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Abstract

Bicycle sharing systems exist in hundreds of cities around the world, with the aim of providing a form of public transport
with the associated health and environmental benefits of cycling without the burden of private ownership and
maintenance. Five cities have provided research data on the journeys (start and end time and location) taking place in their
bicycle sharing system. In this paper, we employ visualization, descriptive statistics and spatial and network analysis tools to
explore system usage in these cities, using techniques to investigate features specific to the unique geographies of each,
and uncovering similarities between different systems. Journey displacement analysis demonstrates similar journey
distances across the cities sampled, and the (out)strength rank curve for the top 50 stands in each city displays a similar
scaling law for each. Community detection in the derived network can identify local pockets of use, and spatial network
corrections provide the opportunity for insight above and beyond proximity/popularity correlations predicted by simple
spatial interaction models.
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Introduction

The role of the Smart City is increasingly seen as being one

which incorporates technology, sustainability and quality of life,

and the Bike Sharing concept fits neatly under that rubric [1],

combining, as it does, low-carbon and low–pollution transporta-

tion, sensing technologies, shared societal resources and public

health benefits (especially with respect to such key issues as obesity

[2]). In this sense the humble bicycle cuts across a number of key

issues of the 21st Century City, especially when seen through the

Smart Cities lens.

Bicycle sharing offers a low-cost and healthy public transport

option for cities across the world, typically allowing users to take

special bicycles from automated docking points grouped together

as a ‘‘stand’’ or ‘‘docking station’’ in a particular location. The user

can then return them to empty docking points at other stands in

another location in the same city. There are approximately 450

systems worldwide [3], many of which provide near-real-time data

of stand occupation, but only a few of which have released origin-

destination (journey) information.

The literature of bicycle sharing systems from around the world

takes a number of different approaches to the rich datasets

available. [4] explores a subset of the London system’s journey

data to analyse spatial ‘‘tides’’ across the city. [5] uses stand

occupation data in London to cluster similar stands by temporal

behaviour, identifying ‘‘railway station-like’’ and ‘‘park-like’’ nodes

in the system; however this work is based on stand occupation

data, and does not consider flows. Stand occupation is captured

every minute, so at busy times there is a reasonable likelihood that

several bikes arrive and several leave, giving only information

about the net change of occupation. Previous work by [6] has

focused on network analysis and community detection in the Lyon

bicycle sharing system, using spatio-temporal characteristics to

cluster the network into communities. We would argue, however,

that in time-slicing journey data one needs to be extremely

cautious about converting journeys into (flow) edges. These authors

circumvent the problem by dealing with flows in terms of numbers of

bikes leaving origin i towards destination j at timeslice k. This does not

represent the number of bikes on a route at a particular time (as

these journeys take a finite length of time to complete), but

simplifies the process of converting journeys into edge weights.

Network Theory is a branch of empirical science that has

evolved from Graph Theory – in short, it examines systems in

which nodes (or vertices) are connected to one another in some way

via edges. This breadth of definition has seen it applied to systems as

diverse as social networks, co-authorship networks, epidemiolog-

ical patterns, the internet, links in the world wide web, and many

other systems – the review article by Newman [7] and, for

technical detail, his textbook [8] are excellent places to start for a

interested reader. Early work focused on time-independent,

unweighted, undirected (links are reciprocal and not directed),

and more recent work has introduced techniques to deal with

time-dependence, weighting, direction and spatial factors. Net-

work theory produces a number of results around identifying

important nodes and edges, examining the scaling of the

importance of these features, and examining any subcommunities

within the network. For our study we were interested in turning

the flow of bikes into a series of networks; by considering all

journeys over the period, we created networks where the nodes

were the bike stand locations, and the edges were the flows in each
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direction between these stands, weighted by the number of

journeys carried out on that edge. Work by [9] on shipping and

[10] on subway system topologies show ways in which general

network representations can be abstracted from the flows and

geospatial structures of specific transport networks. The use of

network methods to understand spatial systems is a relatively new

phenomena –[11]’s work on telecommunications networks estab-

lished practical measures such as mechanisms for creating spatial

null models that real data can be tested against. The motivation

behind this spatial scaling is to derive analyses which move beyond

Waldo Tobler’s ‘‘first law of geography’’ [12]: ‘‘Everything is

related to everything else, but near things are more related to each

other’’. There is the potential for network analyses which neglect

spatial embedding to simply highlight proximity effects.

This paper describes a variety of techniques to use network and

spatial analysis to understand the flows within bicycle sharing

schemes, and compare the activity of five cities. We describe our

data sources and preliminary methods to visualise this data, and

cover information derived from aggregate data, using a simple

spatial model to counter variations in activity density across stands.

Creating flow networks allows us to examine network parameters

such as strength distribution (the total flows of bikes in, out or

through a node), moving on to simple community detection using

cluster analysis of outflows. Finally, we describe how basic spatial

models can be used to highlight popular routes and spatial

community detection can identify networks which are linked more

strongly than spatial proximity and stand activity would suggest.

There is a rich range of literature on community detection in

networks, for example [13] or [14], and we have applied one of the

simpler methods; computationally, a range of approaches are

possible because the network is relatively small (no more than 400

nodes). However, these networks do not appear to be sparse in the

traditional sense, and this might require different approaches from

those that network analysis traditionally takes. Because the

networks are based on individual journeys, the raw network is

spatial, weighted, directed, time-dependent (in terms of time of

day, week and year), and contains self-loops as well as being non-

sparse. This means that as a dataset it is amenable to a wide range

of analyses by aggregation and simplification. As commented,

simplification is necessary in at the very least setting ‘‘self-

journeys’’ or ‘‘loops’’ (single-edges journeys starting and ending at

the same location) to zero for some analyses, notably spatial

networks and community detection.

Materials and Methods

Data Sources
Datasets from five cities (London, UK; Boston, MA; Denver,

CO; Minneapolis, MN; and Washington, D.C.) were filtered to

cover the same range of months (April-October inclusive) in order

to sample corresponding seasonal effects. Of course, the climate of

each city is distinct and different, but each resides in the northern

hemisphere so summer occurs at approximately the same time of

year. Some of the schemes (Denver, Minneapolis and Boston) have

closures over winter months, so this and data availability limits our

reporting period. All data are taken from 2011, with the exception

of Boston, which is drawn from 2012 data (which covers March

2012 – September 2012 inclusive) supplemented with October

2011 data.

Table 1 displays summary statistics about the datasets used. In

terms of total journeys and stands, London is by far the most

active; London also has a smaller average minimum distance

between stands, which will tend to influence the proximity statistics T
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below. Each scheme has 213 days of data and over 150,000

journeys.

Visualisation
As part of the initial data exploration, we explicitly visualised

bike journeys across the cities on particular days. The purpose of

this was both to visualise the data as an output in itself, and to

begin to identify any strong patterns in the large volumes of source

data. Each data point included the origin and destination stand

IDs, as well as the start and end times of the journey, and the ID of

the bike used by the journey. However, because the bikes

themselves do not have location/GPS sensors, precise route

information is not available.

To create the theoretical cycle routes between each stand, a

software package, Routino, was used, with an OpenStreetMap

extract of each built-up area, including dedicated cycle infrastruc-

ture as well as the road network and path links. Routino uses a

configuration profile for each user type. Cyclists will avoid

motorways and move on other routes at a constant speed of

20 km/h, except paths and steps where they will move at 5 km/h.

Road desirability is factored in, with each road type given a score –

trunk roads being given a score of 35%, primary roads 80%, and

the smallest roads 95%. Cycleways are given a score of 100% to

reflect their attractiveness to bicycle sharing system users. Road

routing information, such as one-way streets and turn restrictions,

are also applied.

Routino generates a series of latitude/longitude waypoints for

the bike’s journeys, allowing multi-stage linear interpolation to

create a continuous journey across the city. Individual bikes are

drawn as small ellipses at their current position throughout their

journeys.

A screenshot from London [Video S1 in Appendix 3 of File S1]

is show in Figure 1; similar plots were generated for Boston [Video

S2 in Appendix 3 of File S1] and Minneapolis [Video S3 in

Appendix 3 of File S1]. Here, a semi-opaque background wipe

retains ‘‘trails’’ created by each bicycle, providing a sense of

continuity and tracing out the street networks. Self-journeys were

represented by traces which orbited the origin/destination stand

three times over the journey duration, and then disappeared.

These visualisations can be animated for a specific day, or

aggregated over multiple days to show a ‘‘Monte Carlo-like’’

picture of the system behaviour e.g. on weekdays [Video S4 in

Appendix 3 of File S1] (see also [15] for a complementary

visualisation tool).

Static networks
We generated networks for each system, by counting the

number of bikes for each of the source-destination pairs over the

reporting period. We further split the data into weekdays and

weekends, where we expected different users and patterns due to

working (commuter) and leisure users (which we expected to be

more dominant over weekends). In each case, this aggregation

served to generate a matrix of source-destination flow volumes –

we label the origins with the letter i and the destinations with j; it is

notable that this typically contained strong ‘‘diagonal’’ elements

(the ‘‘self-journeys’’ mentioned previously, which start and end at

the same location). This matrix can be thought of a lookup table of

total flows of bikes from origin i to destination j, and is a

mathematical description of a network in the same way that our

visualisations provide a spatial or geometrical description of the

networks. We will label this object as having N nodes (columns/

rows).

These datasets are rich and complex, and can be disaggregated

by time of day, season, weekday/weekend, and other factors as

well as space. Figure 2 shows, by way of example, the seasonal

variations in the duration of journeys in Washington D.C., in

terms of both raw journeys (Figure 2a) and data normalized by

area under curve (Figure 2b). The winter months show a

distribution of slightly shorter journeys, and fewer journeys as a

whole. The initial analyses we carry out in this paper sum data

over a number of months in order to create an aggregate picture of

the network; analyzing individual networks drawn from particular

months and/or times of day may illuminate further patterns.

Researchers at London’s City University [16] considered a

series of techniques for visualizing these complex systems of flow

data, including pseudomatrices, edge bundling, Kernel Density

Estimation-type methods and Bezier curves. We adopted a similar

method to their Bezier curve techniques, without the explicit size

ordering, and using using opacity (alpha - the opposite of

‘‘transparency’’) as the main weight variable, scaled linearly from

0 to 175 (out of 255) with the edge weight relative to the

maximum. This creates a visual grammar where journeys ‘‘start’’

in a straight line and curve into their destination. Representing

these very complex datasets across a variety of cities with a variety

of edge weight scaling laws is involved, and a detailed discussion is

beyond the scope of this paper; all of the static visualizations of

network utilize this Bezier curve formalism to denote direction

(Subfigures a and b in Figures 3–12) A circle around a stand

denotes a self-journey; in some networks, these were the most

popular routes.

Spatial dependence - proximity
The routing generated for the animated visualisations was not

used for analysis purposes, as it was judged that it builds in a set of

assumptions about route choice, and while reasonable, it infers

more information than is available. While a crude measure,

Euclidean/Great Circle distance is at least free from these

additional assumptions. Self-journeys are problematic in this

formulation, as they have zero net displacement but indeterminate

journey length. This is not ameliorated by applying routing

mechanisms, when there are an astronomical number of

redundant paths for a closed loop.

We examined the typical journey distances for the cities in

question. Aggregating the journey frequency by distance travelled

and then dividing by the total number of journeys yields an initial

estimate of journey frequency as a function of proximity (weekday

and weekend data are shown in Figures 13a and 13b respectively).

However, bike stands are not homogeneously distributed through

space, and as such the above distribution function might be skewed

Figure 1. Screenshot from Bike flows animation for December
25th 2010; routing found using Routino based on Open
StreetMap Data (see text).
doi:10.1371/journal.pone.0074685.g001
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by a route which moves between a source with a lot of bikes

leaving and a destination with a lot of bikes arriving. We might

expect that, given a maximum entropy allocation of journeys (i.e.

one that assumes as little prior knowledge as possible), the route

between these two locations would be well-used, and that this

would lead to a commensurate over-representation of this

separation in Figure 13(a-b). If instead, we wish to probe an

individual’s propensity to travel a location of certain proximity

(assuming a constant distance decay function which to first order is

independent of absolute start/end location or time), we need to

decompose the probability. We can define a spatial (proximity)

model of the flows Y(s) such that

1) Y
(s)
ij ~OiDjf (dij)

where Yij
(s) is the predicted weight (i.e. number of journeys)

between origin i and destination j, and f(d) is some displacement-

decay function representing people’s preference to travel to some

Figure 2. Seasonal dependence of journey duration in Washington, D.C. a) Total journeys by month b) total journeys by month, normalized
by area under curve.
doi:10.1371/journal.pone.0074685.g002

Figure 3. Network and cluster maps for London. Networks are generated from the total number of source-destination flows over the reporting
period, split into weekdays and weekends. Community detection is carried out to find sub-networks which are well-linked, as described in the text. a)
Weekday network b) weekend network c) community detection of weekday network d) community detection of weekend network. Red dots are
stands which show no flows in the reporting period, typically because they were not active.
doi:10.1371/journal.pone.0074685.g003

Spatial Networks in Bicycle Sharing Systems
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destination displacement d away (note that f(d) is not a probability

– if we take Yij
(s) to be in units of ‘‘bikes travelling on a route’’, f(d)

will take 1/bikes as its unit). Oi and Dj are defined by

2) Oi~
XN

j~1

Yij

and

3) Dj~
XN

i

Yij

which in spatial interaction modeling can be referred to as the

marginal sums, or in network theory, the out- and in-strength of the

node respectively. This is analogous to a naive ‘‘gravity’’ model,

and a more sophisticated approach to this problem would be to

construct a maximum-entropy model and introduce additional

balancing factors into (1). However, given an unknown form of the

spatial function f(d), Figure 13(a-b) suggests that it may have a

more complex form than an exponential or power-law decay. We

instead took an approach favoured by[11], constructing and

empirical distance-decay function f(d):

4) Y (s)(d)~f (d)
XN

i,j,fdvdijvdzDd)

OiDj~f (d)r(d)

Where Y(s)(d) is the aggregated modeled flows for all journeys

associated with displacement between d and d+ Dd (where Dd is

the chosen bin size). Rearranging (4) yields the distance decay

function f(d), shown in 13(c-d) (for weekdays and weekends

respectively), normalized by area under curve in order to compare

different cities.

Community detection
Community detection tools allow the identification of network

subregions within the bikeshare flow networks which are linked to

one another more strongly than nodes from other subregions. One

of the simplest methods in terms of implementation is the cluster-

algorithm method [14], whereby the flow matrix is treated as a

series of column (or row) vectors; then two nodes are judged as

belonging to the same community if their links to other nodes are

similar (or more simply, if they both have links to the same nodes),

in this case based on a Euclidean similarity measure. Agglomer-

ative hierarchical clustering methods allow choices of splits, so it is

important to apply a quality measure to assess how meaningful

these clusters are. For a directed weighted network described by

Yij, we can use the following, usually called the modularity after [17]

and [18]:

5) Q~
1

m

XN

i,j

Yij{
OiDj

m

� �
dcicj

where m is the sum of all edge weights in the network (the time-

aggregated version of equation (2)) and the Kronecker delta acts

on the community ID for each node {ci} (following [19]). The

OiDj/m term represents the aspatial (directed) null model, the

hypothesis that edges will be formed in proportion both to the

outstrength {Oi} of the source node and the instrength {Dj} of the

destination node. In a graph in which no communities exist in fact,

the number of links within a community that we identify would be

exactly the same as the global characteristics of the network; then

the modularity for each community would be close to zero, and so

would the total modularity. For communities with a large number

of links within them and few to other groups, there are preferential

factors to link within that community that go beyond linking

Figure 4. Network and cluster diagrams for Boston, MA. a) Weekday network b) Weekend network c) Communities from weekday network d)
Communities from weekend network. Red dots are stands which show no flows in the reporting period, typically because they were not active.
doi:10.1371/journal.pone.0074685.g004
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between ‘‘popular’’ nodes; so Yij will not resemble the null model,

and modularity will tend to be large and positive.

We used this modularity to select an appropriate number of

clusters for each city, as it provides a measure of how meaningful

these communities identified are, independently of the methods

used to detect the communities. As discussed previously, self-

journeys were set to 0, to avoid numerous single-stand clusters

appearing as a result of such journeys. A Wards hierarchical

clustering algorithm was implemented using standard Matlab

libraries (linkage and cluster methods) applied to a matrix defined

via a call to the MySql database (Table 3).

Spatial Null Model
Expert et al [11] extended this model to account for the

likelihood that, for nodes embedded in physical/geographical

space, proximity as well as in/outstrength will dictate the

probability of linkages being formed, and an interesting research

question is what linkages form above and beyond this spatial/

volume dependence. They use a spatial null model to find clusters

-equivalently, we can form a network scaled by spatial consider-

ations, so that

6) Tij~Yij{Y
(s)
ij ~Yij{OiDjf (dij)

which we expect to be .0 if two nodes are linked more strongly

than pure proximity/strengths would dictate. This is represented

graphically in Figures 8–12 (subfigures a-b). Here, blue indicates a

positive value and red a negative value, and the intensity and

weight the numerical value. This is a visual representation related

of the method of residues, which has been applied to urban

modeling for over thirty years - [20] provides an overview– and

creates a link to more recent spatial network theory.

Figure 5. Network and cluster diagrams for Denver, CO. a) Weekday network b) Weekend network c) Communities from weekday network d)
Communities from weekend network. Red dots are stands which show no flows in the reporting period, typically because they were not active.
doi:10.1371/journal.pone.0074685.g005

Spatial Networks in Bicycle Sharing Systems
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It is possible to form clusters on the basis of this scaled network,

using the same cluster analysis as before. This rescaled edge weight

allows for rapid calculation of modularity:

7) Qscaled~
1

m

XN

i,j

Tijdci ,cj

which we can again use to choose the optimum number of

clusters/communities. Results are shown in Figures 8–12 (sub-

figures c-d). Again, self-journeys are set to 0 because distance

displacements are not reasonably calculable for these journeys.

Results

Time dependence of networks
Significant variations exist between flow volumes over the

course of a day; all cities considered exhibit this characteristic

trimodal distribution on weekdays (Figure 14a), with strong peaks

at the morning and evening ‘‘rush hour’’ commuting periods, and

lunch times, contrasting with the more unimodal peak that

dominates weekends (Figure 14b) and we infer to be the hallmark

of tourist and/or leisure activities.

We can define departure vectors based on the number of bicycles

leaving each stand in each hour-of-day period and their

destinations, creating an hour-on-hour network. In order to

determine the distribution of edge weights and outstrength (here

defined as the total number of bikes leaving a node at within some

time period) as a function of time, we can use entropy, in its

standard definition. Entropy is a measure derived from statistical

physics, and latterly from information theory, which can be

understood as the level of equality of distribution in a system or

dataset; a high entropy corresponds to a state where all entities

have similar values, a low entropy where this distribution of values

is unequal. In our system, the entities are edges and the values are

weights (or nodes and outstrengths). If all edges had equal weight,

the entropy tends to a maximum value of ln(1/n); if all edge

weights but one were zero, the entropy is a minimum at 0.

If at time t the edge weight distribution is {Yij(t)}, where i is an

integer labeling the origin, and j an integer labeling the

destination:

8) S(t)~{
X

ij

pij ln(pij)~{
1

m(t)

X
ij

Yij(t)ln
Yij(t)

m(t)

� �

where

9) m(t)~
X

ij

Yij(t)

Notably, these entropy measures (not shown) do not vary by

more than +/– 10% throughout the course of the day, so the

equality of distribution of bikes on routes as a proportion of total

bikes being used at that time does not vary by a large margin over a typical

day. Note that the details of which particular routes are popular

may change over time; the entropy is a systemic measure which

does not relate to individual edges. The variation of the

proportional distribution of the bikes to origin stands varies even

Figure 6. Network and cluster diagrams for Minneapolis, MN. a) Weekday network b) Weekend network c) Communities from weekday
network d) Communities from weekend network. Red dots are stands which show no flows in the reporting period, typically because they were not
active.
doi:10.1371/journal.pone.0074685.g006
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less (closer to 4% for London). Similar calculations for stand

occupation (not derivable from these datasets) yield large variations

in entropy as commuters redistribute bikes from one highly

ordered state to another at peak times (in London, this tidal effect

is very clear from stand occupation data - see for example [21]).

Spatial Patterns
London (Figure 3) shows marked concentrations around the

major commuter stations Kings Cross and Waterloo in the

weekday data (Figure 3a), as these stations ‘‘feed’’ the financial

district in the east (and the centre/’’west end’’) in the case of Kings

Cross. There are marked differences between weekdays (Figure 3a)

and weekends (Figure 3b), primarily via a de-emphasis of the

financial district at weekends, and a relative increase in traffic in

west London and the Hyde Park area (the diamond-shaped flow

network to the left of the visualization).

In Boston (Figure 4), the link between North and South Stations

in the east of the city is one of the strongest features in the weekday

data (Figure 4a); in the west of the city (directly south of the river)

there is a fairly strong east-west flow (along Commonwealth

Avenue, a station with a high concentration of both Boston

University locations and metro stations). At weekends (Figure 4b),

the flows to and from North and South station become less

dominant, consistent with this relating to commuter behaviours.

Denver (Figure 5) shows very uneven clusters of stands, and the

weak flows between the downtown areas to the northwest of the

map and the areas to the east and southeast could be linked to the

large geographical separations. The flows around the University of

Denver campus in the southeast of the city are much more

important in the weekday data (Figure 5a) than the weekend

(Figure 5b), and at the weekend self-journeys relating to one or two

stands are the most popular journeys, suppressing the other routes

in the visualisation.

Minneapolis’s weekday flows (Figure 6a) are dominated by

movements between two stands named ‘‘Social Sciences’’ and

‘‘Kolthoff Hall’’ - further investigation reveals that this flow occurs

across a bridge connecting the two halves of the University of

Minnesota Twin Cities (UMN) campus, and so this weekday flow

could be largely accounted for by students travelled between

lectures and classes. The main apparent difference over the

Figure 7. Network and cluster diagrams for Washington, D.C. a) Weekday network b) Weekend network c) Communities from weekday
network d) Communities from weekend network. Red dots are stands which show no flows in the reporting period, typically because they were not
active.
doi:10.1371/journal.pone.0074685.g007
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weekend (Figure 6b) is that this flow all but disappears, and so

could be related to teaching activities; but a self-journey in the

southeast of the city dominates.

Washington DC (Figure 7) shows less dramatic usage changes at

the weekend (Figure 7b); during both weekdays and weekends,

Washington D.C. itself (which lies in the north part of the network,

between the two rivers) is separated from the two more

geographically distant cluster in Arlington (south and slightly west

on the map) and that the stands in Anacostia (southeast from

Washington D.C. and over the river) are much less used. South

Arlington/Pentagon City is less well used at the weekend (Figure

Figure 8. London’s spatially scaled networks and communities. a) Weekday spatial network b) Weekend spatial network c) Communities
from weekday spatial network and d) Communities from weekend spatial network. Networks are constructed by subtracting the spatial null model
from the raw network data; the above networks demonstrate residuals, i.e. the deviation of the real data from this null model. A blue line represents a
flow larger than predicted, a red line represents a flow which is smaller than predicted. The opacity and size of the line represent the degree of
deviation from the null model, with the maximum deviation observed in that dataset being shown as completely opaque.
doi:10.1371/journal.pone.0074685.g008

Figure 9. Boston’s spatially scaled networks and communities. a) weekday spatial network b) weekend spatial network c) communities from
weekday spatial network and d) communities from weekend spatial network.
doi:10.1371/journal.pone.0074685.g009
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Figure 10. Denvers’ spatially scaled networks and communities. a) weekday spatial network b) weekend spatial network c) communities
from weekday spatial network and d) communities from weekend spatial network.
doi:10.1371/journal.pone.0074685.g010
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7b) than during the week (Figure 7a), consistent with a

predominately commuter-led usage.

The systems show similarity in the distribution of journey

displacements and durations (13), despite differing climates and

spatial extents; Table 2 summarises median travel durations and

stand proximities. In the weekday data, Denver shows a much

larger median travel distance, despite not being one of the schemes

with a larger spatial extent. All of the schemes exhibit a larger

median proximity at the weekend apart from London and

Washington D.C., even though all schemes show an increase in

median journey duration. Notably, this duration change is smallest

for Washington D.C. and London, perhaps suggesting that

weekday and weekend behaviours are less similar than in other

cities. For example, the presence of the Hyde Park cluster in

weekday and weekend London data points (Figure 3) reinforces

the possibility of leisure and tourism users in both weekday and

weekend periods. For each city, the time-behaviour shows

consistency with the proximity function, in that there is a nonzero

mode; it makes little sense to cycle for a very short distance (much

less than 1km), so the function rises to a maximum before

decreasing for larger distances/times.

Network Properties
Figure 15 shows the outstrength distribution {Oi} of the five

systems; the data is divided by the maximum outstrength of each

scheme, in order to compare them directly. Instrength or

combined strength (Oi+Di) could equally well be displayed, as

over these aggregation time periods Oi,Di (although this is

obviously not the case instantaneously). This figure displays a

rank/value distribution [22] (which can also be related to the

cumulative frequency distribution). Because London’s system has

many more stands than the other cities, it exhibits a marked long

tail. What is more surprising is the apparent similarity of

outstrengths in the top 50 stands in the weekday data (inset,

Figure 15a). London, Minneapolis, Boston and Washington D.C.

all exhibit similar rank/outstrength distributions in their most used

stands. At weekends (inset, Figure 15b), the schemes also appear

similar, with the possible exception of London, which has a

‘‘flatter’’ distribution than the other cities. A power law fit does not

seem plausible for these datasets – each has a complex structure

with linear and nonlinear regions. Nor does it convincingly

resemble a log-normal distribution. Ranked edge weight is shown

in Figure 16 – these curves do not conform readily to a power law

or log-normal behaviour, although the curves imply a quadratic

dependence of log-edge weight on log-rank.

Community detection
Communities are shown in subfigures c-d of Figures 3–7. In the

London weekday data (Figure 3c), one can broadly identify groups

corresponding to central-east London (where financial services are

traditionally based), central-west (more associated with retail), east

and west. These seems to cross the river, whereas the weekend

data (Figure 3d) exhibits clusters which appear to form more

distinct geographical regions, and which are more divided by the

river.

In Boston, the weekday data (Figure 4c) shows a distinct east-

west split, possibly the eastern region corresponds to commuters to

the civic and financial district that lies in the northeast corner of

Boston, but a time-analysis would be needed to elucidate that

behaviour. Weekend clusters (Figure 4d) are more complex, with a

central-south grouping as well as a community in the northeast.

For Denver (Figure 5c-d), the clusters shown demonstrate

geographical overlap; the weekend data fragments into 4 clusters

with no distinct geographical character.

Figure 11. Minneapolis’ spatially scaled networks and communities. a) weekday spatial network b) weekend spatial network c) communities
from weekday spatial network and d) communities from weekend spatial network.
doi:10.1371/journal.pone.0074685.g011
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Minneapolis’ weekday data (Figure 6c) show a series of clusters,

including one corresponding to the university campus area; a

cluster of similar size to the northwest; and a larger group which

covers most of the city but lies predominantly to the east. The

larger group to the southwest of the centre may be linked the ‘‘the

wedge’’, a region of Minneapolis favoured by young professionals.

If so, this cluster could highlight commuters from ‘‘the wedge’’ to

downtown, and its associated businesses and entertainments.

Weekend data (Figure 6d) splits the city into 3; a large, generic

cluster; a small southwestern cluster; and one in the centre/CBD.

Washington D.C. (Figure 7c-d) shows a number of complex and

geographically overlapping communities. A southeastern cluster

(just to the north of the river) sits within the Capitol Hill area; the

cluster to the northwest is close to Georgetown and George

Washington universities, and may be linked to student movement.

These groups appear within both weekend and weekday data. The

central cluster covers a range of residential and commercial areas,

so it is difficult to speculate on its significance; it may represent

commuter behaviours or people travelling to meetings. Again, a

time-dependent network analysis might shed some light on this.

Spatial scaling and spatial community detection
A trend that is strongly apparent in the spatially scaled/residual

networks (subfigures a-b of Figures 8-12) is that edges in the city

centres are less used that would be expected – the red regions

occur in the centre of each of the cities. This could be in part due

to a higher density of stands, resulting in the same amount of

traffic being spread over a larger number of potential routes; the

‘‘gravity’’ model incorporate codependence on stand activities and

hence implicitly on activity density, but it is possible that the

correct functional form is not the simple linear one used.

In weekday London (Figure 8a), Waterloo Station predomi-

nantly creates flows which terminate in the centre-east of London,

known as the City, where the financial services industries are

based, and flows perpendicular to that motion (i.e. northwest/

southeast) are strongly under-represented. This points to the

Figure 12. Washington D.C.’s spatially scaled networks and communities. a) weekday spatial network b) weekend spatial network c)
communities from weekday spatial network and d) communities from weekend spatial network.
doi:10.1371/journal.pone.0074685.g012
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simplicity of the assumptions built into our spatial interaction

model; a more accurate model might incorporate office space or

job location. However, such a model would also need to account

for user demographics or land use at the source and destination

stands. Weekday and weekend data (Figure 8b) show that journeys

within Hyde Park in the west are over-represented, which would

be consistent with tourism and leisure usage. The large flows to

and from Waterloo and Kings Cross station that we believe to be

Figure 13. Histogram of journeys in each city. Probability mass function of journeys as a function of origin-destination separation d for a)
weekdays and b) weekends; distance decay function of journeys as a function of origin-destination separation f(d), scaled to account for variations in
the proximities of popular source/destination stands (see text) for c) weekdays and d) weekends; and Probability mass function of journeys as a
function of journey duration for e) weekdays and f) weekends.
doi:10.1371/journal.pone.0074685.g013
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commuter-driven flows are notably absent in weekend data. The

spatial communities for weekday data (Figure 8c) show a fairly

distinct community around Hyde Park and one in the centre of

London with smaller communities in the east and south of this

group. The eastern community seems to be contained within the

financial district, which could point to inter-business transit.

Weekend spatial communities (Figure 8d) show a more complex

pattern, retaining a group around Hyde Park and identifying new

groups in West London.

In Boston (Figure 9a-b), we see flows in the western part of the

city that we associate with the region around Boston University

(BU); during the week (Figure 9a) we see stronger flows to and

from South and North Station than at the weekends (Figure 9b).

The spatial community detection picks out the western BU

locations in the weekday data (Figure 9c) as well as identifying

North and South Station as separate clusters – suggesting their

characteristics are unique. This may be due to use of Euclidean

distance measures and their unusually high flow volumes – future

work could use other community methods, or cosine distance to

effectively normalize flows vectors.

Denver’s weekdays (Figure 10a) show a strong overrepresenta-

tion from the university area, absent at weekends (Figure 10b).

The resulting communities (Figures 10c-d) are correspondingly

complex. In weekday Minneapolis (Figure 11a), similarly, the

intracampus journey is highlighted; this scaling reinforces the

message that this route is much more popular than is explained by

a spatial interaction model allocation of cycle journeys, even when

weighted for the high stand proximity and stand volumes (in

essence, maximum entropy methods spread the flows from a stand

evenly across all possible outputs, weighted for destination

proximity and destination flow volumes. For these unusually

popular journeys, they dominate stand popularity and not vice

versa; so an even distribution of the source stand’s outputs is not an

appropriate analytical approach). It’s likely that students have to

travel (e.g. between lectures) more frequently than other sectors of

society, overweighting this stand pair. This route is still present at

weekends (Figure 11b), but is less dominant; southwestern portions

of the city exhibit high volumes. Communities in the weekday data

(Figure 11c) tend to cluster around the centre, with the rest of the

city being identified with one community. Weekend data (Figure

11d) yields a more complex picture. Washington D.C. (Figure 12a-

b) show some small clusters of reciprocal journeys suggesting some

hyperlocal usage patterns not identified in this paper; Pentagon

City/South Arlington appears again as a predominantly weekday

feature (Figure 12a). Weekday data yields a spatial cluster in the

centre-west (Figure 12c) and a series of unique stands. Weekend

data (Figure 12d) highlights more geographically distinct commu-

nities to the centre-east and centre-west.

Discussion

The analyses of these bicycle sharing system flow networks show

important common features and distinctions between the systems.

On a trivial level, each system has a different number of stands

(nodes), and each city has a distinctive partitioning of its network,

which could be related to physical and geographical factors like

Figure 14. Level of activity (total number of bicycles leaving docks) in the system as a function of hour of day over the reporting
period. a) Weekday data b) Weekend data.
doi:10.1371/journal.pone.0074685.g014

Table 2. Median travel times and distances for each city.

City
Median journey duration
(weekday) [minutes]

Median journey duration
(weekend) [minutes]

Median journey proximity
(weekday) [km]

Median journey proximity
(weekend) [km]

London 11 14 0.96 0.96

Boston 10 16 1.44 1.68

Denver 11 17 2.16 2.64

Minneapolis 9 15 0.96 1.44

Washington D.C. 11 13 1.20 1.2

doi:10.1371/journal.pone.0074685.t002
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obstacles such as rivers, weather and climate, and social

geographical factors like land use (for examples, the importance

of UMN on the pattern of use in Minneapolis) and building

density, road type/safety, the general culture of, and attitude to,

cycling in each city, and temporal factors such as rush hours,

seasons and weekends.

Network analyses typically include betweenness centrality

measures – nodes and edges which lie on shortest-paths between

nodes. Doing so assumes a relatively low level of connectivity

which requires such intermediate nodes. For example, the current

London tube network has 306 nodes sharing only 354 edges,

resulting in 0.75% of node pairs being directly connected and a

mean strength of 2.32. To contrast, bicycle sharing systems are

highly connected. London’s 403 stands have nonzero links on

131,475 of the resulting network’s possible 162,409 edges, with a

direct connectivity of 80% - other schemes have connectivity in the

region of 50–95%. The use of the system does not necessitate

‘‘hopping’ between intervening nodes (bar exceptional circum-

stances) and its embodiment in physical space means that is never

faster to do so than pursuing a direct journey; in some senses these

systems cannot be considered a ‘‘sparse’’ network and so this

measure was not considered.

The simple expedient of using the model fit (in this case, a

simple empirical ‘‘gravity’’ model which does not implement e.g.

the full richness of a entropy-maximising spatial interaction model

– see, for example, [23]) creates a graph of residuals of the fit; this

allows flows which appear more strongly than an spatial

interaction-type model would predict to become apparent to the

researcher or planner. There has been no attempt in this analysis

to go beyond the dataset provided and incorporate any land-use

data; however, it arguable that such a model would rapidly

increase in complexity as we correlate commuters to particular

stands with their likely place of work; simply saying e.g.

‘‘commuters through Waterloo Station in London are likely to

work in the financial district’’ would provide limited predictive or

analytical power above and beyond what has already been

demonstrated.

When we compare the systems at a highly aggregate level, we

see very similar behaviours based on the distances people tend to

travel; system users in Washington and London consistently travel

the most similar distance to destinations, in both space and

duration. Similarly, there is a consistency in the ratio between the

popularity of the top 50 stands in each system. Whether this is

specific to this small dataset (5 systems) could be investigated as

more data becomes available.

It is may be desirable to further disaggregate these data sets to

create time-dependent network analyses which reflect different

uses of the scheme at different times of day (as we’ve done for

weekdays vs weekends). Work on temporal networks (for example,

[24]) often focuses on edges which vary over time but over which the

transmission of the relevant information is instantaneous. Dealing with both

journey times and scheduling (with respect to air travel) was put

forward by [25], and may provide a useful model for future

analysis. With bikes, the definition of an edge is problematic, and

bicycles which undertake long-duration journeys can appear as a

persistent edge. A proposed solution to that is to weight the

contribution of a journey to each edge as the reciprocal of its

duration, and allow the edge to persist throughout the existence of

the journey, ensuring that the contribution of that journey to the

relevant edge is unity when integrated over all time. This is

analogous to the idea of a flow being ‘‘[bicycles]/unit time’’. These

definitional problems are obviated by time-aggregation (i.e.

summing over a timescale much larger than that of any individual

journey), which is our adopted approach for the analyses in this

Figure 15. Rank/value plot of stand outdegree for each city. Outdegree is scaled in each city so maximum outdegree is unity. a) All data b)
Top 50 stands in each scheme.
doi:10.1371/journal.pone.0074685.g015

Table 3. Structure of MySQL database.

Table name Purpose Key Other attributes

bikeflow_cityID Record for each distinct journey Journey ID Origin & destination stand IDs, start & end times

bikeflow_cityID-_namelocation Information on stand geographies Stand_ID Latitude/longitude, descriptive name

bikeflow_cityID-_routing Description of route through network
between any pair of stands

Origin & destination
stand IDs

Sequence of latitude/longitude pairs describing route
between nodes

doi:10.1371/journal.pone.0074685.t003
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paper. Similarly, we have considered a very straightforward

community detection measure, which may not prove optimal; for

example, [26] points to a more sophisticated method which

incorporates the concept of overlapping communities in a

generalizable way; and in general, there are a host of community

detection techniques which go beyond the simple Euclidean-

distance out-edge clustering technique we employed.

As commented, a rich seam of exploration is the time-

dependence of the network characteristics of these systems, only

touched upon in this paper. The possibility for time-dependent

identification of changing spatial communities would give a more

dynamic picture of the linkages of the city over the course of a day;

of course, the danger of disaggregation is the disappearance of

meaningful data in the noise of small numbers. Filtering the time

period of study for these datasets so that they covered the same

month range yielded different patterns of clustering than if all the

data from a particular source was used. Identifying tools which

balance sensitivity with robustness will be key in consistent

analysis, and in using these approaches in planning, strategy or

operation.

Conclusions

We have presented visualisations and analyses of the flows of

bicycle sharing system bikes around four North American cities

and one European city, demonstrating similarities in the aggregate

properties of these systems, and using spatial network techniques

to identify local features and communities that exist within these

complex spatial networks.
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