtÞbg=a imply that nDðtÞbNE, so
that the equilibrium value of nr is NE. This means that the repair
enzymes are maximally used. From the above equation we can
find the repair time t, that is, the time at which all damaged sites
have been repaired (assuming for the moment that no DSB has
been formed):

nDðtÞ ¼ 0) t¼ N0

g � NE
: ð6Þ

t is the average time it takes for all the N0 lesions to be repaired in
a given cell, if that cell survives the repair process; from the above
expression, it is inversely proportional to NE.

To calculate the probability that cells die as a result of repair,
we need to find the probability PDSB that any new repair starts at a
position too close to another ongoing repair, leading to a DSB (see
Fig. 1). Consider the chromosome at some time t. From Eq. (5),
there are �NE repairs being carried out, in positions randomly
distributed on the DNA. The critical distance L between ongoing
repairs such that the DSB created is of the order of 10 bases. So
each repair defines a ‘‘danger zone’’ around it of size 2L, and thus
the total length of the danger zones is 2LNE (assuming no over-
lapping of danger zones, which is reasonable since NE5N). The
probability of any new repair giving rise to a DSB is therefore

PDSB ¼ LNE=N: ð7Þ

The factor of 2 disappears because two lesions must be on
opposite strands to be able to generate a DSB.

Each new repair thus has a probability PDSB of creating a DSB.
We will assume that a constant fraction f of DSBs lead to cellular
death, with the remaining 1�f fraction being those cells which
manage to fix their DSBs somehow—for example by homologous
repair. In cells where homologous recombination is not possible,
such as bacteria in a limited medium, f is expected to be close to
1. The probability of a new repair killing the cell is therefore fPDSB.
So the probability P that at the end of N0 repairs the cell has not
been killed (the survival probability) is

P¼ ð1�fPDSBÞ
N0 � expð�fLNEN0=NÞ: ð8Þ

This shows that P decreases with the number of repair enzymes.
This is a direct consequence of the fact that more repair enzymes
mean an increased probability of generating a DSB. For low doses
(small N0, but with N0bNE), the death probability 1�P depends
linearly on the dose (N0) and on NE.

UV light produces about six pyrimidine dimers per 106

nucleotides for a dose of 1 J/m2 (Rupp and Howard-Flanders,
1968; Ni et al., 2007). The intensity of UV light in a bright day is of
the order of 2 W/m2, corresponding to 60 lesions per second being
generated in an E. coli cell with a genome 5�106 nucleotides
long. So 5 s in direct sunlight would result in N0 � 300 dimers.
Using this value for N0 as an example, and parameters appropriate
for E. coli cells (see Fig. 2), we find a repair time t� 25 min for
NE¼20, which matches well with the observation that E. coli

bacteria take about 20 min to recover from a 10 J/m2 UV irradia-
tion before resuming normal activities (Doudney, 1990). Compar-
ison of our predicted survival rate P with observations (Moss and
Davies, 1974; Bronk and Walbridge, 1980) reveals that our theory
tends to underestimate the death rate, suggesting that there are
spatial effects which tend to increase the probability of new
repairs starting close to ongoing repair sites. This supports the
hypothesis put forth in Moss and Davies (1974).

3.2. Stochastic simulations

Since NE is small in cells, one may question the validity of
using differential equations as we did in our derivation above.
To see if our results are preserved in the presence of the stochastic
variations caused by low-abundant species such as the repair
enzymes, we implement a stochastic simulation of the repair
process. We used a variation of the Gillespie (2007) algorithm to
simulate the random discrete changes in nD and nR corresponding
to the continuous approximation given by Eqs. (2) and (3).
In contrast to the usual Gillespie algorithm, however, we keep
track of where each damaged and under-repair site is in the
chromosome, so that we can tell when a DSB is created by two
nearby repairs. Running many realisations of this stochastic
process, we get from the simulation the repair time tðNEÞ and
the survival probability PðnEÞ as a function of the number of repair
enzymes. The result is plotted in Fig. 2, along with the analytical
predictions given by Eqs. (6) and (8). The simulations and the
analytical results match extremely well, showing that our ODE
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theory is valid. The parameters we used in Fig. 2 are realistic for E.

coli cells.
Fig. 3. (a) Growth rate R as a function of NE for N0 ¼ 1000, N¼ 5� 106, L¼9,

T0 ¼ 1500 s; g¼ 10�2 s�1; f¼1. (b) Optimal repair enzyme number Nopt
E as a

function of the initial number of damaged bases N0, for the same parameters.
4. Discussion

4.1. The optimal balance between repair and death

The above results show that repair enzymes are a double-
edged sword. If NE is too large, cells are very likely to die after
DNA damage as a result of the repair process, as P-0 in Eq. (8).
If, on the other hand, NE is too low, then the repair time t becomes
very large, as seen from Eq. (6). We now derive by a simple
argument the optimum value of NE, which achieves the best
balance for cells, and we explore limitations on the number of
enzymes in cells imposed by the repair dynamics.

Cells with unrepaired damage to their DNA usually cannot
proceed with their normal life cycle, thus preventing them from
replicating. This fact suggests there is an optimum balance
between a high death rate and a long repair time. Let T0 be the
normal replication time (doubling time) of a microorganism, in
the absence of any DNA damage. In the simplest model, the
replication time T of a cell subject to DNA damage increases by
the time t it takes to repair the damage: T ¼ T0þN0=ðgNEÞ (using
Eq. (6)). This is consistent with experimental growth measure-
ments in bacteria subjected to UV irradiation (Doudney, 1990).
We are assuming in this idealised model of population growth
that each generation of cells is exposed to a burst of radiation
which causes N0 damages. So in the absence of DNA damage, the
population size would be described by an exponential growth
factor expðl0tÞ, with l0 ¼ ðln 2Þ=T0. The presence of DNA damage
slows this down to l¼ ðln 2Þ=T. In addition, damage causes cells
to die at a rate such that after the time T, a fraction 1�P of all cells
die, where P is given by Eq. (8). This corresponds to a death rate of
m¼�ðln PÞ=T . The overall growth rate R of the population is thus

R¼ l�m¼ ln 2�fLNEN0=N

T0þN0=ðgNEÞ
: ð9Þ

Negative values of R would imply a decreasing population, which
means these values are avoided by evolution. We therefore must
have R40, or from the above expression,

NEoNmax ¼
N ln 2

fLN0

: ð10Þ

Thus we show that there is a maximum number Nmax of repair
enzymes beyond which the rate of death caused by DNA damage
and repair exceeds the reproduction rate of those that do survive
the repair process. Notice that Nmax is inversely proportional to
the initial number of damaged bases N0.

Fig. 3a shows R as a function of NE, for a given number
N0 ¼ 1000 of initial lesions, using parameters that are reasonable
for E. coli (Husain et al., 1985; Ni et al., 2007). We find that R has a
maximum at

Nopt
E ¼�

N0

gT0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0

gT0

� �2

þ
N ln 2

fLgT0

s
ð11Þ

Nopt
E ¼ 107 for 1000 initial lesions. Nopt

E decreases with N0, and for
N0 ¼ 2000 it is only 75.

4.2. Conclusion

Fig. 3b shows Nopt
E as a function of N0, from Eq. (11). Note that

Nopt
E decreases monotonically with N0, and is never greater than

Nopt
E ðN0 ¼ 0Þ ¼ 160, suggesting that repair enzymes in a cell should

be kept at low numbers — although we point out that these
results are not valid for very low N0. This conclusion is in
accordance with current biological consensus that repair enzymes
are expressed at low abundances, and the optimum values of NE

we found agree with the estimated numbers of repair enzymes
that have been measured in cells (Myles and Sancar, 1989).
Therefore, we suggest that evolution has constrained NE to low
values, so that the risks incurred during repair are optimally
counter-balanced by the benefits provided by fast recovery.
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