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Background: Finding reliable endophenotypes for psychosis could lead to an improved understanding
of aetiology, and provide useful alternative phenotypes for genetic association studies. Resting quantitative
electroencephalography (QEEG) activity has been shown to be heritable and reliable over time. However,
QEEG research in patients with psychosis has shown inconsistent and even contradictory findings, and studies
of at-risk populations are scarce. Hence, this study aimed to investigate whether resting QEEG activity represents
a candidate endophenotype for psychosis.
Method: QEEG activity at rest was compared in four frequency bands (delta, theta, alpha, and beta), between
chronic patients with psychosis (N = 48), first episode patients (N = 46), at-risk populations (“at risk mental
state”, N = 33; healthy relatives of patients, N = 45), and healthy controls (N = 107).
Results: Results showed that chronic patients had significantly increased resting QEEG amplitudes in delta and
theta frequencies compared to healthy controls. However,first episode patients and at-risk populations didnot dif-
fer from controls in these frequency bands. There were no group differences in alpha or beta frequency bands.

Conclusion: Since no abnormalities were found in first episode patients, ARMS, or healthy relatives, resting QEEG
activity in the frequency bands examined is unlikely to be related to genetic predisposition to psychosis. Rather
than endophenotypes, the low frequency abnormalities observed in chronic patients are probably related to
illness progression and/or to the long-term effects of treatments.
© 2014 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Although psychotic disorders are highly heritable (Cardno et al.,
1999; Lichtenstein et al., 2009; Rijsdijk et al., 2011; Fowler et al.,
2012) understanding their specific genetic causes has proven harder
than anticipated (Hardy et al., 2008). It is only recently that the first
genetic risk factors have been identified through large international
collaborative efforts; however, little is known about the role of the
associated loci (Ripke et al., 2011; Sklar et al., 2011; Rees et al., 2012;
Sullivan et al., 2012; Smoller et al., 2013). The use of endophenotypes,
which are heritable biological markers characterising the disease
(Gottesman and Gould, 2003), could lead to a better understanding of
the mechanisms through which variation in these genes leads to the
disease (Braff et al., 2007; Hall and Smoller, 2010; Glahn et al., 2012).
don, Mental Health Sciences
t, London, W1W 7EJ, United
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Electroencephalography (EEG) measures ongoing electrical brain
activity, and provides a possible basis for endophenotypes of brain
function associated with psychosis (Blackwood et al., 2001;
Sumich et al., 2006; Hall et al., 2011). Several such measures are
highly heritable (Tang et al., 2007; Zietsch et al., 2007; Boutros
et al., 2008) and some event-related potentials have been shown
to be promising endophenotypes for psychotic disorders (Bramon
et al., 2005; Schulze et al., 2008; Turetsky et al., 2008; Decoster
et al., 2012; Shaikh et al., 2013). This study focused on quantitative
EEG (QEEG) at rest, where psychiatric patients have shown abnor-
mal patterns of activity compared to healthy controls (Hughes and
John, 1999; Coburn et al., 2006; Boutros et al., 2008).

Relatively little research has been conducted on resting QEEG activity
in patientswith psychosis, especially in populations at-risk for the illness,
and results have been inconsistent and sometimes even contradictory
(Gross et al., 2006; Boutros et al., 2008). Nonetheless, psychotic patients
generally exhibit increased slow wave QEEG activity in the delta (1–
4 Hz) and theta (4–8 Hz) bands (Sponheim et al., 1994; Sponheim
et al., 2000; Winterer et al., 2001; Kirino, 2004; Harris et al., 2006;
ved.
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Begic et al., 2011; Hong et al., 2012), and decreased alpha (8–13 Hz) ac-
tivity (Sponheim et al., 2003; Harris et al., 2006; Begic et al., 2011). In
terms of resting beta (13–21 Hz) activity, results are inconsistent, with
studies reporting both decreased (John et al., 1994) and increased
(Wuebben and Winterer, 2001; Begic et al., 2011) activity, as well as
no abnormalities in patients with psychosis (Sponheim et al., 1994;
Winterer et al., 2001; Mientus et al., 2002; Hong et al., 2012). It is there-
fore unclear whether resting QEEG represents a useful endophenotype
for psychosis, which speaks to the need for further research in this area.

The aim of this studywas to investigate the role restingQEEG abnor-
malities play in the aetiology of psychosis, and whether it can provide
an endophenotype for the illness. Quantitative EEG amplitudes at rest
were compared across four frequency bands, between five groups;
chronic psychotic patients, first episode patients, individuals at-risk of
developing psychosis, unaffected relatives of patients, and healthy con-
trols. Psychosis was broadly defined, including patients with schizo-
phrenia, bipolar disorder (with a history of psychotic symptoms),
schizoaffective disorder, as well as other psychotic illnesses. Based on
past findings, it was hypothesised that amplitudes in delta and theta
frequency bands would be increased, and amplitude in the alpha band
would be reduced, in patients with psychosis as well as in populations
at risk, compared to healthy controls. In the beta frequency band, no
direction of abnormalities was predicted. Impairments were predicted
to be most severe in the patients.
2. Method and materials

2.1. Sample and clinical assessments

The total sample of 279 participants was recruited from the South
London and Maudsley NHS Foundation Trust (including “Outreach and
Support in South London” and the Lambeth Early Psychosis Intervention
service), as well as through collaboration with the charity Re-Think
(www.rethink.org), and advertisements in the local and nationalmedia.

All participants were clinically interviewed to confirm or exclude a
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV) (APA, 1994) diagnosis. The interview instruments used were
the Structured Clinical Interview for DSM Disorders (SCID) (First et al.,
1995) or the Schedule of Affective Disorders and Schizophrenia Lifetime
Version (SADS-L) (Endicott and Spitzer, 1978), and the Positive andNeg-
ative Syndrome Scale (PANSS) (Kay et al., 1987). Information regarding
psychiatric diagnoses of family members not directly assessed was col-
lected from the most reliable informant(s) with the Family Interview
for Genetic Studies (Maxwell, 1992). Additional informationwas collect-
ed from medical notes where available. Participants were excluded if
they had a diagnosis of alcohol or substance dependence in the 12
months preceding study entry, any neurological disorders, or head injury
with loss of consciousness for more than a few minutes.

The total sample included five groups. At the time of testing, chronic
patients (N = 48) had been ill for more than three years, and first
episode patients (N = 46) less than three years. The cut-off of 3 years
reflects the maximum amount of time our local Early Intervention Ser-
vice – where the first episode patients were recruited from – followed
up their patients. This is comparable to other early psychosis research
(Singh et al., 2011; Saleem et al., 2013). A full breakdown of the diagno-
ses in these two patient groups can be found in Table 1. Individuals with
an “at riskmental state” (ARMS, N = 33)were assessed using criteria in
the Comprehensive Assessment for At Risk Mental State (CAARMS)
(Yung et al., 2005; Morrison et al., 2006).

Healthy first-degree relatives of chronic patients (N = 45) had no
personal history of any psychosis spectrum illness. Healthy controls
(N = 107) had no personal or family history of any psychotic disorders.
Having a personal history of other non-psychotic psychiatric illnesses
did not constitute an exclusion criteria for relatives or controls, provided
they were well and not taking any psychotropic medication at the time
of testing and for the preceding 12 months. This was to avoid recruiting
biased control groups, unrepresentative of the local population.

After a complete description of the study, all participants gave their
written informed consent. The study was approved by the Research
Ethics Committee at the Institute of Psychiatry, King's College London.

2.2. EEG data acquisition

Resting EEG data was collected using either a 64-channel Synamps
or a 40-channel Nuamps amplifier and respectively 64 or 40 channel
quick caps with sintered silver/silver-chloride electrodes, placed
according to the International 10/20 system (Jasper, 1958). All data
was continuously digitised at 1000 Hz, with a 0–200 Hz band-pass
filter. Electrode impedances were kept below 5 kΩ (Bramon et al.,
2008; Shaikh et al., 2013).

For EEG data collected from 40 channels, unipolar electrodes placed
on the outer canthi of both eyes, and above and below the left eye
monitored eye movements. Linked ear lobes served as reference, and
FPZ was the ground (Frangou et al., 1997). For EEG data collected
using 64 channels, bipolar vertical and horizontal electro-oculographs
monitored eye movements. Bilateral mastoids served as reference, and
AFZ was the ground (Bramon et al., 2008; Shaikh et al., 2012).

EEG recordings were collected in a quiet roomwith participants sit-
ting down comfortably. They were asked to keep their eyes closed for
20 s and then open for 20 s, during a total of 5 min. Resting EEG data
collection was followed by other EEG procedures reported elsewhere
(e.g. Schulze et al., 2008; Shaikh et al., 2011; Dutt et al., 2012).

2.3. Data processing

Signal processing was conducted using Neuroscan 4.3 software
(www.neuroscan.com) and MATLAB (www.mathworks.co.uk). Se-
quential epochs of 2048 ms were created from the continuous EEG
files, separately for eyes-open and eyes-closed conditions. Automatic
artefact detection rejected sweeps with activity exceeding ±100 μV
(Reinhart et al., 2011). EEG amplitude (μV) was calculated using the
Fast Fourier Transformation using a Hanning window with 10% taper
length. Only the EEG segments required under eyes-closed conditions
were included in further statistical analyses — to suppress the effect of
ocular artefacts (Zimmermann et al., 2010; Lavoie et al., 2012). After
artefact rejection and exclusion of eyes open data, on average 101 s
remained per subject for analysis (mean = 101.20, SD = 29.33). This
did not differ between groups.

Amplitudewas analysed for four individual segments of the EEG spec-
trum; delta (1.95–3.90 Hz), theta (4.39–7.32 Hz), alpha (8.30–12.70 Hz),
and beta (13.20–21.00 Hz). These frequency bands are typical of similar
research (Boutros et al., 2008), except that we chose not to analyse
frequencies above 21 Hz. This was due to accumulating evidence that
frequencies above 21 Hz can still be substantially contaminated by
scalp electromyogram activity (EMG), even after rejection of large EMG
bursts (Whithamet al., 2007; Shackman et al., 2010; Nottage et al., 2013).

For data-reduction purposes (to minimize type I error), only the
three midline EEG channels, frontal (FZ), central (CZ), and parietal
(PZ), were chosen for statistical analysis (Harris et al., 2006).

2.4. Statistical analysis

Mixed effects linear regression models were used to examine EEG
amplitude, separately for each frequency band, with fixed effects of
clinical group and scalp site, and random effects of family and subject.
Hence, correlations between members of the same family were
modelled, to maintain correct type-1 error rates. The dependent vari-
able was EEG amplitude in μV at each of the four frequency bands
(delta, theta, alpha, and beta). The independent variables were partici-
pant group — a between-subjects variable with five levels (chronic
patients, first episode patients, ARMS, relatives, and controls), and
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Table 1
Sample demographics (N = 279).

Chronic patients First episode patients ARMS Relatives Controls

N (% of total sample) 48 (17.2%) 46 (16.5%) 33 (11.8%) 45 (16.1%) 107 (38.4%)
Age (mean years ± SD) 41.8 ± 11.3 25.0 ± 3.9 23.8 ± 4.0 48.8 ± 16.1 31.6 ± 13.3
Statistics (p value)a t = −4.6 (b0.001) t = 4.7 (b0.001) t = 5.4 (b0.001) t = −6.3 (b0.001)
Gender (% male, male/female) 64.6% (31/17) 69.6% (32/14) 60.6% (20/13) 44.4% (20/25) 51.4% (55/52)
Statistics (p value)a χ2 = 2.3 (0.16) χ2 = 4.3 (0.05) χ2 = 0.9 (0.43) χ2 = 0.6 (0.48)

Diagnoses (N, % of group)
Schizophrenia 33 (68.8%) 12 (26.1%) – – –

Schizoaffective disorder 8 (16.7%) 1 (2.2%) – – –

Brief psychotic disorder 1 (2.1%) – – – –

Schizophreniform psychosis – 26 (56.5%) – – –

Bipolar I Disorder 5 (10.4%) 4 (8.7%) – – –

Psychotic disorder NOS 1 (2.1%) 3 (6.5%) – – –

“At risk mental state”b – – 33 (100.0%) – –

Non-psychotic depressive illness (incl. MDD) – – 9 (27.3%)c 17 (37.8%) 7 (6.5%)
Anxiety disorder (incl. GAD) – – 3 (9.1%)c 5 (11.1%) –

Substance Abuse – – 4 (12.1%)c – 1 (0.1%)
Personality Disorder – – 2 (6.1%)c – –

No psychiatric illness – – – 23 (51.1%) 99 (92.5%)

Medication (N, % of group)d

No psychotropic medication 5 (10.4%) 6 (17.1%) 33 (100%) 45 (100%) 107 (100%)
Amisulpiride 5 (10.4%) 1 (2.9%) – – –

Aripiprazole 4 (8.3%) 5 (14.3%) – – –

Clozapine 7 (14.6%) – – – –

Flupentixol 4 (8.3%) – – – –

Olanzapine 14 (29.2%) 10 (28.6%) – – –

Quetiapine 3 (6.3%) 1 (2.9%) – – –

Risperidone 5 (10.4%) 11 (31.4%) – – –

Other antipsychotic 9 (18.8%) 1 (2.9%) – – –

Lithium or Sodium Valproate 9 (18.8%) 6 (17.1%) – – –

Antidepressant 17 (35.4) 4 (11.4%)
Years in education (M ± SD)e 12.9 ± 2.2 14.4 ± 2.9 14.1 ± 3.1 12.5 ± 2.2 14.4 ± 2.6

Ethnicity (N, % of group)
Caucasian 44 (91.7%) 8 (17.4%) 20 (60.6%) 43 (95.6%) 76 (71.0%)
African/Caribbean 2 (4.2%) 30 (65.2%) 8 (24.2%) 1 (2.2%) 25 (23.5%)
Other/Mixed 2 (4.2%) 8 (17.4%) 5 (15.2%) 1 (2.2%) 6 (5.6%)

EEG lab (N)
A (64 channels) – – 33 – 45
B (40 channels) 48 46 – 45 62

ARMS = At risk mental state; MDD = Major Depressive Disorder; GAD = Generalised Anxiety Disorder;
a 2-tailed t-tests for age and chi square tests for gender, each group compared against the control group;
b ARMS criteria: 67% attenuated psychotic symptoms, 10% brief limited intermittent psychotic symptoms (BLIPS), 10% BLIPS and attenuated symptoms, 3% genetic risk with a decline in

function, 10% genetic risk with a decline in function and attenuated symptoms;
c These individuals had a history of a non-psychotic illness in addition to an “at-risk mental state”;
d Data available for 76.1% of first episode group, percentage of 35 first episode patients with information available has been reported.
e Data available for 78.9% of the total sample.
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region — a within-subjects variable with three levels (FZ, CZ, and PZ).
Age and gender were controlled for (as nuisance regressors) in all
analyses. Since EEG datawere collected using twodifferent laboratories,
due to an upgrade of the EEG equipment, thiswas also controlled for; by
including a binary regressor in the analysis. The control group and FZ
were used as reference categories in all inferential tests.

A Bonferroni correction for four tests (delta, theta, alpha, and beta fre-
quency bands) was applied, with the significance threshold thus set to
p = 0.05/4 = 0.0125. Statistical analyses were performed using STATA
version 11.2 (www.stata.com) and SPSS version 17.1 (www.spss.com).

3. Results

3.1. Sample characteristics

Demographic data for the entire sample is provided in Table 1. T-
tests showed that each group differed significantly from the control
group in mean age, with the chronic patients and relatives being older
(both groups p b 0.001), and the first episodes and at-risk mental
state (ARMS) individuals being younger (p b 0.001) than controls. Chi
square tests indicated that there were significantly more males in the
first episode group in comparison to the control group (p = 0.05). No
other group differed in gender distribution compared to controls. To
control for any age or gender effects on the resting EEG, we included
these effects as covariates in all analyses. As described in Table 1, the
majority of chronic andfirst episode patientswere taking antipsychotics
at the time of testing, whereas the relatives, ARMS and controls were
free of any psychotropic medication at the time of testing.

Themean EEG amplitudes (μV) for each group, in the four frequency
bands, are shown in Table 2. All EEG outcome measures were log-
transformed (log10 + 1) to ensure normality of random effects.
Correlations between EEG amplitude in the four frequency bands and
the three scalp sites were all significant, with correlation coefficients
ranging between 0.21 and 0.99 (see Supplementary material). Never-
theless, we adjusted all our analyses for multiple testing (4 tests).

Most participants (first episodes, ARMS, and controls) were recruited
individually, but the chronic patients and their relatives were recruited
as part of a family study. Of the 279 participants, 174 (62.37%) were
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Table 2
Average resting EEG amplitude across FZ, CZ and PZ (micro volts ± standard deviations) for all participant groups and frequency bands, uncorrected for covariates.

Chronic patients First episode patients ARMS Relatives Controls

Delta 9.03 ± 2.63 8.08 ± 2.34 8.29 ± 2.05 7.17 ± 1.65 8.00 ± 1.94
Theta 12.10 ± 5.28 9.57 ± 3.72 9.38 ± 3.29 8.49 ± 3.24 8.95 ± 2.81
Alpha 8.57 ± 3.04 8.78 ± 4.44 8.60 ± 5.06 7.51 ± 3.84 8.95 ± 4.13
Beta 11.73 ± 3.49 9.21 ± 3.30 10.23 ± 3.65 11.23 ± 5.46 10.56 ± 3.35

ARMS = At risk mental state
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singletons, 72 (25.81%) were part of families with two members in the
study, 21 (7.53%) were in three-person families, and 12 (4.30%) were
part of families with four members participating.
3.2. Mixed effects linear regression

Four mixed effects linear regression models were analysed. In the
delta band, chronic patients had on average 0.208 μV greater amplitude
than controls, which was statistically significant (p b 0.001; Est. diff:
0.082 log μV; 95% CI 0.046–0.118 log μV). No other group differed
significantly from the control group in resting delta EEG amplitude.

In the theta frequency band chronic patients had significantly
greater resting amplitude compared to controls (p b 0.001; Est. diff:
0.136 log μV; 95% CI 0.083–0.190 log μV), with a 0.368 μV average
increase in amplitude. No other group differed significantly from the
controls in resting theta activity

In the alpha and beta frequency bands, the control group did not
differ significantly from any other group in resting EEG amplitude.

Fig. 1 shows EEG amplitudes (μV) across the five groups, for all four
frequency bands. Full details of these results, including main effects of
covariates, can be found in the Supplementary material. Importantly,
the effect of the two different EEG laboratories used for data collection
was not significant in any frequency band, justifying pooling the two
datasets in one analysis.

Since a broad definition of psychosis was used in this study, the
analyses were repeated using a narrow definition of schizophrenia
and schizophreniform psychosis, to investigate whether this would
affect the results. We excluded all patients with a diagnosis of
schizoaffective disorder, brief psychotic disorder, bipolar I disorder,
and psychotic disorder not otherwise specified (15 chronic and 8 first
Fig. 1. Resting EEG amplitude (μV) in the four frequency bands
episode patients), as well as their relatives (14). These analyses led to
results very similar to those using the full dataset, and have not been
reported further.

To further investigate potential differences in resting EEG between
the groups, we repeated the 4 regression models post-hoc, using the
chronic patient group as the reference category. These results are
presented in the Supplementary material for the interested reader.
4. Discussion

The aim of the current study was to compare quantitative EEG
(QEEG) activity at rest in four frequency bands, in patients with psycho-
sis, two populations at-risk of the disease, and healthy controls, to inves-
tigate whether QEEG could be used as possible endophenotypes for the
illness. The main significant findings are summarised in Table 3.

Our a-priori hypotheses were partly supported; chronic patients
showed significantly increased resting delta and theta activity com-
pared to healthy controls. However, first episode patients, individuals
with an at-risk mental state (ARMS), and relatives of chronic patients
did not differ from controls in these frequencies. Furthermore, there
were no significant group differences in resting alpha or beta QEEG
activity.

Increased slow wave resting QEEG activity in delta and theta bands
in chronic patients with psychosis appears to be fairly well replicated
across studies (Sponheim et al., 1994; Omori et al., 1995; Sponheim
et al., 2000; Winterer et al., 2001; Kirino, 2004; Harris et al., 2006;
Begic et al., 2011; Hong et al., 2012), and supported by our current
results. However, our study did not find any significant differences in
delta or theta resting activity between the control group and first
episode patients or at-risk populations (including both clinically at-
and the five participant groups, uncorrected for covariates.



Table 3
Summary of main significant findings, after correction for multiple testing (p = 0.05/4 = 0.0125).

Delta frequency band Theta frequency band Alpha frequency band Beta frequency band
1.90–3.90 Hz 4.39–7.32 Hz 8.30–12.70 Hz 13.20–21.00 Hz

Chronic patients N controls Chronic patients N controls No significant group differences No significant group differences
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risk and genetically predisposed groups). Previous studies on such
groups are limited, with inconclusive findings. Abnormalities similar
to chronic patients have been observed in first episode patients
(Clementz et al., 1994; Sponheim et al., 1994), ARMS (Gschwandtner
et al., 2009) and healthy controls (Alfimova and Uvarova, 2003), but
several studies have also failed to show abnormalities in these popula-
tions (Winterer et al., 2001; Wuebben and Winterer, 2001; Harris
et al., 2006). John et al. (1994) found, similarly to our results, that chron-
ic but not first episode schizophrenic patients had increased delta and
theta resting activity.

In comparison to the slower frequencies, less research has been
conducted on resting alpha QEEG activity in psychosis. As in our study,
Mientus et al. (2002) reported no evidence of alpha impairments in
patients. However, several previous studies on resting alpha have
found a decrease in activity in psychotic patients compared to healthy
controls (Omori et al., 1995; Sponheim et al., 2003; Harris et al., 2006;
Begic et al., 2011).

In the beta frequency band, we did not find any significant group dif-
ferences in resting QEEG activity. However, a slight increase of activity
was observed in chronic patients compared to controls (not reaching sig-
nificance after correction for multiple testing), and post-hoc comparison
between chronic and first episode patients revealed an increase of beta
activity in the former group at a trend level (see Supplementary materi-
al). Together this might indicate an abnormality in chronic psychotic
patients, although more research is needed to confirm if this is the
case. The literature on resting beta activity in psychosis is inconsistent,
with several studies reporting no resting beta abnormalities in psychotic
patients (Sponheim et al., 1994; Winterer et al., 2001; Mientus et al.,
2002; Hong et al., 2012), although both decreased (John et al., 1994)
and increased (Wuebben andWinterer, 2001; Begic et al., 2011) activity
has also been observed. Finally, our study did not find any differences in
beta amplitude between controls and first episode patients or at-risk
populations. Past research on such populations has also largely failed to
find significant impairments in these groups (Sponheim et al., 1994;
Winterer et al., 2001; Harris et al., 2006; Hong et al., 2012).

Taken together, the current results did not show any statistically
significant differences in resting QEEG activity of any frequency band
between controls and first episode patients or at-risk populations,
includingARMS and unaffected relatives of psychotic patients. This indi-
cates, as also argued byWinterer et al. (2001), that low frequency QEEG
abnormalities seen in chronic psychotic patients are likely related to the
illness process, or to long-term effects of treatments, rather than to
genetic risk for the disorder. Hence, resting QEEG activity (of the four
frequency bands examined) does not appear to be promising candidate
endophenotypes for genetic research in psychosis.

Nevertheless, low frequency restingQEEG abnormalities, in thedelta
and theta bands, were observed in chronic psychotic patients compared
to healthy controls. This could be a useful biomarker in non-genetic
research, perhaps investigating chronicity of the illness or cognitive
deficits characterising psychosis, which are often associated with an
enduring illness (Hyman and Fenton, 2003; Insel, 2010), or research
into prediction of medication-responses. More research is needed to
investigate this.

From an aetiological perspective, our findings of increased low-
frequency activity (and previous reports of similar abnormalities) are
consistent with recent theoretical treatments of psychosis as false per-
ceptual inference (Fletcher and Frith, 2009; Adams et al., 2013). In this
formulation, acute psychotic symptoms are regarded as a compensation
for a failure of sensory attenuation. In other words, psychotic symptoms
arise due to assigning too much salience or precision to high level
representations to compensate for precise sensory (low level) inputs
(c.f., aberrant salience; Howes andKapur, 2009). In this setting, negative
symptoms or chronic states are seen as a decompensation, with a rela-
tive loss of precision at higher levels of the neuronal hierarchy. In this
context, precision corresponds to the post-synaptic gain of pyramidal
cells reporting prediction errors in hierarchical predictive coding
(Bastos Andre et al., 2012; Adams et al., 2013). This is important because
a decrease in postsynaptic gain or efficacy leads to a preponderance of
lower frequencies relative to higher frequencies in endogenous or rest-
ing state activity (Kilner et al., 2005). In short, our chronic groupmay be
evidencing reduced synaptic gain at higher hierarchical levels and a
shift in the characteristic frequencies of neuronal fluctuations to lower
frequencies. Whether this is a primary aetiological factor, a characteris-
tic part of the disease process, or a response to medication remains an
open question.

Importantly, since antipsychotic drugs cross the blood–brain barrier
and influence many parameters of brain function (e.g. Joutsiniemi et al.,
2001; Knott et al., 2001), it is possible that thesemedications contribute
or lead to resting QEEG abnormalities observed in psychotic patients.
This could be an important confounder in our current findings, suggest-
ing that true illness-related effects on resting EEG are nuanced by med-
ication. However, it has also been argued that antipsychotics are
unlikely to account for QEEG abnormalities seen in chronic patients,
since such alterations have also been found in unmedicated patients
(Omori et al., 1995; Merrin and Floyd, 1996; Wuebben and Winterer,
2001; Boutros et al., 2008). Since both the chronic and the first episode
patient groups were medicated in the current sample, medication
effects alone do not appear to fully explain why no abnormalities
were observed in the latter group. Nevertheless, the effects of antipsy-
chotic drugs on resting QEEG activity needs further investigation in lon-
gitudinal studies, and it is possible that long-term effects of treatment is
a confounding factor when interpreting our current results.

Important considerations of statistical power need to be acknowl-
edged. Calculations of effect sizes are hampered by the few studies
available looking at populations at-risk of developing psychosis. Deficits
in such populations are likely to be subtler than those in chronic
patients. This has been shown to be true for, for example, the P300
event related potential (ERP) peak amplitude (Bramon et al., 2005)
and the error-related negativity ERP (Simmonite et al., 2012), and elec-
trophysiologicalmeasures of cortical inhibition (Hasan et al., 2012). Fur-
thermore, only a minority of individuals with an at-risk mental state
will go on to develop psychosis (Simon et al., 2011; Fusar-Poli et al.,
2012; Morrison et al., 2012), making abnormalities in this population
difficult to detect. This was clearly observed in a study by Bodatsch
et al. (2011) where only at-risk individuals who later converted to
psychosis showed EEG abnormalities compared to healthy controls,
whereas, similarly to ourfindings, the overall at-risk groupdid not differ
from controls. Hence, it may be assumed that effect sizes for possible
resting EEG abnormalities in at-risk populations are smaller than
those in patients. This, in turn, suggests that the current study might
have been underpowered to detect true yet subtle differences between
healthy controls and at-risk groups.

In conclusion, we set out to characterise resting EEG oscillations
(QEEG) in psychosis and populations at risk for this disease and partic-
ularly, whether such measures could act as candidate endophenotypes
for the illness. Our results provide evidence that chronic psychotic
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patients exhibit resting QEEG abnormalities in low frequencies. Howev-
er, no abnormalities were observed in first episode patients or at-risk
populations, suggesting that resting QEEG activity is not likely related
to genetic risk for the illness. Instead, abnormalities observed in chronic
patients may be related to the illness process, or to long-term effects of
treatment. Hence, results from this study indicate that resting QEEG
activity is not an appropriate candidate endophenotype for genetic
research in psychosis, although low frequency activity could be a poten-
tial biomarker for non-genetic research, for example as prognostic or
medication-response predictors.
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