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Abstract-Support Vector Machines are considered to be 

excellent patterns classification techniques. The process of 

classifying a pattern with high classification accuracy counts 

mainly on tuning Support Vector Machine parameters which 

are the generalization error parameter and the kernel function 

parameter. Tuning these parameters is a complex process and 

may be done experimentally through time consuming human 

experience. To overcome this difficulty, an approach such as 

Ant Colony Optimization can tune Support Vector Machine 

parameters. Ant Colony Optimization originally deals with 

discrete optimization problems. Hence, in applying Ant Colony 

Optimization for optimizing Support Vector Machine 

parameters, which are continuous parameters, there is a need 

to discretize the continuous value into a discrete value. This 

discretization process results in loss of some information and, 

hence, affects the classification accuracy and seek time. This 

study proposes an algorithm to optimize Support Vector 

Machine parameters using continuous Ant Colony 

Optimization without the need to discretize continuous values 

for Support Vector Machine parameters. Seven datasets from 

UCI were used to evaluate the performance of the proposed 

hybrid algorithm. The proposed algorithm demonstrates the 

credibility in terms of classification accuracy when compared 

to grid search techniques. Experimental results of the proposed 

algorithm also show promising performance in terms of 

computational speed. 
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I. INTRODUCTION 

Many decision-making processes are examples of 

classification difficulty that can be simply transformed into 

classification difficulty, e.g., prognosis processes, diagnosis 

processes, and pattern recognition [1]. The majority of 

recent researches center on enhancing classification 

accuracy by utilizing statistical approaches [2]. Pattern 

classification aims to classify input features into 

predetermined groups consisting of classes of patterns [3]. 

The Support Vector Machine (SVM) is a present day pattern 
classification approach. SVM originates from statistical 

learning approaches that utilize the concept of structural risk 

minimization [4] and [5]. This concept plans the data into 

high dimensional domains via a kernel function by using a 

kernel trick [4] and [6]. Polynomial, Radial Base Function 

(RBF), and sigmoid kernel function are three examples of 

kernel functions. RBF is the more popular kernel function 

because of its capability to manage high dimensional data 

[7], good performance in major cases [8] and it only needs 

one parameter, kernel parameter gamma (γ). Two problems 

in SVM classifier that influence the classification accuracy 
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are: tuning SVM parameters, and selecting an optimal 

feature subset to be given to the SVM classifier. These 
problems affect each other [9]. This study focuses on tuning 

SVM parameters, also known as model selection. 

There is no regular methodology that accepts advance 

approximation of optimal values for SVM parameters. In 

present classification work, obtaining good values for these 

parameters is not easy. It requires either an exhaustive 

search through the space of hyper variables or an 

optimization approach that searches simply a bounded sub 

group of the potential values. Currently, almost all SVM 

research chooses these variables experimentally via 

searching a bounded number of values and preserving those 
that supply the lowest amount of mistakes. This approach 

needs a grid search through the area of variable values and 

requires identifying the range of executable solution and 

best sampling step. This is a difficult task because best 

sampling steps change from kernel to kernel and grid ranges 

may not be simple to identify without advanced knowledge 

of the problem. Furthermore, when a hyper parameter 

exceeds two of the manual prototypes chosen, it may 

become intractable [10]. Approaches such as trial and error, 

grid search, cross validation, generalization error estimation 

and gradient descent, can be used to find optimal parameter 

values for SVM. Evolutionary approaches such as Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO) and 

Ant Colony Optimization (ACO) may also be utilized [11]. 

ACO algorithms is applied to tune SVM parameters. 

These algorithms work through repetitive creation 

procedures where each procedure directs a dependent 

heuristic by intelligently mixing various ideas for exploring 

and exploiting the seek space. The learning fashions are 

utilized to construct information to efficiently obtain near 

optimal solutions. Solutions that are built using ACO seek to 

find the shortest way to the origin of food via pheromones 

[11]-[13]. ACO algorithms deal with discrete and 
continuous variables. However, ACO that deals with 

continuous variables is considered as a modern research 

field [14]-[17]. 

Ant Colony Optimization for continuous variables 

(ACO
R

) uses Probability Density Function (PDF) instead of 

Discrete Probability Distribution, to determine the direction 

that an ant should follow; Gaussian function, a PDF is one 

of the most popular as it uses a very simple manner for data 

sampling. For each built solution, a density function is 

generated from a set of solutions that the technique 

preserves at all times. In order to maintain this set, the set is 

filled with nonsystematic solutions at the beginning. This is 
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similar to initializing pheromone value in a discrete ACO 

approach. Then, at each loop, the group of created solutions 

is appended to the set and the equivalent number of worst 

solutions is deleted from the set. This work is similar to 

pheromone modification in discrete ACO. The goal is to 

influence the searching procedure to gain the best solution. 

Pheromone information is kept in a table when ACO for 

discrete combinatorial optimization is used. During each 

loop, when selecting a component to be appended to the 

current partial solution, an ant utilizes part of the values 

from that table as a discrete probability distribution. In 
contrast to the situation of continuous optimization, the 

selection that the ant makes is not limited to a finite group. 

Therefore, it is difficult to express the pheromone in the 

table structure. Instead of using a table, ACOR uses solution 

archive to preserve the route for a number of solutions. 

Solution archive contains values of solution variables and 

objective functions. These values are then used to 

dynamically create PDF [16] and [17]. 

In this study, ACOR is used to solve the SVM model 

selection problem. The rest of the paper is organized as 
follows. Section II reviews several literatures on tuning 

SVM parameters and Section III describes the proposed 

algorithm. Section IV presents the experimental results, and 

concluding remarks and future works are presented in 

Section V. 

 

II. TUNING SUPPORT VECTOR MACHINE 

PARAMETER 

Imbault & Lebart [18] suggested the use of global 

minimization approaches, which are GA and SA to solve 

model selection problems. They measured GA and SA with 

modified cooling approaches to automatically select the 
value at each step. Their experiments show that using a 

global minimization approach guarantees putting them in a 

good area, thereby preventing very large misclassification 

ratios. Also in their experiments, they saw that GA tends to 

be faster, SA needs few variables’ setting while GA requires 

more. The primary disadvantage of these approaches is their 

calculation time. Frohlich & Zell [19] proposed the use of an 

online Gaussian Process (GP) from the locations in 

parameter space that have been visited. From their 

experiments, they found that online GP can be applied at a 

cheaper cost. Recent locations in parameter space are 
sampled based on the predicted enhancement condition. 

Adankan, Cheriet, & Ayat [20] suggested using a fast 

enhanced method for tuning SVM parameters based on an 

approximation of the gradient of the empirical error along 

with incremental learning, which reduces the resources 

required both in terms of processing time and of storage 

space. They tested their method on many benchmark data 

which produced promising results confirming their 

approach. The use of GA to optimize C and band width 

kernel function variable σ of the SVM was suggested by 

Abbas & Arif [12]. In their study, they proposed seven 

support vector machines, one for each day of the week, 
trained on previous data which was then utilized for the 

predication of daily peak load long range demand. From 

their results they concluded that their work gave outcomes 

better than the best paper of the competition. Dong, Xia, Tu, 

& Xing [21] proposed the cost variable and kernel variable  

expression as a two level optimization problem, where the 

values of variables change continuously and thus 

optimization approaches can be implemented to choose 

optimal variables. These variables can be calculated through 

cross-validation. To obtain optimal values, the variables are 

tested continuously instead of utilizing a discrete approach. 

Their prototype involves two phases. First, an SVM 

classifier built on the foundation of training data. Secondly, 

GA is used to seek optimal values. From their results they 

concluded that their proposed method often produces better 

results compared with pre-selected cost methods. Simple 
pre-selected cost methods work well on some datasets. 

Zhang [22] suggested using an automatic and successful 

model selection approach. His work built on evolutionary 

computation approaches and utilized recollection, accuracy 

and mistake ratio as optimization goals. The concept of 

constructing a kernel prototype is used which is then 

modified to the data group with the help of evolutionary 

computation approaches. The modification procedure is 

directed by the feedback information obtained from SVM 

execution. Both GA and PSO are used as evolutionary 

computation approaches to resolve optimization difficulty 
that occurs due to their robustness and global seeking 

capability. Saini, Aggarwal & Kumar [13] suggested using 

GA to optimize SVM variables. The regularization 

parameter C and kernel parameters are dynamically 

optimized through GA. In their work they used unconnected 

time strings for each worked trading interval instead of 

utilizing single time strings to model each day’s price 

profile. From their experiments they concluded that their 

model supplies better predicting with sensible levels of 

accuracy and stability. A grid-based ACO technique was 

introduced by Zhang, Chen, Zhang, & He [23] to select 
variables C and RBF kernel σ automatically for SVM 

instead of choosing variables unsystematically through 

human skill to minimize generalization mistakes and 

generalization execution which may be enhanced 

concurrently. Their work provides high accuracy and less 

calculation time compared with other methods like grid 

algorithm and cross validation approach. RBF kernel is 

utilized to enhance the accuracy of SVM. However, one 

dataset is used to evaluate the performance of the proposed 

technique. ACO was also used by Fang & Bai [24] to 

optimize both SVM parameters, C and σ kernel function 

parameters in continuous fields. Both parameters C and σ 
are divided into a number of sub intervals. In each sub 

interval, one point is chosen unsystematically to be the 

location of artificial ants. Before starting each loop, advance 

knowledge and heuristic information are modified. In every 

loop, the transition probability of each ant is predetermined. 

The ant will move to the next interval if the state transition 

rule is met, otherwise, the ant will search for optimal 

variables within local intervals. Their results showed a very 

promising hybrid SVM model for forecasting share price in 

terms of accuracy and generalization ability. Lu, Zhou, He, 

& Liu [27] proposed using PSO for SVM parameter 
optimization. PSO is very suitable for global optimization. 

They considered these parameters as particles and PSO is 

applied to gain optimal values for these parameters. Their 

work shows that the accuracy and efficiency are enhanced. 

 

 

- 165 -



 
 

III. THE PROPOSED ALGORITHM  

This study constructs ACOR to optimize SVM classifier 

parameters. An ant’s solution is used to represent a 

combination of the classifier parameters, C and 𝛾, based on 

the Radial Basis Function (RBF) kernel of the SVM 

classifier. The classification accuracy of the built SVM 

classifier is utilized to direct the updating of solution 

archives. Based on the solution archive, the transition 

probability is computed to choose a solution path for an ant. 

In implementing the proposed scheme, this study utilizes the 
RBF kernel function for SVM classifier because of its 

capability to manage high dimensional data [7], good 

performance in major cases [8], and it only needs to use one 

parameter: kernel parameter gamma (𝛾 ) [9]. The overall 

process to hybridize ACOR and SVM (ACOR-SVM) is as 

depicted in Fig. 1. 

The main steps are (1) selecting feature subset (2) 

initializing solution archive and algorithm parameters, (3) 

solution construction for C and 𝛾 , (4) establishing SVM 

classifier model, and (5) updating solution archives. In the 
features subset selection step, F-score is used as a 

measurement to determine the importance of features. This 

measurement is used to judge the favoritism capability of a 

feature. High value of F-score indicates the most favorable 

feature. The calculation of F-score is as follows [28]: 

𝐹 − 𝑆𝑐𝑜𝑟𝑒𝑖 =
  𝑥 𝑖
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where 𝑣 is the number of categories of target variable, 𝑁𝑓  is 

the number of features, 𝑁𝑖
 𝑐 

 is the number of samples of 

the 𝑖th feature with categorical value c, c ∈ {1, 2, …, 𝑣}, 

𝑥 𝑖 ,𝑗
 𝑐 

 is the jth training sample for the 𝑖 th feature with 

categorical value c, j ∈ {1, 2, …, 𝑁𝑖
 𝑐 

}, 𝑥 𝑖  is the 𝑖th feature, 

and 𝑥 𝑖
 𝑐 

 is the 𝑖th feature with categorical value c. 

After computing the F-score for each feature in the 
dataset, the average F-score is computed and is considered 

as the threshold for choosing features in the feature subset. 

Features with F-scores equal to or greater to the threshold 

are chosen and put in the feature subset and this subset is 

presented to the SVM. 

In the initialization step, for each ant establishing a 

solution path for parameter C and parameter γ, two solution 

archives are needed to design the transition probabilities for 

C and for γ. The range value for C and γ are sampling 

according to random parameter k which is the size of 

solutions archives. The weight vector, w is then computed 
for each sample for C and γ as follows: 

𝑤𝑙 =
1

𝑞𝑘 2𝜋
𝑒
−

(𝑙−1)2

2𝑞2𝑘2          (2) 

where k is the size of solution archive, and q is the 

algorithm’s parameter to control diversification of search 

process. These values are stored in solution archives. 
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Once this step is completed, the sampling procedure is made 

through two phases. Phase one involves choosing one of the 

weight vectors as follows: 

𝑝𝑙 =
𝑤 𝑙

 𝑤𝑟
𝑘
𝑟=1

           (3) 

The Second phase involves sampling selecting w via a 

random number generator that is able to generate random 

numbers according to a parameterized normal distribution. 

This initializing constructs the transition probabilities. Like 

the solution archives, some important system parameters 

must be initialized as follows: the number of ants = 2, q = 

0.1, and number of runs = 10, C range is ϵ [2-1, 212] and γ ϵ 

[2-12, 22]. 
The third step relates to solution construction where 

each ant builds its own solution. This solution is a 

combination of C and 𝛾. In order to construct the solution, 

two transition probabilities with various solutions archives 

are needed. These transitions are computed according to Eq. 

2 and Eq. 3. 

A classifier model is constructed in step four. Solution 

is generated by each ant and is evaluated based on the 

classification accuracy obtained by the SVM model utilizing 

k-fold Cross Validation (CV) with the training set. In k-fold 

CV, the training data group is portioned into k subgroups, 
and the holdout approach is repeated k times. One of the k 

sub-groups is utilized as the test set and the remaining k-1 

sub-groups are combined to construct the training group. 

The average mistakes along with all the k trails are 

calculated. CV accuracy is calculated as follows: 

CVaccuracy =
 test _accuracyi

k
, 𝑖 = 1, 2,… ,𝑘        (4) 

Test_accuracy evaluates the percentage of samples that 

are classified in the correct way to determine k-folds and is 

computed as follows: 

Test Accuracy =
no .of  correctly  predicted  data

total  testing  data
 ∗  100%        (5) 

The benefits of using CV are (1) each of the test groups 
are independent and (2) the dependent outcomes can be 

enhanced [28]. 

The final step is related to updating solution archives. 

This modification is completed by appending the newly 

generated group solutions that gave the best classification 

accuracy to solution archive and then deleting the exact 

number of worst solutions. This ensures the size of solution 

archive does not change. This procedure guarantees that 

only good solutions are stored in the archive, and it will 

efficiently influence the ants in the seek process. 

 

IV. EXPERIMENTAL RESULTS 

Seven datasets were used in evaluating the proposed 

ACOR-SVM algorithm. The datasets are Australian, Pima-

Indian Diabetes, Heart, Ionosphere, German, Sonar, Splice 

datasets, available from UCI Repository of Machine 

Learning Databases [29]. The summary of these datasets is 

presented in Table I. 

 
TABLE I SUMMARIZATION OF UCI’S DATASETS REPOSITORY 

Dataset No. of Instances No. of Features 

Australian 690 14 

Pima-Indian Diabetes 760 8 

Heart 270 13 

Ionosphere 351 34 

German 1000 24 

Sonar 208 60 

Splice 1000 60 

All input variables were scaled during the data pre-

processing phase to avoid features with higher numerical 

ranges from dominating those in lower numerical ranges and 

to minimize complexity of computation. The following 

formula was used to linearly scale each feature to [0, 1] 

range: 

𝑥 =
𝑥−𝑚𝑖𝑛 𝑖

𝑚𝑎𝑥 𝑖−𝑚𝑖𝑛 𝑖
           (6) 

where x is the original value, 𝑥  is the scaled value, and 

𝑚𝑎𝑥𝑖  and 𝑚𝑖𝑛𝑖  are the maximum and minimum values of 
feature i, respectively [28]. 

Each dataset was randomly re-arranged and divided 

into ten approximately equal sized subsets, one subset is a 

testing set and the remaining are training sets and repeated 

ten times. The performance of the proposed ACOR-SVM 

was compared with the grid search approach [28] and [30] 

which was considered as the basic approach to optimize 

SVM parameters. 

C programming language was used to implement 

ACOR-SVM. Experiments were performed on an Intel(R) 

Core (TM) 2 Duo CPU T5750, running at 2.00 GHZ with 
4.00 GB RAM and 32-bit operating system. 

Table II shows the optimal values for C and γ that were 

produced by the proposed algorithm and these values were 

used to produce the classification accuracy depicted in Table 

III. The average number of selected features and time to 

classify pattern of the proposed ACOR-SVM algorithm 

together with grid search results [28] and [30]. The proposed 

approach classifies patterns with higher accuracy compared 

to grid search for all seven datasets. The average percentage 

increased in accuracy for all datasets is approximately 7.85. 

This is because the integration of ACOR with SVM, ACOR 
as an optimization approach improves SVM classification 

accuracy through optimizing its parameters which are the 

regularization parameter C and gamma (γ) of RBF kernel 

function. 

 
TABLE II  OPTIMAL VALUE FOR C AND γ 

Dataset C γ 

Australian 473.39 0.63 

Pima-Indian Diabetes 2464.50 2.42 

Heart 372.50 0.36 

Ionosphere 633.44 0.60 

German 109.50 0.11 

Sonar 291.27 0.23 

Splice 244.28 0.19 

 

For each iteration, ACOR generates SVM parameters’ 

values and introduces it to SVM and SVM uses these values 
to classify patterns. The proposed algorithm stops if the 

classification accuracy or maximum number of iteration 

satisfies user specification, otherwise, ACOR searches for 

other optimal values for SVM parameters to work with. 
 

Table IV shows the best features chosen by filter F-

score technique to generate features subsets to be introduced 

to SVM. All features displayed in this table are important 

based on their threshold values. The reason for using filter 

F-score technique to select features subset was because RBF 

would fail for large numbers of features [31]. Table IV 

shows that the biggest reduction in number of features is 

71% for the Australian dataset while the smallest feature 

reduction is 47% for the Ionosphere dataset. 
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TABLE III EXPEREMENT RESULTS OF THE PROPSED ACOR-SVM AND GRID SEARCH

 

 

 

 

 

 

 

 

 

 

 
TABLE IV FREQUENSIES OF SELECTED FEATURES 

Data 

Australian 

Feature# 5 7 8 9 

Frequencies 10 2 10 10 

Pima-Indian Diabetes 

Feature# 2 5 6 8 

Frequencies 10 1 3 9 

Heart 

Feature# 3 8 9 10 12 13 

Frequencies 7 10 10 10 10 10 

Ionosphere 

Feature# 3 4 5 6 7 8 9 12 14 16 21 22 23 24 25 29 31 33 

Frequencies 10 4 10 3 10 5 8 5 4 3 2 1 1 1 1 7 7 4 

German 

Feature# 1 2 3 5 6 7 12 

Frequencies 10 10 10 9 9 2 6 

Sonar 

Feature# 1 2 3 4 5 8 9 10 11 12 13 20 21 22 31 36 43 44 45 46 47 

Frequencies 10 9 7 9 7 3 10 10 10 10 8 1 2 2 1 3 6 8 10 10 10 

Feature# 48 49 50 51 52 54 58 

Frequencies 9 10 5 10 10 7 4 

Splice 

Feature# 15 16 18 19 20 21 22 23 26 29 30 31 32 33 34 45 49 51 54 58 60 

Frequencies 1 5 5 1 5 2 5 2 2 5 5 1 4 5 5 4 1 5 1 1 1 

 

V. CONCLUSIONS AND FUTURE WORKS 

This study investigated a hybrid ACOR and SVM 

technique to obtain optimal model parameters. 
Experimental results on seven public UCI datasets showed 

promising performance in terms of test accuracy and 

training time. Possible extensions can focus on the area 

where ACOR-SVM can simultaneously optimize both 

SVM parameters and features subset using mixed-variable 

ACO (ACOR-MV). Incremental Continuous ACO (IACOR) 

may also be a good alternative for optimizing the classifier 

parameter values. Other kernel parameters besides RBF, 

application to other SVM variants and multiclass data are 

considered possible future work in this area. 

 

ACKNOWLEDGEMENTS 

The authors wish to thank the Ministry of Higher 

Education Malaysia for funding this study under 

Fundamental Research Grant Scheme, S/O code 12377 

and RIMC, Universiti Utara Malaysia, Kedah for the 

administration of this study. 

 

[1] REFERENCES H. Orkcu and H. Bal, “Comparing 

performance of back propagation and genetic algorithms in 
the data classification,” Expert Systems with Applications, 
vol. 38, no. 4, pp. 3703-3709, Apr. 2011. 

[2] V. Tseng and C. Lee, “Effective temporal data 
classification by integrating sequential pattern mining and  
 

 
probabilistic Induction,” Expert Systems with Applications, 
vol. 36, no. 5, pp. 9524-9532, Jul. 2009. 

[3] R. Sivagaminathan and S. Ramakrishnan, “A hybrid 
approach for feature subset selection using neural networks 
and ant colony optimization,” Expert Systems with 

Applications, vol. 33, no. 1, pp. 49-60, Jul. 2007. 
[4] W. Liu and D. Zhang, “Feature subset selection based on 

improved discrete particle swarm and support vector 
machine algorithm,” Information Engineering and 
Computer Science, Wuhan, China, 2009, pp. 586-589. 

[5] H. Zhang and H. Mao, “Feature selection for the stored-
grain insects based on PSO and SVM,” Knowledge 
Discovery and Data Mining, Moscow, Russia, 2009, pp. 
586-589. 

[6] Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao, 
“SBMDS: an interpretable string based malware detection 
system using SVM ensemble with bagging,” Computer 
Virology, vol. 5, no. 4, pp. 283-293, Nov. 2009. 

[7] S. Moustakidis and J. Theocharis, “SVM-FuzCoC: A novel 
SVM-based feature selection method using a fuzzy 
complementary criterion,” Pattern Recognition, 43, no. 11, 
pp. 3712-3729, Nov. 2010. 

[8] H. Zhang, M. Xiang, C. Ma, Q. Huang, W. Li, W. Xie, Y. 
Wei, and Yang, S., “Three-class classification models of 
LogS and LogP derived by using GA-CG-SVM approach,” 
Molecular Diversity, vol. 13, no. 2, pp. 261-268, May 
2009. 

[9] C. Huang and C. Wang, “A GA-based feature selection and 
parameters optimization for support vector machines,” 
Expert Systems with Applications, vol. 31, no. 2, pp. 231-

240, Aug. 2006. 

Dataset Number of 

Features 

ACOR-SVM Grid Search 

Classification 

accuracy (%) 

Average number of 

selected features 

Time 

(sec.) 

Classification 

accuracy (%) 

Australian 14 96.14 3.2 511 84.7 

Pima-Indian Diabetes 8 87.79 2.3 162 77.3 

Heart 13 89.99 5.9 276 83.7 

Ionosphere 34 89.87 8.6 343 89.44 

German 24 94.00 5.6 3718 76 

Sonar 60 90.41 20.2 176 87 

Splice 60 96.22 6.7 792 91.31 

- 168 -



 
 

[10] N. Ayat, M. Cheriet, and C. Suen, C., “Automatic model 
selection for the optimization of SVM kernels,” Pattern 
Recognition, vol. 38, no. 10, pp. 1733-1745, Oct. 2005 

[11] X. Zhang, X. Chen, and Z. He, “An ACO-based algorithm 
for parameter optimization of support vector machines,” 

Expert Systems with Applications, vol. 37, no. 9, pp. 6618-
6628, Sep. 2010. 

[12] S. Abbas and M. Arif, “Electric load forecasting using 
support vector machines optimized by genetic algorithm,” 
INMIC, Islamabad, India, 2006, pp. 395-399. 

[13] L. Saini, S. Aggarwal, and A. Kumar, “Parameter 
optimization using genetic algorithm for support vector 
machine-based price-forecasting model in national 

electricity market,” IET Generation, Transmission & 
Distribution, vol. 4, no. 1, pp. 36-49, 2010. 

[14] K. Socha and C. Blum, ”Ant colony optimization,” in 
Metaheuristic procedures for training neutral networks, vol. 
36, E. Alba and R. Martí, Eds. US : Springer, 2006, pp. 
153-180. 

[15] C. Blum, “Ant colony optimization: introduction and recent 
trends,” Physics of Life Reviews, vol. 2, no. 4, pp. 353-373, 

Dec. 2005. 
[16] K. Socha and M. Dorigo, “Ant colony optimization for 

continuous domain,” European Journal of Operational 
Research, vol. 185, no. 3, pp. 1155-1173, Mar. 2008. 

[17] K. Socha, “Ant colony optimization for continuous and 
mixed-variables domain,” Ph.D. dissertation, Universite’ 
Libre de Bruxelles, 2008. 

[18] F. Imbault and K. Lebart, “A stochastic optimization 

approach for parameter tuning of support vector machines,” 
Proc. of the IEEE International Conference on Pattern 
Recognition (ICPR’04), 2004, pp. 597-600, Washington, 
USA. 

[19] H. Frohlich and A. Zell A., “Efficient parameter selection 
for support vector machines in classification and regression 
via model-based optimization,” Proc. of the IEEE 
International Joint Conference on Neural Network 
(IJCNN’05), 2005, pp. 1431-1436 , Montreal, Canada, pp. 

597-60. 
[20] M. Adankan, M., Cheriet, and N. Ayat, “Optimizing 

resources in model selection for support vector machines,” 
Proc. of the IEEE International Joint Conference (IJCNN 
‘05), 2005, pp. 925-930, Montreal, Canada. 

[21] Y. Dong, Z. Xia, M. Tu, and G. Xing, “An optimization 
method for selecting parameters in support vector 
machines,” IEEE International Conference on Machine 

Learning and Applications (ICMLA’06) 2007, pp. 1-6, OH, 
USA. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

[22] Y. Zhang, “Evolutionary computation based automatic 
SVM model selection,” IEEE International Conference on 
Natural Computation (ICNC’08) 2008, pp. 66-70, Jinan, 
China. 

[23] X. Zhang, X. Chen, Z. Zhang, and Z. He, “A grid–based 

ACO algorithm for parameters optimization in support 
vector machines,” IEEE International conference on 
Granular Computing (GrC 2008), 2008, pp. 805-808, 
Hangzhou, China. 

[24] X. Fang and T. Bai, “Share price prediction using wavelet 
transform and ant colony algorithm for parameters 
optimization in SVM,” Congr. of the IEEE International 
Congress on Intelligent Systems (GCIS ’09), 2009, pp. 

288-292, Xiamen, China. 
[25] Y. Dong, Z. Xia, M. Tu, and G. Xing, “An optimization 

method for selecting parameters in support vector 
machines,” IEEE International Conference on Machine 
Learning and Applications (ICMLA 2007), 2007, pp. 1-6. 
Cincinnati, OH. 

[26] H. Frohlich and A. Zell, “Efficient parameter selection for 
support vector machines in classification and regression via 

model-based optimization,” Proc. of the IEEE 
International Joint Conference on Neural Networks 
(IJCNN ’05), 2005, pp. 1431-1436, Montreal, Canada. 

[27] N. Lu, J. Zhou, Y. He, and Y. Liu, “Particle swarm 
optimization for support vector machine model,” IEEE 
International Conference on Intelligent Computation 
Technology and Automation (ICICTA 2009), 2009, pp. 
283-286, Changsha, China. 

[28] C. Huang, “ACO-based hybrid classification system with 
feature subset selection and model parameters 
optimization,” Neurocomputing, vol. 73, no. 1-3, pp. 438-
448, Dec. 2009. 

[29] UCI Repository of machine learning databases, 
Department of Information and Computer Science, 
University of California, Irvine, CA, 
<http://www.ics.uci.edu/mlearn/MLRepository>, 2012. 

[30] S. Ding and S. Li, “Clonal Selection Algorithm for Feature 

Selection and Parameters Optimization of Support Vector 
Machines,” Symp. of the IEEE on knowledge acquisition 
and modeling (KAM ’09), 2009, Wuhan, China, pp. 17-20. 

[31] C. Huang and J. Dun, “A Distributed PSO-SVM hybrid 
system with feature selection and parameter optimization”. 
Applied Soft Computing, vol. 8, no. 4, pp. 1381-1391, Sep. 
2008. 

 

- 169 -

http://www.springerlink.com/content/?Editor=Enrique+Alba
http://www.springerlink.com/content/?Editor=Rafael+Mart%c3%ad

	page0188
	page0189
	page0190
	page0191
	page0192
	page0193

