

AWERProcedia

Information Technology
& Computer Science

2 (2012) 336-341

2nd World Conference on Innovation and Computer Sciences 2012

Comparison of Distributed Technologies for Defining a Distributable

and Interoperable ETL Framework

Mohd Syazwan Abdullaha *, Mohammad M. I. Awadb , Abdul Razak Saleh c , Abdul Bashah Mat Ali d,

Azizah Ahmad e

a,b,c,d,eSchool of Computing, College of Arts and Sciences, Universiti Utara Malaysia, 06010 Sintok, Kedah,
Malaysia

a,b,c,d,e ITU-UUM Center of Excellence for Rural ICT Development, Universiti Utara Malaysia, 06010 Sintok, Kedah,
Malaysia

Abstract

Extraction, Transformation and Loading (ETL) are major functionalities in data warehousing. Lack of component distribution

and interoperability are the main problems in the ETL area, because ETL components are tightly-coupled in the traditional

ETL framework. This paper explores and discusses five popular distributed technologies for the purpose of highlighting the

best technology that is capable of overcoming the distribution and interoperability gaps of the traditional ETL framework.

Based on the comparison of distributed technologies discussed in this paper, several benefits can be obtained when SOA is

used in redefining the ETL framework such as: distribution, interoperability, reusability, portability, and compatibility with

legacy systems. These advantages and other SOA specifications are discussed in this paper.

Keywords: Distributed Systems; Data Warehousing; ETL; SOA.

Selection and/or peer review under responsibility of Prof. Dr. Dogan Ibrahim.

©2013 Academic World Education & Research Center. All rights reserved.

1. Introduction

 Tight coupling of ETL components in the traditional ETL framework has leaded to difficulties in
reusing, maintaining, and extending the ETL framework. This paper compares and discusses potential
distributed technologies could be used to distribute the Extraction, Transformation and Loading
components so as to achieve distribution and interoperability of these ETL components. A distributed
system is a collection of independent entities that cooperate to solve a problem that cannot be
individually solved [1-3].

ADDRESS FOR CORRESPONDENCE: Mohd Syazwan Abdullah, School of Computing, College of Arts and Sciences, Universiti Utara
Malaysia, 06010 Sintok, Kedah, Malaysia

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/19914958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

337

Mohd Syazwan Abdullah/ AWERProcedia Information Technology & Computer Science (2012) 336-341

For computing systems, a distributed system has been characterized as a collection of computers
that do not share common memory or a common physical clock, that communicate by a messages
passing over a communication network, where each computer has its own memory and runs its own
operating system. Typically the computers are loosely coupled and they cooperate to address a
problem collectively [4].

The distributed software can also be termed as middleware. In other words, the middleware is the
distributed software that drives the distributed system, while providing transparency of heterogeneity
at the platform level [1]. Various primitives and calls to functions defined in various libraries of the
middleware layer are embedded in the user program code. In addition, there exist several libraries to
choose from to invoke primitives for the more common functions of the middleware layer [4].
Furthermore, there are several standards such as Object Management Group’s (OMG), Common
Object Request Broker Architecture (CORBA), Remote Method Invocation (RMI) and the Remote
Procedure Call (RPC) mechanisms for distributed computing [1, 3]. Currently, deployed commercial
versions of middleware often use CORBA, DCOM (distributed component object model), EJB and RMI
technologies [5-7].

RPC is designed to be as similar to making local procedure calls as possible. The idea behind RPC is
to make a function call to a procedure in another process and address space either on the same
processor or across the network on another processor without having to deal with the concrete details
of how this should be done besides making a procedure call [1-3, 5]. Before an RPC call can be made,
both the client and the server both have to have stubs for the remote function that are usually
generated by an interface definition language (IDL). When an RPC call is made by a client the
arguments to the remote function are marshalled and sent across the network and the client waits
until a response is sent by the server. There are some difficulties with marshalling certain arguments
such as pointers [1-3, 5], since a memory address on a client is completely useless to the server so
various strategies for passing pointers are usually implemented two rules: (1) disallowing pointer
arguments and (2) copying what the pointer points at and sending that to the remote function.

CORBA usually consists of an Object Request Broker (ORB), a client and a server. An ORB is
responsible for matching a requesting client to the server that performs the request, using an object
reference to locate the target object. When the ORB examines the object reference and discovers that
the target object is remote, it marshals the arguments and routes the invocation out over the network
to the remote object's ORB. The remote ORB then invokes the method locally and sends the results
back to the client via the network [6, 8]. There are many optional features that ORBs can implement
besides merely sending and receiving remote method invocations including looking up objects by
name, maintaining persistent objects, and supporting transaction processing. A primary feature of
CORBA is its interoperability between various platforms and programming languages [6].

Distributed Component Object Model (DCOM) is the distributed version of Microsoft's COM
technology which allows the creation and use of binary objects/components from languages other
than the one they were originally written in, it currently supports Java (J++), C++, Visual Basic, JScript,
and VBScript. DCOM works over the network by using proxy's and stubs. When the client instantiates
a component whose registry entry suggests that it resides outside the process space, DCOM creates a
wrapper for the component and hands the client a pointer to the wrapper. This wrapper, called a
proxy, simply marshals methods calls and routes them across the network [6, 9]. On the other hand,
DCOM creates another wrapper, called a stub, which unmarshals methods calls and routes them to an
instance of the component [5, 10].

 RMI is a technology that allows the sharing of Java objects between Java Virtual Machines (JVM)
across a network. An RMI application consists of a server that creates remote objects that conform to
a specified interface, which are available for method invocation to client applications that obtain a
remote reference to the object [10]. RMI treats a remote object differently from a local object when
the object is passed from one virtual machine to another. Rather than making a copy of the
implementation object in the receiving virtual machine, RMI passes a remote stub for a remote object.

338

Mohd Syazwan Abdullah/ AWERProcedia Information Technology & Computer Science (2012) 336-341

The stub acts as the local representative, or proxy, for the remote object and basically is, to the caller,
the remote reference. The caller invokes a method on the local stub, which is responsible for carrying
out the method call on the remote object. A stub for a remote object implements the same set of
remote interfaces that the remote object implements. This allows a stub to be cast to any of the
interfaces that the remote object implements [11]. However, this also means that only those methods
defined in a remote interface are available to be called in the receiving virtual machine [10].

Service Oriented Architecture (SOA) is not a solution for a certain problem, but it is a framework
architecture which adds some features to traditional software frameworks [11]. Typically, “SOA is a
software architecture that starts with an interface definition and builds the entire application topology
as a topology of interfaces, interface implementations, and interface calls” [11]. The strength of SOA is
that it orchestrates all of the distributed components of a software by an orchestration point that
centralizes the management of the distributed components. Section 2 compares the distributed
technologies briefed in this section.

2. Comparison of Distributed Technologies

For the purpose of highlighting the best technology that is capable of overcoming the distribution
and interoperability gaps of the current ETL framework, table 1 and 2 show the comparison of
different distributed technologies discussed in sections 1 regarding components distribution and
interoperability and the features that are dependent on the distribution and interoperability features.

Table 1. Distributed Technologies based on Components Distribution and Interoperability

Table 1 compares the distribution and interoperability features among ETL components. In addition,

it compares the central orchestration among the ETL components. Distribution and interoperability
are supported by all the five distributed technologies as shown in the table. On the other hand, the
central orchestration among the distributed components is completely supported only in SOA, while
the other four technologies do not support central orchestration, and the interoperability is done
directly among the components. This causes difficulties to manage and orchestrate many components
sufficiently.

Table 2 shows a comparison among distributed technologies based on components portability,

extensibility, and legacy compatibility. Components reusability is supported without limitations by
SOA, while it is supported by RPC if the used programming languages are compatible with each others.
CORBA supports components reusability for all programming languages but with lots of configuration
steps if the languages of the component are different, while DCOM supports reusability only within
the same infrastructure. This infrastructure includes: programming languages, distribution technology,
and configuration files. RMI supports reusability only for components that are built based on java
programming language.

Components portability enables the distributed components to be executable in any programming

 Components
Distribution

Components
Interoperability

Central Components
Orchestration

RPC Supported Supported Not supported

CORBA Supported Supported Not supported

DCOM Supported Supported Not supported

RMI Supported Supported Not supported

SOA Supported Supported Supported

339

Mohd Syazwan Abdullah/ AWERProcedia Information Technology & Computer Science (2012) 336-341

environment and then to be stand alone components that can be plugged as portlets to web portals
[12]. The portability is supported only in SOA due to the web services availability in which every
component can be encapsulated in a web service that is standalone and pluggable to any SOA based
portal. All distributed technologies support extensibility [5], while only SOA supports components
compatibility with legacy systems due to the web services involvement in SOA.

Table 2. Distributed Technologies based on Components Portability, Extensibility, and Legacy Compatibility

 Components
Reusability

Components
Portability

Components
Extensibility

Compatibility
with Legacy
Systems

RPC Limited support Not supported Supported Not supported

CORBA Limited support Not supported Supported Not supported

DCOM Limited support Not supported Supported Not supported

RMI Limited support Not supported Supported Not supported

SOA Unlimited
support

Supported Supported Supported

Based on the discussion about distributed technologies in this section, it can be concluded that
several benefits can be obtained when SOA is used in redefining the ETL framework and these are:
distribution, interoperability, reusability, portability, and compatibility with legacy systems [11].
Furthermore, since one of the major roles of SOA is to enhance the features of computerized
frameworks and models [11], and ETL framework is a computerized framework, therefore, SOA can
play a central role in enhancing the ETL framework features regarding component distribution and
interoperability.

3. ETL Framework with Interoperable Distributed Components

Based on the comparison conducted in section 2, SOA is used in our study to restructure the ETL
framework. This section briefly discusses this enhanced ETL framework, which is shown in Fig. 1. In the
data layer (bottom left of of Fig. 1), the data stores are exactly similar to the traditional framework.
The business layer (top left of Fig. 1), however is built based on SOA, which includes four main parts
and these are:

A. Service Orchestration Point (also called Directory Service or Service Registry): It describes the

services available in its domain which are Extraction, Transformation, and Loading. Those three
services are called Service Providers and register themselves in the Orchestration Point.

B. Service Providers: each of them is a component that performs a service in response to a consumer
request. The framework has three Service Providers which are Extraction, Transformation, and
Loading services.

C. Service Consumers: each of them is a component that consumes the result of a service supplied by
a provider. The main Service Consumer in the framework is the client that represents ETL
administrators. In addition, the three Service Providers can be Service Consumers to other
services. For example, the Transformation service can request some functions to be done by the
Extraction service in case that the Extraction and the Transformation are executed in one patch.

D. Service Interface: it defines the programmatic access of the three services, and establishes the
identity of the service and the rules of the service invocation.

340

Mohd Syazwan Abdullah/ AWERProcedia Information Technology & Computer Science (2012) 336-341

4. Discussions and Conclusions

Loosely-coupled components in the ETL framework are more flexible than those of tightly-coupled
ETL framework. In the traditional framework, the ETL components are tightly-coupled to each other,
sharing semantics, libraries, and often sharing state. This limits distribution, interoperability,
reusability, portability, and compatibility of the ETL framework, which leaded to rebuilding a new ETL
framework that achieves loose coupling among ETL framework components. The rebuilt ETL
framework was developed based on SOA because the comparison among distributed technologies has
shown the strength of using SOA as the best distributing technology.

References

[1] A. D. Kshemkalyani and M. Singhal, Distributed Computing Principles, Algorithms, and Systems, 1st ed.

Cambridge, UK: Cambridge University Press, 2008.
[2] D. Du and C. Raghavendra, Distributed Network Systems, 2nd ed. Califorina, USA: Springer, 2005.
[3] G. Coulouris, J. Dallimore, and T. Kindberg, Distributed systems: concepts and design, 3rd ed.

Shanghai,China: China Machine Press, 2001.
[4] P. Wehrle, M. Miquel, and A. Tchounikine, "A Model for Distributing and Querying a Data Warehouse on a

Computing Grid," Proceedings of 2005 11th International Conference on Parallel and Distributed Systems,
2005.

[5] A. S. Tanenbaum and M. Van Steen, Distributed systems, 2nd ed. New Jersey, USA: CiteSeer, 2002.
[6] V. Issarny, C. Kloukinas, A. Zarras, and M. Architectures, "Management Group’s Common Object Request

Broker (CORBA)," Microsoft’s Distributed Component Object Model, 2008.
[7] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas, "An architecture for next generation middleware,"

Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed
Processing, pp. 191-206, 2009.

[8] P. Wehrle, M. Miquel, and A. Tchounikine, "A Grid Services-Oriented Architecture for Efficient Operation of
Distributed Data Warehouses on Globus," Proceedings of 21st International Conference on Advanced
Networking and Applications, 2007.

[9] G. R. Voth, C. Kindel, and J. Fujioka, "Distributed application development for three-tier architectures:
Microsoft on Windows DNA," IEEE Internet Computing, vol. 2, pp. 41-45, 1998.

[10] F. Bertrand, R. Bramley, A. Sussman, D. E. Bernholdt, J. A. Kohl, J. W. Larson, and K. B. Damevski, "Data

Fig. 1. A framework for interoperable distributed ETL components based on SOA

341

Mohd Syazwan Abdullah/ AWERProcedia Information Technology & Computer Science (2012) 336-341

redistribution and remote method invocation in parallel component architectures," Proceedings of 19th IEEE
International Parallel and Distributed Processing Symposium., 2005.

[11] M. Barai, Binildas, and V. Caselli, Service Oriented Architecture with Java, 1st ed. Birmingham, UK: Packt
Publishing, 2008.

[12] T. Priebe and G. Pernul, "Towards integrative enterprise knowledge portals," Proceedings of the twelfth
international conference on Information and knowledge management. pp. 216-223, 2003.

