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Abstract

A new distributed optimal autopilot for aircraft flight control is presented. A
parallel processing approach is taken where the longitudinal and lateral motions
with cross-coupling effects are handled in different processors. The proposed control
algorithm is implemented on a T800 transputer network programmed using Parallel
C, and it is shown that real-time performance is possible.

1 Introduction

An aircraft in flight is a nonlinear time varying system, see Babister [1] and Blakelock [2], which
can be demanding to control adequately over its entire flight regime. In principle, nonlinear
optimal control techniques can provide the ability to design suitable strategies but these are
rarely implemented due to the large computational requirements for solving such problems in
real-time. For example the general nonlinear optimal control problem requires several steps to
be performed iteratively for calculating the solution. The main steps in this procedure are:

Step 1: Linearise the formulated optimal control problem about the current operating condi-
tions.

Step 2: Solve the linearised problem to give a “descent direction”.

Step 3: If the optimal solution to the nonlinear problem has been deduced, stop.
Else calculate a suitable step size in the “descent direction”, and determine a better
operating condition. Then go to Step 1.

It is clear that steps 1 — 3 are repeated until the desired solution has been obtained. Several
theoretical (or conceptual) algorithms, see [3]— [5], have been proposed for calculating the
solution of such problems using various methods including steepest descent, conjugate gradi-
ent, strong variational, penalty function and quasi-linearisation approaches. Some have been
made implementable by reducing the need for exact solution at intermediate points but they
still require vast levels of numerical processing that are difficult to satisfy in many real-time
computer control applications. '

When considering optimal control of aircraft systems the situation is further complicated
because large dimensional mathematical models are necessary for adequate representation and
fast sample rates are normally required. It is expected that a sampling rate of 200 Hz is
necessary to achieve good real-time control performance, and so the computations must be
accomplished within a sampling interval of 5 msec. Unfortunately, due to the magnitude
of the computing task, this is difficult to achieve using conventional sequential computing
methods and alternative approaches need to be investigated. One of the main alternatives
is to use parallel processing techniques to distribute the computing task over a network of
processors which can communicate effectively with each other, see Bertsekas [6], Hockney and
Jesshope [7], Patton [8] and Kung [9].

A recent development in parallel computer systems has been the Inmos transputer [10],
which has a number of unique serial links that enable true parallelism to be introduced in
computing systems relatively easily. The transputer’s introduction has greatly excited com-
puter specialists, engineers and application scientists, and significant research is underway to
develop expertise and to implement parallel processing based solutions for many application
areas. The majority of current computer users rely on sequential “flow diagram” type of pro-
gramming which is rather limiting when multiple processing devices are present. Problems such
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as deadlock, communication overheads (granularity), program termination and synchronisation
all become important issues that need consideration and handling in suitable ways.

In this paper we use a transputer network and parallel processing methods to determine
a real-time optimal autopilot for an aircraft whose engineering data was supplied by British
Aerospace, Brough [11]. Similiar reasoning as in Tahir and Virk [13], [14], where a distributed
longitudinal autopilot is presented, is used to arrive at a suitable control strategy for the whole
aircraft taking cross-coupling effects into account. We start our discussions by a statement of
the mathematical model of the aircraft.

Figure 1: Aircraft in flight with notation and axes

2 Aircraft Equations

When considered as a rigid body (see Figure 1) the motion of the aircraft is defined by a set
of nonlinear equations, see [1], [2]:
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or in compact form as

z(t) = f(z(1),uin (1)) (12)
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Z2

(:1:1 = [0, W;Q,8, H, E,]T) and those connected with the lateral motion (2:2 = [V, PR, ‘IJ]T),

where the state vector z = ] is made up of variables related with the longitudinal motion,

and the control input vector ('uin e I b C]T). The notation used is defined in the appendix.
These equations can be written in a linearised form to highlight the cross-coupling terms be-
tween the longitudinal and lateral motions as
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where fi, = 8f1/8a is the partial derivative of the first element of function f, i.e. fi, with
respect to state a, etc, and u,w,g,..., % are the state perturbations about the linearised point.
in compact form this reduces to:
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where Ay, A1z, Az; and Ag;, are the partial derivations of the nonlinear functions f in equation
(12) with respect to the states and B; and B; are the derivatives with respect to the controls.
Hence A;; and A, represents the cross-coupling terms, and if these are absent the longitudinal

and lateral motions can be easily decoupled and handled independently of each other. It is
well known that the cross-coupling terms can be removed by assuming:

(i) the aircraft is in straight and unaccelerated flight and then disturbed by deflections of
the control surfaces.



(ii) the elevator deflection causes only a pitching moment about the OY axis and causes no
rolling or yawing moments.

(iii) the aileron and rudder deflections causes rotations only about the OX and OZ axes
respectively.

These assumptions are not strictly valid in many modern aircraft and the situation is
worsening with designs evolving towards having more weight concentrated in the fuselage and
the wings becoming thinner and shorter (and hence lighter). This weight shift is causing the
cross-coupling effects to be increased considerably since the various moments of inertia are
changing, and hence necessitating the need for consideration of these effects in the controller
design. As more weight is concentrated along the longitudinal axis, the moment of inertia about
the OX axis, I, decreases while the moments of inertia about the QY and OZ axes increase.
This phenomena increases the interaction between the longitudinal and lateral motions, and
can best be seen by examining the basic moment equations (3), (8) and (9). As I, becomes
much smaller than I, and I, the moment of inertia difference terms (I, — I,) and (Iz — I,)
become large. Hence if a rolling moment is introduced it results in some yawing moment, and
the term P(t)R(t)(I, — I;) may become large enough to cause considerable pitching.

Another factor that must be considered is the aerodynamic cross-coupling effects that are
present. For example, the lateral aerodynamic derivatives are proportional to the angle of
attack () which is dependent upon longitudinal states (i.e, @ = tan=! w) Furthermore, in
our controller design, we use pointwise linearisations for the aircraft over short intervals of time,
and so the aircraft may not be in straight and level unaccelerated flight at the llneansatmn
instants as assumed above.

Hence the above assumptions are not valid and an alternative method for breaking the
aircraft equations is needed for improved system performance. Equation (13) shows that
the longitudinal motion can be separated if we assume that the lateral state perturbations
UU Py Ty @, ) ) have small values which can be neglected. In the same way we can separate
the lateral motion equations by neglecting the longitudinal perturbations. Therefore if X is a
vector of the state variable then

X(t) = Xo +2(1) (15)

where X is the value of the state vector at the linearisation instant, = (t) is the state vector
perturbations. We now present out procedure for solving the aircraft optimal autopilot design
problem.

2.1 Longitudinal Motion

The lateral state perturbations are assumed to be small and that their effect can be neglected
during an interval T} between two succesive linearisations. Hence V=P = R =& = § =
0, and this leads to the following longitudinal equations (not showing time dependence for
convenience):

I} = X'f - QW + (R(]Vo) (16)
W = % + QU - (PoVo)* (17)
Q@ = {Pn+(.-I.)PoRo+1., (B% - P2)}/1, (18)
© = Qcos®y— (Rosin )t (19)



H = Usin® — W cos O cos &g — Vpcos O sin @y (20)
E, = f(E,V,H,7) (21)
2.2 Lateral Motion

In the same way if we neglect the effects of longitudinal perturbations, then [/ = W = Q=
© = H = E, =0, and we have the following lateral equations:

V = % + PW, — RU, (22)
P = {Rn+(L~L)RQo+1I.. (B +PQo)} /L (23)
B = {¥n+(I~1)PQo+L. (P - RQo)} /1. (24)
& = P+ (Qosin® + Rcos®)tan O (25)
U = {Qosin® + Rcos ®} /cos Qg (26)

These sets of equations will be used for short time intervals T} over which the aircraft is
linearised and suitable optimal control laws designed. It is clear that in this way cross-coupling
effects between the two motions are allowed for but are assumed to be constant over the lin-
earised intervals. For example when considering the longitudinal motion, the lateral variables
(V,P,R,®,¥) are assumed to be constant at their values (Vo, Po, Ro, @9, ¥g) when the lineari-
sation is performed. In this case, the lateral variables are found to appear as separate constant
terms which disappear in the linearisation process and so have no effect on the longitudinal
feedback gains.

In the lateral motion equations (22)-(26) the (assumed constant) longitudinal terms are
combined with the (assumed varying) lateral terms. Therefore (Uo, Wo,Qo, Ho, E40) will not
vanish in general from the linearised lateral equations and hence effect the feedback gains
calculated allowing for the cross-coupling effects.

A solution for handling the various cross-coupling terms in equations (16)-(26) is possible
along the following lines:

(i) The terms marked * in equations (16) and (17) normally have a small effect on the
longitudinal motion and can therefore be removed from the equations without effecting
the performance significantly.

(ii) The inertial cross-coupling term in equation ( 18) is normally the most important term.
It can be neutralised by applying an equal and opposite amount of pitching moment
using the elevator. Such a result can be achieved by setting

An = {PR (Ie = L)+ L, (P? - R’~’)} /‘%’1 (27)

very The term marked } in equation (19) can also be eliminated by changing the pitch
rate ) by an amount AQ which cancels this cross-coupling effect and so

AQ = Rtand (28)

This AQ can be added to the demanded pitch rate Q4 causing an error which generates
(when multiplied by the corresponding feedback gain) an elevator control action depen-
dent upon yaw rate and roll angle to keep the pitch angle and aircraft height at desired
values.



In this way it is not necessary to wait until significant errors accumulate in the longitudinal
states before remedial action can be taken since such an action can be computed and applied
as soon as the errors arise in the lateral attitude angles and rates.

3 Optimal Control Problem

The approach taken here is to formulate an optimal control problem for the complete linearised
aircraft, separate the motions into the longitudinal and lateral dynamics, taking into account
the cross-coupling effects, and solve the two subproblems using a multi-transputer network in
real-time.

The nonlinear aircraft system, equation (12) can be linearised about an operating point
(X0, Uino) and the equations written as

e = Ae(t) + BAu(t) (29)

where the A and B matrices are of the form shown in equation (14), e is the error in the
system states and Au is the control deviation from the operating point Usno. The elements
of the A and B matrices were obtained using the aircraft engineering data supplied by British
Aerospace, Brough, [11]. Equation (29) is assumed to be time invariant for a short interval
T; over which optimisation is performed, cross-coupling effects assumed to be constant and
handled as discussed above, and the resulting control actions applied to a simulation of the
nonlinear time-varying aircraft. The receding horizon technique is used so that real-time, on-
line optimal control of the aircraft is possible. Starting at time g a linear quadratic performance
index having the form

% /:“’LT [ (1) Qe (1) + AT (1) RAw (1)) dt
. % [€7 (t0 + T) Fe (10 + T)] (30)

J (ua tO) =

is considered and minimised, where @ and F are 6 x 6 positive semi-definite matrices for the
longitudinal mode and 5 X 5 positive semi-definite matrices for the lateral mode, R is a 2 x 2
positive definite matrix for each mode and T is the length of the horizon interval (in seconds).

It is well known that the receding horizon optimal control law, see Kwon and Bruckstein
[12], is given for our problem by

Au* (1)
u* (1)

where P(-) is computed by solving the following Riccati equation backwards

—R™IBTP (to,t0+ T)e(t) (31)
Uo + Au* (1) (32)

P(t) = -P(t)A-ATP(1)-Q+ P(t)BR™'BTP (1) (33)
P(to+T,t0+7T) F (34)

Once the time t has reached tp + T}, a new linearising interval of length T} can be started
by setting to = 2o + T and repeating the cycle indefinitely.



4 Real-time Parallel Implementation

The above optimisation and control procedure can be stated in the following algorithm form:

Step 0: Initialise control U., initial time 1y, receding horizon length T, linearisation interval
T}, sampling interval T,, demanded state zg4.

Step 1: Linearise the aircraft equations ((16) — (21) or (22) — (26)) about the current state
Xo and the midpoint control U.,.

Step 2: Integrate the Riccati equation from tg+T to tg, and store the gains Pr = P(1,, to+T).
Step 3: Set t = g, and compute the control u;, (1),t € [to, to + T}] using step 4.

Step 4: Calculate

Au(t) = —R'BTPre(t) (35)

where state error e () = z (1) — zy4 (36)
set uin (1) = U:.+ Au(t) (37)

sett = t4+ 7T, (38)

Step 5: Calculate z(t) by integrating the nonlinear aircraft equations (1) - (11) from initial
condition z(t — T,) and using the new control u;, ().

Step 6: If t > 1o + T}, set Xo =z (t),% =t and go to Step 1.
Else go to Step 4.

Note that the aircraft linearisations are performed about the control U,, where the control
surfaces are at the centre (zero) position, and the throttle control is at the centre (0.5) position.
The use of U, instead of the current control u;, (1) at the instant of linearisation is to prevent
the integral action in the calculated control from equation (37), caused by the high repetition
rate of the linearisation. ‘

When the above algorithm is used for controlling the longitudinal motion, the extra con-
trolling terms needed to account for the inertial cross-coupling An from equation (27) should
be added to the calculated elevator control input from equation (37). In addition the pitch
rate AQ) from equation (28) should be added to the desired pitch rate as discussed earlier.

Clearly for real-time performance all these computations have to be performed iteratively
within the time scales of the aircraft. A sampling rate of approximately 200 Hz is usually
required to achieve satisfactory control. Hence the above algorithm should be processed to
provide control updates every 5 msec. It has been shown in Tahir and Virk [13], [14], that
the aircraft can be adequately controlled using a time invariant linearised model for a specified
time interval of T} seconds, which can be made equal to the execution time for Steps 1 and 2
of the above algorithm. A transputer network system as shown in Figure 2 is used to provide
real-time control as follows:

Transputer TO is the aircraft simulator.

Transputers T1 and T2 handle the lateral mation, that is provide aileron (£) and rudder
(¢) control actions. Transputer T1 performs these control updates by using the gains Pr
stored in, and supplied by Transputer T2. T2 performs the linearisations and solves the
Riccati integration, that is steps 1 and 2 of the above algorithm for the lateral mode.
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Figure 2: Transputer system for autopilot implementation

Transputers T3 and T4 control the longitudinal motion of the aircraft, that is provide the
elevator (77) and engine throttle (y) controls. T3 performs the same operations as T1,
and transputer T4, the same task as transputer T2, but for the longitudinal mode.

Both the lateral and longitudinal autopilots read the complete state from the simulator
through transputer T1 and T3 respectively, so that the cross-coupling effects can be allowed
for as discussed earlier. In practice an observer is necessary to estimate the states which are
not directly measured for use in such a control system design implementation.

For a receding horizon interval T of 0.5 sec, and if the integration step used in step 2 is
10 msec then it is found that the lateral Riccati equations can be up dated every 40 msec
(= Ti1at)and the longitudinal ones every 50 msee (= T jong). These figures can be reduced if
the linearisation and Riccati solution transputers (T2 and T4) can share their computations
with extra processors - see Tahir and Virk [13] for the computational complexity and detailed
timings.

5 Results and Conclusions

The real-time algorithm was coded on a T800 transputer network of Figure 2 using Parallel
C. Using the state vector z = [U,W,Q,6,H,E,,V,P,R, &, lIJ]T , an initial state

zic = [ 150, 5, 0, 0.033, 5000, 6615, 0, 0, 0, 0, 0.2)7
and a desired state of
zq =[ 150, 5, 0, 0.033, 5000, 6615, 0, 0, 0, 0, 0]7

is assumed, and so the aircraft is required to change its direction by 11.5°.
The following weighting matrices were used.

Longitudinal motion autopilot
Qiong = diag [ 5, 0, 500, 1000, 0.6, 5 x 10~%] ,

Ripny = diag[5; 1];
F'long = 0



Lateral motion autopilot

Qiat = diag[ 0.1, 10, 1000, 15, 1500],
Ry = diag[la 50]1

Fiote = 0
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Figure 3: Longitudinal aircraft motion under optimal control

The optimal trajectories and controls for the longitudinal motion are shown in Figure 3
and the lateral ones in Figure 4. From these we can observe the following:

(i) The elevator positive deflection in the first few seconds is due to the additional cross-
coupling control A7, while later on the elevator responds optimally to reduce the errors

in the pitch angle and aircraft height.

(ii) The reduction in forward speed U is caused mainly by the positive pitch rate and slightly
by the cross-coupling term (RV). This reduction in U is remedied optimally by a slight
increase in throttle control.

(iii) The response to an error in the yaw direction (¥) is acceptable and the negative error in
the roll angle () reduces the angle of sideslip using the bank to turn idea. The amount
of roll can be reduced by increasing the weighting elements ¢, gz3 and ry; in the lateral
mode, but at the expense of increasing the settling time for the yaw angle heading, see

Virk and Tahir [15].

Overall, the results shown in Figures 3 and 4 are adequate. Hence the linear time invari-
ant aircraft model, and the cross-coupling assumptions are valid and useful when considering
problems of this kind. Moreover the cross-coupling problem has been solved without requiring
any physical link between the two controllers and hence they can work separately to achieve

real-time performance.

It has heen shown that such performance levels are possible by splitting the computa-
tional task functionally into smaller sub-tasks which are processed on different devices. The
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Figure 4: Lateral aircraft motion under optimal control

individual processing devices can be configured into suitable architectures for optimising the
communication aspects for the application being considered.

It is imperative that such flexibility be available for the effective employment of parallel
processing techniques to a wide variety of applications.
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Appendix

Table of notations
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m/sec
m/sec
m/sec
m/sec
rad/sec
rad/sec
rad/sec
rad

rad

rad
metres
rev/min
rad

rad

rad
dimensionless
N

N

N

Nm
Nm
Nm

kg
kgm?
kgm?
kgm?
kgm?

rad

forward component of aircraft velocity
downward component of aircraft velocity
velocity of sideslip

aircraft relative velocity

pitch rate

roll rate

yaw rate

pitch attitude angle

roll attitude angle

yaw attitude angle

aircraft height

engine speed

elevator deflection

aileron deflection

rudder deflection

engine power setting

total force acting along O X axis
total force acting along OY axis

total force acting along OZ axis

total pitching moment

total yawing moment

total rolling moment

total aircraft mass

moment of inertia about O X axis
moment of inertia about OY axis
moment of inertia about O Z axis

the cross product of inertia about OZX axes
sampling period

time between successive linearizations
horizon depth

vector of state variables

vector of desired states

vector of control variables

angle of attack
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