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Comparative Evaluation of Methodologies for
T-Wave Alternans Mapping in Electrograms

Michele Orini∗, Ben Hanson, Violeta Monasterio, Juan Pablo Martı́nez, Martin Hayward,
Peter Taggart, and Pier Lambiase

Abstract—Electrograms (EGM) recorded from the surface of the
myocardium are becoming more and more accessible. T-wave alter-
nans (TWA) is associated with increased vulnerability to ventricu-
lar tachycardia/fibrillation and it occurs before the onset of ventric-
ular arrhythmias. Thus, accurate methodologies for time-varying
alternans estimation/detection in EGM are needed. In this paper,
we perform a simulation study based on epicardial EGM recorded
in vivo in humans to compare the accuracy of four methodologies:
the spectral method (SM), modified moving average method, lapla-
cian likelihood ratio method (LLR), and a novel method based on
time-frequency distributions. A variety of effects are considered,
which include the presence of wide band noise, respiration, and
impulse artifacts. We found that 1) EGM-TWA can be detected ac-
curately when the standard deviation of wide-band noise is equal or
smaller than ten times the magnitude of EGM-TWA. 2) Respiration
can be critical for EGM-TWA analysis, even at typical respiratory
rates. 3) Impulse noise strongly reduces the accuracy of all meth-
ods, except LLR. 4) If depolarization time is used as a fiducial
point, the localization of the T-wave is not critical for the accuracy
of EGM-TWA detection. 5) According to this study, all method-
ologies provided accurate EGM-TWA detection/quantification in
ideal conditions, while LLR was the most robust, providing bet-
ter detection-rates in noisy conditions. Application on epicardial
mapping of the in vivo human heart shows that EGM-TWA has
heterogeneous spatio-temporal distribution.

Index Terms—Electrograms (EGM), intracardiac ECG, repo-
larization, T-wave alternans, ventricular arrhythmia.
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I. INTRODUCTION

A repeating ABAB pattern in the morphology of the
ST-segment or T-wave in the ECG, so called T-wave al-

ternans (ECG-TWA), is a phenomenon associated with arrhyth-
mogenesis. Many studies have demonstrated the existence of a
link between ECG-TWA and the risk for sudden cardiac death
[1]–[4], suggesting that ECG-TWA may be used as a diagnostic
and prognostic tool. Advances in the aetiology and diagnosis of
ECG-TWA were partially due to the development of method-
ologies for the estimation and detection of ECG-TWA [5].
ECG-TWA is caused by alternation in the duration and morphol-
ogy of the transmembrane potential of myocytes, a phenomenon
called repolarization alternans, whose origin is currently under
investigation [3], [6]. Unipolar electrograms (EGM) recorded
on the surface of the myocardium offer the opportunity to
study the electrical activity of the heart at the tissue level.
They incorporate features from the transmembrane potential
providing indirect estimates of local depolarization and repo-
larization times [7], and also the ECG, exhibiting a similar
waveform which includes a T-wave. Several studies have
demonstrated that EGM-TWA is also associated with increased
vulnerability to ventricular tachycardia/fibrillation in humans,
dog, and swine [8]–[11]. In particular, recent work has shown
that EGM-TWA increases before the onset of ventricular ar-
rhythmias in humans [11], [12]. This suggests that EGM-TWA
may be useful as a warning of imminent ventricular tachy-
cardia/fibrillation in implantable cardioverter defibrillator pa-
tients [12], and calls for an effort to provide the medical
community with accurate and robust methodologies for the mea-
surement of EGM-TWA. Importantly, the analysis of EGM of-
fers the unique opportunity of studying the spatial distribution
of alternans [13], [14], and in particular discordant alternans,
which is a precursor to ventricular tachycardia [4]. Thus, accu-
rate techniques for EGM-TWA assessment are needed to achieve
better diagnostic reliability, and to improve the understanding
of the link between repolarization alternans at the cellular level
and increased risk of sudden cardiac death. However, in only
few methodological studies has the accuracy of EGM-TWA
estimation/detection been assessed [11], [15]. In most of the
clinical studies on EGM-TWA, the same techniques used in
ECG-TWA analysis are adopted, namely, the spectral method
(SM) [8], [10], [13]–[15], and the modified moving average
method (MMA) [16]. To the best of our knowledge, no study
has assessed and compared the accuracy of these techniques in
the analysis of unipolar EGM.

The purpose of this paper is to assess and compare the
accuracy of four techniques for the estimation and statistical
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detection of EGM-TWA by means of simulations which re-
produce the conditions of most electrophysiological studies.
EGM-TWA was added to 120 EGM recorded from the entire
epicardium in a patient undergoing cardiac surgery. Different ef-
fects are studied, which include 1) Wide-band noise, which mod-
els electrical and muscular interference; 2) respiration, which
has been recognized as a possible confounding factor [17], [18]
but whose effect over EGM-TWA has, to our knowledge, not
been assessed; 3) impulse noise, such as loss of capture, ec-
topic beats, or movement artifacts; 4) The morphology of the
EGM, i.e., the polarity of the T-wave and the effect of cycle
length; 5) Accuracy in the temporal localization of the T-waves.
Finally, application on real data demonstrates the possibility of
determining the spatial distribution of EGM-TWA in vivo in
human.

II. METHODS FOR EGM-TWA ANALYSIS

In this section, we describe four methodologies to estimate
EGM-TWA amplitude and a statistical testing based on surro-
gate data analysis [19]. Estimates used for quantification are
denoted as V [b], while statistics used for detection are denoted
as Z[b], where b indicates the heart beat.

A. EGM-TWA Quantification

Three of the methods described here (SM, MMA, and LLR,
see next sections for details) are used in ECG-TWA analysis
and have already been described elsewhere [5]. In this study,
we have slightly modified the original methods to adjust the
analysis to the time-varying study of unipolar EGM, unify the
detection scheme, and compare the results.

The first step is the reorganization of the data. Let y[n] be
the EGM low-pass filtered at 25 Hz. Activation times, τ [b], are
estimated as the minimum of the first derivative during depolar-
ization phase, in a 180 ms long window starting at the instant of
stimulation, which is assumed to be known. The filtered signal
is reorganized in a matrix Y [n, b] of size [N × B], B being the
number of beats and N = 200 ms the portion of the T-wave
being analyzed. Each column of Y [n, b], is a T-wave, evaluated
at n ∈ [τ [b] + 101, τ [b] + 300]ms. A detrending filter is used to
enhance changes in the T-wave morphology on a beat-to-beat
basis:

YD[n, b] = Y [n, b + 1] − Y [n, b] (1)

1) Spectral Method: The SM is probably the most com-
monly used in research and is also implemented in commercial
equipment for ECG-TWA analysis. It uses spectral analysis to
quantify the magnitude of the alternation in the morphology of
the T-wave which appears every 2 beats, i.e., at a frequency
equal to 0.5 cycles per beat (cpb) [5]. The aggregate spectrum,
P [b, f ], is computed by estimating the spectrum along rows,
in a moving window of length L = 32 centered on beat b, and
averaging along n:

P [b, f ] =
1

LN

N∑

n=1

∣∣∣∣∣∣

L/2∑

l=−L/2+1

YD[n, b + l]e−2πil

∣∣∣∣∣∣

2

(2)

where f is discrete frequency in cpb. The detection statistic is

ZSM [b] =
P [b, f = 0.5] − PN [b]

σ
(P)
N [b]

(3)

where PN [b] and σ
(P)
N [b] are the mean and standard devi-

ation of the power content in noise band, defined for f ∈
[0.44, 0.49]cpb [5], [15]. EGM-TWA magnitude is estimated
as VSM [b] =

√
P [b, f = 0.5] − PN [b].

2) Modified Moving Average Method: This method, which is
also implemented in commercial equipment, performs nonlinear
processing of Y [n, b] in the time domain [5]. Y [n, b] is divided
into two matrices, YO[n, 2b − 1] and YE[n, 2b]. A new matrix is
computed recursively as

Y E[n, 2b] = Y E[n, 2(b − 1)] + ΔE[n, 2b] (4)

where

ΔE[n, 2b] =
1
8
(YE[n, 2(b − 1)] − Y E[n, 2(b − 1)]). (5)

In the original version of the method [16], the effect of outliers
is reduced by limiting ΔE[n, 2b] to a constant value. With the
same purpose, in this study ΔE[n, 2b] is bounded to ±ΔM

E [n],
which is equal to the 75th percentile of |YD[n, b]|, estimated
along beats. Matrix Y O[n, 2b − 1] is estimated as in (4)–(5)
using odd beats. In (4), matrices Y E[n, 2b] and Y O[n, 2b − 1]
are initialized as one eighth of the median T-wave estimated in
the first eight even and odd beats, respectively. An estimate of
EGM-TWA magnitude, VMMA[2b], is obtained as the mean of
Y O − Y E , while the statistic used for EGM-TWA detection is

ZMMA[2b] = max
∣∣Y O[n, 2b − 1] − Y E[n, 2b]

∣∣ . (6)

Note that the original version of the method does not include a
statistical procedure for alternans detection.

3) Laplacian Likelihood Ratio Method: This method is
based on median filtering and has been shown to be accurate and
robust for the analysis of ECG-TWA, even when used in time-
varying analysis [5], [20]. This method assumes that at each
heart beat, a T-wave is the sum of an invariant T-wave, an alter-
nans wave with alternating polarity, and Laplacian noise [20].
It can be shown that for this model, the maximum likelihood
estimation of the alternans wave, computed in a moving window
of length L = 32 and centered on beat b, is

v[n, b] = median({YD[n, b + l](−1)l}L/2
l=−L/2+1) (7)

and the magnitude of EGM-TWA is

VLLR [b] = 2

√√√√ 1
N

N∑

n=1

v[n, b]2 . (8)

The detection statistic is the generalized likelihood test associ-
ated with the model [20]:

ZLLR [b] =
√

2
σL [b]NL

N∑

n=1

[
L/2∑

l=−L/2+1

|YD[n, b + l](−1)l

·M [n, l]|
]
. (9)
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In (9), σL [b] is the noise level estimate:

σL [b] =
√

2
NL

N∑

n=1

L/2∑

l=−L/2+1

|YD[n, b + l] − v[n, b](−1)l |

(10)
and M [n, l] is a matrix of size [N × L] in which all elements
equal zero, except those [n, l] for which min(0, v[n, b + l]) <
YD[n, b + l](−1)l < max(0, v[n, b + l]), for which M [n, l] =
1. Using M [n, l] the summation in (9) is proportional to
the absolute sum of the terms in the demodulated series
|YD[n, b + l](−1)l |L/2

l=L/2+1 , whose values lie in [0, v[n, b + l]]
for v[n, b + l] > 0, and in [v[n, b + l], 0] for v[n, b + l] < 0
[20].

4) Time-Frequency Distribution: This method is similar to
the SM, but it uses continuous time-frequency analysis instead
of spectral analysis. The rationale for proposing this new method
is that a better time-frequency resolution than that of spectral
analysis applied in moving windows may improve the detection
of EGM-TWA. First, the matrix YD[n, b′] is computed by up-
sampling rows of YD[n, b] with an up-sampling factor equal to
2 to prevent border effects in the TFD. At a given time n, a TFD
Sn [b′, f ] is estimated as

Sn [b′, f ] = Wn [b′, f ] ⊗ Φ[b′, f ] (11)

where Wn [b′, f ] is the Wigner–Ville distribution of YD[n, b′]
[21], estimated along b′, Φ[b′, f ] is the elliptical exponential ker-
nel used in [22] and [23], and ⊗ represents convolution on both
time and frequency. An aggregate TFD, S[b′, f ], is estimated
by averaging Sn [b′, f ] over n. Sn [b′, f ] is down-sampled by a
factor 2, and VTFD[b] = S[b, f = 0.5]. The detection statistic is
defined as

ZTFD[b] =
S[b, f = 0.5] − SN [b]

σ
(S)
N [b]

(12)

where SN [b] and σ
(S)
N [b] are defined as in (3). In this study, time

and frequency resolutions (estimated as full width at half maxi-
mum of the kernel [21]) are 10 beats and 0.04 cpb, respectively.

B. EGM-TWA Detection: A Unified Statistical Approach

To decide whether EGM-TWA is present in an EGM, a test
based on surrogate data is used [19]. Surrogate data for EGM-
TWA test are generated by permuting randomly the order of the
heart beats in Y [n, b]. The randomization destroys the alternat-
ing pattern of EGM-TWA while preserving the morphology of
the T-waves, and a detection threshold is found which is related
to the probability of erroneously detecting EGM-TWA merely
due to random fluctuations. The procedure used in this study is
described in Section III-C.

III. COMPARATIVE SIMULATION STUDY

This section describes the procedure to generate synthetic
EGM with and without EGM-TWA from in vivo in human
recordings, simulate the effect of different kinds of noise, and
evaluate EGM-TWA detection performance.

TABLE I
PROPORTION OF POSITIVE, BIPOLAR AND NEGATIVE T-WAVES

A. From Real Data to Simulated EGM

Multielectrode epicardial EGM were recorded from a patient
undergoing cardiac surgery for coronary artery disease. Pacing
was established from the epicardial left ventricle over a range of
4 cycle lengths (TCL = 550, 500, 450, 400 ms). Signals from
M = 120 electrodes were selected and for each electrode a
template representing the basic EGM, xi [n], i = 1, . . . , M , was
constructed by averaging over different heart beats. Depolariza-
tion times, τi , and the onset of the T-wave, Ji , were estimated
for each template. To determine the polarity of the T-wave, each
xi [n] was rescaled as xi [n] − xi [n = Ji ], and the ratio between
the area under the positive part of the T-wave and the total area,
αi , was estimated. An EGM was considered positive, bipolar,
or negative when α > 0.66, 0.33 ≤ α ≤ 0.66, and α < 0.33,
respectively. The proportion of positive, bi-polar, and negative
xi [n] is reported in Table I, while examples of xi [n] are shown
in Fig. 1.

The procedure to generate EGM with the desired pattern of
alternans from any electrode was 1) the amplitude of the T-wave,
AT

i , was estimated as the global maximum for positive template
and global minimum for negative and bipolar template. 2) A
template for EGM-TWA within each beat, Πi [n], was created
as Πi [n] = 0 for n ≤ Ji and Πi [n] = 1 for n > Ji . 3) A beat-
to-beat pattern of EGM-TWA was generated as

T [b] =
{

0.5(−1)b + u 32 < b ≤ 96

u otherwise
(13)

where b = 1, . . . , B = 128, and u is a random variable uni-
formly distributed between ±0.125. A realization of T [b] is
shown in Fig. 2. 4) EGM with added EGM-TWA was generated
by modifying the templates:

Xi [n, b] = xi [n] + V0A
T
i Πi [n]T [b] (14)

where V0 indicates the relative magnitude of EGM-TWA with
respect to the amplitude of the T-wave. 5) An EGM, y0

i [n], was
finally generated by concatenating the B heart beats of Xi [n, b]
and low-pass filtering at 25 Hz. Summarizing, EGM recorded
from 120 electrodes from the in vivo human heart were selected,
and for each electrode a template xi [n] representing the basic
heart beat was derived. EGM-TWA is present during 64 consec-
utive beats of the 128-beat-long test sequence, with an average
magnitude V0 times the magnitude of the T-wave, AT

i . A ran-
dom fluctuation in the magnitude of the T-waves, representing
intrinsic variability in the action potential duration, is also in-
troduced by adding u. An example of Xi [n, b] with V0 = 5%
is shown in Fig. 1(d)–(f) (only n ∈ [101, 300] is shown). Note
that the filtering cancels any abrupt change in the morphology
of the EGM.
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Fig. 1. (a)–(c): Examples of positive, bi-polar, and negative templates for EGM. Templates are estimated as described in the text. In the graphics, coordinates
(x, y) are transformed so that the point (0, 0) ≡ (τ, J ). Different line styles represent different cycle lengths. (d)–(e): Two consecutive T-waves (cycle length =
450 ms) in presence of EGM-TWA, before adding noise. T-waves are normalized. The magnitude of EGM-TWA is V0 = 5% the amplitude of the T-wave AT

i .

Fig. 2. Pattern of EGM-TWA T [b], representing the beat-to-beat fluctuations
in the T-wave.

B. Simulating the Effect of Noise

1) Wide-Band Noise: Wide band disturbances, such as mus-
cular noise, electrical interferences, or any other source of noise
which can degrade the quality of the signal, should be taken into
account. These kinds of disturbances are especially important
for EGM which are often recorded in noisy conditions. The ef-
fect of electrical and muscular interferences was simulated by
adding the Gaussian white noise to y0

i [n]:

yi [n] = y0
i [n] + ξi [n]; with ξi [n] ∼ N (0, AN

i AT
i ) (15)

where ξi [n] has zero mean and standard deviation equal to AN
i

times the T-wave amplitude. The Signal-to-noise ratio (SNR)
is estimated as the ratio between powers of y0

i [n] and ξi [n].
Alternans to noise ratio (ANR) is defined as (V0/A

N
i )2 .

2) Respiration: Respiration modulates the heart rate and the
amplitude of the T-wave and, more recently, it has been shown to
affect the action potential duration even at constant heart rates
[24]. Thus, the effect of respiration on EGM-TWA estimates
should be investigated. In this study, the heart rate is constant and
the effect of respiration is simulated as an amplitude modulation:

yi [n] = AR
i (1 + r3 [n])y0

i [n] + ξi [n] (16)

where r[n] is a periodic signal with a cycle length that is a mul-
tiple of the pacing cycle length TCL . r[n] has a period TCLnCL

and is defined as

r[n] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2n/(TCLnCL) 0 < n ≤ 1
2 TCLnCL

−4n/(TCLnCL) + 3
1
2
TCLnCL < n ≤ 3

4
TCLnCL

0
3
4
(TCLnCL) < n ≤ TCLnCL .

That is, during each respiratory cycle, r[n] increases linearly
from 0 to 1 in half the respiratory period, decreases to zero in
the following quarter period, and remains there for the rest of
the cycle. In this study, we use nCL = {4, . . . , 8}, and AR

i =
{5, 10, 20}% AT

i . White noise is also added.
3) Impulse Noise: Another kind of disturbance is repre-

sented by impulse noise, which includes ectopic beats, move-
ment artifacts, loss of capture during stimulation, etc. Impulse
noise is simulated by replacing NI heart beats with a Hann func-
tion whose maximum is equal to AT

i , i.e., AT
i sin2(πn/(N/1)).

Three conditions were simulated using the model in (14), in
which the number of beats Xi [n, b] replaced by Hann functions
was equal to NI = {3, 6, 12}. The position of these beats is
chosen randomly. EGM are obtained adding noise as in (15).

C. Detection Scheme

For each condition described in the previous section, M =
120 EGM from different electrodes were generated. Among
these 120 EGM, 60 were EGM-TWA positive, i.e., (13)–(14)
were used, and 60 were EGM-TWA negative, i.e., Xi [n, b] =
xi [n] in (14). The proportion of EGM with negative and nonneg-
ative T-waves was approximately the same in both groups of sig-
nals. For each condition (i.e., level of noise, respiratory rate and
amplitude, and number of impulse noise events), and each one of
the 120 electrodes, 50 EGM were simulated using different re-
alizations of intrinsic noise u, additive noise ξi [n], and locating
impulse noise events in different positions. EGM-TWA detec-
tion was then performed on each one of these 50 EGM using
the same detection threshold, estimated as follows: 50 surrogate
EGM were obtained by reshuffling the heart beats of each origi-
nal EGM. For all methods except TFD, other 150 surrogate EGM
were generated by simulating 150 EGM and reshuffling the heart
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Fig. 3. Estimation of EGM-TWA magnitude. Each box represents the distri-
bution of estimated EGM-TWA among channels. Standard deviation of added
white noise was AN

i = 0.1AT
i . Dashed line represents line x = y. (a) SM.

(b) MMA. (c) LLR. (d) TFD.

beats. Statistics ZS
X [b, r], with X ∈ {SM, MMA, LLR, TFD}

and r = 1, . . . , R were estimated for all R surrogate EGM
(R = 200 for all methods except TFD, for which R = 50). A
threshold γβ

X was estimated as the β-percentile of the vector
obtained by vectorization of ZS

X [b, r]. EGM-TWA was detected
whenever the statistic of an original EGM, ZX[b], is higher than
γβ

X for at least LTh = 12 consecutive beats.
For each original EGM, sensitivity and specificity were es-

timated, and ROC curves produced. The area under the ROC
curve AROC was used as a measure of detection performance.

IV. RESULTS

A. Assessment of EGM-TWA Estimation

Fig. 3 shows that when signals were characterized by moder-
ate to high SNR, there was a good agreement between actual and
estimated EGM-TWA magnitude using all methods, even for
low level of alternans. In the graphic, each boxplot represents
the estimated magnitude of EGM-TWA for actual magnitude
from V0 = 0.2% to V0 = 4% of AT

i . Standard deviation of the
white noise was AN

i = 10% of AT
i (corresponding to a SNR of

about 20 dB), which is 50 (and 2.5) times higher the lowest (the
highest) magnitude of added EGM-TWA alternans. EGM-TWA
was estimated as the mean value of VX[b = 64], obtained aver-
aging over 50 realizations, for a cycle length TCL = 450 ms. For
V0 < 1% all methods overestimated the actual level of EGM-
TWA. For V0 > 1%, SM and LLR provided the most accurate
estimates, while MMA underestimated EGM-TWA level.

B. EGM-TWA Detection and Wide-Band Noise

Fig. 4 shows that AROC is a function of ANR = (V0/A
N
i )2 .

In this figure, AROC (mean and standard deviation) is plot-
ted against ANR in a range going from 0.25%–4% (−26 to
−14 dB): V0 went from 0.5% to 5% (in steps of 0.5%), and AN

i

went from 2.5% to 100% of AT
i (from about 32 to 0 dB). For

TABLE II
β CORRESPONDING TO MAXIMUM ACCURACY (MEAN ± SD)

constant ANR, approximately the same AROC was calculated,
independently of V0 . The best results were obtained by LLR
and SM: AROC > 0.9 for ANR ≥ −20 dB, (ANR ≥ 0.01), and
AROC > 0.8 for ANR = −22 dB. The minimum magnitude of
EGM-TWA which could be detected strictly depended on the
quality of the recording. In particular, only EGM-TWA with
a magnitude equal or higher than 10% the standard deviation
of the noise (ANR ≥ −20 dB) was detected with high AROC .
Fig. 5(a) shows the minimum V0 which can be detected with
AROC > 0.9 for different level of noise. For a given V0 , a point
represents the minimum SNR for which EGM-TWA was de-
tected with AROC > 0.9, while for a given SNR, a point repre-
sents the minimum V0 associated with AROC > 0.9. The best
results were obtained by LLR and SM. Mean horizontal dis-
tance between SM or LLR and TFD or MMA was 1.98 dB.
For example, EGM-TWA with magnitude V0 = 1% was de-
tected accurately by LLR and SM for SNR > 20.2 dB, and by
MMA and TFD for SNR > 22.1 dB. Fig. 5(b)–(d) shows the
accuracy, sensitivity, and specificity for the detection threshold
corresponding to the 95th percentile (β = 95) of surrogate data
distribution. For increasing ANR, the sensitivity decreased for
all methods, being the decrease for MMA the most dramatic,
while the specificity was almost constant. This figure shows
the importance of selecting the appropriate detection threshold.
The percentile which maximized the accuracy of the detection
is shown in Table II.

C. EGM-TWA Detection and Respiration

The effect of respiration is studied using the model described
in (16). We investigated the influence of both the respiratory
period, which was nCL = {4, . . . , 8} times longer than the cycle
length, and the amplitude of the modulation, AR

i , which went
from 5% to 20% of AT

i . In the results shown in Fig. 6, V0 = 1%
and AN

i = 10% (about 20 dB). Markers and bars represent mean
and standard deviation of AROC over 50 realizations. AROC in
absence of respiration (AR

i = 0) is reported for comparison on
the left-hand column. Results show that respiration reduced the
detection performance for any nCL and TCL . The degree of
the reduction depended on the particular combination of nCL ,
AR

i , and TCL . In general, the higher AR
i , the lower AROC . The

lowest AROC occurred for nCL = 4 and nCL = 6, for which,
when AR

i = 20%, AROC was as low as 0.5. Even for AR
i = 5%,

when nCL = 4, AROC decreased in comparison with AROC
in absence of respiration 0.22, 0.16, 0.22, and 0.27 for SM,
MMA, LLR, and TFD, respectively (averaging among TCL ).
Importantly, for a heart rate of 109 bpm (TCL = 550 ms) and
a respiratory rate of 18 breaths per minute (nCL = 6), AROC
decreased about 0.075 for all methods [see panel (j)]. Among the
60 combinations taken into account (4 cycle lengths, 3 amplitude
modulations, and 5 cycle lengths), MMA, SM, LLR, and TFD
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Fig. 4. EGM-TWA detection performance for different alternans to noise ratios (ANR). Dots and bars represents the mean and standard deviation of the area
under the ROC curve, AROC . Magnitude of EGM-TWA, V0 , goes from 0.5% to 5%. In this example TCL = 450 ms. (a) SM. (b) MMA. (c) LLR. (d) TFD.

Fig. 5. (a) Minimum EGM-TWA magnitude, V0 , which can be detected with AROC > 0.9 for different SNR. (b)–(d) Accuracy, sensitivity and specificity of
EGM-TWA detection for different ANR. In these examples, TCL = 450 ms and V0 goes from 0.5% to 5%.

Fig. 6. Effect of respiration on EGM-TWA detection performance. EGM-TWA magnitude was V0 = 1% of T-wave amplitude, standard deviation of white
noise was AN

i = 10% of T-wave amplitude, SNR equal to about 20 dB. From left to right, colums represent the area under the ROC curve (AROC ) for
increasing respiratory modulation AR

i = {5%, 10%, 20%} of the T-wave amplitude. From top to bottom, lines represent results for different cycle lengths TCL .
Left hand column represents AROC in absence of respiration. Markers are as in Fig. 5: ◦ (SM), � (MMA), � (LLR), � (TFD) (a) TCL = 400 ms AR

i = 5%.
(b) TCL = 400 ms AR

i = 10%. (c) TCL = 400 ms AR
i = 20%. (d) TCL = 450 ms AR

i = 5%. (e) TCL = 450 ms AR
i = 10%. (f) TCL = 450 ms AR

i = 20%.
(g) TCL = 500 ms AR

i = 5%. (h) TCL = 500 ms AR
i = 10%. (i) TCL = 500 ms AR

i = 20%. (j) TCL = 550 ms AR
i = 5%. (k) TCL = 550 ms AR

i = 10%.
(l) TCL = 550 ms AR

i = 20%.
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Fig. 7. Effect of impulse noise on EGM-TWA detection performance. Markers
and bars represent mean and standard deviation of AROC averaging among
realizations and cycle lengths. (a) V0 = 1%, AN

i = 10% AT
i . (b) V0 = 5%,

AN
i = 25% AT

i .

were associated to the highest AROC in 5, 10, 44, and 1 cases,
respectively.

D. EGM-TWA Detection and Impulse Noise

Impulse noise is used to simulate the effect of an event which
introduces one or more artifacts into the analyzed sequences
of T-waves. Fig. 7 shows that impulse noise had a dramatic
effect on the detection performance of all methods, but LLR.
In panel (b), it is shown that for V0 = 1% and AN

i = 10%,
LLR had AROC > 0.80 even when 12 heart beats over 128
were replaced by artifactual ones, while all the other methods
had AROC < 0.60. Similar results are shown in panel (b), for
V0 = 5% and AN

i = 10%. Moreover, the standard deviation of
AROC for LLR was much lower than for any other method. This
suggests that the detection performance of LLR was not affected
by the position of impulse noise events and cycle lengths.

E. EGM-TWA Detection, T-Wave Localization,
and Morphology

The mean and standard deviation of the estimation error of
depolarization times, τi [b] − τ̂i [b], used to localize the T-waves,
was a linear function of AN

i : mean error was equal to 0.775 AN
i +

1.47 (R2 = 0.995) and the standard deviation was 6.69AN
i +

2.87 (R2 = 0.996). For example, for SNR between 20 and 30 dB
the estimation error was equal to 1.53 ± 3.33 ms. The error in the
localization of the T-wave caused a minor reduction of AROC :
grouping together all conditions (different level of noise, number
of impulse noise events, respiratory rate, and amplitude) average
reduction of AROC with respect to the case in which actual τi [b]
were used to localize the T-wave was lower than 0.012.

When the effect of white noise, respiration, and impulse noise
are considered all together, no differences were observed be-
tween AROC for negative and nonnegative T-waves.

F. In Vivo Epicardial Mapping of the Intact Human Heart

The EGMs used to generate the templates and the synthetic
signals were analyzed and results are shown in Fig. 8. For each
cycle length, a sequence of about 35 beats was recorded and
analyzed with the LLR method. The length of the window used
for the calculation, L, was set equal to the length of each EGM
series, and the detection threshold corresponded to the 95th per-
centile of a distribution of 200 surrogate EGM. Upper and lower

Fig. 8. EGM-TWA mapping: upper and lower graphics represent the left and
right ventricles, respectively. The left anterior descending artery is plotted in
black. EGM-TWA positive and negative sites are in red and blue, respectively.
Regions from where EGMs were either too noisy or not recorded are in gray.

panles represent the left and right ventricles, respectively. Sites
where EGM-TWA was statistically significant are represented
in red. These results demonstrate the capability of LLR for de-
tecting EGM-TWA in EGM recorded in vivo in humans, and
show that local EGM-TWA is characterized by heterogeneous
spatio-temporal distribution. In this example, EGM-TWA was
more apparent at a cycle length of 550 ms than at shorter cycle
lengths.

V. DISCUSSION

In this paper, we compared the detection performance of four
methods for EGM-TWA quantification/detection in synthetic
unipolar EGM based on in vivo in human recordings. We con-
sidered short EGM recordings, N = 128 beats, at fixed cycle
lengths to reproduce the typical conditions in which electro-
physiological studies are usually conducted. The stabilization
of the heart rate by means of external stimulation at a fixed
cycle length offers the opportunity of studying repolarization
dynamics independently of heart rate variability, which is con-
sidered as a source of noise. Methodologies for EGM-TWA es-
timation/detection should be characterized by a good temporal
resolution, since it has been shown that EGM-TWA can appear
in short sequences of only few beats [10]–[12]. Accordingly, in
this study, EGM-TWA was added in only 64 heart beats.

The main results of the study were: 1) EGM-TWA can be
detected accurately only when its magnitude is equal or higher
than 10% the standard deviation of the noise (ANR ≥ −20 dB).
This implies that knowing the noise level, it is possible to es-
timate the minimum level below which EGM-TWA measures
should be disregarded as false alarms. 2) Respiration can be
critical for EGM-TWA analysis, even at usual respiratory rates.
3) Impulse noise strongly reduces the accuracy of all methods,
except LLR. 4) The polarity of the T-wave does not affect the de-
tection rate. 5) If depolarization time is used as a fiducial point,
the localization of the T-wave is not critical for the accuracy of
EGM-TWA detection.

A. Unified Detection Scheme

In this study, we used a nonparametric decision scheme based
on surrogate data [19]. The main advantage of this scheme is
that it is model-free, and therefore it does not depend on how
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well the model explains data and noise. Moreover, it can be used
with any statistic and is particularly useful for those methodolo-
gies, such as MMA and TFD, which do not include a specific
decision scheme. Furthermore, using surrogate data, the number
of false positive detection, which determines the specificity of
the detection scheme, is independent of the quality of the sig-
nal. This is apparent in Fig. 5(d). The idea of using the original
data to estimate a discrimination threshold was already pro-
posed in [13], where measures of ECG-TWA obtained through
MMA where compared with measures of ECG-TWA obtained
in series of even and odd beats separately. However, the use of
even and odd beats to estimate a discrimination threshold may
be inappropriate when the respiratory period is a multiple of
the R-R interval, since respiration can introduce alternations in
every-other-beat in odd and even series. A surrogate based test
for ECG-TWA detection was proposed and evaluated in [19],
while a parametric test has been recently proposed to detect
repolarization alternans in optical mapping data [25].

B. Methodological Comparison

The accuracy of the detection of EGM-TWA was assessed
in presence of white noise, periodical noise, and impulse noise,
for both positive and negative T-waves. LLR was as accurate
as SM when white noise was added, and performed better than
any other methods when respiration and impulse noise were
taken into account. In particular, unlike other methodologies,
LLR was robust against impulse noise. This is an important
feature, since EGM are often corrupted by artifacts, such as
ectopic beats, loss of contact between the electrode and the
myocardium, loss of capture during stimulation, etc. These kinds
of artifacts cannot be easily removed. Thus, a methodology
which performs accurately even in presence of these artifacts
is suitable. The reason why LLR is more robust than the other
methods may be that ZLLR [b] is estimated using only terms
which do not exceed the maximum likelihood estimation of
the alternans wave, v[n, k], which in turn is based on a robust
estimator, i.e., the median.

The use of time-frequency analysis instead of classical spec-
tral analysis did not result in any improvement. This may be due
to the fact that a better time-frequency resolution is achieved
at the detriment of robustness against noise and artifacts. A
methodology which combines sharp time-frequency localiza-
tion with reduction of the variance of the estimation, such as
the multitaper reassignment, recently proposed for EGM-TWA
detection [26], or adaptive time-frequency analysis [27], may
be beneficial. However, time-frequency analysis requires much
more computational load than classical spectral analysis.

The comparison performed in this study is based on the detec-
tion performance in rather specific situations. It is worth noting
that SM and TFD provide more information than the amplitude
of alternans, such as the magnitude of respiratory-related os-
cillations, and phase relationship. In this study, we focused on
the most used methods, SM, MMA, and LLR, and we assessed
a novel one, TFD, but other techniques [11] can be studied in
future work.

C. EGM-TWA and Respiration

Although the effect of respiration has been already recog-
nized as potentially detrimental for alternans detection [17], to
the extent of our knowledge, this effect was never quantified
before. Respiration modulates the amplitude and the duration
of the T-wave, thus introducing oscillations which can overlap
or get confused with EGM-TWA. In theory, this can happen
only when the respiratory rate is 2n times higher than the heart
rate, since in this case a harmonic of the respiration can fall at
frequency 0.5 cpb. We showed that the accuracy of the detection
can decrease even for respiratory rate six times lower than the
heart rate, i.e., at 0.42, 0.37, 0.33, and 0.30 Hz for cycle lengths
equal to 400, 450, 500, and 550 ms, respectively, which are usual
respiratory rates. Moreover, the respiratory modulation of the
EGM also reduced the accuracy of the detection when the respi-
ratory rate was not 2n times higher the heart rate, as for nCL = 5
and 7. Several aspects should be investigated further. First, in
this study, we have simulated the effect that respiration exerts
on repolarization at a constant heart rate, i.e., independently of
respiratory sinus arrhythmia [24]. When EGM are recorded at
sinus rhythm, the duration of the T-wave may also change with
respiration. This may slightly increase the effect that respiration
exerts on EGM-TWA analysis and should be studied. Second,
the effect of respiration also depends on the profile of the modu-
lation, which determines the magnitude of its harmonics. In this
study, inspiration was longer than expiration. More symmetric
modulations produce less prominent harmonics, thus likely re-
ducing the effect of respiration on EGM-TWA detection. Third,
it is unlikely that respiratory frequency is constantly locked to
the heart rate for a long period of time, and the effect of non-
stationary respiratory rate may also deserve attention in future
studies.

D. Implications and Future Lines

In the application to real signals, we illustrate that repolar-
ization alternans is a complex phenomenon with heterogeneous
spatio-temporal distribution, which should be studied and re-
lated to noninvasive markers of EGM-TWA. In this human case
study, EGM-TWA was significant at paced cycle lengths of 550
and 600 ms (not shown) but was less apparent at shorter cycle
lengths. Ongoing work will confirm whether this trend is con-
sistent in other subjects; if that is the case, the finding would
imply that in vivo local EGM-TWA is inhibited in paced heart
rates higher than 110 bpm, and it would have an impact in the
understanding of the aetiology of repolarization alternans. The
precise relationship between EGM-TWA and ECG-TWA is still
unclear, and it may be possible that ECG-TWA and EGM-TWA
do not present a parallel rate dependence.

Although this study focused on EGMs recorded on the my-
ocardium, there are strong similarities with alternans analysis
in body-surface potentials: both types of signals have similar
morphology, the considered sources of noise are expected to
produce similar effects, and a correlation exists between repo-
larization alternans in EGMs recorded on the myocardium and
on the body surface [13], [28]. These similarities suggest that
the results presented here may be more widely applicable and
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that investigation of that broader applicability would be justi-
fied. Respiration can be an issue for EGM-TWA detection and
should be monitored during EGM-TWA tests. More work is
required to evaluate the effect of respiration in real data, and de-
sign algorithms which reduce its effect. Impulse noise has been
shown to have a dramatic effect on the detection performance
on common methods for EGM-TWA detection. Given that this
is a common source of noise, one should either use robust tech-
niques, such as LLR, or find a strategy to replace impulse noise
events [18]. Table II and Fig. 5 show that, although noise esti-
mates are incorporated in the statistics Z[b], the threshold which
maximizes the accuracy of the detection depends on ANR. A
strategy to make the accuracy of the detection independent of
the noise level would be highly beneficial.

VI. CONCLUSION

In this study, we assessed and compared four methodologies
for EGM-TWA estimation/detection in relation to the quality of
the recordings, the presence of artifacts, and the interference
of respiration. We showed that EGM-TWA can be detected
accurately if the alternans to noise ratio is higher than 0.01.
Respiration was shown to be critical for EGM-TWA detection
even at usual respiratory rates, the jitter in the localization of
the T-wave only slightly reduced the accuracy of the detection,
and the morphology and polarity of the T-wave did not affect
EGM-TWA analysis. Impulse noise dramatically reduced the
detection performance of all methods except LLR, which was
also more robust against the effect of respiration. Finally, we
characterized the complex spatio-temporal distribution of epi-
cardial EGM-TWA in a patient undergoing cardiac surgery.
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