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Multifrequency Electrical Impedance Tomography
Using Spectral Constraints

Emma Malone*, Gustavo Sato dos Santos, David Holder, and Simon Arridge

Abstract—Multifrequency electrical impedance tomography
(MFEIT) exploits the dependence of tissue impedance on fre-
quency to recover an image of conductivity. MFEIT could provide
emergency diagnosis of pathologies such as acute stroke, brain
injury and breast cancer. We present a method for performing
MFEIT using spectral constraints. Boundary voltage data is
employed directly to reconstruct the volume fraction distribution
of component tissues using a nonlinear method. Given that the
reconstructed parameter is frequency independent, this approach
allows for the simultaneous use of all multifrequency data, thus
reducing the degrees of freedom of the reconstruction problem.
Furthermore, this method allows for the use of frequency differ-
ence data in a nonlinear reconstruction algorithm. Results from
empirical phantommeasurements suggest that our fraction recon-
struction method points to a new direction for the development
of multifrequency EIT algorithms in the case that the spectral
constraints are known, and may provide a unifying framework
for static EIT imaging.

Index Terms—Electrical impedance tomography (EIT), image
reconstruction–iterative, inverse methods.

I. INTRODUCTION

M ULTIFREQUENCY electrical impedance tomography
(MEIT), or EIT spectroscopy (EITS), exploits the

dependence of tissue impedance on frequency in order to re-
cover an image of conductivity. A small current is injected and
boundary voltage measurements are acquired using peripheral
electrodes. Measurements are recorded simultaneously, or
in rapid sequence, whilst varying the modulation frequency
of the current. Data is compared to a reference frequency
(frequency-difference) or considered independently (absolute
imaging).
Time-difference EIT, which uses single-frequency measure-

ments referred to a baseline, provides the gold-standard in EIT
imaging, and the overwhelming majority of EIT clinical images
have been produced using time-difference data. However, fre-
quency-difference and absolute EIT could potentially allow for
the imaging of an event without knowledge of a prior condition.
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This is necessary for diagnostic imaging of conditions such as
acute stroke, brain injury, and breast cancer, because patients are
admitted into care after the onset of the pathology and a baseline
recording of healthy tissue is not available [1]–[3].
The challenge of multifrequency EIT lies in the high sensi-

tivity of the solution tomodelling and instrumentation errors [4],
[5]. Simple frequency-difference methods, which attempt to re-
construct an image from data referred to a low frequency using
a linear method, have proved effective in the case of resolving a
frequency dependent anomaly from a homogeneous, frequency
invariant background [6]. The weighted frequency difference
algorithm, which uses a weighted difference between data ac-
quired at two frequencies and a linear method, has been shown
to successfully enhance the contrast given by an anomaly in a
frequency dependent background [7]–[9].
Preliminary studies suggest that nonlinear reconstruction

methods using absolute data hold the potential for clinical
imaging [10], [11]. However, absolute imaging fails to suppress
artefacts caused by the high sensitivity of EIT to modelling
errors.
Whereas multifrequency EIT is at an early stage of develop-

ment, an extensive literature has been produced on the related
subject of multispectral diffuse optical tomography (DOT). In
particular, DOT research has produced methods for directly re-
constructing chromophore concentrations using the wavelength
dependence of tissue properties [12].
In this paper, a method is introduced for using frequency-dif-

ference data in a nonlinear reconstruction scheme by use of
spectral constraints. We propose to use all multifrequency data
directly to reconstruct the volume fraction distribution of the tis-
sues. The results of numerical validation and application of our
method to phantom experimental data recorded with the UCLH
Mark 2.5 MFEIT system [13] are presented. The robustness of
our direct multifrequency method is discussed and compared to
an indirect method for estimating the fractions from the abso-
lute conductivity images. The question of how fraction imaging
compares to weighted frequency-difference imaging in tank ex-
periments is addressed. The performance of fraction imaging
is compared with weighted frequency-difference on simulated
data that violates the assumptions of the latter method. Finally,
the approximation introduced by our fraction model is investi-
gated and discussed.

A. Forward Problem

The forward problem consists in determining the potential
from knowledge of the conductivity distribution and the Neu-
mann boundary conditions. The forward map relates
the conductivity distribution to boundary voltage measurements
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for an assumed physical model. An analytical solution to the
forward problem can be obtained only in the case of simple ge-
ometries, otherwise it is necessary to pursue numerical methods
such as the finite element method (FEM).

B. Inverse Problem

The inverse problem consists in estimating the internal con-
ductivity distribution of an object for which the Neumann-to-
Dirichlet map is known. Nonlinear methods for reconstructing
an EIT image from boundary voltage data involve the iter-
ative minimization of an objective function of the form

(1)

where is the negative log-likelihood, is a regularizing func-
tion, and is the regularization parameter.

II. METHOD
A. Fraction Model

The fraction model is a representation of the conductivity of
an object. We employ the fraction model in conjunction with
the FEM to approximate a conductivity distribution. It is as-
sumed that the object is composed of a limited number of tissues
and that a volume fraction, or concentration value, can be deter-
mined for each component and element of the mesh. The spatial
distribution of the tissues is then described by the corresponding
fraction distributions. Furthermore, the assumption that the tis-
sues are homogeneous and have characteristic spectral proper-
ties allows for the expression of the conductivity of the object
in terms of the conductivity of individual components.
Let us consider a 3-D domain on which a frequency depen-

dent conductivity distribution is defined, where de-
notes the spatial coordinates, and the frequency. The conduc-
tivity is assumed to be static. A discretization of the domain is
performed, and the conductivity is approximated using the FEM
to represent an element based, piecewise constant distribution.
As a result, the conductivity can be represented by the mesh
and a frequency dependent, 1 vector that determines the
value of each element , where is
the number of elements. Time-harmonic currents are injected at
the boundary at frequencies and real
boundary voltage measurements
are acquired for each frequency.
The following assumptions are made.
1) The domain is composed of a known number of tissues

with distinct conductivity.
2) The conductivity of each tissue is known for all measure-
ment frequencies .

3) The conductivity of the th element is given by the linear
combination of the conductivities of the component tissues

(2)

where and .
Each weighting value of the linear combination is the

volume fraction, or concentration, of the th tissue in the th
voxel. If the th voxel is occupied only by the th tissue, then
the conductivity is that of the tissue . In this case

and . In the case that the voxel lies
along a tissue boundary, or is otherwise occupied by a mixture
of tissues, the conductivity is approximated by the linear com-
bination of the conductivities of the components, weighted by
their fraction values.
Under these assumptions the relationship between conduc-

tivity and boundary voltages can be rewritten in terms of the ma-
trix , of dimensions . The frac-
tion values are independent of frequency and constant across all
measurements. Using the chain rule we obtain, for

(3)

where and is the Jacobian of the forward map
at the frequency .

B. Fraction Image Reconstruction

Assuming the noise is white Gaussian, the objective function
for conductivity imaging (1) becomes

(4)

for each frequency .
In analogy with conductivity imaging, we attempt to recon-

struct the fraction distributions of all tissues by minimizing a
regularized objective function of the form

(5)

Using relative data, referred to a chosen frequency , the
residual error becomes

(6)
We use aMarkov random field (MRF) regularization term of the
form

(7)

where runs over all neighbors of the th voxel.
Finally, if all multifrequency measurements are considered

simultaneously, we obtain

(8)

The objective function is differentiable and the gradient
is obtained via the chain rule (3).
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Algorithm 1. Schematic comparison between direct and indirect fraction re-
construction methods.

The constraint is enforced by substituting

in the objective function. The fraction
images, are reconstructed using

(9)

where , and remaining fraction is simply
.

The reconstruction of was constrained to the
closed interval and performed using a two-step algorithm.
1) Step 1: Gradient Projection: Gradient projection is a

method for optimizing an objective function with bounded
variables [14]. Initially the minimization is set to follow the
negative gradient direction, but the search path is projected
onto the constraint whenever an upper or lower constraint
is encountered. The corners of the search path are found by
computing the step size values for which each variable reaches
a constraint. The objective function is approximated by the
quadratic form along each straight section of the search path,
and the minimum of the objective function is found by differen-
tiating with respect to the step size. Each section is considered
in sequence until a solution that satisfies the constraints is
found. The result of the gradient projection step is the Cauchy

point , satisfying .
2) Step 2: Damped Gauss–Newton Using a Krylov Solver:

The components of the Cauchy point that coincide with the
constraints define the active sets for the second step. These
are fixed to the constraint value and the subproblem of solving
for all other components is considered. Initially the constraints
are ignored, one step of a damped Gauss–Newton method is
performed and then the solution is projected back onto the
constraints.
The search direction at iteration is calculated by solving

(10)

Fig. 1. Schematic comparison between direct and indirect fraction reconstruc-
tion methods.

for the components with nonactive sets. The Hessian matrix
is approximated using the Gauss–Newton form by disregarding
the second order derivative of the residual error. Given the size
of the problem, the approximated Hessian is never formulated
explicitly and (10) is solved using generalizedminimal residuals
(GMRes) [15]. The minimization step size is computed using
the Brent line-search method [16], and the Brent abscissae are
found via a gold-section bracketing loop [17]. The result of the
damped Gauss–Newton step is

(11)

and the proposed solution is given by

if or
if or
otherwise.

(12)

The solution is accepted if . If only
then the Cauchy point is accepted.

C. Fraction Image Reconstruction: Indirect Method

An alternative method for estimating the tissue fractions
indirectly is by fitting the absolute conductivity images
(Fig. 1). First, the conductivity images at each frequency

are obtained by minimizing (4)

(13)

using a nonlinear Gauss–Newton–Krylov algorithm
[18]. The regularization parameters are optimized
for each frequency. Then, the indirect fraction image

is computed by minimizing

(14)

where is the regularization parameter. The minimization is
performed, as for the proposed direct method, by alternating
steps of gradient projection and damped Gauss–Newton.
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D. Image Quantification

In evaluating experimental results, image quality was as-
sessed on the basis of an objective quantification method. We
considered the case of resolving a perturbation of tissue from
a homogeneous background of tissue by reconstructing an
image of the fraction . The reconstructed perturbation was
identified as the largest connected cluster of voxels with values
larger than 50% of the maximum displacement from the mean
value of the image [6], [19]. We devised three measures of
image quality.
1) Image noise: inverse of the contrast-to-noise ratio (CNR)
between the real perturbation and the background

(15)

where and are the mean intensities of the real per-
turbation and background, and is number of elements
of the background.

2) Localization error: ratio between the norm of the x-y dis-
placement of the center of mass of the reconstructed per-
turbation from the real position , and the diameter
of the mesh

(16)

where is the x-y position of the center of the th
tetrahedron.

3) Shape error: mean ratio of the difference between the di-
mensions of the real and reconstructed perturbations, re-
spectively and , and the diameter of
the mesh

(17)

where is the height of the mesh. The real dimensions of
the perturbation were measured with a calliper, and the size
of the reconstructed perturbation was estimated by taking
the maximum coordinate difference between elements co-
inciding with the perturbation.

III. RESULTS AND DISCUSSION

A. Tissue Impedance Spectra

The spectral values of the test tissues were obtained empir-
ically from tissue samples. Resistance measurements were ac-
quired with a Hewlett-Packard 42847A (Hewlett-Packard, Palo
Alto, CA, USA) impedance analyzer for 48 frequencies in the
range 20 Hz–1 MHz using Ag-AgCl electrodes.
We used biological test objects with frequency dependent

conductivities to mimic the properties of live tissues [6], [8],
[9]. The background medium was a mixture of 0.1% concen-
tration NaCl solution and carrot cubes of approximately 4 mm
per side. Two samples were measured using Perspex tubes of
fixed diameter (1.6 cm) and variable length (4.6 and 7.5 cm).

Fig. 2. Conductivity values of test tissues obtained from sample measurements
at 16 output frequencies of the UCLHMk 2.5 multifrequency EIT system in the
range 640 Hz–1.29 MHz.

A perturbation was obtained from a potato segment of diameter
approximately 4.6 cm. The resistivities of the full length (10.6
cm) and partial length (5.4 cm) were measured. The test object
was immersed in saline for 45 min before starting the record-
ings in order to reduce drift. The electrode resistance was esti-
mated and subtracted by plotting resistance against length for
each tissue and evaluating the offset of the line passing through
the measurement points. The conductivities of the carrot-saline
background and potato perturbation rose monotonically from
0.1 S/m and 0.02 S/m at 20 Hz to 0.3 S/m and 0.4 S/m at 1 MHz.
These results were used to simulate realistic data and to

reconstruct fraction images from experimental EIT recordings
made with the UCLH Mk. 2.5 system. The conductivity values
for 16 amongst the output frequencies of the UCLH system in
the range 640 Hz–1.29 M Hz were estimated from the spline of
the sample measurements (Fig. 2).

B. Numerical Validation

Numerical validation of the proposed fraction reconstruction
method was performed on synthetic data. Boundary voltages
were simulated using a cylindrical mesh of diameter 19 cm and
height 10 cm, with 62 784 elements and a ring of 32 electrodes
around the center. A current of peak amplitude 133 , injected
through polar electrodes, was simulated. For each injection pair
we considered the difference between voltages on all adjacent
pairs of electrodes not involved in delivering the current, for a
total of 448 measurements per frequency. The ground point was
fixed at the center of the bottom of the mesh. The complete elec-
trode model [20] was employed, and the electrode impedance
was set to 1 .
A cylindrical perturbation of diameter 4.6 cm and height 10

cm was placed in ( cm 0 cm 0 cm) (position 1) and (0 cm
cm 0 cm) (position 2), where the origin is the center of the

tank. The background and perturbation conductivities were set
to the values for saline-carrot and potato obtained empirically
for 16 output frequencies of the UCLHMk 2.5 system. All mea-
surements were referred to the lowest frequency of 640 Hz. Pro-
portional 0.1% white Gaussian noise was added to the absolute
boundary voltages. The noise level was chosen under consider-
ation that the expected change across frequencies in boundary
voltages is in the order of 1%, therefore a high level of precision
must be achieved in measuring the absolute values with an EIT
system. The regularization parameter was set using the L-curve
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Fig. 3. Numerical validation model and results: (a) model of position 1 ( cm
0 cm 0 cm), (b) model of position 2 (0 cm cm 0 cm), (c) perturbation fraction
images of positions 1 and 2. In all images we display the raster of the central
slice ( , thickness 2 cm) and, where relevant, profile plots at cm
for position 1 and cm for position 2. The scale is the volume fraction
value.

method [21]. Fraction images were reconstructed using all mul-
tifrequency data by performing four iterations of the proposed
nonlinear fraction reconstruction method (Fig. 3).

C. Robustness to Spectral Errors

The fraction model assumes exact knowledge of the
impedance spectra of all tissues in the domain. These values
were evaluated by measuring the conductivity of tissue samples
with an impedance analyzer, as described in Section III-A.
It is inevitable that these measurements are affected by noise
and experimental error, and the tissue spectra employed in
the reconstruction scheme are incorrect. We performed a
simulation study to determine the robustness of our fraction
reconstruction method to errors in the assumed tissue spectra

. The same mesh, electrodes, mea-
surement protocol, and perturbation were chosen as in the
previous section. A random error was added to the tissue
spectra of carrot ( ) and potato ( ), before producing a
conductivity model

on the background
on the perturbation

(18)

where is a random number drawn from the
normal distribution with mean and variance . In an
experimental setup, the values are the
real, unknown, conductivities of the tissues, whereas the mean
conductivities are the inexact measurements obtained from
the samples.

TABLE I
ROBUSTNESS TO SPECTRAL ERRORS: MEAN AND STANDARD DEVIATION

OVER 20 REPETITIONS OF IMAGE ERROR FOR SEVERAL
CHOICES OF SPECTRAL VARIANCE

Boundary voltage data was simulated using themodel , and
fraction images were reconstructed using the inexact measured
spectra. The process was repeated 20 times for each choice of

. The regularization parameter was
, and the number of iterations was 4 in all cases.

The results were evaluated by computing the ratio of the
-norm of the distance between the reconstructed image and

the true solution, and the -norm of the true solution. To make
the error measure independent of the number of tissues, the
mean was taken

(19)

where

on the background
on the perturbation

(20)

and . The mean and standard deviation of
the error over 20 repetitions was computed for each choice of
(Table I).
We computed the mean and the standard deviation of the

reconstructed images [Fig. 4(a) and (b)], and the mean image
quantification measures [Fig. 4(c)]. We observed that for
the images were similar to the result obtained using the exact

spectra (Fig. 3).We note that in the latter case, in which the same
spectra are used to generate the data and reconstruct the image,

. For and the shape and
position of the perturbation were generally reconstructed with
sufficient accuracy, but a reduction in contrast was observed in
most images. For the image quality was affected, and
in some cases the perturbation could not be identified. The mean
relative contrast between the tissues is

(21)

therefore it is reasonable to expect that a 10% error on the
spectra would make it difficult to distinguish between the
tissues.

D. Phantom Study

A phantom study was designed to reproduce the experimental
setup rendered previously in simulation. The phantom was built
using the test tissues measured with the impedance analyzer,
and a perspex cylindrical tank of diameter 19 cm and height
10 cm. The potato was placed in ( cm 0 cm 0 cm) [Fig. 5(a)]
and (0 cm cm 0 cm) [Fig. 5(b)] and immersed in the saline-
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Fig. 4. Robustness to spectral errors results: (a) mean and (b) standard deviation of the reconstructed fraction images for each choice of the spectral variance ;
(c) mean image quantification results over 20 repetitions for each choice of .

Fig. 5. Phantom experiment setup and fraction images: (a) position 1 ( cm 0 cm 0 cm), (b) position 2 (0 cm cm 0 cm), (c) perturbation fraction images of
positions 1 and 2.

carrot mixture. A ring of 32 silver electrodes with 1 cm diam-
eter was placed around the tank and a 33rd electrode was used
to fix the ground at the center of the base. Measurements were
recorded using the UCLH Mark 2.5 MFEIT system at 16 fre-
quencies in the range 640 Hz–1.29MHz. A current of amplitude
133 was injected at polar electrode pairs and voltages were
acquired at all adjacent channels not involved in the current in-
jection. The data was averaged over 10 frames and referred to
the lowest frequency (640 Hz). Images were reconstructed using
the same mesh employed in validating the method. In the fol-
lowing, unless otherwise specified, the regularization parameter
was selected using the L-curve method, and the number of iter-
ations for nonlinear methods was set to 4. The electrode con-
tact impedance was assumed to be 1 , which is the upper
limit of the real value, and constant across all electrodes and
frequencies.
Fraction images were reconstructed using the proposed

method from all multifrequency data [Fig. 5(c)].

E. Comparison With Indirect Fraction Estimation

Fraction images were obtained from the multifrequency
phantom data using the indirect method described previously.
Absolute conductivity values were recovered for each mea-
surement frequency [Fig. 6(a) and (b)] and fraction images
were obtained from these [Fig. 6(c)]. The conductivity images
present an area of high conductivity area around the edge of the

tank, which is caused by inaccurate modelling of the boundary
geometry, electrode placement, shape, and size, and contact
impedance. In the fraction images this artefact is reduced
because frequency invariant errors are subtracted from the
data. The conductivity images obtained in the frequency range
30–80 kHz present very low contrast. This is in agreement
with the tissue sample conductivity measurements in that the
spectra of potato and carrot-saline are very similar in the same
frequency range. It is evident by visual comparison that the use
of spectral constraints can result in a significant improvement
in image quality, when compared to absolute conductivity
imaging.
The fraction images obtained with the direct fraction re-

construction method were compared with the images obtained
using the indirect method, and the absolute conductivity im-
ages [Fig. 6(d) and (e)]. The results suggest that the proposed
fraction reconstruction method is more robust than absolute
conductivity imaging and the indirect method. The proposed
fraction reconstruction algorithm employs the boundary voltage
data directly, and a single optimization problem is solved. To
image the fractions from the absolute conductivity, first an
optimization problem is solved for each frequency to recon-
struct the conductivity images, then the fitting parameters are
computed. The direct reconstruction algorithm uses all mul-
tifrequency data to estimate the regularization prior, whereas
the indirect method requires that the regularization is first
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Fig. 6. Phantom absolute conductivity images for each measurement frequency: (a) position 1 and (b) position 2. The scale is S/m. Multifrequency imaging
results: (c) fractions obtained using indirect method for positions 1 and 2. Comparison of image quantification results for absolute conductivity images at 640 Hz
(Cond-LF) and 1.2 MHz (Cond-HF), and fraction images from indirect method (Frac-I) and direct method (Frac): (d) position 1, (e) position 2.

optimized independently for each frequency and then again for
computing the fractions.

F. Comparison With Weighted Frequency-Difference
Conductivity Imaging

The weighted frequency-difference (WFD) algorithm
uses a weighted difference in boundary voltages between
two frequencies and a linear method to recon-
struct a weighted conductivity difference , where

. WFD conductivity im-
ages were reconstructed from the tank data for each frequency
and compared to fraction images [Fig. 7(a) and (b)]. The lowest
frequency ( ) was used as a reference and the
reconstruction was performed using generalized tSVD and
MRF regularization [22]. The image quantification results
[Fig. 7(c) and (d)] are comparable to fraction imaging in this
case.

G. Spectral Constraints Method for Nonlinear Case

Application of the weighted frequency-difference algorithm
is limited by the following assumptions:
1) on a large background area and on the
boundary;

2) on a small anomaly.
Furthermore, use of a linear reconstruction scheme requires the
added assumption that linear changes in conductivity result in
linear changes in boundary voltages. In the case of the phantom
experiment these assumptions are valid because the object con-
sists in a small, low-contrast perturbation immersed in a large
homogeneous background.
In order to investigate further application of WFD and our

fraction method we simulated two conductivity distributions
that violate the assumptions of WFD [Fig. 8(a) and (b)]. As
previously, the measured spectral values of the saline-carrot
and potato samples were used to simulate boundary voltage
measurements, and 0.1% white Gaussian noise was added the
data. The lowest frequency (640 Hz) was used as a reference.
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Fig. 7. Phantom WFD conductivity images for each measurement frequency: (a) position 1 and (b) position 2. Comparison of image quantification results for
WFD conductivity images at 640 Hz (Cond-LF), 128 kHz (Cond-MF), and 1.2 MHz (Cond-HF), and fraction image (Frac): (c) position 1 and (d) position 2.

Fraction and WFD conductivity images were reconstructed
[Fig. 8(c)–(e)]. The results show that our fraction method can
produce significantly better images than WFD in the case that
the assumptions of WFD are violated.

H. Multiple Tissue Case

The fraction reconstruction method was applied to a nu-
merical phantom with four tissues. The same mesh, electrode
positions, measurement protocol and frequencies were used
as in the previous cases. The background was set to the
conductivity values of saline-carrot sampled previously. The
conductivity values of the potato sample were used to sim-
ulate a cylindrical perturbation of radius 2.2 cm and length
10 cm in position (0.87 cm 4.92 cm 0 cm). The conductivities
of banana and cucumber samples were measured with an
impedance analyzer using the method and instrumentation
described in Section III-A [Fig. 9(a)]. These values were
used to simulate two further perturbations of the same size in
( cm cm 0 cm) (banana) and (3.83 cm cm
0 cm) (cucumber). The boundary voltages were computed, and

0.1% proportional white noise was added to the absolute values.
Fraction images were reconstructed for each tissue [Fig. 9(c)]
using the proposed method. The regularization parameter was
chosen by visual inspection, and the number of iterations
was set to 10. The algorithm was successful in differentiating
between the tissues, and returning high constrast. The -norm
error of the solution, defined by (20), is , which
is approximately double the error found in the 2 tissue case
(Fig. 3 and Section III-C).

I. Approximation Error Evaluation

A simulation study was performed to investigate the approx-
imation introduced by the fraction model in representing the
conductivity of an object. A sphere was simulated using a fine
tetrahedral mesh of diameter 10 cm with 130,144 tetrahedral el-
ements [Fig. 10(a)]. A conductivity distribution was drawn
from the binomial distribution , where

and are approximately the conductivities of
saline–carrot mixture and potato at 10 kHz.
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Fig. 8. Simulation model, and fraction andWFD conductivity images: (a) model of position A, (b) model of position B, (c) perturbation fraction images of position
A and B, (d) WFD conductivity image of position A, (e) WFD conductivity image of position B.

A conforming mesh with 16 268 ( ) elements
[Fig. 10(b)] was used to define a second conductivity distribu-
tion . The two meshes were chosen so that each tetrahedra of
the coarse mesh would contain eight tetrahedra of the fine mesh,
and each surface triangle of the coarse mesh would contain four
triangles of the fine mesh. The conductivity of each element of
the coarse mesh was obtained via linear combination of the cor-
responding elements of the fine mesh using the fraction model.
Finally, the values were distributed on the fine mesh to gen-
erate a third conductivity distribution .
The boundary conditions were set by simulating two elec-

trodes in polar position. The electrode shape was chosen in order
to maintain the same electrode area in the coarse and fine mesh.
The radius of the circle circumscribing each electrode was 1 cm.
We generated a current of peak amplitude one elec-
trode, and the other was used as ground. The electrode contact
impedance was set at 1 and the complete electrode model
was employed.

The boundary voltages , were generated, and was
obtained from the conductivity distributions defined above. The
total modelling error between the repre-
sentations of and , and the discretization error

between the representations of and were con-
sidered. In order to evaluate the error introduced by the fraction
model in estimating , the percentile difference between the
total and discretization error was considered

(22)

The random distribution was drawn and the fraction error
was calculated 100 times. The procedure was repeated after re-
ducing the proportion of mixed elements in the coarse mesh
from 100% to 50% and 10% [Fig. 10(c)]. In order to achieve
this, the values of the correct proportion of elements of the fine
mesh were assigned at random and the remaining were consid-



MALONE et al.: MULTIFREQUENCY ELECTRICAL IMPEDANCE TOMOGRAPHY USING SPECTRAL CONSTRAINTS 349

Fig. 9. Four-tissue case model and reconstruction: (a) conductivity values of carrot-saline, potato, banana and cucumber obtained from sample measurements,
(b) numerical phantom model, scale is cm (c) reconstructed fraction images and profile plots at cm (1), cm (2), and cm (3).

Fig. 10. Approximation error evaluation model and results: (a) coarse mesh, 16 268 elements; (b) fine mesh, 130 144 elements; (c) mean approximation error
introduced by the fraction model ( ), the FEM ( ) and both methods ( ) in estimating boundary voltages for 10%, 50%, and 100% mixed
elements in a coarse mesh.

ered in homogeneous groups of 8, each corresponding to an el-
ement of the coarse mesh.
In this example the approximation error given by the fraction

model is significantly smaller than that introduced by the coars-
ening of the mesh. Furthermore, the error is present only in the
representation of mixed elements and thus depends on the pro-
portion of mixed-to-homogeneous elements. If tissues occupy
a distinct area of the image and mixed elements are limited to
those lying across the boundaries, the approximation error is
small. If a large area is occupied by a mixture of tissues, the
approximation error can be reduced by modelling the mixture
rather than the individual tissues.

IV. CONCLUSION

We have formalized, validated and applied a nonlinear frac-
tion reconstruction method for performing multifrequency EIT
using spectral constraints. We have investigated the robustness
of our method to errors in the assumed spectra and found that,
in the case examined, the method is resistant to a small amount
of uncertainty. We have shown, using phantom data, that the
proposed method can result in improved image quality when
compared to absolute and weighted frequency-difference con-
ductivity imaging. The direct use of multifrequency data has
proved more robust than fitting multifrequency conductivity
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images. We have shown using simulated data that the proposed
method is superior to weighted frequency-difference imaging
when the assumptions of the latter are violated. We have ap-
plied our method to a numerical phantom with four tissues and
shown that it is possible to distinguish between multiple tis-
sues and accurately reconstruct the fraction image of each one.
These results suggest that fraction imaging may be suitable for
producing one-off clinical diagnostic images using EIT.
The advantages of using spectral constraints in multifre-

quency EIT are twofold. First, the choice to reconstruct the
fraction values, which are frequency independent, allows for
the direct and simultaneous use of all multifrequency data.
The dimensionality of the problem depends on the number of
elements and tissues, and not on the number of frequencies.
Therefore it is preferable to use data acquired at all mea-
surement frequencies. As long as the number of frequencies
is larger than the number of tissues, implementation of the
fraction method increases the number of constraints in the
reconstruction and results in a reduction in the degrees of
freedom of the problem. Secondly, knowledge of the tissue
spectra allows for the use of difference data in the objective
function, thus resulting in the subtraction of modelling and
frequency independent instrumentation errors in a nonlinear
reconstruction scheme. In conductivity imaging this is not pos-
sible because it would require simultaneous estimation of the
measurement and reference conductivities, thus increasing the
degrees of freedom of the problem. The fraction images could
be improved by modelling the change in contact impedance
over frequencies. This would result in a further reduction of the
edge artefact.
The fraction reconstruction method requires prior knowledge

of the tissues’ impedance spectra. These can be readily obtained
from the literature, or estimated empirically. Accurate model-
ling of biological tissues is crucial for clinical applications. The
number of tissue types could be inferred by iteratively ap-
plying the algorithm with increasing values of until a crite-
rion is reached (e.g., no sharp increase in model likelihood). It
would be preferable to model all possible or expected distinct
tissues, so that if is the actual number of tissues, . The
reconstructed fraction values of the tissues that are not present
would then be zero. However, a reduction in image quality is
to be expected if . We aim in future studies to relax the
assumptions of the fraction model and allow for variability and
heterogeneity in the tissue spectra. This could be achieved by
using statistical methods to infer subject-specific deviations in
the spectral properties of the tissues from the boundary voltage
data, under certain constraints. Further studies are necessary to
determine how image quality varies with the number of tissues
and frequencies.
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