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Abstract

A method to design the weighting matrices in the optimal control of an aircraft
is presented. The method js equally suitable for any general multivariable appli-
cation provided some prior knowledge is available to enable the rankings and the
determination of the important terms.

1 Introduction

In the design of control systems the performance assessment of a particular design s usually
very subjective. For example the assessment may take factors such as percentage overshoot,
steady state errors, settling times and rise-times into account but using these, it is difficult
to categorise the “best” design. In addition, the design phase normally takes an iterative
form where the controller design and its assessment are repeated several times essentially
following a trial and error design procedure until a satisfactory control law is reached. In many
applications the design is dependent upon multiple performance and constraint requirements,
and so the general trial and error can prove exceedingly difficult. The situation is compounded

min %j{;T {er(t)Q:c(t) + uT(t)Ru(t)} dt (1)

where @ is an n X n symmetric positive semi-definite matrix, Risa m xm symmetric positive
definite matrix for a system of state z(¢) with dimensjon n, and m inputs uy, u,, - - Uy

It is well known that the zTQz term relates to system errors and u Ru relates to control
effort. By varying Q and R the emphasis given to the individual terms can be varied for
different objectives. For example, as @ is increased tighter regulatory performance js sought,
which usually requires larger controlling si gnals. Similarly as R is increased, control effort js
penalised more and so large control signals are avoided, but this generally leads to worsening of
the errors. It is therefore clear that the proper balance between @ and R needs to be reached
so that good regulation is obtained without using excessive control.

Now although the theory of optimal control is well documented, see Banks [1] and Bryson
and Ho [2], and leads to the determination of optimal solutions for general problems, the proper
formulation of such problems is not. The Q and R matrices in equation (1) are usually set

difficulties such as these, and the level of mathematical analysis required, that have restricted
the wide spread adoption of optimal control techniques in practical applications and so a better
design procedure is required.
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In this paper a suitable approach is suggested based on a proper analysis of the system
dynamics under consideration. We will concentrate on an aircraft optimal autopilot to illus-
trate the approach but the method is equally applicable to any multivarjable problem. A
receding/moving horizon optimal control problem is considered suitable for handling the time-
varying aircraft equations in a real-time on-line situation, see Kwon [3]. We start by giving a
short introduction to the receding horizon problem.

2 Receding Horizon Optimal Control
Consider the time varying linear system described by

ét) = A(t)e(t) + B(t)Au(1) for a.a. t € [to,1/] (2)
6(30) = e€p (3)

where e(t) is the state error vector of dimension n, Au(t) is the control deviation vector of
dimension m, A is the n x n system matrix, B is the n x m Input matrix, eq is the initial error
at time {p, and a.a. stands for almost all.

Let us minimise a quadratic cost function V; over a fixed interval [, ty] where t; = tg+ T
for some horizon length T seconds, and

Vi(z) = %f: {eT(0)Qe(t) + AuT(t)RAu(L) b di + %ET(tf)FE(tf) (4)

Here Q, R and F are symmetric matrices which contain the designed weighting parameters.
We will assume that Q and F are n x n positive semi-definite matrices and R js amxm
positive definite diagonal matrix.

This is the standard regulator problem where the @, F and R matrices need to be selected
s0 that the minimising control will drive the initial error ey towards the origin in an optimal
manner. It is well known that the optimal control input that minimises Vy is provided by the
following state-feedback law

Au(t) = -—R_]BT(I)I{(Z)e(t) for t € [to,1/] (5)

where K(t) is a matrix valued function calculated from solving the following Riccati equation
backwards

-K (1) K()A(t) + AT(t)K (1) - K(r)B(t)R‘lBT(t)I((t) tQ fora.a.te [to,1y] (6)
K(ty) = F (7)

We now introduce the receding horizon problem for system (2), (3) by calculating the control
input Au*(t) at time ¢ that minimises a quadratic cost function V over [t,1 + T], where

t+T
Vi(z,1) = % / {" Qe + AT RAUD a1 + -21-eT(t +T)Fe(t+T)  (8)
t
In a similar way as above this leads to the state feedback control law

Au*(t) = =R BT () P(t)e(2) for all t (9)



where P(t) is computed backwards using the following Riccati equation

P(T)A(r)+ AT(r)P(r) - P(r)B(T)R'BT(r)P(1) + Q
fora.a. 7€ [t,t + 7] (10)
P(t+T) = F (11)

-P(r)

I

Hence at each moment ¢, Au*(1) is chosen as if the final objective is to minimise V over
[t,t + T, that is over a moving interval of length T. It is readily seen that this is clearly not
the situation and so Au* does not in fact minimise any obvious cost function of the type (4)
on any given interval [to, ;4] We may therefore ask ourselves, “Why should we use such a
strategy?” There are in fact several reasons for its use and popularity, and why we choose to
use it here; these are mainly related to its practicality and computational efficiency. It is also
conceptionally a reasonable approach, see Kwon([3], and Banks [1] for further discussion.

In principle to implement the control Jaw (9) one might solve at all moments in time the
Riccati equations (10), (11). This is clearly not feasible computationally but we immediately
realise that in the case of time invariant systems, the receding horizon method yvields a constant
feedback gain. The control law in this case, is simply given by

Au*(t) = —=R7'BT Pre(t) (12)
where Pr = P(T') can be obtained from solving

P() = P(t)A+ ATP(t) - P({)BR™'BTP(1) + Q for a.a. t € [0,T] (13)
P(0) = F (14)

Such a simplifying linear time invariance assumption over short time intervals is used for our
aircraft control problem and forms the basis of the QR selection procedure.

3 Nonlinear Optimal Control
Consider a general nonlinear control system

(1) f(z(1),u(t) for a.a. t € [tg, 1] (15)
z(lo) = = (16)

n

where £ € R", u € R™ and f: R" x R™ — R" is a continuous and bounded function. For
practical optimal control of such systems it is normal practice to linearise about some point
and formulate a simpler problem that can be solved on-line. Assuming we wish to linearise
about some operating control input up and its corresponding state z, then we can obtain

€(t) = A(t)e(t) + B(t)Au(t) for a.a. t € [to, 1] (17)

where e(2) = z(t) — zo is the error in the state, Au(t) = u(t) — ug is the control deviation, and
the A(t) and B(t) matrices have elements

2 f;

ag(t) = 67,-(’”“ (t),uo(2)) for¢,5 = 1,2,'--3n (18)
bi(t) = %(zo(t),uo(t)) fori=1,2,-..,n, J=12,--.m (19)



Hence the system (17) is a local representation to the nonlinear system (15).

The optimal control of linear time-varying systems can be computationally demanding, see
Tahir and Virk [4], [5] and [6]. It is normal to assume time invariance for short intervals 7}
so that the processing is realistic while maintaining adequate description of the time-varying
system. Under these assumptions we have

é(t) = Ae(t) + BAu(t) for a.a. t € [t1,12] (20)

where t; — ¢ = T}. At time { consider a cost function V' over a receding horizon of length T
seconds for this time invariant linear system where

V¥z) = % /tHT {eT(T)Qe(T) - AuT(f)RAu(‘r)} dt + %eT(t + T)Fe(t+T) (21)

and (), F and R are as assumed in section 2. We assume that the horizon length is greater
than the linearising interval, i.e, T > T}, to ensure a good representation of the system for
all time. Hence several linearisations are performed within a single horizon duration. The
receding optimal control law is given by

Au*(t) = R BT Pre(t) for all ¢ (22)

where Pr satisfies equations (13), (14). The normal procedure is to apply the control given by
equation (22) for time T} seconds and then the nonlinear equations are relinearised at the new
operating point. The new A and B matrices give a new control problem and Pr is recalculated
thus giving Au* for the next T; interval, etc.

What follows now is a procedure that allows a proper selection of the ¢ and R weightings
so that the overall control performance is as required.

From equation (22) we have

Au*(t) = Ge(t) for all ¢ (23)
where G is an m X n matrix given by
G=-R'BTPr (24)
The components of the control input are therefore defined by
Aui(t) = giaei(t) + gize2(t) + - - + ginen(?) for all ¢ (25)

Hence each control input Au} has n gains gi1,8i 2, -, gin associated with it. These gains are
multiplied by the state error vector elements to give contributions to the overal control signals
that need to be applied.

As can be seen from equations (13), (14), (21) and (22) the gain elements in the matrix G
are affected by the weighting matrices (), R and F. Here we will assume F = 0 and concentrate
on @ and R. The important points to bear in mind when @ and R are selected include the
following:

(a) Each gain g;; must possess the correct sign so that when it is multiplied by the corre-
sponding state error, the resulting control leads to a reduction of the error in that state.
If this is not so the system will face a stability problem.



(b) Each gain g,; should be of “reasonable” magnitude so that when it is multiplied by
the state error, the control signal determined is within the constraint limits for Auf.
Hence the g;;’s magnitudes must be inversely proportional to the expected sizes of the
corresponding state errors.

(c) How much authority should be given to each individual gain g;;7 The answer to this
is system dependent and on the performance requirements sought, but to assist in this
selection the gains corresponding to each Au} can be divided into two groups, which are

e Group 1 which contains the gains related to the states which can be directly con-
trolled by the Au;.

e Group 2 which contains the gains resulting from the cross-coupling between the
system states. This situation usually corresponds to the case where these states are
controlled by some other control element of Au.

The gains in Group 1 are given a higher authority, and then the relative importance of
all the gains in Groups 1 and 2 are decided.

(d) The required control effort, i.e. the size of the Au} terms define the size of the control
effort and usually specifies the error tolerance levels in the system performance. Usually,
larger controls imply lower error levels and faster system response requirements. If Au}
is too excessive it can be reduced by increasing the corresponding R matrix element 7y;.

(e) What time varying characteristics do the gains g,; possess? To answer this it is necessary
to establish which states have the major time variation influences the system. The
dominant states can be found by analysing the time varying properties of elements in
the A and B matrices. For example in aircraft systems high velocities give a higher rate
of change in the pitching moment with respect to elevator deflection, that is some of
the elements of the B matrix will have higher values, and so the PBR~! BT P term in
equation (13) will lead to a reduction in the gains g;;. This means that lower control effort
will be needed to remedy an error when the aircraft is travelling at high velocity than
when it is travelling slower. From equation (13), if @ and R are too large, this automatic
adjustment could be limited. The design arrived at, should therefore be tested at least
3 operating points that cover the entire operational range of the system.

(f) When all the above aspects have been considered and the ¢) and R elements have been
set, it is advisable to study the system response if assess the performance. Very slight
changes maybe needed to fine tune the behaviour.

In the next section we shall show how the above analysis can yield a suitable procedure
for designing Q and R, (F is assumed to be zero without loss in generality). Although the
procedure is system dependent, it can be used as a guideline for other systems if prior knowledge
concerning the application is available.

4 Optimal Aircraft Longitudinal Control

In this section we shall apply the techniques presented in the previous sections to design a
suitable optimal control law for an aircraft whose engineering data was supplied by British



Figure 1: Aircraft in flight with notation

Aerospace, Brough [7]. The longitudinal motion of an aircraft system, shown if Figure 1, is
defined by the following equations, see (8], [9],

v = 2B _quwe (26)
wo = 201 00ua) (27)
o = =0 (28)
O() = Q) (29)
H() = U(t)sin® () — W (t)cosO (1) (30)
Bt) = F(E0), V() H(),7() (31)

where the notation is also shown in Figure 1. This nonlinear system can be linearized about
an operating point (zo, %) to give

é(t_) =A(t)e(t) + B(t) Au(t) for a.a. t (32)

where the matrices A (t) and B () are given by

[ Xu Xu—-0Q z,-W Xs 0 Xp, ] X, 0
22 % Z+F & u 0o Z, 0
| Pau Puw  Pmg Pms 0 O | Pay 0
A =1"9 0 1 0o 0 o |° BO=]"¢" (33)
sinf —cosé 0 Hg 0 0 0 0
| E,, 0 0 0 0 Esg, | | 0 Es,
and
e(t) = z(t)-xzo (34)
Au(t) = u(t) - uo (35)
0X
X, = oy evaluated at zg, ug, etc. (36)
a
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z = [U,W,Q, O, H, E,)Tis the state vector, u = [n,ﬂT is the control input vector. Note that
for convenience we have not always shown the time dependence of the various functions - this
should not cause any confusion.

From equations (22)-(25) we have

An = gner+gize2 + -+ Gies (37)
Ay = gnei1+ g€+ -+ 9266 (38)

where the gains g;;’s are of the form

=3 .
g = — (XyPri + ZyPai + Py Psi) fori=1,2,:<,6 (39)
11
-1
gy = —FEs, Pg fori=1,2,---,6 (40)
22
Also e;, €, - -, g are the errors in the states U, W,-- -, E, respectively, F;; are the elements

of the Pr Riccati gain matrix obtained by calculating equations (13) and (14), and r;; are the
diagonal elements of R. Bearing in mind the aspects stated above the following procedure is
undertaken to select the weighting matrices for our aircraft application:

1. Linearize the aircraft about some operating point in the middle of its working range.

2. Set the diagonal elements of () in the opposite order of the corresponding expected state
error magnitudes:

(i) The expected errors in the states @ and © have the smallest expected values (0
“to F0.5 rad). Therefore the diagonal elements ¢33 and g44 must have the highest
values, say 100 — 1000.

(ii) The error in the engine speed has the highest possible values (100 — 1000 rev/min),
hence its corresponding Q element ggg must have the lowest value (10~* or 10~°).

(iii) The errors in the U and W states may have values such as 10 or 20, and the
aircraft height H takes values such as 100m. Therefore g11, ¢22 and ¢ss may be set
to “medium” values such as 0.1, 1 or 2.

The diagonal elements of R, i.e. r1; and ro are set to some reasonable value such
as 1 or 10 with r;; = 799, and the resulting g;; gains checked. If these do not
satisfy points (a) and (b) in section 3, then some of the @ elements and/or the R
elements maybe changed to achieve reasonable results. For example if an increase
is required in some g;; element then one may look to equations (39) and (40) and
see the required changes in the P;; elements. Then from equation (13) we can see
which of the diagonal elements of @ should be changed. If the required result is
not possible using diagonal element changes, it may be necessary to set off-diagonal
elements of the Q matrix. That is if some of the gains cannot be changed without
effecting the other gains (in cases of high cross-coupling) then it is possible to use
equations (13), (39) and (40) to find which Pr elements and hence which of the ¢ off
diagonal elements needs to be modified while maintaining the positive definiteness
ol'{).

At the end of this stage the g;; gains will have been allocated their correct signs as
well as having been set to reasonable values. These gains will contribute approxi-
mately equal amounts in the formation of Au; when each gain is multiplied by its
equivalent error such as 5% of the operating state.



3. Setting of the authority for each gain. From equation (37), the state errors that are

directly controlled by the elevator (7) are e;,es, eq, and es, and it is not required to
control the forward velocity error e; and engine speed error eg by pitching the aircraft up
and down by deflecting the elevator. Hence the gains gy2, g13, g14, 915 must have higher
authority than gains gi1, and gi6. In fact g;; and gi6 are used only to limit or to assist
An if there are large errors in velocity and/or engine speed.

If we decided that the first group g12, 913, 914, g15 must have an authority 10 times higher
than the second group ¢11, g16, then we may multiply g22, g33, ¢44, ¢55 and ry; by 10. This
will lead to a reduction of approximately 10 times in g;; and g1¢ while the others are
kept roughly the same value.

In the same way from equation (38) we also find two groups, the first being g;; and gy
corresponding to the state errors e; and eg which are directly controlled by the throttle
control Ay, and the second group g22, g23, 924, 925 Which are used to alter the throttle
control corresponding to the state errors for W, Q,©, H. That is if the height is less than
the desired value then g5 will lead to an increase in engine speed to keep the forward
speed close to the desired value when the aircraft is pitched up to gain height. Here
the errors e4 and es are required to have similar effect on the formation of Ay, and so
we may give equal authority to the two groups of gains. In this case we do not need to
do anything as this has already been achieved in step 2. However we may increase gy,
and /or ges to increase go; and/or gog or vica versa. If this leads to a considerable change
in the Group 2 gains of equation (37) then we may multiply ¢22, ¢33, a4, ¢55 and 71; by
any factor to keep the balance achieved for the g;; gains.

The correct relative authority within each group may be achieved by slight changes in
the corresponding () diagonal elements. In the case of high cross-coupling some of the
off diagonal elements may be set non-zero as stated in step 2(iii).

. The system response is checked, and if the control effort is too excessive it can be reduced
by increasing the corresponding R element without changing the relative authority set
in step 3. That is, if it is required to increase 799 by multiplying it by some factor, then
G232, 433, §44, @55 and ry; must be multiplied by the same factor. It is also possible to see
from the response whether the relative authorities need to be reconsidered. If so step 3
above may be repeated.

. If a good response is obtained then it is necessary to determine the states which cause
the major time variation effects. Clearly these will be application dependent; for our
aircraft application the important states are the U, and W, or the aircraft speed and
angle of attack for the elevator control, and U, E, and H for the engine control. The
gains for these states for maximum and minimum possible errors are checked to assess
if the gain changes are reasonable (see point (e) in section 3). To establish this requires
good knowledge of the system under consideration. If not it may be possible to determine
another combination of ¢ and R that is more suitable, but again following the procedure
outlined above.
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Figure 2: Transputer system for autopilot design implementation

5 Results and Conclusion

Following the procedure stated in the previous sections we arrived at the following values for

@ and R:
Q = diag [5,0,500,1000,0.6,5 x 107° (41)
R = diag[5,1] (42)
F =0 (43)
luso.z _____ ] 5010
I X /— : -
i \ ' /—
N . =
| e b Time/ | 4840 b t———+ et 5o Tine
10 6
/“\ W - Vertical speed — ’ E, - Engine speed
A | gf % e
D S S Time | | 6590 ————t———t—————————— g Time
9-2 Q - Pitch rate i
0 N —— 4 Time
0 \w + t ~+ t +—t t i Time j N
- Elevator angl
-0.]1 10 o n evator angle
0.1 Y3
© - Pitch angle —_—
¥ - Engine throttle
075 t 1 t t t o .-*-—t-_;,UTim‘f‘ i 0. 20 t ¥ 1 " ! t t 110 Time

Figure 3: Longitudinal optimal autopilot results

The receding horizon control law presented in Tahir and Virk [4] is implemented in real-time
using the T800 transputer system shown in Figure 2. The state vector z = [U,W,Q,0, H, EJT




and assuming an initial state
;. = [150,0,0,0,4960,6600]7

and a desired state
zq4 = [150,5,0,0.033, 5000, 6615]7

the optimal trajectories are shown in Figure 3. The results are deemed to be satisfactory
indicating that the settings of ¢ and R are adequate. It is felt that the above procedure
enables a systematic way of selecting the weighting matrices that is an improvement upon
the traditional trial and error approach. Although our results are specific to aircraft control
systems it is hoped the other applications engineers will find the approach useful in formulating
their optimal control problems adequately.
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