The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Rational Model Identification Using an Extended Least
Squares Algorithm..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78280/

Monograph:

Billings, S.A. and Zhu, Q.M. (1990) Rational Model Identification Using an Extended Least
Squares Algorithm. Research Report. Acse Report 388 . Dept of Automatic Control and
System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

e

= A W

Rational Model Identification
Using an Extended Least Squares Algorithm

S.A. Billings and Q.M. Zhu

Department of Control Engineering
University of Sheffield
Mappin Street
Sheffield S1 3JD
U. K.

Research Report No. 388

November 1990



October 16, 1990

Rational Model Identification
Using an Extended Least Squares Algorithm

S.A. Billings, Q.M. Zhu

De';ﬁanment of Control Engineering, University of Sheffield, S1 3JD, UK

Abstract:

A new least squares based parameter estimation algorithm is derived for nonlinear systems
which can be represented by a rational model defined as the ratio of two polynomial expansions

of past system inputs, outputs and noise. Simulation results are included to illustrate the perfor-
mance of the new algorithm.

1 Introduction

Polynomial expansions are prevelant throughout nonlinear systems analysis. The
classical Duffings and Van der Pol equations for example are differential equations that
include polynomial terms and which are known to Tepresent an enormous range of
behaviours (Nayfeh and Mook 1979). Recent developments in the field include the
introduction of the polynomial NARMAX model (Nonlinear AutoRegressive Moving
Average model with eXogenous inputs) and the formulation of identification and con-
troller design algorithms based on this description (Leontaritis and Billings 1985, Chen
and Billings 1989, Haber and Unbehauen 1990, Sales and Billings 1990). Although the
Weierstrass approximation theorem ensures that polynomial models will always play
an important role in nonlinear analysis there are alternative model expansions which
may provide a more concise description for some classes of nonlinear systems.

The rational model can be considered as the next natural progression after the
linear and polynomial nonlinear models. The advantage of the rational model is the
efficiency with which even severe nonlinearities can be described with just a few
parameters. The NARMAX model which was derived for a general class of nonlinear
systems is not restricted to polynomial systems and can be expanded as a rational
model (Chen and Billings 1989). These results can be related to the models introduced
by Sontag (1979) which when extended to the stochastic case provide a class of
rational models which can be used as the basis for the development of parameter



estimation algorithms.

The disadvantage of the rational model is that it is not naturally linear-in-the-
parameters and consequently identification based on this description appears to be
complex. Nonlinear least squares algorithms (Marquardt 1963) can be applied if the
data is perfectly noise free but this is unrealistic in practice. Alternatively the predic-
tion error algorithm developed by Billings and Chen (1989) can be used to determine
the model structure and estimate the unknown parameters but this involves an iterative
Gauss-Newton algorithm which can become computationally intense for large models.

The present study attempts to circumvent most of these problems by introducing a
new rational model estimation (RME) algorithm to estimate the parameters in rational
NARMAX models of known structure. It is shown that when the output is corrupted
by measurement noise multiplying out the rational model to make it linear-in-the-
parameters leads to biased estimates. Unlike polynomial models the bias remains even
when the noise is white and it is this problem which has inhibited the development of
least squares based estimators for rational systems. The new estimator is developed by
carefully studying how the bias is induced and reformulating the well known extended
least squares algorithm (Ljung and Soderstrom 1983) to provide an iterative solution
which is unbiased even when the output is corrupted by unknown coloured noise. The
new algorithm, which is called the rational model estimator (RME) maintains the
advantages of linear least squares, it is easy to code and computationally cheap com-
pared with the alternatives. Simulation studies are included to demonstrate the
effectiveness of the new method.

2 The rational model

Classical approximation theory (Sontag 1979) shows that rational functions are
very efficient descriptors of nonlinear effects. This suggests that an extension of these
concepts to the nonlinear dynamic case may provide useful alternative models for non-
linear systems compared with polynomial system expansions.

2.1 Input-output description

Previous studies have shown that the nonlinear dynamic rational model can be

derived as a particular expansion of the NARMAX model or via the results of Sontag
(Chen and Billings 1988) to yield the stochastic rational model
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where u(k) and y(k) represent the input and output at time k (k=1,2, - -)
respectively, r is the order of the model, and e(k) is an unobservable independent and
identically distributed (iid) noise with zero mean and finite variance o2.

In order to use model (2.1) as a basis for identification, a means of parameterisa-
tion is required. Define for the numerator

a(k) = 3, pk)8, (22)
1
and for the denominator
den
bk) = 3 .p4i(k)8y; 2.3)
=1
where Pni(k), pai(k) are terms consisting of
y(k=1), - - -, y(k=r), u(k-1), - - -, u(k—r), e(k=1), - - -, e(k-r) and the total number of

unknown parameters is num + den.

2.2 A linear-in-the-parameters expression

Identification based on the model in eqn (2.1) is complex because the model is
nonlinear in the parameters. A prediction error algorithm can however be formulated
(Billings and Chen 1989) but this is computationaly expensive. An alternative
approach is to multiply out eqn (2.1) so that the model becomes linear in the parame-
ters. Thus multiplying b(k) on both sides of eqn (2.1) and then moving all the terms
except y(k)p,1(k)0,; to the right hand side gives

den
Y(k) = a(k)— y(k) Xpai(k)64 + b(k)e(k)
=2

num den
= 2 Pnf(k)0,; — X y(k)p (k)8 4 + LK) (2.4)
=l =2

where
Y(k) = y(k)pa (K)lg 1=

a®
b(k)

Alternatively divide all the right hand side terms by 6,; and redefine symbols to give
essentially 6, = 1. Notice that

= pa1(k) + par(k)e(k) (2.5)

C(k) = blk)e(k)
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den
= (X484 )ek)
=1
den
= pa1(k)e(k) + (X p4;(k)8 4)e(k) (2.6)
=2
where
E[L(K)] = E[b(W)]E[ek)] = 0 2.7)

Providing e(k) has been reduced to an uncorrelated sequence as defined in eqn
(2.1). The disadvantage of this approach is now apparant all the denominator terms
y(k)pdj-(k) implicitly include a current noise term e(k) which is highly correlated with
(k). This will introduce bias in the parameter estimation even when e(k) is a zero
mean white noise sequence. This problem is a direct consequence of the rational model
description because inspection of eqn (2.4) shows that if a polynomial NARMAX
‘model were used then b(k) = 1 and there would be no terms on the right hand side of
eqn (2.4) involving y(k).

The linear in the parameters expression of the rational model eqn (2.4) can alter-
natively be expressed as

den

Y() =3 pri(b)6,, - Ey(k)pdj<k)edj + b(k)e(k)
p= :
den a( )

—~Paf(k)84j + py(kK)e(k) (2.8)
=1

Although the term ﬁpdf(k) in eqn (2.8) cannot be directly obtained the expres-
sion is very useful in the analysis of bias and the derivation of the new estimator.

Eqn (2.4) may be written in vector notation as
Y(k) = P(b)© + {(k)
= P()© + pay (R)e(k) 2.9)
where
P(k) = [Pn(k) Pyk)]

= [Pr1(6) * * * Prnum(k) =Pas(K)Y (k) * * * =P ggen(k)y(k)]

a(k)
b(k)

= [en @d]

+e(®) - Pagn®EE 4 e (2.10)

= [Pn1(K) *  * Priam®) —pan (k) (= b(k)
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= [0~ * = Boagn B~ > - edden] (2.11)

and
Pk) = [P,(k) PAb)

a(k) a(k)

= [pnl(k) * Prsahte) sz( )b(k) t dden( )b(k)

(2.12)

Notice that the matrix P(k) cannot be obtained directly because E ; cannot be meas-

ured.

3 Parameter estimation

The main reason for expanding the rational model to be linear in the parameters
was to try and develop a least squares based parameter estimation routine. Whilst ini-
tially the noise problems induced by such an expression appear formidable a detailed
analysis of the bias suggests a solution to this problem.

It will be assumed in the present study that the structure of the model is known a
priori. This is unrealistic in general and will be solved in a later publication. For the
current implementation therefore terms must be manually added or deleted from the

model until a suitable model structure is determined in a manner analogous to the pro-
cedures used in linear parameter estimation.

3.1 Least squares estimation
Applying directly the well known least squares estimator yields
6 =00 o'Y (3.1)

where

o7 = [P(I)T e P(N)T]

Pny(1) . PuN)
Prrsn(1) " Pl ¥)
= a(l) a(N)
Parr()(—= b(1) +&(1)) « P ) + e(N))

_ Ll) a)
Pasen DL Y + €D - PaaenN)G 0 + eND)
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Y=[r) -y’ (3.2)

N denotes the data length and from eqns (2.1), (2.4), and (2.9) ® may include lagged
noise model terms.

3.2 Bias analysis

The parameter estimates of eqn (3.1) will only be unbiased if E{@] = @©. It is con-
venient in the present analysis to study the bias associated with the least squares esti-
mate using probability limit theory.

Probability limits refer to one particular way in which estimates may settle down
as the number N of observations on which they are based is increased (Norton, 1986).

Consider a sequence of random variables E(N) say. If E(N) converges in probabil-
ity to x, x is said to be the probability limit Plim(§) of (). Two useful properties of
the probability limit (Wilks, 1962) are that for any continuous function f(&)

Plim f(E) = f( Plim & ) (3.3)
and for two matrices A and B, both functions of the same random variables

Plim (A B) = Plim A Plim B (3.4)

Returning to the analysis of the least squares estimate in eqn (3.1) and assuming
that the probability limits

A = Plim [ L oTe |
N
B = Plim [ -%,-®T? ] (3.5)

exist, taking the probability limit of eqn (3.1) yields
Plim[®] = Plim[[®T®]! &T7]
= Plim[[®T®] | Plim[®"Y] (3.6)

Assuming that both the input and output sequences are stationary it follows that
for a sufficiently large data length N

1 _1
Plzm[-ﬁ(de)] — NCDTG)

Plim[—i-(bTﬁ = %(DT 7 3.7



where
i 2
k=1

N
> PrnumFOP 1 ()

=1
a(k)
= Zprﬂ(k)pnl( )b(k)

a(k)

N
= bap_dden(k)pnl (k)%

OTd =

=1

N
. 62 ¥ PagenOp (k) .

N q
03 Zpaden(k)
k=1

a(k)

3 P (9P - 2 OPa® 2L = 3 P 8.
= nl nrum Pmi\%)P a2 b(k) k;lpnl D dden b(k)
N N . N
2 il = VPa® | _ L
ZP um( ) zprmum( )de( )b(k) meum(k)pdden(k) b(k)
a(k) a(k) a(k) 2
Epd2(k)prm.um( | b El P k) (= 5 (k) Zpdz(k)Pdden(k)( 5 (k))
N a(k) ak) . a(k) .
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and

Epnl(k)Pdl (k)——

Eprmum( Dy () —==

- Zpdzofc)pd (B2

= .Zpdden(k)pdl kK(—=

DY =

ZPnl(k)Pd1(k)( m k) + e(k))

ZPM (K)p g1 (k)(_b(_k)_ + e(k))

zpa(@pdl(k)(—b—(k—) + e(k))?

zpdm(k)pﬂ(k)(—bﬁ + e(k))?

alk) - r
b(k)
ak)
bk)
+ N
e k)p g (k
b(k) Elpaz( P41 (k)

a(k)

N
b k - g Elpdden(k)Pdl (k)

(3.8)



Rewritting eqn (3.8) gives

o7 = [07D] ;) + 62 ¥

(DT?= [‘I)T}_,j(k—l) + 0’3 Y

where the definition of terms follows directly and

[ 0.0 . 0 0
0.0. 0 0
Y= N 5 N
0.0. 2 rak) o 2P KD gen(k)
=1 =1
N N,
0.0 . ¥punbpsnk) . > Pidgen(k)
i =1 =1

0

N
- 2 pa(k)pa k)
k=1

N
= 2 Paden(k)P 41 (k)
k=1

(3.9)

(3.10)

All terms involving e(k) appear in 03 ¥ and 62 y which are called error terms and the
subscript (k—1) indicates that only lagged noise terms (eg e(k—j) j 21 ) are present.

Hence the estimate given in eqn (3.1) can be written as

6 = [@Td]! &TF
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= [ ®]yy + 62 17! [[@TF] iy + OF W] (3.11)

It is well known that the estimate of egn (3.1) known as the extended least
squares algorithm, for linear difference equation or polynomial NARMAX models
yields asymptotically unbiased and consistent estimates providing a suitable noise
model is estimated such that e(k) is reduced to a white noise sequence. This is
apparant from egn (3.11) because 62 ¥ and o2  are zero for both these models.

Inspection of eqn (3.11) however shows that the linear in the parameters expan-
sion of the rational model induces two additional terms 62 ¥ and o2 . These terms
exist even if the sequence e(k) is white and will cause severe bias in the estimates.
This problem arises because the denominator terms Y(k)pgi(k) in eqn (2.4) implicitly
contain e(k). It is interesting to note that both the 62 ¥ and o2 y terms are affected
and not just the latter as would be the case with coloured noise and a linear model say.

4 A new least squares estimator for the rational model

Extended least squares algorithms for linear difference equation models have been
extensively studied for many years (Goodwin and Payne 1977, Norton 1986, and
Ljung 1987). A common point in all the algorithms is that the correlated noise is
reduced to a white noise sequence by incorporating a noise model. This results in an
iterative procedure by which the process model and noise model parameters are alter-
natively estimated until the bias is reduced to zero. Ideally we would like to maintain
the simplicity of this approach for the rational model. Inspection of eqn (3.11) reveals
the terms which cause the bias and therefore indicates which terms we need to elim-
inate. Define the new estimator

0 = [T - 62 ¥]! [®77 - 62 y]
= [[OT®] 4y [‘DTﬁ(k_n 4.1)
It follows from eqn (3.11) and the analysis in section 3 that this new estimator called

the rational model estimator (RME) will be unbiased assuming that ®'®, ¥, &7, and
y can all be calculated when the noise sequence e(k) is available.

In practice the noise sequence e(k) and the noise variance 62 are unknown. How-
ever, a predicted noise sequence and an estimated noise variance 62 can be obtained
using a simple extension of the traditional extended least squares algorithm. This sug-
gests the following iterative algorithm.

) Use an Ordinary Least Squares (OLS) algorithm to compute O as

6 =[@or! o7
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This estimate provides initial parameter values for the subsequent compu-

tation.
(i1) Compute the noise sequence
a(- -+, 83-1)
e(k) = y(k) — =
(k) = y(k) b~ BG-1)
and estimate the noise variance 63 as
, 1 & a(- -+, 03-1)
62() = (k) - : )
O Mo ;z,,%ﬂo’ b(- -+, Oi-1))

where i is the iteration index, N is the data length and md is the maximum
lag in the terms.

(iii) Update the matrices ®’® and ¥, vectors @'Y and V using the noise
sequence e(k) from step (ii).

(iv) Compute the parameter estimate as
6() = [@'® - 62() 1! [®TY - 62() V]

) Go back to step (ii) and repeat until the parameter estimates and Gﬁ con-
verge to constant values.

Clearly the convergence of the RME algorithm depends on the convergence of
the estimated noise sequence. It should be possible to study these ideas by extending
the methods developed for the classical extended least squares algorithm (Ljung and
Soderstrom 1983). This will be addressed in later publications. All the examples com-
puted to date have converged in typically 5 to 10 iterations and whilst these results
cannot be used to imply convergence in general they are very encouraging.

Another common stochastic rational model expression may be written as
ak) | e he®)
b(k) b(k)

where c(z"1)e(k) is the classical moving average noise model. This model is a subset of
eqgn (2.1) and it is easy to show that the REM algorithm for this model is given by
replacing 0‘3 by 03 / o% in eqn (4.1), where Ug = E[bz(k)].

yk) = (4.3)

5 Simulation studies

Four simulated examples were selected to illustrate the application of the REM
algorithm for parameter estimation in nonlinear rational models. In all the examples
500 pairs of input and output data were used.
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Example S; consists of the model

Yk = 0.2y(k=1) + 0.1y(k=1)u(k=1) + u(k—1)
1+ yX(k=1) + y2(k-2)

+ M(k) (5.1)
where

0.8e(k—1) + e(k)
1+ y*(k=1) + y2(k-2)
The input u(k) was a zero mean uniform random sequence with amplitude range

+1 (variance cﬁ = 0.33), which was used in all of the four examples. The noise e(k)
was a zero mean Gaussian sequence with variance 62 = 0.01.

nk = (5.2)

The linear in the parameter model for system S is
Y(k) = 0.2y(k=1) + 0.1y(k=Dutk=1) + u(k—1) — y(b)y*(k—1) — y(k)y*(k=2) + 0.8e(k-1) + e(k)

(3.3
where

Y(k) = y(k) (5.4)

The input and output data sequences for this example are illustrated in Fig. 1.1.
The one step ahead predictions and residuals computed using ELS and RME are illus-
trated in Fig. 1.2. The improvements using RME compared with ELS can be seen from
the residual plots. The model validity plots for ELS and RME are illustrated in Fig.
1.3. Notice that @, (k) for ELS is well outside the confidence band for k = 1, 2 indi-
cating that the estimated model is severely biased. All the tests for RME are within the
95% confidence bands showing that the bias has been removed. The parameter esti-
mates obtained using RME are listed in table 1. The estimates at iteration 1 represent
the classical ELS estimates. A comparison with the true parameter values shows that
o2 ¥ and o2y cause severe bias. The estimates converge quickly towards the true
values and the estimated variance 6‘5 rapidly approaches the true variance o2 = 0.01.

Example S, consists of the same process model as example A
0.2y(k=1) + 0.1y(k—=D)u(k—1) + u(k—1)
y(k) = 5 =
1+ y(k-1) + y“(k-2)

but with a much more complex noise model

+ (k) (5.5)

Nk) = y(k—1)ek-1) + e(k) (5.6)
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A zero mean Gaussian sequence with variance 62 = 0.02 was used to generate the
noise e(k).

The linear in the parameter model for S, is
Y(k) = 0.2y(k—1) + 0.1y(k=1)u(k—1) + u(k—1) — y(k)yz(k-—l) - y(k)yz(k—Z) + b(k)n(k)
5.7)
where
Y(k) = y(k)
bomk) = [1 + y*(k=1) + y*(k-2)] [yk-De(k-1) + e(k)]
(5.8)

The output data sequence for this example is illustrated in Fig. 2. The parameter
estimates obtained using RME are listed in table 2. The estimates at iteration 1

represent the classical ELS estimates. The same conclusions can be made as those in
example S;.

During the iteration, the denominator polynomial b(k) in eqn (5.8) was replaced
by E(k), the latest estimate of b(k), so that eqn (5.8) takes the form

bkm(k) = blkyy(k-1)e(k=1) + b(k)e(k) (5.9)

Example S3 consists of the model

0.8y(k—1) + u(k—1)
1+ 12(k-1) + y(k=1)y(k—2)

y(k) = + (k) (5.10)

where

0 = e(k—1) + e(k)
ek 1+ u?(k=1) + y(k=1)y(k=2)

(5.11)
A zero mean Gaussian sequence with variance o2 = 0.01 was used to generate the
noise e(k).
The linear in the parameter model for system S5 is
Y(k) = 0.8y(k—1) + u(k-1) — y(k)u?(k—1) — y(k)y(k—1)y(k—2) + e(k-1) + e(k)
(5.12)

where
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Y(k) = y(k) (5:13)

The output data sequence for this example is illustrated in Fig. 3. The parameter
estimates obtained using RME are listed in table 3. The estimates at iteration 1
represent the classical ELS estimates. The estimates after one step are severely biased
but the RME algorithm yields excellent results after just a few iterations.

Example S, consists of the same process model as example S; but with a different
noise model

0.8y(k—1) + uk-1)
k) = + 1(k 5.14
¥k 1+ u?(k=1) + y(k=1)y(k=2) e .14

where

N&) = ylk=1)e(k=1) + e(k) (5.15)

A zero mean Gaussian sequence with variance o2 = 0.02 was used to generate the
noise e(k).

The linear in the parameter model for S, is
Y(k) = 0.8y(k=1) + u(k=1) = y(u*(k=1) — y(R)y(k—1)y(k=2) + b(kn(k)
(5.16)
where
Y(k) = y(k)
bk = [1 + w2 (k=1) + y(k=1)y(k-2)] [y(k—1)e(k-1) + e(k)]
(5.17)

The output data sequence for this example is illustrated in Fig. 4. The parameter
estimates obtained using RME are listed in table 4. The estimates at iteration 1

represent the classical ELS estimates. The same conclusions can be made as those in
example S.

During the iteration, the denominator polynomial b(k) in eqn (5.17) was replaced
by 5(k), the latest estimate of b(k), hence eqn (5.17) is expressed as

bk = bEk)y(k-1)etk-1) + bke®)  (5.18)

The model validity tests for examples S,, S;, and S, have not been included
because they show virtually the same effects as in Fig. 1.3.
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6 Conclusions

The main difficulty of applying linear least squares algorithms to stochastic
rational models is caused by the noise problem. When the models are expressed in a
linear-in-the-parameters form noise terms are produced which lead to biased estimates
using existing linear least squares algorithms even in for the case of additive white
noise.

A new RME algorithm has been presented which overcomes these problems by
removing the bias in both the normal matrix ®7® and the correlation vector ®TY for
the rational model. The algorithm is much simpler than nonlinear least squares pro-
cedures because it avoids complex minimization routines.

A theoretical analysis of the convergence of the algorithm is left as an open prob-

lem but all the simulation results suggest that convergence is fairly rapid and that the
algorithm is well behaved.

Acknowledgements

The authors gratefully acknowledge that this work is supported by SERC under
grant GR/F2417.7.



- 16 -
References
Billings, S.A. and S. Chen, "Identification of nonlinear rational

systems using a predicton error estimation algorithm," Int.
J. Systems Sci., vol. 20, 1989,

Chen, S. and S.A. Billings, "Represntations of nonlinear systems:
the NARMAX model,"™ Int. J. Control, vol. 48, 1989.

Goodwin, G. C. and R. L. Payne, Dynamic system identification:
experiment design and data analysis, Academic Press, New
York, 1877,

Haber, R. and H. Unbehauen, "Structure identification of non-
linear dynamic systems--A survey on input/output ap-
prcaches, " Automatica, vol. 26, 1990.

Leontaritis, I.J. and S.A. Billings, "Input-output parametric
models for nonlinear systems," Int. J. Control, vol. 41, p.
Part 1, Part 2, 1985.

Ljung, L. and T. Soderstrom, Theory and practice of recursive
identification, MIT Press, Cambridge, MA, 1983.

Ljung, L., System identification--Theory for the user, Prentice
Hall Englewood Cliffs , New Jersey, 1987.

Marquardt, D.W., "An algorithm for least squares estimation of

nonlinear parameters," Journal of the society for industrial
and applied mathematics, vol. 11, 1963.

Nayfeh, A.H. and D.T. Mook, Nonlinear oscillations, Wiley, New
York, 1979.

Norton, J. P., An introduction to identification, Academic Press
Inc. (London) Ltd, 1986.

Sales, K.R. and S.A. Billings, "Self-tuning control of nonlinear
ARMAX models," Int. J. Control, vol. 51, 1990.

Sontag, E.D., Polynomial response maps--Lecture notes in control

and information sciences 13, Springer - Verlag, Berlin,
1979.

Wilks, S., Mathematical statistics, Wiley, New York, 1962.










= 19

*I'L Degey(k)

-1.0[
+1.] Puek) +1.] @ 2,00
- — E=——s=—— R L Uil ——— — =1y
i -1 J -1.)
+1_7 D z,20k)
ST~ e ==—R )
-1,
(a)
s h Dh) +1, cl Doreuy (k)
l — _— - __20 l_ﬂ-— e —— — :—-—20
p : -1.0
+1.0 Dulh) +1.] LA
B N i~ — — — 10 -10——= —

Figure 1.3 Model validition for example S 1 using correlation test
(a) ELS and (b) RME



O F 0 cuTputT

Hlﬁk ﬁ b 4IIH ! iﬁl MM I M i ﬁ N
A G g

-2E0

Figure 2 Output for example S,

Tl l“ NM&H o
i

Figure 3 Output for example S5 -
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Figure 4 Output for example Sy
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lera- Parameter Estumates 6__3

ton | y(k-1) | y&k-Duk-1) | wk-1) | y&y&k-Dy@k-1) | y&yk-2)yk-2) | ek-1)

1 0.1732 0.0886 0.8790 05072 -0.5370 0.0000 | 0.0127

2 0.1552 0.0914 0.8949 0.6166 -0.5543 04191 | 0.0106

3 0.2208 0.1292 1.086 -1.3627 -1.2754 0.6020 | 0.0136

4 0.2189 0.1112 1.0493 -1.1851 -1.1869 05446 | 0.0119

5 02133 0.1119 1.0420 -1.1717 -1.1429 0.6150 | 0.0112

6 0.2105 0.1158 1.0347 -1.1471 -1.1159 0.6533 | 0.0107

i 0.2094 0.1168 1.0305 -1.1345 -1.1016 0.6707 | 0.0105

8 0.2087 0.1159 1.0294 -1.1310 -1.0932 0.6708 | 0.0106

5 0.2087 0.1152 1.0304 -1.1334 -1.0993 0.6771 | 0.0105

10 0.2085 0.1150 1.0291 -1.1292 -1.0944 0.6795 | 0.0104

tue | 0.2000 0.1000 1.0000 -1.0000 -1.0000 0.8000 | 0.0100

Table 1 Parameters estimated for example §;
Itera- Parameter Estimates 6‘2
ton | y(k-1) | y@-luk-1) | u®k-1) | yEyG-yk-1) | yE&yk-2yk-2) | ek-yk-1)
1 0.0675 0.0307 0.6467 0.4484 0.2084 0.0000 0.0370
2 0.0678 0.0323 0.6732 0.3320 0.1518 0.5465 0.0356
3 0.2972 0.3039 1.5889 -3.0272 -3.3478 2.1399 0.0286
4 02117 0.1857 1.0820 -1.1891 -1.4947 02072 0.0251
5 0.1775 0.1601 1.1237 -1.4571 -1.5520 0.8677 0.0221
6 0.2098 0.1551 1.0574 -1.2988 -1.1919 0.8429 0.0205
7 0.1907 0.1394 1.0268 -1.1753 -1.0331 0.9339 0.0198
8 0.1863 0.1361 0.9994 -1.0587 -0.9700 0.9125 0.0200
9 0.2039 0.1459 1.0443 -1.2541 -1.0921 1.1040 0.0189
10 0.2017 0.1392 0.9947 -1.0454 -1.0331 1.0220 0.0189
true | 0.2000 0.1000 1.0000 -1.0000 -1.0000 1.0000 0.0200
Table 2 Parameters estimated for example S,



