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Abstract. This paper discusses the use of a C2 interpolant which is positive
everywhere and the need to preserve positivity in the case of visualization of
rainfall data distribution of Peninsular Malaysia. The results from our previ-
ous work, where sufficient conditions on Bézier points have been derived, will
be used in order to ensure that surfaces comprising quintic Bézier triangular
patches are always positive. The first and second derivatives at the data sites
are calculated and modified (if necessary) to ensure that these conditions are
satisfied. A number of examples are presented based on the average monthly
rainfall data in a particular year at various locations in Peninsular Malaysia.
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1. Introduction

The need for researchers to obtain an accurate representation for an entity from
incomplete data is common. Furthermore, these data are sometimes needed to be
visualized by some interested parties. Visualization can be seen as a process of
reconstruction. The problem we are addressing is the interpolation of scattered data
that occurs in many practical situations where data are gathered experimentally.
This paper will focus on the shape preserving interpolation where the constructed
interpolants obey the shape of given positive data points. This problem could arise
if one has data points on one side of a plane and wishes to have an interpolating
surface which is also on the same side of this plane. Various methods concerning
visualization of positive data of curves and surfaces can be found in the literature
(see for example [14], [7], [10], [1], [2], [11], [4], [9], [3], [12]). Most of the visualization
techniques used to visualize rainfall data is of 2D colour-coded contour map.
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The significance of positivity lies in the fact that sometimes it does not make
sense to talk of some quantity to be negative. In this paper we shall look at rainfall
measurements gathered from a set of measuring stations in Peninsular Malaysia,
using average rainfall data in the months of March and May of 2007 which we have
obtained from the Malaysian Meteorological Department where preservation of pos-
itivity of data values must be taken into consideration. The given data represent
only a sample and may not be sufficient to let one represent the entire entity accu-
rately. As such, the interpolation of these scattered data will be used in order for
us to construct an empirical model which matches the data samples. We will use
a method which we have developed in [13] to display the data in a 2D or 3D in-
terpolant which preserves positivity of the data. Another approach to this problem
uses the idea of “meshless” surfaces such as radial basis functions and Shepard-
type methods. For instance, the modified quadratic Shepard (MQS) method in 3D
illustrated in [3] uses rainfall data for 2nd May 2002 that were collected at some
133 stations throughout New Zealand. The data include the heights of the weather
stations as well as the latitude and longitude. A 3D Shepard interpolant is sub-
sequently created. To display the rainfall data, they used the unconstrained MQS
to create a surface approximating the terrain, and then evaluated the 3D rainfall
interpolant over this surface by first using the 3D unconstrained interpolant (where
negative rainfall values can occur) and then using the 3D constrained interpolant
(where positivity of the data are preserved).

In contrast to [3], the rainfall data points in this paper are triangulated, leading to
a piecewise construction of the surface. A local positivity-preserving scheme, which
we have developed in [13] using a convex combination of quintic Bézier triangular
patches, is employed. An input of rainfall data by our proposed interpolant does not
require the height of weather stations where the 3D rainfall interpolant is evaluated
over the longitude-latitude plane in order to preserve the positivity of the data. The
proposed interpolant can also be used to approximate unknown entities (amount of
rainfall) at intermediate locations (refer to Table 2 in Section 4 of this paper) within
the convex hull of triangulation domain.

2. Sufficient positivity conditions for a quintic Bézier triangular patch

A quintic Bézier triangular patch is given by

P (u, v, w) = b500u
5 + b050v

5 + b005w
5

+ 5(b410u
4v + b401u

4w + b140uv4 + b104uw4 + b041v
4w + b014vw4)

+ 10(b320u
3v2 + b302u

3w2 + b230u
2v3 + b203u

2w3 + b032v
3w2 + b023v

2w3)

+ 20(b311u
3vw + b131uv3w + b113uvw3)

+ 30(b221u
2v2w + b212u

2vw2 + b122uv2w2)(2.1)

where u, v, w are the barycentric coordinates (i.e. u + v + w = 1) and u, v, w ≥ 0,
and bijk are the Bézier ordinates with i + j + k = 5. We will refer to b500, b050,
b005 as the vertices; b410, b401, b140, b041, b014, b104, b320, b302, b230, b032, b023, b203

as boundary Bézier ordinates and b311, b131, b113, b122, b212, b221 as inner Bézier
ordinates, respectively (see Figure 1).
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Figure 1. Control points of a quintic triangular patch

Let the Bézier ordinates at vertices be strictly positive, i.e. b500, b050, b005 > 0.
Sufficient conditions on the remaining Bézier ordinates have been derived in [13] to
ensure that the entire Bézier patch is positive. For simplicity in writing, let the
Bézier ordinates at vertices be A = b500, B = b050, and C = b005. Our approach in
[13] is to find lowest bound on the remaining Bézier ordinates, such that if all the
Bézier ordinates apart from A, B, C are assigned this value, then P (u, v, w) = 0. We
thus assume that, the remaining Bézier ordinates have the same value, −r(where
r > 0). By treating r as a parameter, equation (2.1) can now be written as

(2.2) P (u, v, w, r) = (A + r)u5 + (B + r)v5 + (C + r)w5 − r.

Clearly, P (u, v, w, r) > 0 when r = 0. Using the corresponding values of u, v, and
w at the minimum value of P , which for simplicity denoted as Pmin(r), we want to
find lowest bound of r, say r0 where Pmin(r0) = 0. The partial derivatives of P in
equation (2.2) with respect to u, v and w are given by

(2.3)
∂P

∂u
= 5(A + r)u4,

∂P

∂v
= 5(B + r)v4 and

∂P

∂w
= 5(C + r)w4.

At the minimum value of P ,

∂P

∂u
− ∂P

∂v
= 0

and
∂P

∂u
− ∂P

∂w
= 0.

Thus,

(2.4)
∂P

∂u
=

∂P

∂v
=

∂P

∂w
.

Using equations (2.3) and (2.4), we have
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u4

v4
=

B + r

A + r
and

u4

w4
=

C + r

A + r
.

Hence,

u4 : v4 : w4 =
1

A + r
:

1

B + r
:

1

C + r
.

Since u + v + w = 1, we obtain

u =
1/(A + r)1/4

1/(A + r)1/4 + 1/(B + r)1/4 + 1/(C + r)1/4
,

v =
1/(B + r)1/4

1/(A + r)1/4 + 1/(B + r)1/4 + 1/(C + r)1/4

and

w =
1/(C + r)1/4

1/(A + r)1/4 + 1/(B + r)1/4 + 1/(C + r)1/4
.

Using the above values of u, v, w, we obtain the minimum value of P (u, v, w, r)in
equation (2.2) as

(2.5) Pmin(r) =
r

[

1/(A/r + r)1/4 + 1/(B/r + r)1/4 + 1/(C/r + r)1/4
]4 − r.

We need to find a value of r = r0, where Pmin(r) = 0 or

(2.6)
1

(A/r + 1)
1/4

+
1

(B/r + 1)
1/4

+
1

(C/r + 1)
1/4

= 1.

By letting s = 1/r and

G(s) =
1

(As + 1)
1/4

+
1

(Bs + 1)
1/4

+
1

(Cs + 1)
1/4

,

equation (2.6) can be written as

(2.7) G(s) = 1, s ≥ 0.

We will use a method in [13] to determine the value of s0 = 1/r0 for each triangular
patch. For s ≥ 0, G′(s) < 0 and G′′(s) > 0. If M = max(A, B, C) and N =
min(A, B, C), then

3

(Ms + 1)1/4
≤ G(s) ≤ 3

(Ns + 1)1/4
,

with G (80/M) ≥ 1 and G (80/N) ≤ 1. Figure 2 shows the graph of G(s), s ≥ 0
with relative locations of 80/M, 80/N and s0.

To obtain the value of s0 for given values of A, B and C, we only need to solve
equation (2.7) that will give us a lower bound on the remaining Bézier ordinates,
i.e. r0 = 1/s0. We can use a simple iterative scheme which must ensure a one-sided
convergence, i.e. s0 is approached from above. The convexity of G(s) means that
this can be achieved using the method of false-position (see [6] for further details).
An initial estimate for the root will be the value of s for which the line joining 80/N
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and 80/M has the value 1. The following is a proposition from [13] which establishes
sufficient conditions for a positive interpolant to be used in this paper.

Figure 2. Function G(s) for s ≥ 0

Proposition 2.1. Let the quintic Bézier triangular patch P (u, v, w) in equation
(2.1) with b500 = A, b050 = B, b005 = C, where A, B, C > 0. If bijk ≥ −r0 =
−1/s0, (i, j, k) 6= (5, 0, 0), (0, 5, 0) and (0, 0, 5), where s0 is the unique solution of

1
4
√

As+ 1
+

1
4
√

Bs+1
+

1
4
√

Cs+1
= 1,

then

P (u, v, w) ≥ 0, ∀ u, v, w ≥ 0, u + v + w = 1.

If any of the values of A, B, or C is zero (i.e. the given data are not strictly
positive), we will assign the value zero to r0 for that triangle.

3. Construction of positivity-preserving interpolating surface of rainfall
data

We are now able to construct the interpolating surface for Peninsular Malaysia rain-
fall data of a particular month. Given positive rainfall data (xi, yi, zi), zi ≥ 0, i =
1, 2, · · · , N, where xi, yi are the longitude and the latitude of rainfall measuring sta-
tion, respectively and zi, the monthly average of rainfall data. We want to construct
a C2 positivity-preserving surface z = F (x, y) that interpolates the given data.
The surface comprises a piecewise convex combination of quintic Bézier triangular
patches, each of which is guaranteed to remain positive.

We use a Delaunay type of triangulation to triangulate the convex hull of the
data points (xi, yi). An estimation of the first order partial derivatives of F will be
obtained using a proposed method in [8] while for the second order partial deriva-
tives estimation, we will use the quadratic approximation of least squares method
mentioned in [13]. Let Vi, i = 1, 2, 3 be the vertices of a triangular patch, such that
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F (Vi) = zi. Then, from the given data together with the estimated derivative values
at all (xi, yi) we can now determine the 15 ordinates of bijk except for the three
inner control points b122, b221, b212 (see [5] for further details). However, the initial
estimate of the above ordinates may not satisfy the positivity conditions for P . In
view of Proposition 2.1, we need these Bézier ordinates to be greater or equal to
−r0. If they are not, then the magnitudes of derivatives at the vertices need to be
reduced so that the non-negativity condition on the Bézier ordinates is satisfied. The
modification of these partial derivatives at vertex Vi is achieved by multiplying each
derivative at that vertex, by a scaling factor 0 < αi < 1, i = 1, 2, 3. The smallest
value of αi is obtained by considering all triangles that meet at a common vertex,
which satisfy the positivity condition of all these triangles. For example,

(b410)j = F (V1) + α
D(e12)j

(V1)

5
≥ −(r0)j ,

(b311)j = F (V1) +
α

5

[

D(e12)j
(V1) − D(e31)j

(V1) −
D2

(e31)j(e12)j
(V1)

4

]

≥ −(r0)j

where subscript j represents a quantity corresponding to triangle j, ejk is the triangle
edge joining (xj , yj) to (xk, yk), Deik

(V1) is first order directional derivative at vertex
V1 along edge eik and D2

(e31)(e12)(V1) is the mixed derivative at vertex V1.

For each triangle, the inner Bézier ordinates b122, b221, b212 remain to be cal-
culated, in such a way to guarantee preservation of positivity and C2 continuity
across patch boundaries. We shall use a similar method as in [5] to determine the
initial estimates of these ordinates. A local scheme Pi, i = 1, 2, 3 is defined by
replacing b122, b212, b221 with bi

122, bi
212, bi

221 respectively which will satisfy C2

conditions across boundary ei. Ordinates b1
122, b2

212, b3
221 are obtained using cross

boundary derivatives on edges e1, e2, e3 respectively. These ordinates will then be
used to estimate the remaining local ordinates i.e. b1

212, b1
221, b2

122, b2
221, b3

122, b3
212.

Initial estimates of these Bézier ordinates in each triangle may not satisfy the pos-
itivity condition of P (u, v, w) as stated in Proposition 2.1 and we need to adjust
bi
122, bi

212, bi
221 for each local scheme in order to satisfy the proposition (see [13] for

further details).
The final interpolating surface P which satisfies the positivity conditions and C2

continuity on all sides of the triangles is then defined as a convex combination of all
the local schemes given by

P (u, v, w) = c1P1(u, v, w) + c2P2(u, v, w) + c3P3(u, v, w)

or

P (u, v, w) =
∑

i + j + k = 5,
i 6= 1, j 6= 2, k 6= 2,
i 6= 2, j 6= 1, k 6= 2,
i 6= 2, j 6= 2, k 6= 1

bijkB5
ijk (u, v, w) + 30uvw(c1Q1 + c2Q2 + c3Q3)

where

c1 =
vw

vw + vu + uw
,

c2 =
uw

vw + vu + uw
,



Visualization of Rainfall Data Distribution Using Quintic Triangular Bézier Patches 143

Table 1. Average rainfall (in mm) in March and May 2007 of 25 major rainfall
measuring stations in Peninsular Malaysia

Station
Location Amount (in mm)
Longitude Latitude March

2007
May 2007

Chuping 100.2667 6.4833 61.0 88.0
Langkawi 99.7333 6.3333 40.6 166.0
Alor Setar 100.4000 6.2000 277.8 67.4
Butterworth 100.3833 5.4667 58.9 143.2
Prai 100.4000 5.3500 208.1 153.4
Bayan Lepas 100.2667 5.3000 125.2 144.4
Ipoh 101.1000 4.5833 364.2 42.6
Cameron Highlands 101.3667 4.4667 252.0 223.2
Lubok Merbau 100.9000 4.8000 156.4 98.4
Sitiawan 100.7000 4.2167 44.4 26.8
Subang 101.5500 3.1167 329.2 68.2
Petaling Jaya 101.6500 3.1000 321.0 196.2
KLIA 101.7000 2.7167 186.2 188.8
Malacca 102.2500 2.2667 113.8 183.4
Batu Pahat 102.9833 1.8667 182.0 195.0
Kluang 103.3100 2.0167 92.4 130.2
Senai 103.6667 1.6333 148.6 296.0
Kota Bharu 102.2833 6.1667 115.2 109.2
Kuala Krai 102.2000 5.5333 166.0 238.7
Kuala Terengganu Air-
port

103.1000 5.3833 121.0 64.8

Kuantan 103.2167 3.7833 79.2 270.4
Batu Embun 102.3500 3.9667 146.2 256.2
Temerloh 102.3833 3.4667 114.2 324.2
Muadzam Shah 103.0833 3.0500 131.6 204.8
Mersing 103.8333 2.4500 183.4 196.2

c3 =
vu

vw + vu + uw
,

Qi = uvbi
122 + uwbi

212 + vwbi
221

for i = 1, 2, 3 and u, v, w are the barycentric coordinates.
Our proposed method can also be used to estimate the amount of rainfall at

any location which lies in the convex hull of triangulation domain. As an example,
estimated amounts of rainfall for the 10 chosen locations in Peninsular Malaysia are
displayed in Table 2.

4. 2D and 3D visualization

We now consider a visualization of rainfall data obtained from the Malaysian Me-
teorological Department. The data were collected at 25 major rainfall measuring
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Table 2. Estimated average amount of rainfall (in mm) in March and May 2007
at 10 chosen locations

Name of Town
Location Estimated average amount

of rainfall (in mm)
Longitude Latitude March 2007 May 2007

Jitra 100.4167 6.2667 244.6 66.12
Kepala Batas 100.4333 5.5167 58.19 139.62
Kuala Kangsar 109.3333 4.7667 151.17 105.29
Cheras 101.7667 3.05 283.25 271.29
Genting Highlands 101.8000 3.4000 524.35 87.26
Jertih 102.5 5.75 122.25 88.80
Nilai 101.8 2.8167 216.32 229.29
Segamat 102.8167 2.5 132.57 174.85
Rawang 101.5833 3.3167 398.57 70.81
Kangar 100.2 6.4333 83.73 95.50

stations throughout Peninsular Malaysia, and represent the average monthly mea-
surement in millimeters. For the purpose of this paper, we have chosen the months
of March and May 2007 as illustrated in Table 1. Figure 3 shows the triangulation
domain of these data sites. Figures 4 and 6 show the 2D visualization of average
rainfall data in March and May 2007, respectively where the colour codes represent
the amounts of rainfall. In 3D visualization, the positive interpolant of our pro-
posed method is evaluated on a longitude-latitude plane and the results are shown
in Figures 5 and 7, respectively.

5. Conclusion

We have shown how a convex combination of quintic Bézier triangular patches can
be constrained in order to preserve the positivity of data points. This is achieved
by imposing a lower bound on all the Bézier ordinates (except at the vertices) of
each of the triangles. Our proposed method has been applied in both 2D and 3D
visualization schemes, respectively using data of average monthly amount of rainfall
obtained from the Malaysian Meteorological Department. We have also shown that
the amount of rainfall at other places which are located within the triangulation
domain can be estimated using our proposed method.
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Figure 3. Triangular domain of rainfall measuring stations
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Figure 4. 2D colour-coded visualization of average amount of rainfall in March
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Figure 5. 3D interpolating surface of average amount of rainfall in March
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Figure 6. 2D colour-coded visualization of average amount of rainfall in May
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Figure 7. 3D interpolating surface of average amount of rainfall in May
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