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Interpolation is a useful technique for storage of complex functions on limited memory space: some few sampling values are stored
on a memory bank, and the function values in between are calculated by interpolation. This paper presents a programmable Look-
Up Table-based interpolator, which uses a reconfigurable nonuniform sampling scheme: the sampled points are not uniformly
spaced. Their distribution can also be reconfigured to minimize the approximation error on specific portions of the interpolated
function’s domain. Switching from one set of configuration parameters to another set, selected on the fly from a variety of
precomputed parameters, and using different sampling schemes allow for the interpolation of a plethora of functions, achieving
memory saving and minimum approximation error. As a study case, the proposed interpolator was used as the core of a
programmable noise generator—output signals drawn from different Probability Density Functions were produced for testing
FPGA implementations of chaotic encryption algorithms. As a result of the proposed method, the interpolation of a specific
transformation function on a Gaussian noise generator reduced the memory usage to 2.71% when compared to the traditional
uniform sampling scheme method, while keeping the approximation error below a threshold equal to 0.000030518.

1. Introduction

Nowadays, the world is facing a boom on the fusion
between telecommunications and information technology.
The merging of these two fields spreads over all kinds of
information systems, requiring efforts for ensuring the inte-
gration among many kinds of organizations [1], from tactical
to strategic operations, in different levels of information
system interoperability [2]. The ISO/OSI seven-layer model
arises as a lighthouse for seeking the interoperability on many
different layers of networked solutions [3]. Many standards
and protocols arise from this model, including cryptographic
ones.

Encryption solutions can be implemented on both
software and hardware. Software implementations are more
related to the protection of the information itself, while

hardware ones can be also used to protect the communi-

cation channels [4]. In the case of tactical telecommunica-

tion systems, which require both channel and information

security, the hardware implementation of such encryption

algorithms arises as a better compromise. The need to test the

behavior of such systems against different sources of noise

and jamming becomes the motivation to implement, on

FPGA (Field-Programmable Gate Array), a programmable
noise generator.

A Look-Up Table- (LUT-) based interpolation system is

the core of the programmable noise generator developed

in this work. Using a LUT, complex and otherwise slow

calculations can be sped up by storing precomputed values

of the function, interpolating the desired values in between,
achieving high-speed designs [5]. Look-Up Tables are very
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common microelectronic blocks for many applications [5–
19]. Ba et al. [9] proposed a linearly interpolated LUT pre-
distorter used to mitigate the effects of nonlinear amplifiers.
Monga and Bala [10] proposed an algorithm for minimizing
the approximation error on multidimensional LUTs where
both samples values and distributions are optimized.

Some authors used nonuniform sampling schemes as a
solution for minimizing the LUT memory size: Seidner [11]
reduced the memory usage on the implementation of a 10Y

conversion circuit with a LUT scaling sample scheme; Yan
and Mämmelä [15] used a nonuniformly segmented interpo-
lation LUT for simulating nonlinear radio frequency power
amplifiers; Cavers [16] proposed a systematic way to describe
and analyze arbitrary nonuniform LUT sampling schemes
as a companding function, which was further improved by
Hassani and Kamarei [17] with a LUT segmentation concept;
Boumaiza et al. [18] proposed a new companding function
for amplifier predistortion with built-in dependence on
the nonlinearity of the power amplifier; Dutra et al. [19]
used a nonuniform but fixed sampling scheme to minimize
the memory size of a LUT-based interpolator designed to
represent the Inverse Error Function (erf−1).

All works previously mentioned used a fixed, uniform
or not, sampling scheme to characterize a given function or
class of functions. The main contribution of this work is to
implement on FPGA a LUT-based interpolator system with
a sampling scheme that is not-fixed (it can be programmed
on the fly) and not-uniformly distributed (it uses not equally
spaced sampling points).

The remaining of the paper is organized as follows: based
on the definition of partitions, Section 2 will present the
offline calculations performed to define the parameters that
configure the proposed programmable LUT-based interpo-
lator. Section 3 will describe the interpolator architecture,
including the description of the subsystem that calculates the
nonuniformly distributed addresses and the corresponding
displacements. An application of the proposed interpolator
will be presented on Section 4, where its flexibility will be
discussed with the usage of a gamma of different functions
g(x), using different not-fixed and not-uniformly distributed
sampling schemes. Section 5 will end this paper with a
summary of the achieved results and a flavor of future works.

2. Configuration Parameters

To discuss the determination of the configuration tables
for the LUT-based interpolator, discussed hitherto, we will
consider a generic function g(x) which will have notable
values stored on the appropriate tables. To set an example,
values that define a set of arbitrary intervals are stored in
Table 1. The number of intervals is related to the number of
resources used on the FPGA implementation. As a project
decision, P = 22 partitions were used in order to minimize
the final approximation error. Although we focus on a
specific example, the underlined method is revealed in its
generality.

To define the configuration tables for the LUT-based
interpolator, we will consider a generic function g(x)

Table 1: Frequency assignment for sampling scheme α.

n xn fn

1 −1.00000000000000 32768

2 −0.99770000000000 16384

3 −0.99540000000000 8192

4 −0.99030000000000 4096

5 −0.98050000000000 2048

6 −0.95900000000000 1024

7 −0.91410000000000 512

8 −0.82040000000000 256

9 −0.64070000000000 128

10 −0.34380000000000 64

11 −0.12510000000000 32

12 +0.00000000000000 32

13 +0.12490000000000 64

14 +0.34360000000000 128

15 +0.64050000000000 256

16 +0.82020000000000 512

17 +0.91400000000000 1024

18 +0.95890000000000 2048

19 +0.98040000000000 4096

20 +0.99010000000000 8192

21 +0.99530000000000 16384

22 +0.99760000000000 32768

— +0.99993896484375 —

which will have only notable values stored on appropriate
tables. We start by considering the interval [x1, xP+1) to be the
function g(x) domain and a set of points {x1, x2, . . . , xn, xn+1,
. . . , xP , xP+1} which will induce the P partitions {[x1, x2), . . .
, [xn, xn+1), . . . , [xP , xP+1)} on the domain [x1, xP+1). Samples
are next drawn from each element of partition [xn, xn+1),
where n ∈ {1, 2, . . . ,P}, with a given frequency fn—the
set of in = (xn+1 − xn) fn sampling points induces the
subpartition {[xn1 , xn2 ), [xn2 , xn3 ), . . . , [xnin , xnin+1 )} of the nth
interval (notice that xn1 = xn and xnin+1 = xn+1). For
each function g(x), the appropriate configuration table is
stored—the values stored on the table contain, among other
parameters discussed in this section, both the ordinate
values given by the set {g(xn1 ), g(xn2 ), . . . , g(xnin+1 )} and the
corresponding derivate values {g′(xn1 ), g′(xn2 ), . . . , g′(xnin )}
estimated by (1), where m ∈ {1, 2, . . . , in}. Both ordinate and
derivate values are defined for n ∈ {1, 2, . . . ,P}:

g′
(

xnm
)

= g
(

xnm+1

)

− g
(

xnm
)

xnm+1 − xnm
. (1)

The configuration parameters of the LUT-based inter-
polator, including the content of the memories that store
the ordinates and derivatives, are previously calculated and
imported into the FPGA. These parameters are calculated
according to a scheme of P not-fixed and not-uniformly
distributed partitions, or sampling regions, as exemplified
in Table 1. In this table, each partition n is defined by the
interval [xn, xn+1) and a sampling frequency fn. For example,
in Table 1, the fourth partition (n = 4) is defined on the
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interval (x4, x5] = (−0.9903,−0.9805], with a sampling
frequency fn = 4096. Note also in Table 1 that xP+1 =
0.99993896484375.

The interval and sampling frequency of each partition
should be chosen in order to allow the representation
of g(x) with a minimum approximation error. Therefore,
higher sampling frequencies fn should be expected on n
intervals where g(x) changes more abruptly, presenting
higher curvature. Based on the data of Table 1, we calculate
the configuration parameters of the LUT-based interpolator,
as illustrated in Table 2 and explained ahead.

We start the construction of Table 2 by adjusting the
partitions limits {x1, x2, . . . , xn, xn+1, . . . , xP , xP+1} of Table 1
according to the sampling frequency of each partition. The
Precise Inferior Limit (PIL) and the Corrected Superior
Limit (CSL) of each partition n are calculated by (2) and
(3) which use a constant binary decimal point position
(d = 14), the function signal Sg(a), which outputs the
values −1 or +1 according to the signal negative or positive
of a given argument a (notice that for a null argument,
Sg(0) = 0), and the function round R(b/c), which calculates
the maximum multiple of the argument c, less or equal to
them the argument b (note that the symbol / used on the
representation of the function round R(b/c) has no relation
to the division operation). Both PIL and CSL are necessary
for adjusting the n partitions of Table 1 (an empiric project
choice) to the corresponding frequencies:

PIL1 = R

(

x1

Sg(x1)× 21−log2( f1)

)

PILn = R

⎛

⎝

R
(

xn/Sg(xn)× 21−log2( fn−1)
)

Sg(xn)× 21−log2( fn)

⎞

⎠,

(2)

CSLn = R

⎛

⎝

R
(

xn+1/Sg(xn+1)× 21−log2( fn)
)

Sg(xn+1)× 21−log2( fn+1)

⎞

⎠− 2−d . (3)

Table 2 also brings three parameters used to select some
input bits of the LUT, necessary to calculate the addresses
and differences. They are the parameter Bn, calculated by
(4) and used to select the Bn more significant bits (MSBs)
of input x, required on the calculation of the nonuniform
spaced addresses; the parameter Dn, calculated by (5) and
used to slice the Dn less significant bits (LSBs) of input x,
also required on the addresses calculation; and parameter
Sn, calculated by (6) and used to slice the Sn less significant
bits (LSBs) of input x, required to calculate the difference
(x − xnm) between the LUT input and the corresponding
stored sampling point. The usage of these parameters will be
discussed in Section 3:

Bn = 1− log2

(

fn
)

, (4)

Dn = log2

(

fn
)

, (5)

Sn = 15− log2

(

fn
)

, for fn /= 215

Sn = 7, for fn = 215.
(6)

Two other important configuration parameters present
in Table 2 are the Displacement (Dspn) and the Address Logic
(Add logn), calculated by (7) and (8). These two parameters
are used in the calculation of nonuniform spaced addresses,
as will be presented in more details in Section 3:

Dspn =
fn
2

, (7)

Add logn = SMNn − IMNn

SMNn = 1 + EMNn−1

SMN1 = 0

EMNn = SMNn + QMRn − 1

QMRn = 0.5× fn ×
(

CSLn − PILn + 2−d
)

IMNn = MNMn + SMPn

MNMn = 0.5× fn

SMPn = 0.5× fn × PILn.

(8)

The quantities QMR, SMN, EMN, MNM, SMP, and IMN
are intermediate variables necessary for the recursive calcula-
tion of the Address Logic in (8). They are related, respectively,
to the following entities: the Quantity of Memories Required
(QMR) on each partition n, the Starting Memory Number
(SMN) and the Ending Memory Number (EMN) on each
partition n, the Maximum Number of Memories (MNM)
considering that the specific sampling frequency was applied
to the entire domain [x1, xP+1), the Starting Memory Position
(SMP) considering that the specific sampling frequency
was applied to the entire domain [x1, xP+1), and the Initial
Memory Number (IMN) used on the specific sampling
frequency.

The last four configuration parameters are related to the
calculation of the sampling points xnm used to define the
ordinate g(xnm) and derivate g′(xnm) stored values. These
parameters are the Sampling Points Start (SPS), Sampling
Points Final (SPF), Memory Position Start (MPS), and the
Memory Position Final (MPF), calculated by (9), (10), (11),
and (12), respectively:

SPS1 = PIL1

SPSn =
2

fn
+ SPFn−1,

(9)

SPF1 = CSL1 + 2−d

SPFn = CSLn + 2−d − 2

fn
,

(10)

MPS1 = 1

MPSn = 1 + MPFn−1,
(11)
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Table 2: Configuration parameters calculated for sampling scheme α.

n PILn CSLn Bn Dn Sn Dspn Add logn SPSn MPSn SPFn MPFn

1 −1.00000000000 −0.99774169921 −14 15 7 16384 0 −1.00000000000 1 −0.99768066406 39

2 −0.99768066406 −0.99542236328 −13 14 1 8192 19 −0.99755859375 40 −0.99536132812 58

3 −0.99536132812 −0.99029541015 −12 13 2 4096 38 −0.99511718750 59 −0.99023437500 79

4 −0.99023437500 −0.98052978515 −11 12 3 2048 58 −0.98974609375 80 −0.98046875000 99

5 −0.98046875000 −0.95904541015 −10 11 4 1024 78 −0.97949218750 100 −0.95898437500 121

6 −0.95898437500 −0.91412353515 −9 10 5 512 99 −0.95703125000 122 −0.91406250000 144

7 −0.91406250000 −0.82037353515 −8 9 6 256 121 −0.91015625000 145 −0.82031250000 168

8 −0.82031250000 −0.64068603515 −7 8 7 128 144 −0.81250000000 169 −0.64062500000 191

9 −0.64062500000 −0.34381103515 −6 7 8 64 167 −0.62500000000 192 −0.34375000000 210

10 −0.34375000000 −0.12506103515 −5 6 9 32 188 −0.31250000000 211 −0.12500000000 217

11 −0.12500000000 −0.00006103515 −4 5 10 16 202 −0.06250000000 218 +0.00000000000 219

12 +0.00000000000 +0.06243896484 −4 5 10 16 202 +0.06250000000 220 +0.06250000000 220

13 +0.06250000000 +0.31243896484 −5 6 9 32 185 +0.09375000000 221 +0.31250000000 228

14 +0.31250000000 +0.62493896484 −6 7 8 64 143 +0.32812500000 229 +0.62500000000 248

15 +0.62500000000 +0.81243896484 −7 8 7 128 39 +0.63281250000 249 +0.81250000000 272

16 +0.81250000000 +0.91009521484 −8 9 6 256 −193 +0.81640625000 273 +0.91015625000 297

17 +0.91015625000 +0.95697021484 −9 10 5 512 −682 +0.91210937500 298 +0.95703125000 321

18 +0.95703125000 +0.97943115234 −10 11 4 1024 −1684 +0.95800781250 322 +0.97949218750 344

19 +0.97949218750 +0.98968505859 −11 12 3 2048 −3711 +0.97998046875 345 +0.98974609375 365

20 +0.98974609375 +0.99505615234 −12 13 2 4096 −7786 +0.98999023437 366 +0.99511718750 387

21 +0.99511718750 +0.99749755859 −13 14 1 8192 −15958 +0.99523925781 388 +0.99755859375 407

22 +0.99755859375 +0.99987792968 −14 15 7 16384 −32322 +0.99761962890 408 +0.99987792968 445

Table 3: Synthesis information.

Property Value

Device part type XC3S2000

Package type FG 676

Speed grade −5

Number of external IOBs 304 out of 489

Number of slices 802 out of 30720

Number of SLICEMs 123 out of 10240

Number of BUFGMUXs 1 out of 8

Number of RAMB16s 32 out of 40

Average connection delay 2.281 ns

Maximum frequency 151.717 MHz

Minimum period 6.591 ns

Total power consumption 636 mW

Junction temperature 25◦C

MPF1 = MPS1 +
fn ×

(

CSL1 + 2−d − PIL1

)

2

MPFn = MPSn +
fn ×

(

CSLn + 2−d − PILn

)

2
− 1.

(12)

Based on the characterization of the P = 22 partitions
(exemplified in Table 1), the equations described in this
section are used to calculate the configuration parameters

(exemplified in Table 2) used by the proposed nonuniform
LUT-based interpolator. Section 3 is going to discuss the
internal structure of this interpolator and how it uses the
configuration parameters present in Table 2 to perform its
tasks.

3. Interpolator Architecture

The LUT-based interpolator designed in this paper maps
a 15-bit wide input x, with binary point position d =
14, belonging to the domain [x1, xP+1) = [−1, +0.999938
96484375), using a two’s complement signed fixed-point
arithmetic, into a desired output g(x). The LUT-based
interpolator can be used with different g(x) functions, no
matter how wide their domains are. For example, for a
domain [−|M|, +|N|), where |N| > |M|, we have to scale the
input from the interval [−|N|, +|N|) to [−1, +1) and neglect
the values on the interval [−|N|,−|M|).

The proposed LUT-based interpolator uses the Taylor’s
approximation described in (13) for interpolating g(x)
according to the input x. The bigger the Taylor’s approx-
imation order, the smaller the approximation error, but
there is a trade-off involved: one extra multiplier and one
extra RAM block are required every time the approximation
order is increased. Therefore, the increment of the Taylor’s
approximation order brings one advantage: the reduction
of approximation error; and three disadvantages: larger
memory space required to store one more derivate order,
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increased arithmetic resource usage and increased latency
due to the cascading of one more multiplier.

g(x) =
∞
∑

j=0

(

1

j!

)

× g j′
(

xnm
)

×
(

x − xnm
) j
. (13)

The first-order Taylor’s approximation arises as the
best compromise between hardware costs and approxima-
tion error. It presents the biggest marginal improvement
regarding the average approximation error, with the lower
hardware cost: one multiplier and two RAM blocks for
storing the g(xnm) ordinate and the g′(xnm) derivative, which
are calculated according to the nonuniform spaced sampling
points (abscissas xnm) by using (9) and (10), as demonstrated
in Table 2 (columns SPSn and SPFn).

When using a uniform sampling scheme, the addresses
and differences can be calculated by extracting, respectively,
the most (MSB) and less (LSB) significant bits from the input
x. But in our case, because the values stored inside the RAM
blocks come from a nonuniform sampling scheme, we have to
apply a more complex operation for calculating these values.
This task is performed by the specific designed subsystem
Difference Address, as can be seen in the schematic top
view (Figure 1) of the nonuniform LUT-based interpolator.
Figure 1 shows the Difference Address subsystem, two RAM
blocks for storing the g(xnm) ordinate and the g′(xnm)

derivative, a block that multiplies the g′(xnm) output of
derivative RAM block with the difference (x − xnm), a
block that adds this product with the output g(xnm) gotten
from ordinate RAM block, and three delay blocks used to
synchronize the data flow.

The subsystem Difference Address can be seen in details
in Figure 2. It has two outputs and two branches, one for
calculating the addresses to be used by the RAM blocks
and the other related to the calculation of the Differences
(x − xnm). It is directly programmed by the parameters
presented in Section 2 and illustrated in Tables 1 and 2. When
we change the configuration parameters in accordance with
the contents of the ordinate and derivative RAM blocks,
we enable the LUT to interpolate different g(x) functions,
according to different nonuniform sampling schemes. The
Difference Address subsystem is composed of nine blocks (six
subsystems, two adders, and one binary point forcer), as it
will be discussed in the following.

The first subsystem (Sampled Region and Corrected
Superior Limit) in Figure 2 is configured by the Corrected
Superior Limit (CSLn) parameters calculated by (3) and
exemplified in column 3 of Table 2. It senses the input x,
and outputs a selector signal that identifies the partition
n where this input belongs. For instance, in the case of
using the sampling scheme illustrated by Tables 1 and 2,
for x = −0.97, it outputs a selector signal equal to 5,
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Table 4: Frequency assignment for sampling schemes β and γ.

n xn [β] fn [β] xn [γ] fn [γ]

1 −1,000000 4096 −1,000000 1024

2 −0,997700 4096 −0,996000 1024

3 −0,995400 4096 −0,995400 4096

4 −0,990300 1024 −0,990000 1024

5 −0,980500 1024 −0,980500 1024

6 −0,959000 128 −0,959000 128

7 −0,914100 128 −0,914100 128

8 −0,820400 128 −0,700000 128

9 −0,640700 32 −0,500000 32

10 −0,343800 32 −0,343800 32

11 −0,125100 32 −0,125100 32

12 0,000000 32 0,000000 128

13 0,124900 32 0,200000 128

14 0,343600 256 0,400000 256

15 0,640500 256 0,700000 256

16 0,820200 1024 0,800000 1024

17 0,914000 1024 0,914000 1024

18 0,958900 8192 0,958900 8192

19 0,980400 8192 0,980400 8192

20 0,990100 512 0,990100 512

21 0,995300 512 0,995300 512

22 0,997600 16384 0,997600 16384

— 0,999938 — 0,999938 —

meaning that the input x belongs to the partition [x5, x6) =
[−0.95904541015625,−0.98052978515625).

Based on the selector signal provided by subsystem
Sampled Region and Corrected Superior Limit, the next
two subsystems, Displacement and AddLog, output the
values Dspn and Add logn calculated by (7) and (8). These
both values are used to calculate the nonuniform RAM
addresses via the two blocks named Displacement Adder
and Add Log Adder. Continuing on the example above, the
provided selector signal equals to 5, implying Dspn = 1024
and Add logn = 78.

Keeping on the description of the Address branch of
Figure 2, we have two subsystems that select a configurable
number of bits from their inputs. The first one, named
Add MSB, slices a configurable number of the most signif-
icant bits of input x. This configurable number of selected
bits is defined by the parameter Bn in (4). This output is
added with the Displacement value Dspn, and a configurable
number of its less significant bits, defined by the parameter
Dn in (5), is selected by subsystem Add LSB. Finally, the
Address is calculated by adding this value with the parameter
Add logn explained above and calculated by (8).

The output Difference is calculated by the configurable
subsystem named Dif LSB. It is configured by the parameters
Sn in (6) and the sampling frequency fn in Table 1. This sub-
system slices a configurable number (defined by parameter
Sn) of the less significant bits of the input x and forces the
binary point to a fixed position d = 14. An exception must
be done on the sampling regions where fn = 215 because
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Figure 6: Transformation of a uniformly distributed input signal
(a) into a Gaussian noise (b) using the LUT-based interpolator
programmed with the nonuniform sampling scheme α of Tables 1
and 2

no interpolation is necessary: all possible values x of these
regions are mapped one to one to a corresponding g(xmn),
and the differences are always made equal to zero.

The six subsystems discussed above are configured on the
fly by the parameters enumerated in the example in Tables 1
and 2. These parameters are stored inside each subsystem by
means of 28 memories (22 RAM blocks storing 2 positions
each and 6 storing 22 positions). Their contents, as well as
the contents of the 512 positions wide ordinate and derivative
RAM blocks, can be changed on the fly, what enables this
nonuniform LUT-based interpolator to represent different
g(x) functions, according to different sampling schemes, as it
will be seen in Section 4. The reconfiguration time is defined
by the depth of the longest RAM block, the ordinate or
derivative RAM blocks: the interpolator requires 512 clock
cycles for a full reconfiguration.
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Table 5: Configuration parameters calculated for sampling scheme β.

n PILn CSLn Bn Dn Sn Dspn Add logn SPSn MPSn SPFn MPFn

1 −1.00000000000 −0.99761962890 −11 12 3 2048 0 −1.00000000000 1 −0.99755859375 6

2 −0.99755859375 −0.99517822265 −11 12 3 2048 0 −0.99707037250 7 −0.99511718750 11

3 −0.99511718750 −0.99029541015 −11 12 3 2048 0 −0.99462890625 12 −0.99023437500 21

4 −0.99023437500 −0.98052978515 −9 10 5 512 15 −0.98828125000 22 −0.98046875000 26

5 −0.98046875000 −0.95318603515 −9 10 5 512 15 −0.97851562500 27 −0.95312500000 40

6 −0.95312500000 −0.90631103515 −6 7 8 64 36 −0.93750000000 41 −0.90625000000 43

7 −0.90625000000 −0.81256103515 −6 7 8 64 36 −0.89062500000 44 −0.81250000000 49

8 −0.81250000000 −0.62506103515 −6 7 8 64 36 −0.79687500000 50 −0.62500000000 61

9 −0.62500000000 −0.31256103515 −4 5 10 16 54 −0.56250000000 62 −0.31250000000 66

10 −0.31250000000 −0.12506103515 −4 5 10 16 54 −0.25000000000 67 −0.12500000000 69

11 −0.12500000000 −0.00006103515 −4 5 10 16 54 −0.06250000000 70 +0.00000000000 71

12 +0.00000000000 +0.06243896484 −4 5 10 16 54 +0.06250000000 72 +0.06250000000 72

13 +0.06250000000 +0.31243896484 −4 5 10 16 54 +0.12500000000 73 +0.31250000000 76

14 +0.31250000000 +0.63275146484 −7 8 7 128 −93 +0.32031250000 77 +0.63281250000 117

15 +0.63281250000 +0.81243896484 −7 8 7 128 −93 +0.64062500000 118 +0.81250000000 140

16 +0.81250000000 +0.91204833984 −9 10 5 512 −193 +0.81445312500 141 +0.91210937500 191

17 +0.91210937500 +0.95697021484 −9 10 5 512 −789 +0.91406250000 192 +0.95703125000 214

18 +0.95703125000 +0.98016357421 −12 13 2 4096 −789 +0.95727539062 215 +0.98022460937 309

19 +0.98022460937 +0.98822021484 −12 13 2 4096 −7803 +0.98046875000 310 +0.98828125000 342

20 +0.98828125000 +0.99212646484 −8 9 6 256 −168 +0.99218750000 343 +0.99218750000 343

21 +0.99218750000 +0.99603271484 −8 9 6 256 −168 +0.99609375000 344 +0.99609375000 344

22 +0.99609375000 +0.99981689453 −13 14 1 8192 −16009 +0.99621582031 345 +0.99975585937 374

Table 6: Configuration parameters calculated for sampling scheme γ.

n PILn CSLn Bn Dn Sn Dspn Add logn SPSn MPSn SPFn MPFn

1 −1.00000000000 −0.99420166015 −9 10 5 512 0 −1.00000000000 1 −0.99414062500 4

2 −0.99414062500 −0.99420166015 −9 10 5 512 0 −0.99218750000 5 −0.99414062500 4

3 −0.99414062500 −0.98834228515 −11 12 3 2048 −9 −0.99365234375 5 −0.98828125000 16

4 −0.98828125000 −0.98052978515 −9 10 5 512 9 −0.98632812500 17 −0.98046875000 20

5 −0.98046875000 −0.95318603515 −9 10 5 512 9 −0.97851562500 21 −0.95312500000 34

6 −0.95312500000 −0.90631103515 −6 7 8 64 30 −0.93750000000 35 −0.90625000000 37

7 −0.90625000000 −0.68756103515 −6 7 8 64 30 −0.89062500000 38 −0.68750000000 51

8 −0.68750000000 −0.50006103515 −6 7 8 64 30 −0.67187500000 52 −0.50000000000 63

9 −0.50000000000 −0.31256103515 −4 5 10 16 54 −0.43750000000 64 −0.31250000000 66

10 −0.31250000000 −0.12506103515 −4 5 10 16 54 −0.25000000000 67 −0.12500000000 69

11 −0.12500000000 −0.00006103515 −4 5 10 16 54 −0.06250000000 70 +0.00000000000 71

12 +0.00000000000 +0.18743896484 −6 7 8 64 6 +0.01562500000 72 +0.18750000000 83

13 +0.18750000000 +0.39056396484 −6 7 8 64 6 +0.20312500000 84 +0.39062500000 96

14 +0.39062500000 +0.69525146484 −7 8 7 128 −83 +0.39843750000 97 +0.69531250000 135

15 +0.69531250000 +0.79681396484 −7 8 7 128 −83 +0.70312500000 136 +0.79687500000 148

16 +0.79687500000 +0.91204833984 −9 10 5 512 −773 +0.79882812500 149 +0.91210937500 207

17 +0.91210937500 +0.95697021484 −9 10 5 512 −773 +0.91406250000 208 +0.95703125000 230

18 +0.95703125000 +0.98016357421 −12 13 2 4096 −7787 +0.95727539062 231 +0.98022460937 325

19 +0.98022460937 +0.98822021484 −12 13 2 4096 −7787 +0.98046875000 326 +0.98828125000 358

20 +0.98828125000 +0.99212646484 −8 9 6 256 −152 +0.99218750000 359 +0.99218750000 359

21 +0.99218750000 +0.99603271484 −8 9 6 256 −152 +0.99609375000 360 +0.99609375000 360

22 +0.99609375000 +0.99981689453 −13 14 1 8192 −15993 +0.99621582031 361 +0.99975585937 390
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Figure 7: The abscissa values xnm obtained with the sampling schemes α (a), β (b), and γ (c).

The presented design was implemented using the soft-
wares Integrated Software Environment (ISE) and System
Generator (SysGen) from Xilinx, on a Spartan-3 develop-
ment kit from Avnet with a XC3S2000-5 FG676 Spartan 3
FPGA. The synthesis details of this realization can be seen on
Table 3.

4. Programmable Noise Generator

As a study case, the proposed nonuniform LUT-based inter-
polator was used as a programmable noise generator able
to output noise with different Probability Density Functions
(PDFs). A controlled level of approximation error is achieved
by using the proposed programmable nonuniform sampling
scheme.

A given transformation function g(x) is responsible for
changing the PDF of a source uniformly distributed noise
into a noise with a different and configurable PDF. The
configuration parameters presented as an example in Tables
1 and 2 were constructed having in mind the minimization
of the approximation error of a Gaussian noise generator.

It uses a specific g1(x) transformation function [20], repre-
sented in (14), for transforming a uniform distributed noise
into a Gaussian one:

g1(x) =
√

2σyerf−1(x). (14)

The transformation function g1(x) has two poles located
at the abscissas x = −1 and x = +1, which are
characterized by high values of curvature and derivatives.
Both the uniformly distributed input signal and the domain
of g1(x) are represented by the interval [x1, xP+1) =
[−1, +0.99993896484375). The ordinate of this function
ideally goes from −∞ to +∞, what is expected since the
output is an unlimited normally distributed signal.

One advantage of implementing a nonuniform sampling
scheme for the interpolation of g1(x) is the lower RAM
space necessary for storing both the g1(xnm) ordinates and
g′1(xnm) derivatives, allied to a lower approximation error.
As a counterexample, if we use a uniform sampling scheme
instead of the proposed nonuniform one, we would face
high approximation error around the poles of (14), even
using high frequency samplings, as seen in Figure 3. These
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Figure 8: Approximation error obtained for the Displaced Error Function (15) using the sampling schemes α (a), β (b), and γ (c).

graphs show the absolute approximation error verified when
two different uniform sampling schemes were applied to the
whole [x1, xP+1) domain: the upper graph shows the error for
fn = 128, what requires the storage of in = 256 positions
of g1(xnm) ordinates plus in = 256 for g′1(xnm) derivatives;
and the lower graph (observe the zoom on x axis) shows
the error for the case where fn = 16384, that results in
in = 32768 + 32768 = 65536 positions for both RAM
blocks. The horizontal line in Figure 3 represents a boundary
approximation error limit equal to 3.0518 × 10−5: the input
values are 15 bits long, and any error lower than that
boundary does not decrease the quality of the interpolation.

If a uniform sampling scheme is used, the only solution
to keep the absolute approximation error below this bound-
ary for all abscissas x would be to use fn = 32768, what
makes the approximation error equal to zero for all possible
abscissas x. This happens because, in this extreme case, there

is not a really interpolation, but a one-to-one mapping of
all possible input values x. But such linear sampling scheme
requires a RAM block with a high depth equal to in = 65536
positions for storing g1(xnm), hard to implement on an FPGA
due to the number of bits necessary to represent each stored
value.

The solution is to use the proposed nonuniform sam-
pling scheme which stores less g1(xnm) ordinates and g′1(xnm)
derivatives for input values around x = 0, and more samples
near the poles x = +1 and x = −1, where the approximation
error is bigger, saving significant amount of memory space
(the proposed LUT-based interpolator reserves only 512
positions for each ordinate and derivative RAM blocks).
This approach is graphically presented in Figure 4, where
you can see the 1st quadrant of g1(x)—the 3rd quadrant is
not displayed since it is symmetric in relation to the origin
(0, 0). The absolute approximation error obtained with this
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Figure 9: Approximation error obtained for the Cubic Function (18) using the sampling schemes α (a), β (b), and γ (c).

nonuniform approach remains under the boundary limit
(3.0518 × 10−5) even near the poles of g1(x), as seen in
Figure 5.

When the proposed programmable nonuniform LUT-
based interpolator is configured to represent (14), according
to the sampling scheme of Tables 1 and 2, it works as a
Gaussian noise generator: by applying to its input a signal
with a uniform PDF (Figure 6(a)), it outputs a signal with
Gaussian PDF (Figure 6(b)).

Tables 1 and 2 are just one example of configuration data
for the proposed programmable LUT-based interpolator.
In this work, 3 different sampling schemes (α, β, and γ)
were formulated. The sampling scheme α was the one
demonstrated in Tables 1 and 2. The abscissas xnm of
sampling schemes α, β, and γ are plotted in Figure 7. As can

be seen in these figures, there are
∑P

n=1 in = 445 sampling

points on scheme α,
∑P

n=1 in = 374 on scheme β, and
∑P

n=1 in = 390 on scheme γ. As expected, the amount of
sampling points is always smaller than the depth (equal to

512) of the two RAM blocks that store the corresponding
ordinates g(xnm) and derivatives g′(xnm). Observe that the
inclination on these graphs is inversely proportional to the
sampling frequency fn of each partition n: the higher the
frequency fn, the bigger the number of abscissas xnm , and the
smaller the inclination in Figure 7.

To show the flexibility of the proposed design, the three
sampling schemes (α, β, and γ) discussed above were applied
to eight different g(x) transformation functions, represented
by (14) to (21), which gave us a total of 24 different examples
for configuring the proposed LUT-based interpolator. These
equations were selected as mathematical examples, and they
are not related to the generation of noise with a natural
response:

g2(x) = 3 +
√

2σyerf−1(x), (15)

g3(x) = − 1

x2 − 1
, (16)
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Figure 10: Probability density function (PDF) of the output signal obtained with the sampling scheme α and the following functions ((a) to
(d)): Displaced Error Function (15), Cubic Function (18), first (19) and second Quadratic Function (20).

g4(x) = ex, (17)

g5(x) = x3, (18)

g6(x) = x2, (19)

g7(x) = −x2 − 2x − 2, (20)

g8(x) = x2 − 6x − 25. (21)

Each sampling scheme was designed to minimize the
approximation error for x abscissa values belonging to the
sampling region with higher fn values. As a matter of fact,
high frequencies should be used for regions where g(x)
presents a strong nonlinear behavior and low frequencies
for regions with a linear behavior. For example, the sam-
pling scheme α was specifically designed for the Gaussian
transformation function (14). It applies high frequencies
( fn = 16384) near the poles x = +1 and x = −1 and

low frequencies ( fn = 32) near the origin x = 0. The
approximation error for the three sampling schemes α, β, and
γ can be seen in Figure 8, in a case of using the displaced
Gaussian transformation function (15), and in Figure 9, for
the Cubic Function (18) case.

The frequency assignment of the P = 22 partitions
for sampling schemes β and γ is presented in Table 4. The
corresponding configuration parameters for these sampling
schemes are calculated via (2) to (12) and are presented
in Tables 5 and 6. Observe that the sampling limits xn
for sampling scheme β are the same as sampling scheme
α, only the frequencies fn are distributed differently. But
in the sampling scheme γ, both sampling limits xn and
the frequencies fn are distributed differently from sampling
schemes α and β, what shows the flexibility for reconfiguring
the designed programmable noise generator.

As seen in Table 1, the scheme α distributes the P = 22
sampling frequencies fn symmetrically to the origin, with the
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lower frequencies near the origin, as can be graphically seen
in Figures 8 and 9 (upper graphs): the semiarcs with bigger
diameters (related to fn = 32) are located around the origin,
in the interval −0.125 < x < 0.125. As seen in Table 4, the
schemes β and γ distribute the lower sampling frequencies
( fn = 32) on the intervals −0.64 < x < 0.34 and −0.5 < x <
0.0, respectively, as can be graphically seen in Figures 8 and
9((b) and (c) graphs, resp.).

The designed programmable noise generator can gen-
erate different noise signals by properly filling the ordinate
g(xnm) and the derivative g′(xnm) RAM blocks (Figure 1) and
configuring its internal parameters on the Difference Address
subsystem (Figure 2). For example, Figure 10 shows the
Probability Density Functions (PDFs) of four different
signals produced by the programmable noise generator
when: (1) its input is fed with a uniform distributed noise,
(2) it is configured with the sampling scheme α, and (3) it
was configured to interpolate four different functions: the
Displaced Error Function (15), the Cubic Function (18), the
first (19), and the second (20) Quadratic Function.

5. Conclusion

A programmable Look-Up Table-based interpolator with
nonuniform sampling scheme was implemented using a
Avnet development kit containing an XC3S2000-5 FG676
Xilinx Spartan-3 FPGA. This LUT-based interpolator can be
programmed on the fly by loading the proper configuration
parameters presented in Section 2, including the g(xnm)
ordinate and g′(xnm) derivative, inside RAM blocks. The
complete reconfiguration takes 512 clocks cycles. When
these parameters are changed, they can interpolate different
g(x) functions, sampled according to different nonuniform
sampling schemes. The ability of changing the sampling
scheme allows the minimization of both the approximation
error and memory space: for instance, the sampling schema α
(Table 1) applied to (14) was able to keep the approximation
error below a threshold of 3.0518 × 10−5 while reducing
the memory usage to 2.71% for a Gaussian noise generator
application.

As a study case, the LUT-based interpolator was used as
the core of a programmable noise generator able to output
signals with different Probability Density Functions (PDFs).
The flexibility of this design was proved by interpolating 8
different g(x) functions, according to 3 different nonuniform
sampling schemes (α, β, and γ) described in Tables 1 and 4,
each one defining P = 22 partitions each characterized by a
chosen sampling frequency fn.

As future work, we recommend the implementation of
a programmable nonuniform LUT-based interpolator with
a domain not fixed to [x1, xP+1) = [−1, +1) and where the
number P of sampling regions can be changed on the fly.
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