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ABSTRACT

Applications that use vowel phonemes require a high degree of 
vowel recognition capability. The performance of speech recog-
nition application under adverse noisy conditions often becomes 
the topic of interest among speech recognition researchers re-
gardless of the languages in use. In Malaysia, there are an in-
creasing number of speech recognition researchers focusing on 
developing independent speaker speech recognition systems 
that use the Malay language which is noise robust and accurate.  
This paper present a study of noise robust capability of an im-
proved vowel feature extraction method called First Formant 
Bandwidth (F1BW).  The features are extracted from both origi-
nal data and noise-added data and classifi ed using three classi-
fi ers; (i) Multinomial Logistic Regression (MLR), (ii) K-Nearest 
Neighbors (K-NN) and Linear Discriminant Analysis (LDA). 
The results show that the proposed F1BW is robust towards 
noise and LDA performs the best in overall vowel classifi cation 
compared to MLR and K-NN in terms of robustness capability, 
especially with signal-to-noise (SNR) above 20dB.

ht
tp

://
jic

t.u
um

.e
du

.m
y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/19914922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Journal of ICT, 11, pp: 147–162

148

Keywords: Malay vowels, spectrum envelope, speech recognition, noise ro-
bustness.

INTRODUCTION

Automatic speech recognition (ASR) has made great strides with the 
development of digital signal processing hardware and software. Currently, 
despite all these advances, machines still cannot match the performance of 
their human counterparts in terms of accuracy and speed, especially in the 
case of speaker independent speech recognition.  Today, a signifi cant portion 
of speech recognition research focuses on speaker independent speech 
recognition problems. The reasons are its wide range of applications, and 
limitations of available techniques of speech recognition. 

Although there are studies on Malay phoneme recognition, most of them 
are still in infancy (Rosdi & Ainon, 2008) and use multiple frame analysis. 
Subsequently, more analyses focusing on the accuracy and processing time 
when developing speech therapy systems should be done to ensure a worth 
for value product is produced.  Motivated by this necessity, this study is 
designed to develop a Malay speech recognition system in an effort to improve 
Malay vowel recognition.  Applications that use vowel phonemes require a 
high degree of Standard Malay vowel recognition capability. In Malaysia, 
few studies have been done especially in the study of Malay vowel usage, 
independent speaker systems, recognition robustness and algorithm speed and 
accuracy.

When corrupted by low level noise, human listeners are still capable of 
recognizing speech because we can select and follow another speaker’s voice 
(Devore & Shinn-Cunningham, 2003).  Even at a packed football stadium, 
listeners can select and follow the voice of another speaker as long as the 
signal-to-noise ratio (SNR) is not too low.  In terms of speech recognizers, 
most of these applications are affected by adverse environmental conditions.  
According to Uhl and Lieb (2001), it is important to suppress additive noise 
before the feature extraction stage of any speech recognizer. Invariance to 
background noise, channel conditions and variations of speaker and accent 
are among the main issues in noise robust applications (Al-Haddad, Samad, 
Hussain & Ishak, 2008; Huang, Acero, & Hon, 2001).  Development of 
signal enhancement techniques as an effort to remove the noise prior to 
the recognition process is permissible but it may cause some alteration of 
the speech spectral characteristics.  Consequently, the speech signal is not 
suitable to be used in the designed acoustic models of the recognizer hence 
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deteriorating the performance of the recognizer (Kyriakou, Bakamidis, 
Dologlou & Carayannis, 2001). This justifi es the needs of developing a robust 
speech recognizer which can be modeled using robust speech features.

This study is an effort to increase the Malay vowel recognition capability 
by using a new speech database that consists of words uttered by Malaysian 
speakers from the three major races: Malay, Chinese and Indians.  This paper 
will present a robustness study on the First Formant Bandwidth (F1BW) 
method introduced by Shahrul Azmi (Shahrul Azmi, Siraj, Yaacob, Paulraj & 
Nazri, 2010), which is an improved formant method based on a single framed 
analysis of isolated utterances.   

PREVIOUS RESEARCHES IN VOWEL RECOGNITION

Vowel Feature Extraction Methods

Human speech has strict hierarchical structure. It consists of sentences, 
which can be divided into words, and they are built by phonemes that are 
the basic voice construction elements. Vowels could be defi ned as phonemes 
with persistent frequency characteristics most expressed. These frequency 
characteristics represent a stable basis for construction of an effi cient vowel 
recognizer.  It is known from literature (Fant, 1970; Peterson & Barney, 1952; 
Wakita, 1977) that the spectral properties of male, females and child speech 
differ in a number of ways, especially in terms of average vocal tract lengths 
(VTL). The VTL of females is about 10% shorter compared to the VTL of 
males. The VTL of children is even shorter (up to 10%) than that of females.

The accents of British, American and Australian speakers can be classifi ed by 
formant features such as formant frequency, bandwidth, and intensity (Yan 
& Vaseghi, 2003).  Other formant features like amplitude and 2-dimensional 
Euclidean distance were also used for vowel classifi cation (Carlson & Glass, 
1992; Vuckovic & Stankovic, 2001).  Formant characteristics of vowels 
produced by mandarin esophageal speakers were studied using the fi rst 
three formant values of F1, F2, and F3 using Praat’s linear predictive coding 
algorithm (Liu & Ng, 2009).

According to Hillenbrand and Houde (2003), the majority of vowel 
identifi cation models assumed that the recognition process is driven by either 
the formant frequency pattern of the vowel (with or without a normalizing 
factor of fundamental frequency) or by the gross shape of the smoothed 
spectral envelope (Hillenbrand & Houde, 2003).  Several other researchers 
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have made excellent reviews of this study. The main idea underlying formant 
representations is the notion that the recognition of vowel identity is controlled 
not by the detailed shape of the spectrum but rather by the distribution of 
formant frequencies, mainly the three lowest formants of 1st Formant (F1), 2nd 
Formant (F2) and 3rd Formant (F3). 

In Malaysia, research on speech recognition began in the late 1990s and 
has grown aggressively. Lim, Woo, Loh and Osman (2000) conducted an 
experiment on 200 vowel signals using the wavelet de-noising approach and 
the Probabilistic Neural Network Model.  Salam, Mohamad and Salleh (2001) 
investigated Malay plosive sounds and Malay numbers while Tan and Jantan 
(2004) investigated Neural Networks to recognized SM digits. Another study 
includes Ting and Mark (2008) who converted Linear Predictive Coding 
(LPC) coeffi cients into cepstral coeffi cients before being fed into a Multi-
layer Perceptron with one hidden layer for training and testing classifi cations.  
Yusof, Yaacob and Murugesa (2008) also studied formant difference features 
in classifying vowels.        

Table 1 summarizes some important aspects of vowel recognition from 
recent literature. It addresses the issues of speaker type, frame analysis and 
accuracy of the recognition capability. This table shows that most of the recent 
researchers studied both dependent and independent speaker systems using 
mostly multi-frame analysis. The accuracy obtained was between 89% and 
100% for the dependent speaker system and between 70% and 94% for the 
independent speaker and multi-framed analysis systems.  
 

Table 1 

Recent Related Literature on Vowel Recognition

Reference Speaker Type Frame Analysis Accuracy %

Mohammad Nazari et al., 2008 (Nazari, 
Sayadiyan & Valiollahzadeh, 2008)

Independent Multi Frame 93.9%

Ting & Mark, 2008 (Ting & Mark, 2008) Dependent Multi Frame 98-100%

Carvalho & Ferreira, 2008 (Carvalho & 
Ferreira, 2008)

Dependent Multi Frame 89-96%

Bresolin et.al, 2007 (Bresolin, Neto & 
Alsina, 2007)

Independent / 
Dependent

Multi Frame 91.1% / 98.1%

Muralishankar & O’Shaughnessy, 2005 
(Muralishankar & O’ Shaughnessy, 2005)
Speech, and Signal Processing (ICASSP 05)

Independent Multi Frame 71.7%

(continued)
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Reference Speaker Type Frame Analysis Accuracy %
Merkx & Miles, 2005 (Merkx & Miles, 
2005)

Independent Multi Frame 91.5%

Ting & Yunus, 2004 (Ting & Yunus, 2004) Independent Single Frame 76.3%

From this list, the only literature that uses the independent and single-framed 
analysis system obtained an accuracy of only 76.3%.  

In terms of robustness analysis, Luo, Soon and Yeo (2008) proposed a method 
to sharpen the power spectrum of the signal in both the frequency domain and 
the time domain by integrating simultaneous masking, forward masking and 
temporal integration effects into traditional mel-frequency cepstral coeffi cients 
(MFCC) that feature extraction algorithm. Yeganeh, Ahadi and Ziaei (2008) 
propose a set of noise-robust features based on the conventional MFCC feature 
extraction method which is based on a weight parameter.  Rajnoha and Pollak 
(2007) use white noise and car noise to study the classifi cation robustness of 
MFCC and Perceptual Linear Predictive (PLP) features.  Gajic and Paliwal 
(2006) investigated how dominant-frequency information can be used in 
speech feature extraction to increase the robustness of automatic speech 
recognition against additive background noise. In Malaysia, Al-Haddad, 
Samad, Hussain, Ishak, and Noor, (2009), proposed an algorithm for noise 
cancellation by using Recursive Least Square (RLS) and pattern recognition 
by using a fusion method of Dynamic Time Warping (DTW) and the Hidden 
Markov Model (HMM). He collected Malay speech data from 60 speakers.

VOWEL RECOGNITION PROCESS

The Vowel Recognition process starts with the Data Acquisition process 
followed by fi ltering, pre-processing, frame selection, auto-regressive 
modelling, and feature extraction process depicted as in Figure 1. The data 
collection process was taken from 80 individuals consisting of both male 
and famale students and staff from Universiti Malaysia Perlis (UniMAP) 
and Universiti Utara Malaysia (UUM). As Malay is the offi cial language for 
Malaysians of diverse ethnicities, the speakers were selected from among the 
three main races of Malays, Chinese and Indians.  

The recordings were done using a conventional microphone and a laptop 
computer with a sampling frequency of 8000Hz. The words “ka”, “ke”, “ki”, 
“ko”, “ku” and “kə” were used to represent the six vowels of /a/, /e/, /i/, /o/, 
/u/ and /ə/ because vowels have more energy than consonants. Different 
combinations of consonants and vowels were tested but they yielded similar 
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results in terms of the portion of vowels obtained.  In this study, a sampling 
frequency of 8 kHz was used to sample the vowels and the recordings were 
done 2 to 4 times per speaker depending on situation convenience.  The details 
of the data collection are listed in Table 2.

   Figure 1. Vowel recognition process.

  
Table 2

Data Collection Detail

Information 1st Data Collection 2nd Data Collection

Sources 40 UniMAP students 20 UUM staff and 40 students
Recorded Utterances 640 728
Sampling Frequency 8000 Hz 8000 Hz
Vowels uttered /a/, /e/, /i/, /o/, /u/, /ə/ /a/, /e/, /i/, /o/, /u/, /ə/

F1BW Feature Extraction Method

Bandwidth is the difference between the upper and lower cut-off frequencies 
of a signal spectrum and is measured in Hertz (Nazari et al. 2008). In signal 
processing, the bandwidth is the frequency at which the closed-loop system 
gain drops 3 decibels (dB) below peak fom equation (1) (Carlson & Class, 
1992) as follows:  
    
             (1)

peakBW KK
2

1
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Here, the KBW is the resultant -3dB value that denotes the intensity value at a 
formant frequency, Kpeak. Following these, two features were extracted from 
each vowel where the fi rst feature was extracted based on the energy of the fi rst 
formant (F1) peak (denoted by F1BW1) and the second feature was extracted 
from the valley between the fi rst (F1) and the second formant (F2) peaks, and 
is denoted by F1BW2.  

The steps of computing F1BW1 are as follows:

i) Locate 1st formant peak (F1pk) and its intensity (F1int).
ii) Calculate the -3dB intensity (BW1int) from (1).
iii) Determine the frequency range (Flow1 < freq < Fhigh1) of F1pk where 

spectrum intensity is greater than intensity of BW1int.
iv) Calculate mean intensity of F1BW1 for each vowel using (2) where SI is 

the spectrum intensity.

                 (2)

Meanwhile, the steps for computing F1BW2 are  

i) Locate 1st formant peak (F1pk), 2
nd formant peak (F2pk) and the valley or 

lowest intensity between them (FVlow).  Their intensities are F1int, F2int 
and FVint respectively.

ii) Calculate -3dB intensity (BW2int) value based on difference between 
F2int and Vint which is calculated based on:

    
               

             (3)

iii) Determine the frequency range (Flow2 < freq < Fhigh2) of FVint where 
spectrum intensity is lower than intensity of BW2int.

iv) Calculate mean intensity of F1BW2 for each vowel using (3) where SI is 
the spectrum intensity.

               (3)

In equation (3), SI(f) is the spectrum intensity at frequency location f for each 
vowel of /a/, /e/, /i/, /o/, /u/, /ə/ and N is the number of spectrum intensity 
value within the frequency sub-band of BW2 for each vowel. Following these 
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processes, the six Malay vowels represent 12 features of F1BW1a, F1BW2a, 
F1BW1e, F1BW2e, F1BW1i, F1BW2i, F1BW1o, F1BW2o, F1BW1u, F1BW2u, 
F1BW1ə and F1BW2ə. 

Signal Classifi cation Techniques

In this study, two non-linear classifi ers, namely, K-Nearest Neighbours (K-
NN) and Multinominal Logistic Regression (MLR), and a linear classifi er 
based on Linear Discriminant Analysis (LDA) are used to classify all the 
collected features. These classifi ers were chosen based on their popularities in 
speech recognition researches. All the computational works were conducted 
using MATLAB built-in functions for all the three classifi ers.

F1BW Feature Analysis

Equation (1) gives twelve ranges of frequency to extract intensity features from 
the vocal tract model. Features of each of the vowels are extracted from two 
frequency bands which is the fi rst formant peak band, and the frequency band 
between the fi rst formant and second formant peak. The ranges of frequency 
band that are used to extract the mean intensity values from each vowel are 
obtained directly from the spectrum envelope of the vowels.  These frequency 
bands are used to obtain the F1BW features.  

To determine if the features of the proposed feature extraction methods 
signifi cantly affect vowel classifi cation, an ANOVA analysis was done for all 
the features using a statistical application called SPSS. Results of this analysis 
as tabulated in Table 3 show that there are signifi cant main effects from each 
individual feature of the proposed F1BW method at α=0.01 (p-value < 0.001). 
These results indicate that all the represented vowels, i.e. “ka”, “ke”, “ki”, 
“ko”, “ku” and “kə”, are signifi cantly different in each of these tested F1BW 
feature extraction. Therefore, the proposed extraction approach is able to show 
the differences of Malay spoken vowels.

Table 3

ANOVA Analysis of F1BW Features

Main Effect df1 df2 F Sig. (p)

F1BW1 5 1310 516.42 <0.001

F1BW2 5 1310 372.91 <0.001
(continued)
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Main Effect df1 df2 F Sig. (p)

F1BW3 5 1310 600.85 <0.001

F1BW4 5 1310 447.16 <0.001

F1BW5 5 1310 811.72 <0.001

F1BW6 5 1310 461.03 <0.001

F1BW7 5 1310 144.15 <0.001

F1BW8 5 1310 388.92 <0.001

F1BW9 5 1310 549.96 <0.001

F1BW10 5 1310 160.41 <0.001

F1BW11 5 1310 772.82 <0.001

F1BW12 5 1310 478.67 <0.001

NOISE ROBUST ANALYSIS

A robust analysis was done to study the robustness of the proposed features 
of F1BW and to compare the results with the common single frame Mel-
Frequency Cepstrum Coeffi cients (MFCC). White Gaussian noise was used 
to proof robustness. Seven signal-to-noise (SNR) levels of 10dB, 15dB, 
20dB, 25dB, 30dB, 35dB and 40dB were used in this experiment in addition 
to the clean signal. These experiments were done on K-NN, MLR and LDA 
classifi ers. For simplifying discussion purposes, the abbreviation “_w” refers 
to the classifi er model which was trained with noise and “_wo” refers to the 
classifi er model which was trained without noise.  The analysis was based 
on cross validation testing where the original data is split randomly into 70% 
training set and 30% testing set (unseen input).

Two testing procedures were developed to evaluate vowel recognition 
performance under different training conditions.  The fi rst procedure trained 
70% of all input features under different SNR including input of clean signals.  
This model was used to test the remaining 30% of the different SNR inputs 
and to measure robustness of the model when training with the features from 
noisy signals (see Figure 2). The second procedure trained 70% of all input 
features under clean input signals only.  This model is then used to test the 
remaining 30% of the different SNR inputs including the clean features. This 
training method will study how robust the model is when training with the 
features from clean signals only (see Figure 3). 
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Figure 2. Robustness analysis methodology (training together with noisy 
data).

  Figure 3. Robustness analysis methodology (training with only raw data).

F1BW Features Analysis

In Figure 4, the blue line represents the overall vowel classifi cation rate 
of F1BW features trained with noise and tested with different SNR level 
data.  The red line represents the overall vowel classifi cation rate of F1BW 
features trained with data from raw signals only and tested with different SNR 
level data. For the overall vowel classifi cation trained with only clean, the 
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classifi cation rate increases as SNR increases as shown by the plotted red 
lines in sub-Fig. 4.1.  The optimum overall vowel classifi cation rates obtained 
for MLR, K-NN and LDA are 93.9%, 92.5% and 90.2% respectively.  For the 
overall vowel classifi cation trained with noise, the MLR and K-NN overall 
vowel classifi cation rates were better for SNR of 40dB and lower compared to 
the features trained with only clean data.  As for LDA, for the overall vowel 
classifi cation trained with noise, the optimum overall vowel classifi cation 
rates were obtained at SNR of 30dB which is better compared to both MLR 
and K-NN.  With regard to all classifi ers, for the classifi cation rate results 
trained with noisy data, “over trained” behavior was observed.  

Figure 4. Overall F1BW classifi cation rate by different SNR levels a) MLR 
analysis, b) KNN analysis, c) LDA analysis, d) Comparison analysis.
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In Figure 4, the performance of each of the classifi ers is compared.  The thick 
colored line represents a classifi cation model trained with noisy data and the 
thin colored line represents a classifi cation model trained with only clean data.  
In terms of the classifi cation rate trained with noisy data, the LDA classifi er 
performs the best among the three classifi ers because as SNR increases, the 
classifi cation rate approaches the optimum faster at less than 30dB SNR which 
was better than MLR and K-NN, suggesting it to be the most noise robust.  
Furthermore, the LDA shows less “over trained” effects when compared to 
K-NN and MLR.

Figure  5. Overall F1BW classifi cation rate of vowels based on classifi ers 
and training conditions using clean training data.

Figure 5 shows the detailed overall classifi cation result of F1BW features 
classifi ed with MLR, LDA and KNN classifi ers trained using only clean data.  
In Figure 2 and Table 1, the abbreviation “_w_noise” means that the clean 
trained classifi er model was tested with noisy unseen data “_wo_noise” which 
means that the clean trained classifi er model was tested with raw unseen data.  
Based on the overall vowel classifi cation, the MLR classifi er gave the best 
result of 93.8% when tested with clean data with the vowel /i/ giving the best 
classifi cation accuracy as depicted in Table 4.  
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Table  4

Overall Classifi cation Rate of Vowels on F1BW features using Clean Training 
Data (Tabulated Results)

Classifi ers Testing Data a e i o u ə Overall 
Vowel CR%

KNN With noise 63.7 43.5 72.6 79.4 49.1 29.0 57.1
KNN Without noise 95.9 88.9 99.0 84.8 93.5 93.7 92.5
LDA With noise 97.5 87.3 93.9 85.2 80.3 66.3 85.7
LDA Without noise 92.8 91.1 90.7 81.5 91.6 94.8 90.2
MLR With noise 68.2 90.7 74.1 95.5 82.1 45.6 77.0
MLR Without noise 96.3 91.5 98.0 89.3 93.6 94.1 93.8

The MLR tested data with noise gives only 77.0% with /o/ giving the highest 
classifi cation rate. This difference in vowel recognition performance between 
the classifi er model trained with and without noise may be caused by how 
well the classifi er model adapts to the noisy data. For the model which is 
trained with noisy data, LDA obtained the highest overall classifi cation rate of 
85.7% followed by MLR with 77.0% and K-NN with a low classifi cation rate 
of only 57.1%.  This makes LDA a good choice to classify vowels in a noisy 
environment compared to MLR and K-NN, especially where SNR is above 
20dB.

CONCLUSION

This paper presents a noise robustness study on a new improved vowel 
feature extraction method of First Formant Bandwidth based on formant and 
spectrum envelope called First Formant Bandwidth (F1BW). The obtained 
results provide evidence that LDA is the best in overall vowel classifi cation 
compared to MLR and K-NN in terms of robustness capability with less 
“over-trained” effects.  It is also much better than the other two classifi ers in 
the robustness category, especially for SNR above 20dB.    
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