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Model-based  analysis  of psychophysiological  signals  is  more  robust  to noise  – compared  to  standard
approaches  – and  may  furnish  better  predictors  of  psychological  state,  given  a physiological  signal.  We
have  previously  established  the  improved  predictive  validity  of  model-based  analysis  of  evoked  skin  con-
ductance  responses  to  brief  stimuli,  relative  to standard  approaches.  Here,  we  consider  some  technical
aspects  of  the  underlying  generative  model  and  demonstrate  further  improvements.  Most  importantly,
kin conductance responses (SCR)
alvanic skin response (GSR)
lectrodermal activity (EDA)
eneral linear convolution model (GLM)
enerative model
odel inversion

harvesting  between-subject  variability  in response  shape  can  improve  predictive  validity,  but  only  under
constraints  on  plausible  response  forms.  A  further  improvement  is achieved  by  conditioning  the  phys-
iological  signal  with  high  pass  filtering.  A  general  conclusion  is  that  precise  modelling  of  physiological
time series  does  not  markedly  increase  predictive  validity;  instead,  it appears  that  a  more  constrained
model  and  optimised  data features  provide  better  results,  probably  through  a suppression  of  physiological
fluctuation  that  is  not  caused  by the  experiment.
. Introduction

Recent interest in model-based analysis of skin conductance
esponses (SCR) (Bach & Friston, 2013) is – in part – motivated
y the need to improve the temporal resolution of inference in
apid event-related paradigms (Barry, Feldmann, Gordon, Cocker,

 Rennie, 1993). In model-based approaches, generative (forward)
odels specify how underlying physiological or psychological

tates generate observed data. Model inversion refers to estimating
hese (hidden) states from data. It turns out that inversion of prob-
bilistic forward models has fundamental advantages, one of them
eing a propensity to suppress the effect of measurement noise
Bach, Flandin, Friston, & Dolan, 2009; Bach, Daunizeau, Friston,

 Dolan, 2010; Bach, Friston, & Dolan, 2010; Bach, Daunizeau,
uelzow, Friston, & Dolan, 2011). Statistical inference on the

idden states is generally more powerful than statistical compar-

sons of observed data because the models are more informed
r constrained, leaving greater degrees of freedom in the data
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eproduction in any medium, provided the original author and source are credited.
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for efficient inference. Furthermore, the parameters of generative
models provide a quantitative and explicit description of assump-
tions implicit in operational approaches (Bach & Friston, 2013),
thus allowing for rigorous testing of those assumptions. Finally,
model-based approaches afford quantitative rather than qualita-
tive description of hidden, psychological processes.

Evoked skin conductance responses (eSCR) that follow a short
(less than second) stimulus can be analysed with general linear con-
volution models – similar to the convolution models widely used
in the analysis of functional magnetic resonance images (Friston,
Jezzard, & Turner, 1994). In order to estimate the amplitude of
evoked sympathetic nerve activity (SNA) from eSCR, we  proposed
such a convolution model (Bach et al., 2009). This model comprises
two parts: a peripheral model incorporating a (standard linear time
invariant) convolution operator, thought to be implemented by the
sudomotor nerve terminal and sweat gland; and a linear neural
model assuming infinitely short neural bursts immediately after
each stimulus. We  have shown that time invariance assumptions
for the peripheral system are largely met  (Bach, Flandin, Friston, &
Dolan, 2010), while non-linearities in the peripheral system may
occur but can easily be modelled within this framework – see
(Bach & Friston, 2013) for a discussion. The model is highly reg-

ularised by placing informative constraints on the form or shape
of the convolution kernel which models the peripheral response
function (RF). This enables one to estimate the mean evoked SNA
amplitude for each condition of an experimental design – even

reserved.
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hen observed eSCR overlap in time. This model was  designed
o optimise the predictive power of the estimates, rather than
o precisely reconstruct the observed time series. Indeed, when
ubjects observe negative-arousing or neutral pictures, picture cat-
gory can be better predicted from SNA estimates than from SCR
eaks, an observation that speaks to its predictive validity (Bach
t al., 2009).

Model-based eSCR analysis, based on probabilistic inversion of
 general linear convolution models, is thus a potentially powerful
ethod. As with any method, however, the practical implemen-

ation makes certain technical assumptions that go beyond the
nown biophysical properties of the system. Three points deserve
articular attention:

Firstly, the peripheral response model uses a canonical skin
onductance response function (SCRF) for all experiments and
ndividuals. Such a stereotypical response function is a strong
iophysical assumption and unsupported by observation. Indeed

n our own validation experiments, we observed large inter-
ndividual variability, accounting for up to 20% of overall response
ariability (Bach, Flandin, et al., 2010). Therefore, we  added orthog-
nalised Taylor expansions to the SCRF to account for differences
etween individuals and conditions, thus improving model fit
Bach et al., 2009). Effectively, this enables the model to fit a sub-
ect specific RF in terms of a linear mixture of basis functions of
eristimulus time, where the basis set is generated by the Tay-

or expansion. However, because the additional basis functions are
rthogonalised to the SCRF, they do not affect the estimation of
he parameter controlling the amplitude of the SCRF (Calhoun,
tevens, Pearlson, & Kiehl, 2004; Hopfinger, Buchel, Holmes, &
riston, 2000). Yet, this parameter is taken to estimate the SNA.
his means that additional basis functions improve data fit at the
ithin subject level but not comparisons of SNA at the between sub-

ect level. Hence, one might ask whether modelling an individual
esponse function (IRF) – rather than a canonical skin conductance
esponse function (SCRF) – improves predictive validity.

There are several ways to model subject specific IRF. First, the
CRF together with the remaining basis functions can be used
o estimate a subject and condition specific IRF. That is, we  can
econstruct the estimated eSCR, measure the peak amplitude (over
eristimulus time) and use this as an estimate of SNA amplitude,

nstead of the canonical parameter estimate. Other regularised
asis sets also provide models of IRFs. An uninformed finite impulse
esponse (FIR) model was proposed in Bach et al. (2009) due to its
opularity in fMRI research. A cosine set also used in fMRI analysis
erves the same purpose. These basis sets typically have a larger
umber of basis functions than basis sets built upon truncated Tay-

or expansions. This means that although they are more flexible,
hey require greater numbers of parameters to be estimated. In all
hese approaches, separate IRFs are estimated for each condition
ithin one individual. A more informed approach is to assume the

orm of the subject specific response function is the same for all
xperimental conditions. We  have implemented this constraint by
xtracting data from all conditions and fitting a response function
o the first principal component of the data. We  will refer to this
esponse function as the subject-specific response function (SRF).

A second issue is that skin conductance time series comprise
oth phasic responses and a slowly drifting tonic component.
his drift is why many analysis schemes high pass filter the
ignal (Boucsein, 2012), including contemporary model-based
pproaches (Benedek & Kaernbach, 2010a, 2010b). This renders the
hasic responses finite and removes slow signal drifts which are dif-
cult to model. In our implementation, we used a bidirectional first-

rder Butterworth filter with time constant of 10 s (corresponding
o a cut off frequency of 0.0159 Hz) (Boucsein, 2012). A bidirec-
ional filter was chosen as it retains peak latencies. Because this
lter can slightly distort the shape of the signal, the regressors of the
ology 94 (2013) 490– 497 491

general linear convolution model are subjected to the same filter.
The choice of the filter frequency is based on prior experience but
not on theoretical considerations. Therefore, one may  ask whether
there is an optimal filter that provides the best data features for
modelling. Generally speaking – when modelling biological time
series – data features that cannot be produced by a plausible for-
ward model are probably measurement noise or the product of
hidden processes not included explicitly in the model. This usually
means they can be discarded with impunity, thereby increasing the
signal-to-noise ratio (SNR) of the pre-processed data. Data condi-
tioning is then, effectively, a part of model inversion. The question
here is whether there is an optimal high pass filtering of skin con-
ductance timeseries that increases signal-to-noise. In case of a sig-
nal with precisely known RF, the matched filter theorem provides a
way of theoretically deriving a filter that maximises the SNR. In our
case, the true RF is not precisely known, and also varies between
individuals, such that we  sought to empirically determine the filter
characteristics that maximise predictive validity of SN estimates.

Finally, a linear neuronal model makes the strong assump-
tion that SNA evoked by a short stimulus occurs with constant
latency. We have previously shown that under this assumption
there is no evidence for time-varying responses in the peripheral
system (Bach, Flandin, et al., 2010). Here, we  revisit this assumption
and investigate whether modelling variations in neuronal latency
improves predictive validity, under the assumption of an invari-
ant peripheral response. Hence, we compare linear and non-linear
models. Two  particular non-linear models are considered. First, we
used our previous approach that uses Dynamic Causal Modelling
(DCM) (Bach, Daunizeau, et al., 2010) to obtain estimates of SNA
amplitude per trial by letting response amplitude and onset vary
on a trial-by-trial basis. Note that the neural model here is still
informed insofar as it specifies a certain response window. Some
authors propose uninformed neural models; in other words, they
assume that SNA can occur any time, but to only use SNA during
post-stimulus time windows for analysis (Benedek & Kaernbach,
2010a, 2010b). We sought to emulate this approach using DCM
for spontaneous fluctuations (Bach et al., 2011). Both approaches
yield a trial-by-trial estimate of SNA amplitude, which was  aver-
aged across experimental conditions for comparison with other
approaches.

In some circumstances – e.g. to use neural response estimates
as explanatory variables for analysis of independent experimental
data, such as fMRI, trial-by-trial estimates of SN amplitudes may
be required. Here, we sought to establish whether linear models
are sufficient for this purpose or whether the iterative procedures
required for non-linear models inherent in DCM are justified.

We have previously discussed how to benchmark methods that
estimate hidden variables from observed data (Bach & Friston,
2013). One way  is by making certain assumptions about what
causes the hidden variable to change. A consensus assumption in
the psychophysiology literature is that emotionally arousing events
increase sympathetic arousal, as engendered by negative and
positive arousing images. This has been demonstrated using oper-
ational approaches (Amrhein, Muhlberger, Pauli, & Wiedemann,
2004; Greenwald & Lang, 1989; Johnsen, Thayer, & Hugdahl, 1995;
Winton, Putnam, & Krauss, 1984). Here, we  assume that nega-
tive and positive arousing images would elicit greater sympathetic
arousal than neutral non-arousing images, and evaluated different
models in terms of their ability to distinguish between image types,
using just the observed SCR.

In summary, we  evaluated our method empirically, by com-
paring the predictive validity of different generative models. In

a first step, we compared a canonical response function against
various forms of an individualised response functions (IRF). Taking
the best model from this step, we then compared various filter
settings, non-linear methods, and the efficiency of trial-by-trial
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stimates. These comparisons used two independent, previously
npublished data sets.

. Methods

.1. Datasets

We analysed two  datasets, both acquired during a study that examined the
nfluence of distracting background noise on the perception of emotionally arous-
ng images. There was  no interaction of acoustic distractors with differential SCR
n either experiment. The main effects of auditory stimulation will be reported
lsewhere. For the present analysis, all data were collapsed across the auditory stim-
lation factor. Participants for both experiments were recruited from UCL students
nd in the general population via an online recruitment system. Both experiments
ere approved by the Joint UCL/UCLH Committees on the Ethics of Human Research.

The first experiment investigated SCR in response to negative-arousing and neu-
ral  pictures. 60 healthy individuals (30 male, 30 female; age: M = 23.7; SD = 4.7
ears) participated in the first experiment. Participants watched, in randomised
rder, the 45 least arousing neutral (valence within 1 standard deviation around
he  mean) and 45 most arousing aversive pictures (valence lower than 1 standard
eviation below the mean) from the International Affective Picture Set [IAPS] (Lang,
radley, & Cuthbert, 2005) for 1 s each, with an inter stimulus (ISI) interval randomly
etermined as 7.65 s, 9 s, or 10.35 s. Participants were instructed to press the cursor
p  or down key on a computer keyboard to indicate whether they liked the picture
r  not. This response served to increase SCR. The experiment was  divided into three
locks with 45 s breaks in between.

The second experiment was similar to the first, with an additional third condi-
ion of positive arousing images. 40 healthy individuals (20 male, 20 female; age:

 = 21.9; SD = 3.8 years) watched the 16 least arousing neutral, most arousing aver-
ive and most arousing positive images (defined analogous to experiment 1, and
xcluding explicit nude images) from the IAPS, for 1 s each, in randomised order,
nd  in one single block. ISI was 4.4 s. Responses were the same as in experiment 1.
ists of images, used in both experiments, are available from the authors.

.2. SCR recordings and preprocessing

We recorded skin conductance on thenar/hypothenar surface of the non-
ominant hand using 8 mm Ag/AgCl cup electrodes (EL258, Biopac Systems, Goleta
A,  USA) and 0.5%-NaCl electrode paste (GEL101; Biopac Systems), using a custom-
uild constant voltage coupler (2.5 V). The output of the coupler was  converted into
n  optical pulse frequency with an offset (i.e. minimum sampling rate) of 100 Hz
nd  a factor of 31 Hz/�S; the converter was designed for a maximum conductance
f  50 �S, corresponding to 1650 Hz pulse frequency. The optical signal was  con-
erted to voltage pulses and recorded (Micro1401/Spike 2, Cambridge Electronic
esign, Cambridge, UK). SCR data were filtered with a 1st order Butterworth filter.

 bidirectional filter with low pass cut off frequency of 5 Hz was  used, and a bidirec-
ional high pass filter with cut off frequency of 0.0159 Hz for step 1. High pass filter
ettings were variable for steps 2–4. Data were then down sampled to 10 Hz.

.3. Inversion schemes and models

In steps 1 and 2, the data were analysed with a general linear convolution model
s  proposed in (Bach et al., 2009). Additional models were compared in step 3–4,
ee below. For each experimental condition, event onsets were modelled as Dirac
elta functions and convolved with a single RF or basis set as described below. The
esulting design matrix of the general linear model contained one regressor for each
ondition and function in the basis set. For basis sets containing more than one basis
unction, the amplitude of the underlying SNA was estimated as the peak of largest

odulus, of the reconstructed SCR from all basis functions in the basis set. To ensure
hat these findings could be generalised from the detection of categorical condition-
pecific differences to continuous variables, we  additionally analysed a model for
xperiment 1 in which picture onset was modelled by a single stimulus function
or both conditions, and picture type and linear habituation effects were modelled
s  parametric modulators. This models the linear component of the (possibly non-
inear) habituation of SNA amplitude over the course of an experiment.

.4. Step 1: response functions

The basis sets we  assessed are listed below. The number of basis functions (bf)
nd of free parameters (k) for a model containing j conditions and N trials are noted
n  brackets for each basis set. For basis sets containing more than one basis function,
he  ensuing regressors were orthonogalised using a serial Gram-Schmidt procedure:

(0) Peak scoring: several peak scoring methods were computed to allow com-
arison with the literature. We  followed the recommendations of the Society for
sychophysiological Research (SPR) (Boucsein et al., 2012) to identify an SCR accord-

ng  to the onset latency, identified by the point of maximum deflection, together

ith the rise-time (i.e. onset-peak latency) of the subsequent peak. Because there
s  no community consensus on the optimal duration of the onset latency window,

e  used a window of 1–4 s (Boucsein, 2012; Dawson & Filion, 2007; Edelberg, 1972)
nd  a window of 1–3 s (Barry, 1987; Boucsein, 2012; Dawson & Filion, 2007), and
ology 94 (2013) 490– 497

a post-onset peak window of 0.5–5 s (Boucsein, 2012). Onset SCR values were sub-
tracted from peak SCR values. Non-responses were scored zero. For both windows,
we  calculated SCR amplitude by omitting responses below 0.01 �S before averaging,
and  SCR magnitude by averaging all responses including zero responses. Further, we
used a simpler algorithm and subtracted the mean of a 1 s pre-stimulus from the
highest value in a 1–4 s post-stimulus response window.

(1) SCRF: the standard SCRF (bf = 1, k = j) – this is the reference model for steps 1
and 3.

(2) SCRF/time derivative: the standard SCRF with time derivative (bf = 2, k = 2j) –
this is the reference model for step 2.

(3) SCRF/time and dispersion derivative: the standard SCRF with time and disper-
sion derivative (bf = 3, k = 3j).

(4) FIR 15 s: an uninformed finite impulse response basis set with 15 post-stimulus
time bins of 1 s duration (bf = 15, k = 15j).

(5)  FIR 30 s: an uninformed finite impulse response basis set with 30 post-stimulus
time bins of 1 s duration (bf = 30, k = 30j).

(6)  Cosine 4th order: A 4th order cosine set of 60 s duration (bf = 9, k = 9j)
(7) Cosine 8th order: A 8th order cosine set of 60 s duration (bf = 17, k = 17j).
(8)  SRF: a model with subject-specific RF. This was evaluated by extracting the 8.65 s

after each stimulus onset (corresponding to the duration of the shortest stim-
ulus onset asynchrony [SOA]), calculating a principal component analysis over
epochs, and extracting the first component. A response function was  then fitted
to the first principal component with a 2nd order ordinary differential equation,
using a variational Bayes inversion scheme as described in (Bach, Daunizeau,
et al., 2010). This form of model was  considered for experiment 1 – in experiment
2,  the minimum SOA was too short to estimate a robust SRF (bf = 1, k = 3 + j).

2.5. Step 2: filter settings

In the second step, we  compared different filter settings for the best method
from step 1 (SCRF with time derivatives) which we define as reference method for
step 2. Uni- and bidirectional 1st order Butterworth high pass filters were compared
with cut-off frequencies of 0.005 Hz, 0.1 Hz, 0.0159 Hz (the current default), and from
0.02 Hz to 0.10 Hz in 0.005 Hz steps. Bidirectional filtering, as implemented in the
Matlab function filtfilt.m, filters the time series twice, in the forward and backward
direction. To keep filter order precisely the same, we filtered twice for unidirectional
filtering, but both times in forward direction. To ensure the robustness of these
findings, the evaluation of different filtering was also performed using a simple
SCRF without derivatives.

2.6. Step 3: non-linear models

(1) Informed DCM: In the first non-linear model, an SN burst was assumed to occur
within 2000 ms  after stimulus onset – this differs from the linear model where
it  was assumed to occur immediately after stimulus onset. The onset, duration
and amplitude of each SN burst was estimated using DCM as described in (Bach,
Daunizeau, et al., 2010) (k = 3N).

(2) Uninformed DCM: In a second non-linear model, SN bursts were assumed to
occur anywhere within the experiment (with fixed dispersion to constrain the
number of free parameters) – analogous to our DCM for spontaneous fluctu-
ations (Bach et al., 2011). Due to the large numbers of parameters, the model
could not be inverted, so a 60 s epoch was inverted every 30 s. From the overlap-
ping  epochs, the middle 30 s were analysed. Each estimated SN response that
caused an SCR that fell into a 1–4 s post stimulus time window was  extracted,
and  the largest response in each window was retained. This model is entirely
uninformed about the experiment, in line with other contemporary model-
based approaches (Benedek & Kaernbach, 2010a, 2010b) (k = 60e, where e is
the number of inverted data epochs).

Both non-linear models were compared to the reference model from step 1.

2.7. Step 4: trial-by-trial estimates

All analyses described thus far estimated SNA amplitude under the assumption
that the responses were the same for each trial in a condition. In some circumstances
one might want to estimate trial by trial SNA. To evaluate the validity of trial by trial
estimates, we  assumed that arousal ratings from the validation sample of the IAPS
(Lang et al., 2005) and habituation were the principal causes of trial by trial varia-
tions. We therefore quantified the proportion of variance in trial-by-trial estimates
explained by these variables. We  analysed single trials from experiment 1 and com-
puted a GLM as explained above, with one regressor per trial, using either the SCRF

or  SCRF with time derivative, and a high-pass filter with cut off frequency of 0.05 Hz.
For comparison, a DCM was inverted where SCR were modelled as evoked responses
with constant latency. This is a linear neural model but using a non-linear, iterative
inversion scheme. Finally, we used trial-by-trial SNA from the informed DCM from
step  3. These four models were compared against each other.
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.8. Model comparison

The different models and data features were compared in terms of their predic-
ive validity; i.e., their ability to predict a stimulus class from estimated SNA, for a
articular experimental contrast. The contrast of interest for experiment 1 was the
ifference between neutral and negative-arousing pictures. For experiment 2, we
sed the contrasts neutral vs. negative-arousing and neutral vs. positive-arousing.
o  assess predictive validity, we  used a general linear model with the contrast of
nterest as the response variable, and the estimated SN activity as predictor. The
esign matrix included subject effects. The residual sum of squares RSS was con-
erted to a negative log likelihood value LL, such that smaller LL values indicate a
igher predictive validity using the following relation

L = n log

(
1
n

RSS

)
(1)

here n is the number of observations. This disregards model complexity, which was
he same for all analyses. We report log evidence differences or log Bayes Factors
LBF) – the difference in log likelihood between each model and a reference model,
or each step in model comparison. Negative LBF values indicate a model fit that is
etter than the reference model. An LBF difference larger than 3 is often considered
ecisive as it corresponds to a p-value of 0.05.

We  further compared how well the models fit the observed SCR time series given
he optimised parameters. This was done for the sake of completeness, although
his measure of model performance should be interpreted with caution because
within subject) measures of accuracy, such as this, do not reflect predictive validity
t  between subject level. We  converted the residual sum of squares RSS from the
tted time series into a negative log likelihood value LL using Eq. (1) which was
hen corrected for complexity to give the Akaike information criterion (AIC) by the
elation

IC = LL + 2k (2)

here k is the number of free parameters in the model. AIC is an approximation to
ayesian model evidence (Penny et al., 2010). For step 4, we converted the relative
esidual variance into negative log likelihood by Eq. (1), and summed up the likeli-
ood terms across participants. For model fit, we report Log Bayes Factors (LBF) –
he  difference in AIC between each model and a reference model.

. Results

The stimuli had a clear effect on estimated SNA as demon-
trated by all analyses. For the reference (standard SCRF) method,
egative-arousing images elicited higher SNA than neutral images

n experiment 1 (t(59) = 4.70; p < .00001), and in experiment 2
t(38) = 4.68; p < .00001). The difference in activity between pos-
tive and neutral images (t(38) = 1.44; p = 0.16) failed to reach
ignificance in the reference method but was significant in other
odel-based methods.

.1. Step 1: optimising the response function (RF)

We  compared all models against our reference model with SCRF
lone, and added a peak scoring approach for comparison with the
iterature. Fig. 1a shows that, for all contrasts and among linear

odels, SNA estimates from a model including the SCRF and its time
erivative best predicted the experimental manipulation; i.e., they
ad the lowest Log Bayes Factor (LBF). The LBF difference between
his and the reference method was decisive for all three contrasts.
stimates from linear models with more degrees of freedom had
qual or lower predictive validity (i.e. higher LBF) than the refer-
nce. At the same time, the best linear model was  better than any
f the peak scoring methods.

In order to assess whether this result was due to modelling
f dichotomous contrasts between experimental conditions or
hether it would generalise to continuous predictors, we modelled

ondition and habituation in experiment 1 as parametric modula-
ors. Again, an SCRF with time derivative model had best predictive
alidity, both for the effect condition and the continuous predictor,
he linear habituation term (data not shown).
In terms of within-subject model fit, we found a different picture
Fig. 1). More complex models had a massively improved model fit,
espite penalising model complexity, while the predictive validity
f these methods tended to be worse. This might indicate that the
ology 94 (2013) 490– 497 493

more complex models over-fit noise variance not induced by the
experimental manipulation.

In summary, we conclude that a linear model using SCRF and
time derivative provides the approach with the greatest predic-
tive validity (among the ones considered here). This appears to
be the case over the two experiments with different experimen-
tal contrasts. Hence, we used this model for the next evaluation
step.

3.2. Step 2: optimising the filter

All filter settings were referenced against the winning method
from step 1, which estimates SN amplitude from a reconstructed
response function, using a general linear convolution model with
a canonical SCRF and time derivative, at standard high pass filter
settings – a bidirectional first order Butterworth filter with cut-
off frequency of 0.0159 Hz. In Fig. 2, this model hence has a LBF of
zero. We varied filter cut-off frequency from 0.005 to 0.1 Hz, and
employed a unidirectional and bidirectional filter.

Fig. 2 shows that increasingly higher filter frequencies produced
SN response estimates with better predictive validity, up to about
0.05–0.06 Hz for the contrast negative > neutral in both experi-
ments, and up to about 0.035 Hz for the contrast positive > neutral
from experiment 2. Beyond this frequency, predictive validity did
not change much, but tended to get slightly smaller towards higher
frequency cut-offs. There was  no clear advantage for either uni- or
bidirectional filtering. Unidirectional filters tended to be slightly
better for higher frequency and vice versa for lower frequency. Note
that both uni- and bidirectional filtering applied the filter twice, but
in different directions. The same pattern of results was found when
the SCRF was  used without derivatives (data not shown), indicating
that the influence of filter is not due to peculiarities of the response
function.

As in step 2, the effect of the filter upon predictive validity was
not precisely reflected in first-level model fit. Model fit asymp-
totically increased with higher filter cut-off frequencies – as one
might expect when degrees of freedom are removed from the data
(making it easier to fit).

To summarise, higher filter cut-off frequencies produced bet-
ter predictive validity. However, across the different contrasts, the
precise choice of filter frequency had no decisive and unambigu-
ous effect on predictive validity between a frequency of 0.035 and
0.1 Hz.

3.3. Step 3

In the third step, we compared linear and non-linear models
which model more degrees of freedom in underlying SNA latency.
The DCM for event-related responses allows variability in the neu-
ral response timing on a trial-by-trial basis and might thus be able
to estimate SN amplitude even if neural latencies fluctuate. DCM
for spontaneous fluctuations makes even less assumptions about
the neural response and can capture different shapes of neural
responses, e.g. mono- or biphasic.

Fig. 3 shows that the DCM for event-related responses – labelled
informed because it is informed about the experimental timing –
had decisively lower predictive validity than any linear model for all
three contrasts. The uninformed DCM had lower predictive valid-
ity than linear models for the contrast neutral > negative, across
both experiments. For the contrast positive > neutral, it had approx-

imately the same predictive validity as the best linear model. As in
the previous steps, a better model fit under more complex mod-
els with more degrees of freedom was not reflected in predictive
validity.
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Fig. 1. Step 1: comparison of a linear model for evoked SCR, using different response functions as explained in Section 2. Lower Log Bayes Factors (LBF) indicate higher model
evidence for the target model. Upper panel: predictive validity; i.e., ability of estimated SN amplitudes to predict a known sympathetic state, for three contrasts from two
experiments, expressed in LBF as negative log likelihood difference between the model in question and a reference model. Several peak scoring methods (PS) are added for
illustrative purposes as null models (left of the dashed line). Lower panel: Model Log evidence of the within-subject model, expressed as difference in AIC between the target
model  and our benchmark model, summed over participants. Abbreviations: PS: SPR (1–4 s) amp  – peak scoring amplitude according to the SPR recommendations, using a
1–4  s post-stimulus onset window; PS: SPR (1–4 s) mag  – peak scoring magnitude according to the SPR recommendations, using a 1–4 s post-stimulus onset window; PS:
SPR  (1–3 s) amp  – peak scoring amplitude according to the SPR recommendations, using a 1–3 s post-stimulus onset window; PS: SPR (1–4 s) mag  – peak scoring magnitude
according to the SPR recommendations, using a 1–4 s post-stimulus onset window; PS: peak/baseline – peak scoring magnitude, substracting a 1 s pre-stimulus baseline from
the  maximum value within a 1–4 s post-stimulus window; SCRF – skin conductance response function (benchmark method); SCRF/time deriv. – skin conductance response
function with time derivative; SCRF/time and disp deriv. – skin conductance response function with time and dispersion derivative; FIR 15 s – uninformed finite impulse
r pulse 

s

3

f
m

esponse function with 15 timebins of 1 s duration; FIR 30 s – uninformed finite im
et  of nth order; SRF – subject-specific response function.

.4. Step 4
The single-trial GLM (with two different RFs) and a DCM
or evoked responses performed almost equally well: the

ean explained variance proportion across participants was
response function with 30 timebins of 1 s duration; Cosine nth order – cosine basis

(mean ± standard deviation) 0.15 ± 0.13, 0.16 ± 0.14, 0.17 ± 0.13,

respectively, while the non-linear DCM for event-related responses
performed slightly worse, with an explained variance proportion of
0.12 ± 0.09. Model evidence was  decisively higher for the iterative
DCM for evoked responses than for all other approaches.
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ig. 2. Step 2: comparison of different unidirectional and bidirectional high pass fil
arget  model evidence. All Log Bayes Factors are with respect to our current standa

. Discussion

Model-based methods for analysis of SCR responses estimate
nderlying SNA and are potentially important for non-invasive
easurements of autonomic responses. Here, we  sought to validate

nd improve a method based upon linear and nonlinear convolu-
ion models – with three results.

First, as general validation of linear models, the best linear

ethod had as good, or better, predictive validity than various

eak-scoring approaches based directly on observed data, or than
ll non-linear methods. At the same time, first-level model fit
as unambiguously higher for models with higher complexity, in
pplied to the data before model inversion. Lower Log Bayes Factors indicate higher
r, a bidirectional first order Butterworth filter with cut off frequency of 0.0159 Hz.

particular for non-linear models. This demonstrates that the tight
constraints imposed by linear models preclude overfitting, and to
help recover the underlying hidden cause more efficiently.

Second, the original linear method was improved by allowing
for between-subject variability in the form of peripheral responses.
The best predictive validity was achieved with a model that used a
standard canonical SCRF across subjects, together with its tempo-
ral derivative, to estimate an individual and condition specific RF.

It is noteworthy that the approach was  also best when the binary
variable (experimental condition) was encoded as parametric mod-
ulator, or when predicting a continuous variable (linear response
habituation) encoded as parametric modulator. This approach of
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Fig. 3. Step 3: comparison of several linear with non-linear models for evo

omplementing the SCRF with Taylor expansions was already
mplicit in the original model proposed in (Bach et al., 2009; Bach,
landin, et al., 2010); but in the original method it was only used
o improve within-subject model fit, not to estimate SNA ampli-
ude. Here, we extend this approach and propose this as a future
tandard for analysis of eSCR. Note that this remains a constrained
r informed way of estimating IRFs. Other approaches with even
lightly higher complexity did not improve predictive validity. In a
utshell, the winning method uses the same approach that has been
roven most sensitive in fMRI analysis (Hopfinger et al., 2000). It is

nteresting to note that a more constrained approach, namely the
stimation of a subject-specific response function (SRF) from the
ata without allowing for condition differences, proved less pow-

rful. One reason might be that the particular algorithm used only a
hort post-stimulus time window for estimation of the SRF, differ-
nt from all other approaches; this might cause inaccuracy in the
stimated SRF.
esponses. Lower Log Bayes Factors indicate higher target model evidence.

Thirdly, predictive validity could be improved by optimising
high-pass filtering. A filter is commonly applied in SCR analysis to
remove low-frequency drifts and condition the data. Filter choice
has been based on convention or upon considerations about the
response frequency spectrum (Boucsein, 2012). Here, we  used an
empirical approach to approximate the predictive validity of a lin-
ear method with different filter settings. We  found an optimal
filtering between 0.035 and 0.06 Hz with no decisive impact of fil-
ter frequency on predictive validity over this frequency range. As an
intermediate choice, we  suggest a 0.05 Hz unidirectional 1st order
Butterworth filter as appropriate, in the context of general linear
convolution modelling for eSCR.

We note that for a contrast between positive-arousing and

neutral images, some aspects of the model comparison were less
pronounced than for the contrasts between negative-arousing and
neutral images. In particular, the precise choise of optimal filter
frequency was  less clear for the latter contrast. Furthermore, a
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on-linear model-based method – that was not informed about
he experimental design – had as high a predictive validity as the
est linear model. This unexpected finding differed from findings
rom a contrast of negative-arousing and neutral images. A possible
eason is that all other methods assume a monophasic response –
f responses are biphasic, these methods will be suboptimal. How-
ver, the DCM for event-related responses can easily be extended
o biphasic responses as demonstrated in a previous report (Bach,
aunizeau, et al., 2010). We  hope to look at this possibility in

 future experiment that is optimised to assess response shape.
owever, no method performed better for the contrast of positive-
rousing and neutral images than the best linear model, and the
verall pattern of results was the same for all contrasts. The fact that
esults are slightly less clear for this particular contrast might also
eflect that the assumption of a difference in sympathetic arousal
etween positive and neutral images is not as unambiguously sup-
orted as for negative and neutral images (where all methods
aptured this difference, to a variable extent): some studies using
perational approaches have suggested that sympathetic arousal
n response to positive imagery might be restricted to its particular
ontents (e.g. explicit pictures which were not used in the present
tudy) (Bernat, Patrick, Benning, & Tellegen, 2006).

Note we did not test the ability of the various methods to
etect responses within one condition, as in a one-sample t-test
n estimated SNA amplitudes for one condition. This is because
uch a comparison is biased and will favour methods that have
kewed null distributions such as peak-scoring, model-based meth-
ds using reconstructed response functions, or non-linear models
here the neural response is specified to be positive.

Finally, linear models are better able to recover SN amplitudes
n a trial-by-trial basis than a non-linear DCM, although a linear, but
terative DCM for evoked responses was even better, as indicated by
igher proportion of explained variance in the amplitude estimates.
ote that generally the proportion of explained variance in single-

rial SNA estimates is relatively low (around 0.15), reflecting large
ithin-condition variability.

In summary, we have further validated a previously proposed
inear convolution model approach to estimating SNA evoked by
hort arousing events. We  were able to improve the scheme by aug-
enting the peripheral response function basis set and the filtering

ettings. The improved algorithm will be available as standard
ethod in future releases of the software SCRalyze, available at

ttp://scralyze.sourceforge.net.
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