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SUMMARY

The GGGGCC (G4C2) intronic repeat expansion
within C9ORF72 is the most common genetic cause
of amyotrophic lateral sclerosis (ALS) and frontotem-
poral dementia (FTD). Intranuclear neuronal RNA
foci have been observed in ALS and FTD tissues,
suggesting that G4C2 RNA may be toxic. Here, we
demonstrate that the expression of 383 and 723
G4C2 repeats form intranuclear RNA foci that initiate
apoptotic cell death in neuronal cell lines and zebra-
fish embryos. The foci colocalize with a subset of
RNA binding proteins, including SF2, SC35, and
hnRNP-H in transfected cells. Only hnRNP-H binds
directly to G4C2 repeats following RNA immunopre-
cipitation, and only hnRNP-H colocalizeswith 70%of
G4C2 RNA foci detected in C9ORF72 mutant ALS
and FTD brain tissues. We show that expanded
G4C2 repeats are potently neurotoxic and bind
hnRNP-H and other RNA binding proteins. We pro-
pose that RNA toxicity and protein sequestration
may disrupt RNA processing and contribute to
neurodegeneration.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) causes progressive muscle

weakness and spasticity due to the degeneration of motor neu-

rons. Frontotemporal dementia (FTD) causes changes in person-

ality, language, and behavior due to the degeneration of neurons

in frontal and temporal lobes. Both are fatal within 3–5 years of

symptom onset. Multiple lines of evidence indicate that these

two disorders are phenotypic variants of common pathological
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processes involving the deposition of TDP-43 (Neumann et al.,

2006) or FUS (Vance et al., 2009). A common basis for ALS

and FTD came from genetic linkage studies that identified a

locus on chromosome 9p21 in familial ALS-FTD (Vance et al.,

2006) and genome-wide association studies in sporadic ALS

and FTD (Shatunov et al., 2010). The underlying mutation was

subsequently shown to be an expansion of the GGGGCC

(G4C2) repeat within intron 1 of C9ORF72 (DeJesus-Hernandez

et al., 2011; Renton et al., 2011). This mutation accounts for

20%–80% of familial and 5%–15% of sporadic ALS and FTD

in North American and European populations (DeJesus-Hernan-

dez et al., 2011; Renton et al., 2011; Smith et al., 2012). The size

of the repeat in ALS and FTD cases has been estimated by

Southern blotting to range between 700 and 1,600 repeats

(DeJesus-Hernandez et al., 2011). The mean number of G4C2

repeats in controls is two; 95% have less than eight repeats

(Smith et al., 2012).

The mechanism by which the G4C2 intronic repeats cause

neurodegeneration is unknown. Decreased tissue levels of the

C9ORF72 transcript implicate a loss of protein function due to

haploinsufficiency (DeJesus-Hernandez et al., 2011; Renton

et al., 2011). Recent reports describe the aggregation of pep-

tides due to repeat-associated non-ATG (RAN) translation

(Mori et al., 2013b) as previously described in SCA8 (Zu et al.,

2011). Antibodies against poly (Gly-Ala), (Gly-Pro), and (Gly-

Arg) peptides selectively label p62-positive, TDP-43-negative

neuronal inclusions that are the pathological hallmark of mutant

C9ORF72 cases (Al-Sarraj et al., 2011), but evidence that pep-

tide aggregation initiates neurodegeneration is currently lacking.

The identification of intranuclear neuronal RNA foci containing

G4C2 repeats in ALS and FTD tissues (DeJesus-Hernandez

et al., 2011) is similar to other intronic repeat expansion disor-

ders, including myotonic dystrophy, fragile X tremor ataxia syn-

drome, and several spinocerebellar ataxias (Todd and Paulson,

2010). RNA foci in myotonic dystrophy sequester and deplete
hors
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Figure 1. Expanded G4C2 Repeats Form

Intranuclear RNA Foci

(A–D) SH-SY5Y cells were transfected with various

length G4C2 (0, 8, 38, 72 repeat) plasmids and

analyzed 24 hr after transfection by RNA FISH

using a Cy3-labeled (G2C4)38 RNA probe.

(E) The mean number of G4C2 foci was counted in

50 cells.

(F–I) Primary hippocampal mouse neurons (F),

CV1 (G), HEK293 (H), and HeLa (I) cells were

transfected with a plasmid expressing G4C2 723

repeats; foci were detected by FISH (red) and

nuclei were stained with DAPI (blue). All cell types

transfected with 383 and 723 repeats showed

foci (scale bar represents 3 mm).

See also Figure S1.
muscle-blind-like protein (MBNL1), ultimately causing wide-

spread RNA splicing abnormalities and degeneration of affected

tissues (Miller et al., 2000). The fact that overexpression of

MBNL1 can rescue the phenotype caused by the CTG repeats

implies that loss of MBNL1 is one of the key drivers of cellular

degeneration (Kanadia et al., 2003a).

In order to determine whether expanded G4C2 transcripts

might be toxic and sequester RNA binding proteins, we gener-

ated G4C2 with 83, 383, and 723 repeats and expressed

them in cell lines, primary neurons, and zebrafish embryos.

Here, we demonstrate that the longer repeat lengths generate

RNA foci that are toxic to neurons and bind the RNA binding pro-

teins SF2, SC35, and hnRNP-H. hnRNP-H directly binds toG4C2

RNA and colocalizes closely with RNA foci in transfected cells

and the brains of human C9ORF72 ALS and FTD cases. Our

findings indicate that G4C2 repeat expansions are potently toxic,

sequester RNA proteins, and may initiate neurodegeneration in

mutant C9ORF72 ALS and FTD.

RESULTS

Using direct ligation we generated constructs containing 83, 38

3, and 723 G4C2 repeats, which were cloned into an untagged

plasmid vector (Figures S1A–S1D). Following transfection into

neuronal (SH-SY5Y) cell lines, intranuclear G4C2-positive RNA

foci were detected by RNA fluorescence in situ hybridization

(FISH) in all cell types expressing 383 and 723 repeats, but

not in cells expressing 83 repeats (Figure 1A). Themean number
Cell Reports 5, 1178–1186, De
of foci per cell was six for 383 repeats

and 12 for 723 repeats (Figure 1E). These

were expressed in a range of human

nonneuronal cells (CV1, HEK, HeLa) and

primary rat cortical neurons (Figures 1F–

1I). The RNA foci were resistant to RNase

and DNase treatments (Figures S1E and

S1F), consistent with the description of

G4C2 DNA repeat hairpin loops forming

G quadruplexes in vitro (Fratta et al.,

2012).

In order to determine whether the

length of the G4C2 repeat affected nucle-
ocytoplasmic trafficking of the transcript, we cloned the 83, 383,

and 723 repeat constructs into the 30 position of EGFP expres-

sion vectors (Figure S2A). Equivalent transcript expression

was detected by RT-PCR and northern blotting for 83, 383,

and 723 repeat vectors (Figures S2B and S2C). Again, 383

and 723, but not 83, repeats or EGFP alone, generated G4C2

RNA foci in SH-SY5Y cell lines (Figures 2A–2D). After 24 hr we

observed that a significant proportion of cells with intranuclear

RNA foci expressed little or no EGFP (19% ± 1.9% for 383 and

23% ± 1.8% for 723 repeats) (Figure 2E). The absence of

EGFP in cells containing foci implies nuclear retention of mRNA

containing longer repeats and that foci form shortly after tran-

scription precluding nuclear export. In a time course experiment

we observed that the number of SH-SY5Y cells bearing RNA

foci decreased dramatically over 72 hr. This was most marked

in foci-positive cells that were EGFP negative, such that by

72 hr there was a >90% decrease in the number of cells showing

foci for 383 and 723 G4C2 repeats (Figure 2E). Cells with foci

that also expressed EGFP (demonstrating nuclear export and

cytoplasmic translation) showed a more modest decrease of

30% (EGFP-G4C2 383) and 21% (EGFP-G4C2 723), respec-

tively (Figure 2E’).

In order to determine whether this decline in numbers was due

to toxicity induced by RNA foci, we measured the expression of

the apoptosis marker Annexin V by fluorescence-activated cell

sorting (FACS). FACS analysis showed that the proportion of

EGFP-positive cells expressing Annexin V was 3-fold higher

for 383 repeats and 5-fold higher for 723 repeats compared
cember 12, 2013 ª2013 The Authors 1179
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to 83 repeats (Figure 2F). To investigate this further, immunocy-

tochemistry (ICC) for activated caspase-3 was performed; it

showed that in SH-SY5Y cells, RNA foci dramatically enhanced

the activation of caspase-3 (Figure 2G). To quantify the induction

of apoptosis by G4C2 foci, we counted caspase-3-activated

cells in both foci-negative and foci-positive cell populations.

We found no change in the proportion of caspase-3-activated

cells above background (3.2% ± 1.2%) in SH-SY5Y cells ex-

pressing 83 repeats but a dramatic increase in cells with foci

from 383 (37% ± 2.7%) and 723 (34% ± 6.9%) repeats

(Figure 2H). Interestingly, HEK293 cells expressing G4C2 383

or 723 showed no evidence of apoptosis despite abundant

G4C2 foci (Figure 2H). Accordingly, poly(ADP-ribose) polymer-

ase (PARP) cleavage was detected in 383 or 723 repeat

transfected SH-SY5Y cells, but not in HEK293 cells (Figure 2I),

suggesting that neuronal cells may be more vulnerable to

apoptotic cell death triggered by G4C2 RNA foci.

We next sought to test for length-dependent G4C2

toxicity in vivo by injecting the EGFP constructs with 83, 383,

and 723 repeats into zebrafish embryos. DNA injection leads

to mosaic distribution of the DNA and expression in only a small

portion of the embryonic cells. Embryos were injected at the

one-cell stage and analyzed at prim-5 (approximately 24 hr post-

fertilization). Expression of the EGFP-G4C2 83 repeat did not in-

crease the number of apoptotic cells above EGFP alone (Figures

2J and 2K); however, injection of the 383 or 723 G4C2 repeat

constructs (Figures 2L and 2M) resulted in a significant increase

in TUNEL-positive cells of 0.8- and 1.4-fold, respectively (graph-

ically represented in Figure 2N). G4C2-positive RNA foci

detected by FISH were only observed in 723 embryos, but not

in 83 embryos (Figures 2O and 2O’). The majority of 723-trans-

fected cells that had G4C2-positive RNA foci were also active

caspase-3 positive (Figure S2D). TUNEL and active caspase-3-

positive cells showed nuclear condensation and fragmentation

confirming apoptotic cell death (Figures 2P and 2Q). Thus, evi-

dence from cellular and in vivo assays indicates that longer
Figure 2. Loss of G4C2 Foci-Positive Cells Is Due to Apoptotic Cell De

(A–D) SH-SY5Y cells were transfected with EGFP-tagged G4C2 constructs. G4C

EGFP-G4C2 723 repeats. Many cells with RNA foci were negative for EGFP (arro

with DAPI (blue) (scale bar represents 10 mm).

(E) The percentage of cells with G4C2 foci by FISH that did not express EGFP we

that did express EGFP (E’). Foci-positive cells declined in number, mostmarkedly

250 cells from three independent transfections were counted, and results are pr

(F) EGFP-tagged G4C2 plasmids were transfected into SH-SY5Y cells, staine

expressing 383 and 723 repeats showed 3- or 5-fold higher levels of Annexin V

(G) G4C2 foci-positive SH-SY5Y cells were found positive for activated caspase

(H) G4C2 RNA foci-positive SH-SY5Y cells, but not HEK293 cells, express activa

coverslip, and three coverslips were analyzed per experiment. The background

caspase-3-positive cells in the foci-negative population.

(I) Western blot of PARP cleavage in control or G4C2-transfected SH-SY5Y and

(J–M) Apoptotic cell death was analyzed by TUNEL staining in zebrafish prim-5 em

(K), EGFP-G4C2 383 (L), or EGFP-G4C2 723 (M). The number of TUNEL-positive

M) (scale bar represents 200 mm).

(N) Quantification of all embryos (n = 5) from three independent experiments is

(p < 0.0001, ***) are also determined.

(O) G4C2 RNA foci (red) were found only in zebrafish embryo cells injected with

(P and Q) High-resolution images of TUNEL-positive (P and P0) and active cas

represents 10 mm). Nuclear staining is blue.

See also Figure S2.

Cell Re
G4C2 repeats lead to the nuclear retention of transcripts, form-

ing RNA foci that are RNase resistant and potently toxic.

To investigate whether RNA processing proteins were bound

to the G4C2 RNA foci, we probed transfected SH-SY5Y cells

with antibodies to 30 different RNA-binding proteins based on

their known or predicted ability to bind GC-rich sequences,

including heterogeneous nuclear proteins (hnRNP) and serine-

arginine (SR) proteins involved in splicing and trafficking (Tables

S1 and S2). We found that antibodies to three proteins colocal-

ized with the G4C2 RNA foci: hnRNP-H, serine-arginine-rich

splicing factor 1 (SF2), and serine-arginine-rich splicing factor

2 (SC35). hnRNP-H showed the closest association with the

foci with almost complete overlap, compared to the distribution

of SF2 and SC35 (Figures 3A and 3B). TDP-43 was not mislocal-

ized in any cells with RNA foci. To determine whether these

proteins are physically binding to G4C2 RNA, we extracted nu-

clear lysate from SH-SY5Y cells, incubated it with biotin-labeled

G4C2372 RNA, and performed RNA immunoprecipitation (RIP).

Western blots of the eluate were probed for all three proteins, but

only hnRNP-H was detected (Figure 3C). To further validate the

interaction between G4C2 repeats and hnRNP-H, we performed

RIP using rat brain nuclear lysate. hnRNP-H was pulled down

from rat brain lysate by G4C2348 RNA, but not by control

RNA of the same length (300 nt), implying that hnRNP-H binds

specifically to G4C2 repeats (Figure 3D). Sequestration of

hnRNP H by G4C2 RNA foci is expected to reduce the amount

of hnRNP-H available and reduce its splicing efficiency on spe-

cific RNA targets. hnRNP-H is required for the efficient inclusion

of exon 7 into the mature TARBP2 RNA (Xiao et al., 2009). We

therefore compared the effect of expanded G4C2 repeats and

knockdown of hnRNP-H on TARBP2 exon 7 inclusion. Lentiviral

constructs expressing sh-hnRNP-H knocked down hnRNP-H

with an efficiency of 95% in SH-SY5Y cells (Figure S3), which

dramatically decreased the inclusion of exon 7 into TARBP2 (Fig-

ure 3E). A more modest decrease in exon 7 inclusion was also

observed in SH-SY5Y cells stably transfected with 723 G4C2
ath in Culture and In Vivo

2 RNA foci (red) were found only in cells transfected with EGFP-G4C2 383 and

ws in C and D), implying near-complete nuclear retention. Nuclei were stained

re counted at 24, 48, and 72 hr posttransfection (E), as were foci-positive cells

in those showing greater nuclear retention (EGFP�). In all experiments, a total of

esented as mean ± SD.

d with the early apoptosis marker Annexin V, and analyzed by FACS. Cells

, respectively, than did cells expressing 83 repeats.

-3 (scale bar represents 5 mm).

ted caspase-3. Caspase-3 activation was scored in 250 foci-positive cells per

level of active caspase-3 was estimated by counting the frequency of active

HEK293 cells. Actin was used as a loading control.

bryos injected with plasmids mosaically expressing EGFP (J), EGFP-G4C2 83

cells (red) increased in the embryos injected with 383 and 723 repeats (L and

presented. Error bars show the standard error for each sample, and p values

723, but not with 83 repeats. EGFP expression is green.

pse-3 (Q and Q0) from zebrafish embryo cells injected with 723 (scale bar

ports 5, 1178–1186, December 12, 2013 ª2013 The Authors 1181
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plasmids (Figure 3F). Thus, the presence of G4C2 repeats has a

similar effect on the splicing of TARBP2 exon 7 to hnRNP-H

knockdown and is consistent with the effect of hnRNP-H

sequestration by G4C2 foci.

Having determined that three RNA binding proteins colocalize

with G4C2 RNA foci in cells, we sought a similar association in

human tissues. We optimized our FISH protocol (adapted from

DeJesus-Hernandez et al. [2011]) and observed abundant RNA

foci in the cerebellum and less abundant foci in the frontal cortex

and temporal lobes of ALS and FTD patients carrying the

C9ORF72 expansion mutation (confirmed by repeat primed

PCR and Southern blot, n = 5) that are absent from controls

(n = 5) (Figure S4; Table S3). Discrete intranuclear neuronal

RNA foci were larger in the cerebellum (�500 nm) compared to

the cortex (�200nm) andweremost frequent in neurons adjacent

to Purkinje cells (Figures 4A and 4B). By combining FISH for RNA

foci and immunofluoresence for the foci-associated RNAbinding

proteins identified in transfected cells, wedemonstrated that SF2

andSC35 rarely colocalizedwithG4C2RNA in cerebellum, being

present in <5%of foci, whereas hnRNP-H showed striking coloc-

alization overlapping almost with �70% of foci (Figures 4C–4F).

We have therefore confirmed the presence of RNA foci in ALS

and FTD patients with pathological G4C2 intronic expansions in

C9ORF72 and demonstrated that they bind RNA-binding pro-

teins, being most closely associated with hnRNP-H.

DISCUSSION

The G4C2 expansion mutation in C9ORF72 is the most common

gene defect associated with ALS and FTD in the European pop-

ulation. Several mechanistic hypotheses are emerging, including

the loss of the C9ORF72 encoded protein, RNA-mediated

toxicity (DeJesus-Hernandez et al., 2011; Renton et al., 2011),

and toxic dipeptides from repeat-associated non-ATG (RAN)

translation (Mori et al., 2013b). Our results provide experimental

evidence that RNA containing longer G4C2 repeats causes

cellular toxicity in a length-dependent manner in transfected

cells and in vivo and may contribute to neurodegeneration in

C9ORF72-related ALS and FTD.

Cellular toxicity was associated with the nuclear retention of

transcripts containing 383 and 723 repeats and the appearance
Figure 3. SC35, SF2, and hnRNP-H Colocalize with G4C2 Nuclear Foci

(A–B) SH-SY5Y cells were transfected with a plasmid expressing 723 repeats an

(ICC). (A andB) Endogenous SC35 (A) and SF2 (B) were detected by ICC using aD

by ICC, using a Dylight-649-labeled secondary antibody. The intensity of endoge

tools (scale bar represents 5 mm).

(C) Biotin-labeled G4C2372 RNA transcripts were synthesized and used for RN

Partial colocalization of SC35 and SF2 is seen with the RNA foci, whereas hnRNP

72 RNA.

(D) Biotin aptamer-labeled G4C2348 RNA transcripts were synthesized and u

cedures); RNA of equivalent length to G4C2348 (300 nt) was used as a control.

(E) Splicing assay of TARBP2 exon 7 shows that G4C2RNA sequestration of hnRN

SH-SY5Y cells validates that hnRNP H promotes inclusion of TARBP2 exon 7.

(F) Analysis of TARBP2 exon 7 splicing in SH-SY5Y cells stably transfected with C

G4C2372 but is not affected in cells expressing lower repeat numbers. PCR prod

the right. Average quantification values of exon inclusion (yellow) and exclusion (b

ratio between exon 7 inclusion and exclusion was calculated and tested by one-

See also Figure S3.

Cell Re
of RNA foci. By placing the repeats 30 to EGFP we were able to

monitor nuclear export and show that transfected neuroblas-

toma cells, but not HEK cells, declined in number over time

because of apoptotic cell death. This was most marked in those

showing the greatest nuclear retention and foci, indicating cell

type and neuron-specific toxicity of longer G4C2 repeats. These

data suggest that similar to trinucleotide diseases (Hirth, 2010),

cellular toxicity of hexanucleotide repeat expansion directly cor-

relates with G4C2 repeat length, indicating that the longer the

repeat, the more toxic its nature.

In order to explore the sequestration hypothesis, we screened

antibodies to 30 RNA binding proteins in G4C2 723-transfected

neuroblastoma cells and demonstrated colocalization of G4C2

RNA foci with SF2, SC35, and, most strikingly, hnRNP-H. Over-

expression of 723 G4C2 and knockdown of hnRNP-H had a

similar effect on the splicing of a target RNA TARBP2, consistent

with the sequestration of hnRNP-H. Using biotinylated 723RNA,

we were only able to pull down hnRNP-H, indicating that is able

to interact with G4C2 RNA. On probing human cerebellar ALS

and FTD tissues, we detected a striking colocalization of

hnRNP-H with 70% of RNA foci. We did not detect changes in

the distribution or colocalization with RNA foci in human tissues

for pur-a (Xu et al., 2013) or hnRNP-A3 (Mori et al., 2013a) to sug-

gest sequestration, as had previously been postulated. Our find-

ings suggest that the sequestration of hnRNP-H and other RNA

binding proteins may play a mechanistic role in neurodegenera-

tion associated with the C9ORF72 mutation.

Our observation that longer stretches of G4C2 RNA form

neurotoxic foci and bind specific RNA binding proteins is similar

to other intronic microsatellite expansion disorders (Todd and

Paulson, 2010). Expanded CUG (DM1) and CCUG (DM2) in-

tronic repeats generate RNA foci in cells, in animal models,

and in patients with myotonic dystrophy. The foci bind and

deplete muscle-blind-like proteins (MBNL1, 2, and 3), causing

widespread RNA splicing abnormalities and degeneration of

affected tissues (Miller et al., 2000). The fact that MBNL1

knockout mice develop key aspects of human DM and that

overexpression of MBNL1 in Drosophila and mice can rescue

the phenotype caused by the CTG repeats implies that loss of

MBNL1 is one of the key drivers of cellular degeneration (Kana-

dia et al., 2003b).
, but hnRNP-H Binds to G4C2 RNA Transcripts

d probed 24 hr after transfection for G4C2 by FISH and immunocytochemistry

ylight-488-labeled secondary antibody. hnRNP-Hwas simultaneously detected

nous SC35, SF2, hnRNP-H, and G4C2 foci were analyzed by Leica line profile

A pull-down of SH-SH5Y lysates; G4C230 transcripts were used as control.

-H shows very close colocalization. Only hnRNP-H coprecipitated with G4C23

sed for RNA pull-down of rat brain lysates (Supplemental Experimental Pro-

hnRNP-H coprecipitated with G4C2348 RNA.

P-H impairs RNA processing. Comparison of hnRNPH knockdown and control

9ORF72 repeats. Inclusion of TARBP2 exon 7 is decreased in cells expressing

ucts including (in) or excluding (ex) the regulated alternative exon aremarked on

lue) are shown. Error bars show SD of three replicates. To test significance, the

way ANOVA and Tukey’s honestly significant difference test.

ports 5, 1178–1186, December 12, 2013 ª2013 The Authors 1183



Figure 4. Intranuclear Neuronal RNA Foci in C9ORF72 Mutant ALS and FTD Brain Tissues Colocalize Very Closely with hnRNP-H

(A) Image of mutant C9ORF72 patient cerebellum overlaid with the location of neurons containing G4C2 RNA foci (red dots) (scale bar represents 4 mm).

(B) G4C2 RNA foci-positive neurons (white arrow) were observed between the granular and molecular layer of the cerebellum (scale bar represents 10 mm).

(C–E) FISH and ICCwere performed for hnRNP-H (C), SC35 (D), and SF2 (E), with aG4C2mutation-negative ALS case used as control (scale bar represents 3 mm).

(F) The percentage of foci that colocalized with hnRNP-H, SF2, and SC-35were counted (n = 50 cells). Of the three RNA binding proteins that colocalized with foci

in transfected cells, only hnRNP-H shows a striking degree of overlap for 70% of all foci in the cerebellum.

See also Figure S4.
hnRNP-H binds strongly to G-runs in intronic sequences to

enhance exon skipping (Xiao et al., 2009) and G-rich RNA quad-

ruplexes (Millevoi et al., 2012). hnRNP-H binding is known to

inhibit the nuclear export of RNA containing expanded CUG re-

peats associated with myotonic dystrophy type 1 (DM1) (Kim

et al., 2005). It is a component of the splicing enhancer complex

that activates alternative splicing of c-src in neurons (Chou et al.,

1999). Thus, the nuclear retention and aggregation of G4C2 RNA

may be enhanced by hnRNP-H binding, which could in turn facil-

itate further G4C2 RNA binding in a positive feedback loop to

generate large RNase-resistant foci. This would result in the

sequestration of hnRNP-H itself, other RNA binding proteins,

andmultiple RNA transcripts, leading to significant dysregulation

of RNA processing and toxicity. We did not observe TDP-43

binding to G4C2 repeats or mislocalization in our cellular models

as has been described in C9ORF72mutant ALS and FTD cases,
1184 Cell Reports 5, 1178–1186, December 12, 2013 ª2013 The Aut
and it is not yet clear whether TDP-43 misaccumulation is mech-

anistic in these cases. The observation that RAN translation gen-

erates dipeptides in C9ORF72 mutant cases is of great interest

(Mori et al., 2013b). Recent evidence has emerged that RAN pol-

yglycine peptides are present in cellular and Drosophila models

of fragile X tremor ataxia syndrome and in patients carrying the

CGG expansion and that cell death could be prevented by the

suppression of RAN translation (Todd et al., 2013). Toxicity due

to RNA foci and RAN translation are not mutually exclusive,

and their relative contribution to repeat-associated neurodegen-

erative disorders requires further investigation.
EXPERIMENTAL PROCEDURES

Detailed Experimental Procedures are described in the Supplemental Experi-

mental Procedures.
hors



Patient Samples

All cases were provided by the Medical Research Council (MRC) London

NeurodegenerativeDiseasesBrainBank (Institute of Psychiatry, King’sCollege

London) and were collected and distributed in accordance with local and

national research ethics committee approvals. See Table S3 for case details.

FISH with Immunofluoroscence

Cy3-labeledG2C438 RNA probes were synthesized by Integrated DNA Tech-

nologies and used as antisense probes. Cells were fixed in 4% PFA for 15 min

and washed with PBS. Then cells were incubated with 70% ethanol overnight

(16 hr) at 4�C. The next day, the cells were rehydrated in PBS for 15 min and

permeabilized with 0.1% Triton X-100 for 5 min. Following this, the coverslips

were incubated in prehybridization solution (40% formamide, 23SSC) for

15 min. Probes were used at working solutions of 5 ng/ml and diluted in

hybridization buffer (40% formamide, 1 mg/ml tRNA, 10% dextran sulfate,

23SSC). Following overnight hybridization at 48�C, coverslips were washed

three times in 2X SSC at room temperature for 15 min each. These were then

washed with PBS three times for 15 min each. Coverslips were treated with

RNase A/T1 mix (Fermentas, 1:50,000) for 5 min at room temperature and

washed with PBS three times for 15 min each. For double immunostaining

with FISH, coverslips were blocked in 5%donkey serum for 1 hr, and then cells

were incubated with primary antibodies (Table S2), and the appropriate sec-

ondary antibodies were used. DAPI (Sigma) was used for counterstaining. Le-

ica confocal SP systems were used for high-resolution imaging.

FISH for Human Tissue

Sections from frontal and temporal cortices and cerebellum were provided as

10% formalin fixed and paraffin-embedded blocks. To perform FISH, paraffin

was removed with xylene, and sections were rehydrated in an ethanol series

(100%, 95%, 70%) for 3 min per step. These slides were incubated in 0.3%

Sudanblack for5minandwashedwithwater.Next, slideswere treatedwithpro-

teinase-K (20 mg/ml, TBS [pH 7.4]) in a 37�C water bath for 20 min. Next, slides

were treated with ice-cold 20% acetic acid in 13 TBS for 2 min and then incu-

bated in prehybridization buffer (40% formamide, 23SSC) for a further

15 min. Probes were used at working solutions of 5 ng/ml and diluted in hybrid-

ization buffer (403 formamide, 1 mg/ml tRNA, 10% dextran sulfate, 23SSC).

Following overnight hybridization at 48�C, slides were washed three times in

2X SSC at room temperature for 15 min each. These were then washed with

PBS three times for 15 min each.

Statistics

Statistical analysis was carried out using GraphPad Prism 5. For one-way

ANOVA, Bonferroni post hoc tests were used to compare the abundance of

TUNEL-stained cells in zebrafish. Data are presented as mean ± SEM. Statis-

tical significance was considered at p < 0.0001 (***).
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