
3
rd

 International Soft Science Conference (ISSC) 2012

6 – 8 November ~ Phnom Penh City, Cambodia

8

NEW HEURISTIC FUNCTION IN ANT COLONY SYSTEM
ALGORITHM

Ku Ruhana Ku-Mahamud1, Aniza Mohamed Din2, Yuhanis Yusof3,
Massudi Mahmuddin4, and Mustafa Mufawak Alobaedy5

1Universiti Utara Malaysia, Malaysia, ruhana@uum.edu.my
2Universiti Utara Malaysia, Malaysia, anizamd@uum.edu.my
3Universiti Utara Malaysia, Malaysia, yuhanis@uum.edu.my

4Universiti Utara Malaysia, Malaysia, ady@uum.edu.my
5Universiti Utara Malaysia, Malaysia, new.technology@hotmail.com

ABSTRACT. NP-hard problem can be solved by Ant Colony System

(ACS) algorithm. However, ACS suffers from pheromone stagnation prob-

lem, a situation when all ants converge quickly to one sub-optimal solution.

ACS algorithm utilizes the value between nodes as heuristic value to calcu-

late the probability of choosing the next node. However, the heuristic value

is not updated throughout the process to reflect new information discovered

by the ants. This paper proposes a new heuristic function for the Ant Colony

System algorithm that can reflect new information discovered by ants. The

credibility of the new function was tested on travelling salesman and grid

computing problems. Promising results were obtained when compared to

classical ACS algorithm in terms of best tour length for the travelling sales-

man problem. Better results were also obtained for the grid scheduling prob-

lem in terms of makespan and utilization.

Keywords: Ant colony system, heuristic function, traveling salesman prob-

lem, grid scheduling.

INTRODUCTION

Marco Dorigo presented the first ACO algorithm in 1992, to solve optimization problems

such as travelling salesman problem, job scheduling and network routing (Dorigo & Stutzle,

2004). Other variants of ACO are (i) Ant System (AS) (Colorni et al., 1991). (ii) Elitist Ant

System (EAS) (Dorigo, 1992), the first improvement on ant system in providing strong addi-

tional reinforcement to arcs belonging to the best tour found since the start of the algorithm.

(iii) Rank-Based Ant System (ASrank) (Bullnheimer, 1999), another improvement over AS

where each ant deposits an amount of pheromone that decreases with its rank. This is similar

to EAS, where the best-so-far ant always deposits the largest amount of pheromone. (iv)

Max-Min Ant System (MMAS) (Stutzle, 1997; Stutzle & Hoos, 1997) that has four direct

improvements over AS. MMAS strongly exploits the best tours found, limits the possible

range of pheromone trail values to the interval [tmin, tmax], the pheromone trails are initialized

to the upper pheromone trail limit, and pheromone value is reinitialized each time the system

mailto:yuhanis@uum.edu.my
mailto:new.technology@hotmail.com

3
rd

 International Soft Science Conference (ISSC) 2012

6 – 8 November ~ Phnom Penh City, Cambodia

9

approaches stagnation or when no improved tour has been generated for specific number of

iterations. (v) Ant Colony System (ACS) (Dorigo & Gambardella, 1997a; 1997b). This vari-

ant allows the ants to apply exploitation and exploration mechanisms when they select the

next node to move. In addition, ACS applies local pheromone update and global pheromone

update to direct the search for next iteration. Global update is calculated based on the quality

of the best solution so far while the local update apply evaporation concept.

In grid environment, the scheduler is responsible to find suitable resource to process spe-

cific job. Jobs are submitted to the grid system by users. The scheduler will assign jobs to re-

sources according to the scheduling algorithm adopted by the grid system. Job scheduling

problem can be presented as a directed graph (digraph) with nodes and directed edges. Re-

sources and jobs are represented as nodes and the directed edges represent the processing cost

and pheromone.

Job scheduling problem is different from traveling salesman problem where in traveling

salesman problem, the graph is complete and undirected because every pair of distinct verti-

ces is connected by a unique edge. In job scheduling, graph the connections (edges) are only

between resources and jobs and directed from resources to jobs. There is no connection (edge)

between resources and resources or jobs and jobs.

RESEARCH FRAMEWORK

The research framework starts with formulating a heuristic update function to reflect the

change in the heuristic information of ACS algorithm. The second stage is the development of

the enhanced ACS algorithm followed by the testing of the performance of the enhanced al-

gorithm in solving the travelling salesman problem. This is followed by the development of

the simulator and finally, testing the performance of the enhanced ACS algorithm in solving

grid job scheduling problem. Figure 1 depicts the framework for this research.

Formulate heuristic update function

Integrate heuristic update function

in ACS

Develop enhanced ACS and evalu-

ate its performance in solving TSP

Develop enhanced ACS for solving

job scheduling problem

Develop grid simulator and evalu-

ate the performance of enhanced ACS

Figure Error! No text of specified style in document.1. Research framework

http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29

3
rd

 International Soft Science Conference (ISSC) 2012

6 – 8 November ~ Phnom Penh City, Cambodia

10

NEW HEURISTIC FUNCTION

ACS algorithms utilize the values between the edges to use it as heuristic value for the cal-

culation of probability to choose the next node. However, heuristic value is not updated at any

time during execution. Such situation contradicts the concept of heuristic. A new a function

for heuristic value is needed to reflect the new information discovered by the ants. The pseu-

do-code for the function is as shown in Figure 2.

Step 0: for each path in the best tour do step 1 to 2

 Step 1: if path i (i = 1, 2, n) is not updated before do step 2

 Step 2: ηi = ηi + (δ/ best-so-far tour) // δ is parameter from (0-10)

End

Figure 2. Pseudo-code for the new heuristic function.

After ant constructed its solution, a global update process will be applied to update the

best-so-far solution. This event will change the environment for the next iteration. The new

function will be triggered to reflect this change and thus a new heuristic value will be ob-

tained. The new information will be applied to the best-so-far edge every time the ants find a

better solution in the iteration. The parameter δ will determine how much the influence of the

updating value should be applied to the heuristic value. If δ = 0 then no update will occur

which reflects the heuristic value in the classical ACS. The heuristic value on each edge will

be updated only one time during the whole process if it belongs to the best-so-far edge. This

condition will eliminate the issue of stagnation that may occur if the heuristic value is updated

more than one time. After conducting many experiments, it is found that δ = 0.5 will produce

good results. However, this depends on the problem domain and dimensions. The new heuris-

tic function has been integrated in the classical ACS algorithm thus enhancing it. The en-

hanced ACS algorithm is known as EHF_ACS.

In EHF_ACS, ants will be randomly distributed to nodes (cities or resources) after the ini-

tialization process. All ants will move concurrently and each ant will start building a solution

which is a function of the distance between the cities in the case of TSP or the processing all

jobs using all resources for the grid scheduling case. Each time an ant moves from a node to

the next node, the pheromone on that connection (edge) will be evaporated based on local

update mechanism. The benefit of local update function is to reduce the probability of select-

ing the same resource (node) by the following ant. Local update also helps to reduce stagna-

tion problem and increase exploration mechanism when sometime ACS algorithm does not

show a convergence behavior (i.e., ants do not converge to the generation of a common path)

(Dorigo & Gambardella, 1997a; 1997b). After all ants have constructed their solutions, the

best solution will be selected based on the shortest tour or makespan and utilization criteria.

The best solution will be stored as global best solution if it is better than the current global

best solution. A global update will be applied at this step using the global best solution. The

benefit from global update is to increase the probability of selecting the same node (or the

edge) for the next iteration. The heuristic function will start immediately after the global up-

date in order to update the heuristic value.

3
rd

 International Soft Science Conference (ISSC) 2012

6 – 8 November ~ Phnom Penh City, Cambodia

11

EXPERIMENTAL RESULT

Experiments were conducted to evaluate the performance of the enhanced ACS algorithm

on two problem domain. The domains are the TSP and grid computing.

Several initializations will have to be performed before EHF_ACS algorithm can be ap-

plied to TSP. The initializations are: (i) calculate distance between cities using Euclidean dis-

tance method. (ii) calculate heuristic values using heuristic function (1/distance). (iii) initial-

ize pheromone on all paths with values equal to 1 / (No of cities * nearest neighbor solution.

(iv) set alpha (α), beta (β), delta (δ), q, p, number of ants (m), and number of iteration. The

tour length is used to measure the quality of each ant where the shorter tour length the better

is the solution quality. After completing all iterations, the heuristic value is updated for each

edge that has not been updated before.

In the experiment for TSP, eight data sets from TSPLIP with different sizes were used.

Results were compared to classical ACS algorithm) (Dorigo & Gambardella, 1997a; 1997b).

Parameters initializations are as follows: α = 1, β = 2, δ = 0.5, q = 0.9, m = 10, p = 0.1, Initial

pheromone (τ0) = 1/ (N*nn), where N = number of cities and nn = nearest neighbour, and

number of iteration = 10000.

Comparisons of results between the proposed algorithm and best known solution and ASC

results from previous studies (Wei-Jie et al., 2009; Aljanaby et al., 2008; Wei-Jie & Jun,

2010) are depicted in Table 1. It can be seen that the proposed algorithm produces better

solutions quality in terms of best and mean tours, and smaller standard deviation (SD). Seven

(7) mean tour results obtained by the proposed algorithm are better than ACS and for the best

tour results the proposed algorithm is at par with ACS. The mean and SD shows the

robustness of the proposed algorithm and its ability to guide the ants to quickly converge to

the best solution. Each data set was run for five times to calculate the mean and SD. All the

experiments using EHF_ACS produced good solution with minor differences between the

runs.

Table 1. Performances of ACS and EHF_ACS Algorithm on TSP

a. SD is not calculated in the original study.

In order to apply EHF_ACS to job scheduling problem, several initializations will have to

be performed on i) list of jobs and resources, ii) array for the pheromone and iii) the variables

alpha (α), beta (β), delta (δ), p, q, number of ants and number of iteration.

TSP

instance
Optimum Source

ACS EHF_ACS |Mean ACS –

Mean EHF_ACS|% Mean SD Best Mean SD Best

att48 33522 [21] 35595 a--- 33780 33614.4 43.135 33587 5.56 %

eil51 426 [17] 428.21 2.05 426 428 1.095 426 0.05 %

st70 675 [22] 682.50 2.82 677 677.2 0.748 676 0.78 %

eil76 538 [17] 541.55 2.97 538 545.2 1.469 543 0.67 %

rat99 1211 [22] 1219.60 6.45 1211 1212.6 0.8 1211 0.57 %

kroA100 21282 [20] 21441.30 112.13 21315 21297.2 11.51 21282 0.67 %

eil101 629 [17] 640.67 5.86 630 633 2.449 631 1.20 %

rat195 2323 [22] 2352.76 15.79 2334 2347 4.147 2342 0.24 %

3
rd

 International Soft Science Conference (ISSC) 2012

6 – 8 November ~ Phnom Penh City, Cambodia

12

A simulator was developed to test the performance of the proposed algorithm for the grid

computing domain. Jobs were created with size varies from 500 – 1000 Million Instruction

(MI) and the number of jobs is set between 10 and 100. The number of resources created for

these experiments are seven resources with capacity varying from 50 – 250 Million Instruc-

tion per Second (MIPS) with load from 0 – 9.

In total, the number of experiments conducted is 100 for ACS and 100 for EHF_ACS. 10

instances created based on incremental number of jobs from 10-100 with interval of 10 jobs.

Each 10 experiments conducted using the same instances to get the average and SD of each

10 experiments’ results. Other parameters settings are as follows: number of ants = 7, α = 1,

β = 2, initial pheromone (t0) = 0.0001, p = 0.5, q = 0.9, number of iteration = 1000 and δ =

0.5.

The performance metrics used to evaluate the proposed algorithm were makespan and uti-

lization. Shorter makespan indicates faster performance in term of processing time while uti-

lization criteria indicate the quality of jobs scheduling and load balancing policy. Contradic-

tion between makespan and utilization may occur if there is limited resource. Therefore, load

balancing provide fair distribution rather than equal distribution in order to get good perfor-

mance. Table 2 presents the comparison between ACS and EHF_ACS in terms on makespan

and utilization where better results are highlighted. It can be seen that for makespan, the pro-

posed algorithm performed better than ACS algorithm in 8 out of 10 cases. As for utilization,

the proposed algorithm performed better than ACS algorithm in 7 out of 10 cases.

Table 2. ACS and EHF_ACS performances on Grid Computing
 ACS EHF_ACS

Task Makespan Utilization Avg UT SD Makespan Utilization Avg UT SD

10 12.52 64.56 62.48 1.04 15.929 77.715 74.82 3.82

20 22.638 74.716 71.59 3.3 20.541 90.14 85.74 5.63

30 33.364 92.396 83.94 5.24 29.395 88.246 82.94 3.86

40 35.566 88.658 81.57 5.46 43.547 85.604 81.41 2.81

50 51.913 88.984 77.1 5.7 42.575 92.96 87.85 3.14

60 65.359 88.896 82.81 5.1 50.327 94.369 87.5 4.62

70 64.82 77.747 74.02 7.26 59.836 89.643 84.14 3.61

80 71.647 96.154 79.75 8.79 65.747 96.14 87.39 5.32

90 101.043 80.417 73.95 3.8 73.134 94.106 87.56 4.48

100 110.039 82.26 74.68 3.75 80.284 95.472 86.62 4.99

The above results show that the proposed new heuristic function hat has been integrated in

ACS produces better results as indicated by smaller values for standard deviation in most cas-

es.

CONCLUSION

The new heuristic function can produce a heuristic value that reflects the quality of the

best-so-far solution. This is important because ants can be guided to choose a path that will

3
rd

 International Soft Science Conference (ISSC) 2012

6 – 8 November ~ Phnom Penh City, Cambodia

13

prevent stagnation. The new heuristic function is integrated into the classical ACS algorithm

thus enhancing it. The enhanced ant colony systems algorithm can be considered as a new

member to the family of ant colony optimization algorithms. Results show that the proposed

algorithm outperforms the original ant colony system algorithm. Future work can focus on

improvement in the data structure where better solution can be obtained in a shorter time.

ACKNOWLEDGMENTS

The authors wish to thank the Ministry of Higher Education Malaysia for funding this

study under Fundamental Research Grant Scheme, S/O code 11980 and RIMC, Universiti

Utara Malaysia, Kedah for the administration of this study.

REFERENCES

Aljanaby, A., Ku-Mahamud, K.R., and Norwawi, N.M. (2008). Optimizing Large Scale

Combinatorial Problems Using multiple Ant Colonies Algorithm Based on Pheromone

Evaluation Technique. International Journal of Computer Science and Network Security

IJCSNS, vol. 8(10), pp. 54 – 58.

Bullnheimer, B., Hartl, R.F., and Strauss, C. (1999). A New Rank-Based Version of the Ant

System: A Computational Study. Central European for Operations Research and Eco-

nomics, Vol. 7(1), pp. 25 – 38.

Colorni, A., Dorigo, M., and Maniezzo,V. (1991). Distributed Optimization by Ant Colonies.

Proceedings of the first European Conference on Artificial Life, Cambridge, pp. 134 –

142.

Dorigo, M. and Stutzle, T. (2004). Ant colony optimization. Cambridge, Massachusetts, Lon-

don, England: MIT Press.

Dorigo, M., and Gambardella, L.M. (1997a). Ant Colonies for the Travelling Salesman Prob-

lem. BioSystems Journal, Vol. 43(2), pp. 73–81.

Dorigo, M. (1992). Optimization, learning and natural algorithms (Unpublished doctoral dis-

sertation), Politecnico di Milano, Italy.

Dorigo, M., and Gambardella, L.M. (1997b). Ant colony system: A cooperative learning ap-

proach to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-

tion, Vol. 1(1), pp. 53 – 66.

Stutzle, T. (1997). MAX-MIN ant system for quadratic assignment problems. Germany: Intel-

lektik Group, Department of Computer Science, Darmstadt University of Technology

(Report No. AIDA-97-04).

Stutzle, T., and Hoos, H. (1997). MAX-MIN ant system and local search for the traveling

salesman problem, Proceedings of IEEE International Conference on Evolutionary

Computation. Indianapolis, pp. 309 – 314.

Wei-Jie, Y., Xiao-min, H., Jun, Z., and Rui-Zhang, H. (2009). Self-Adaptive ant colony sys-

tem for the traveling salesman problem, Proceedings of the IEEE International Confer-

ence on Systems, Man and Cybernetics, San Antonio, Texas, USA, pp. 1399–1404.

Wei-Jie, Y., and Jun, Z. (2010). Pheromone-distribution-based adaptive ant colony system.

Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation,

New York, USA, pp. 31-38.

