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Derivation of an Analytical Expression for
the Power Coupling Coefficient for Offset

Launch Into Multimode Fiber
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Abstract—The demand for higher bandwidth in Local Area
Networks (LANs) has fuelled considerable research in techniques
for mitigating modal dispersion in multimode fiber (MMF). These
techniques include selective mode excitation, offset launching,
angular multiplexing and electronic dispersion compensation,
all of which strive to optimize the channel impulse response of
a MMF. To obtain the optimal bandwidth-enhancement results
from these techniques, knowledge of the distribution of power
coupling coefficients given an arbitrary offset launch in a MMF is
important. In this paper, an analytical expression for the power
coupling coefficient for an incident Gaussian beam launched with
a radial offset into a MMF having an infinite parabolic refractive
index profile is derived. This expression is useful in understanding
the parameters which may affect the power coupling coefficient
and how they may enhance the MMF bandwidth. The power cou-
pling coefficients obtained from the derived analytical expression
are compared with numerical results and are in excellent agree-
ment. The analytical expression may be extended to manufactured
MMF.

Index Terms—LAN, laser coupling, multimode fiber, offset
launch.

I. INTRODUCTION

G RADED-INDEX multimode fiber (MMF) has become
the predominant fiber in Local Area Networks (LANs)

due to its low cost and ease of installation, as well as the avail-
ability of cost-effective light transceivers [2]–[5]. In the last two
decades, there has been a large increase in the volume of mul-
timedia data carried on LANs. This has stimulated the need for
techniques to support the gigabit rate demands over existing
multimode fiber backbones which were initially designed for
10-Mb/s and 100-Mb/s systems. Although alternatives such as
single mode fiber and ribbon link fiber exist [6], the cost for re-
placing the current infrastructure would be high.

The bandwidth of a MMF is limited mainly by modal dis-
persion, caused by the propagation delay differences between
the modes. The demand for higher bandwidth in LANs has at-
tracted wide interest in techniques to mitigate modal dispersion,
including variants of selective mode excitation [7]–[12], offset
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launching [13], angular multiplexing [14] and electronic disper-
sion compensation (EDC) [15]–[18]. In selective mode excita-
tion, only a subset of propagating modes is excited to minimize
the differences in the propagation delays between the modes
[7]–[12]. For offset launching, a laser beam is positioned ra-
dially offset from the centre of the fiber core to excite higher-
order modes [13]. For angular multiplexing, only a small por-
tion of the total angular span is used per channel to reduce the
pulse spread [14]. Electronic dispersion compensation (EDC)
is carried out by equalizing the modal amplitudes of the prop-
agating modes by an adaptive algorithm, either at the trans-
mitter or the receiver [15], [16]. The common goal of these
off-centre launch techniques [7]–[18] is to achieve a high band-
width without the stringent mechanical alignment required in
centre launch schemes. This is accomplished by exciting a large
number of adjacent mode groups, without aiming the optical
beam solely at the centre of the MMF where imperfections in the
refractive index profile are dominant. In a typical LAN where
MMF lengths are mostly shorter than 300 meters [19], exciting a
large number of adjacent mode groups in a MMF link limits the
negative effects of modal dispersion and power modal coupling
on the channel bandwidth. In addition to the relaxed mechanical
alignment requirements, off-centre techniques also give rise to
the potential for a multi-channel system within a single MMF
[17]. Due to these advantages, off-centre launch techniques have
garnered significant interest in the quest for higher LAN band-
widths in recent years.

In order to optimize the bandwidth achieved by these off-
centre launches, it is necessary to position the beam in the best
manner possible to excite desired modes and to suppress others
whenever viable to minimize modal dispersion. To ascertain
the optimal bandwidth enhancement from these techniques, it
is important to know, among other parameters, the distribution
of power coupling coefficients for a typical MMF, for centre
launch as well as for offset launch. In this paper, we derive the
exact analytical expression for the power coupling coefficient
for an offset launch in a MMF with an infinite parabolic refrac-
tive index profile, assuming weak guidance. Our analysis should
prove useful in understanding the parameters which affect the
power coupling coefficient and how it may enhance the band-
width.

Sections II lays the foundation for our derivation of an analyt-
ical expression for the power coupling coefficient for an offset
launch in a parabolic-index MMF. An overview of the refractive
index profile of a graded-index MMF is given in Section II.A.
The overlap integral for the power coupling coefficient, used as
the basis for the derivation, is introduced in Section II.B. The
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Fig. 1. Launch condition at the endface of a weakly guiding fiber [1].

computation of the power coupling coefficient requires expres-
sions for both the modal electric field in an infinite parabolic re-
fractive index MMF and the incident electric field distribution of
the offset beam. The expressions for both of these electric fields
are derived briefly in Sectionss II.C and II.D respectively. The
derivation of the analytical expression for the power coupling
coefficient for an offset launch in an infinite parabolic refractive
index MMF is presented in Section III. This is followed by a
general proof of power conservation from the derived analytical
expression in Section IV. A comparison of the power coupling
coefficients from the derived analytical expression with those
computed numerically is presented in Section V. It is shown in
Section VI that the applicability of the derived analytical ex-
pression for the power coupling coefficient for offset launch for
an infinite parabolic refractive index profile may be extended to
manufactured MMF characterized by refractive index profiles
with profile parameters within the range of .

II. PRELIMINARY CONCEPTS

A. Refractive Index Profile of Multimode Fiber

In this paper, we assume that the refractive index of the multi-
mode fiber is modeled by an infinite parabolic profile described
by [1]

(1)

where is the maximum refractive index of the core.
The normalized radius is defined by where
is the core radius. The profile height parameter is given by

where is the refractive index of
the cladding at . For the derivations, weak guidance

is assumed. Hence, [1]

B. Overlap Integral for Power Coupling Coefficient

The launch condition of an optical beam into a weakly
guiding graded index MMF is shown in Fig. 1. The optical
beam, assumed to have a Gaussian distribution, is launched to a
position radially offset from the centre of the fiber. The relative
power coupled into a fiber mode is given by the power coupling
coefficient

(2)

where is the transverse field of the relevant fiber mode,
is the incident electric field of the offset beam and is the
cross-sectional area of the fiber core.

C. Modal Electric Fields of an Infinite Parabolic Refractive
Index MMF

Under the weakly guiding approximation, the transverse
modal electric field of a MMF with an infinite parabolic re-
fractive index profile may be found analytically by solving the
scalar wave equation. The detailed analysis is given in [1] and
is summarized here.

The spatial dependence of the transverse electric field is gov-
erned by the scalar wave equation

(3)

where
is the transverse Laplacian oper-

ator, is the free-space propagation constant, is the
free-space wavelength, is the transverse modal electric
field with azimuthal mode number and radial mode number

. is the scalar propagation constant, given by

(4)

The modes are commonly referred to as modes. Modes
which have the same value of are characterized by the
same scalar propagation constant, and share the same mode
group order. The total electric field, of a weakly guiding mul-
timode fiber may be expressed as the sum of individual
modes

(5)

where are constants.
For each value of , there are generally four solutions for

the modes, which can be expressed as superpositions of
the function defined by

(6)

The radial wavefunction is given by

(7)

is the generalized Laguerre polynomial, given in [20].
The Laguerre polynomial is an orthogonal function on the in-
terval , thus the modes are orthogonal. is the normal-
ized frequency, given by , where NA is the nu-
merical aperture of the particular MMF and is the free-space
wavelength of the incident optical source into the fiber.

The solution of the scalar wave equation does not give any in-
formation about the polarization of the vector field. Assuming
the transverse modal electric field must be polarized along the
optical axes of the fiber and that any pair of orthogonal - and

-axes may be chosen as optical axes in the fiber cross-section,
then there are four possible polarizations for . The complete
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TABLE I
MODAL TRANSVERSE FIELDS OF WEAKLY GUIDING FIBERS [1]

modal fields from both the solutions of the scalar wave equa-
tion and their polarization properties are summarized in Table I,
taken from [1], together with the corresponding vector solutions
of the wave equation. The degeneration of the into the tra-
ditional HE, EH, TE and TM modes is shown in Table I, taken
from [1], where denotes the degenerate mode number. The
exact propagation constant for the -th degenerate mode of an

mode may be calculated from the scalar propagation con-
stant [1].

D. Electric Field of Radially Offset Gaussian Beam

In deriving the analytical expression for the power coupling
coefficient, an expression for the amplitude of incident radially
offset Gaussian beam is required. Here, a brief derivation of the
electric field of the radially offset beam is given.

Without loss of generality, the amplitude of a Gaussian beam
with spot size and offset launch at can be written as

(8)

where is a normalization coefficient. This can be rewritten in
cylindrical coordinates as

(9)

where is the azimuthal angle, is the normalized
radial offset, is the normalized spot size and

, where is the radius of the MMF core.

III. DERIVATION OF AN ANALYTICAL EXPRESSION FOR THE

POWER COUPLING COEFFICIENT FOR OFFSET LAUNCH

Having given the expressions for the modal electric field of
an infinite parabolic refractive index MMF and the electric field
of a radially offset Gaussian beam, we now proceed to derive

the analytical expression for the power coupling coefficient for
an offset launch. This result was originally derived by Grau et
al. [23]. However, as their original paper only quotes the final
result with very little detail of the lengthy analysis, we have
given full details here. Our analysis is valid for the weak guiding
approximation which applies to the majority of communications
grade optical fibers [1].

From Section II, let the polarized modal transverse electric
field

(10)

where is a normalization constant to be determined.
Substituting from (10), from (9) into (2), the overlap

integral for the power coupling coefficient for mode
may be written as

(11)

To solve the power coupling integral of (11) ana-
lytically, the denominator is first normalized. Setting

, we find, . Now, set-

ting , we find that the normalization

constant is given by

(12)

Solving the -component integral

(13)

where is the Kronecker delta function.
Substituting the solution for the -component integral in (13)

back into (12)

(14)

Letting

(15)

From the orthogonality relation of the Laguerre polynomials
[21], we have

(16)
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Let and substituting (16) into (15), we find

(17)

This gives as

(18)

Next, substituting the expressions for and back into the
numerator of (11), we have

(19)

Letting and rewriting the -integral

(20)

The Modified Bessel function is given in [22]

(21)

Letting and in (21) and substituting into
(20)

(22)

Using the property , the -integral be-
comes

(23)

Substituting the -integral back into (19), we get

(24)

Using the table of integrals in [20, Eq. 7.421, No. 4, p. 847]

(25)

letting
, and using , (24) becomes

(26)

Simplifying

(27)

Equation (27) is our main result and is the exact analytical so-
lution for the power coupling coefficient of the mode for
an offset launch in an infinite parabolic refractive index MMF.
This is the same expression derived by Grau, Leminger and
Sauter [23] for the case where no tilt is present ((17) of Grau’s
paper [23]). Setting in (27), the power coupling coef-
ficient can be reduced after some more algebra to that for the
special case of centre launch.

We also point out that in [24], Saijonmaa et al. used a different
approach for deriving an analytical expression for the power
coupling coefficients of an offset launch, based on Gaussian-
Hermite modes factorised into and components.

IV. GENERAL PROOF OF POWER CONSERVATION

In this section, we show that (27) satisfies power conservation

(28)

The first summation in (28) is the summation over the radial
mode number, . Replacing by in (27) and (28), the
summation over can be written as

(29)



AMPHAWAN et al.: DERIVATION OF AN ANALYTICAL EXPRESSION 865

Fig. 2. Comparison of analytical and numerical values of electric field for a graded-index MMF for profile parameter � � ���.

We use the following result from [20] to calculate

(30)

Comparing (29) to (30), let

(31)

(32)

(33)

Thus, substituting (31), (32), and (33) into (30), we get

(34)

Having calculated the summation over m, we now combine
with the original expression for in (28), yielding

where

(35)

Simplifying (35)

(36)

Now, to sum over we use the generating function of the
Bessel function of the first kind [20]:

(37)

Setting gives

(38)

Using the property

(39)

Thus, summing over
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Fig. 3. Comparison of power coupling coefficients of a perfect parabolic graded-index MMF �� � ���� obtained using analytical and numerical models, for
various normalized radial offsets, �.

Fig. 4. Comparison of electric field variation along the core of a graded index MMF for different values of refractive index profile parameter, �.

(40)

as required.

V. COMPARISON WITH NUMERICAL RESULTS FOR REFRACTIVE

INDEX WITH

To confirm the validity of the derived analytical expression
((27)) for the power coupling coefficient for an offset launch,
a finite difference method [25] which solves the scalar wave

equation for each mode group order in a graded index MMF
was used. Using this method, the electric field of a graded index
MMF with a refractive index of a given profile parameter,
for any specified mode was computed. As a reference, the
electric field values in a MMF with a refractive index profile
with were calculated for several modes using the fi-
nite difference method to solve the scalar wave equation. It was
confirmed that the electric field computed numerically using the
finite difference method was in good agreement with the elec-
tric field for the infinite parabolic profile used in the derivation
of the analytical expression for the power coupling coefficient,
presented in (27). This is illustrated in Fig. 2, for a number of
different modes. In Fig. 2 the finite difference equation was
solved for a fiber with a core diameter of 62.5 m, a cladding
diameter of 125 m, a core refractive index of 1.45 and cladding
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Fig. 5. Comparison of power coupling coefficients of a graded index MMF obtained using different values of refractive index profile parameter, � for various
radial offsets, �.

index of 1.436, a numerical aperture of 0.2 and a wavelength of
1.55 m. This give a normalized frequency and from
(4) the condition on and for guided modes to have an ef-
fective index larger than 1.436 is . In Fig. 2(a)–(c)
we compare the computed fields with those of an infinite par-
abolic profile for several low order modes, and in Fig. 2(d)–(f)
for modes just at cutoff where . In all cases the
two results are in extremely close agreement confirming that
the analytical solutions for an infinite parabolic profile are very
accurate.

The power coupling coefficients for different offset launches
in a MMF were calculated numerically using (11), with the elec-
tric field values calculated earlier by solving the scalar wave
equation from the finite difference method. The power coupling
coefficients were then compared with those calculated from the
derived analytical expression in (27). The examples shown in
Fig. 3 confirm that the analytical and numerical results agree
well both for low order modes and modes close to cutoff.

VI. COMPARISON WITH NUMERICAL RESULTS FOR

REFRACTIVE INDEX WITH

Current commercial manufacturing processes are unable to
produce optical fibers with a constant, accurate refractive index
profile [26]. One of the manufacturing defects is the imper-
fection in the parabolic index profile [26]. Instead of a perfect
parabolic profile with a profile parameter, , manufac-
tured optical fibers usually have profile parameters ranging from

. In this section, we show that the modal fields
are insensitive to in this range and consequently that the power
coupling coefficients are also insensitive to .

The electric fields of a MMF with parameters given above
were calculated numerically using the finite difference method
in [25], for profile parameters and . The results
in Fig. 4 show that the electric fields for refractive index profiles
with profile parameters closely agree with the
electric fields of an infinite parabolic profile fiber with
computed using (10) for both low order modes and modes close
to cutoff.

Power coupling coefficients for various modes were calcu-
lated for refractive index profiles with and
using the electric fields computed numerically in Fig. 5. Plots
of power coupling coefficients over several radial and azimuthal
mode numbers for various radial offsets in Fig. 6 demonstrate
that the power coupling coefficients for an offset launch in a
MMF within the profile parameter are in good
agreement with the power coupling coefficients for a perfect
parabolic index profile with .

Importantly, this implies that the derived analytical expres-
sion for the power coupling coefficient for offset launch in a
MMF in Section III may be extended for use in imperfect para-
bolic refractive indices with profile parameters within the range
of .

VII. CONCLUSION

An analytical expression for the power coupling coefficient
for an offset launch in a graded index MMF with a refractive
index of profile parameter has been derived. It is
shown that the derived analytical expression satisfies power
conservation.
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The electric field in a MMF with a refractive index of pro-
file parameters and were found to be in good
agreement with the electric field for a MMF with a perfect par-
abolic refractive index profile . In light of this, the
validity of the derived analytical expression for power coupling
coefficient may be extended to manufactured MMF with profile
parameters within the range of .

The derived expression should prove useful in analyzing pa-
rameters which affect power coupling coefficient in commercial
fibers. Analytical expressions for modal time delays in MMF
[27] for near-parabolic refractive index profile parameters exist.
An appropriate analytical expression for modal time delay in
near-parabolic MMF, used alongside the derived analytical ex-
pression for power coupling coefficient allows an analytical ex-
pression for the channel impulse response for a commercial
MMF to be constructed. The complete analytical expression for
the channel impulse response should prove valuable in ascer-
taining optimal launch conditions for experiments such as offset
launching, selective mode excitation and EDC.
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