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Abstract 

Significance: Impairment of the ubiquitin-proteasome system (UPS) has been implicated in 

the pathogenesis of a wide variety of neurodegenerative disorders including Alzheimer’s, 

Parkinson’s and Huntington’s diseases. The most significant risk factor for the development 

of these disorders is aging, which is associated with a progressive decline in UPS activity and 

the accumulation of oxidatively modified proteins. To date, no therapies have been developed 

which can specifically upregulate this system.  

Recent advances: In the neurodegenerative brain, dysfunction of the UPS has been 

associated with the deposition of ubiquitinated protein aggregates and widespread disruption 

of the proteostasis network. Recent research has identified further evidence of impairment in 

substrate ubiquitination and proteasomal degradation which could contribute to the loss of 

cellular proteostasis in neurodegenerative disease. Novel strategies for activation of the UPS 

by genetic manipulation and treatment with synthetic compounds have also recently been 

identified.  

Critical issues: Here we discuss the specific roles of the UPS in the healthy central nervous 

system and establish how dysfunctional components can contribute to neurotoxicity in the 

context of disease.  

Future directions: Knowledge of the UPS components specifically or preferentially involved 

in neurodegenerative disease will be critical in the development of targeted therapies which 

aim to limit accumulation of misfolded proteins without gross disturbance of this major 

proteolytic pathway. 
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Introduction 

Efficient folding of nascent polypeptides and rapid elimination of misfolded proteins is 

critical to the maintenance of cellular and organismal health. Under normal conditions, this 

protein homeostasis (also known as proteostasis) is achieved by an integrated network of 

molecular chaperones and proteolytic clearance systems, including the ubiquitin-proteasome 

system (UPS) and autophagy (79). The UPS is a highly conserved and tightly regulated 

pathway for the coordinated degradation of a wide variety of proteins with half-lives ranging 

from minutes to several days (70). It is therefore unsurprising that dysfunction of the UPS has 

been implicated in the pathogenesis of many human pathologies, including cancer, 

autoimmunity and neurodegeneration. Despite heterogeneous clinical phenotypes, 

Alzheimer’s, Huntington’s and Parkinson’s diseases are all characterised by the accumulation 

of misfolded, aggregate-prone proteins and the pathognomonic accumulation of ubiquitinated 

conjugates in post-mortem brains of affected patients (Table 1). Studies in animal models 

indicate that early impairment of the UPS and resulting loss of cellular proteostasis could be 

primary mediators of neurodegeneration, raising the possibility of proteostasis-based 

therapies to slow disease progression. 

 

Each neurodegenerative disease has a unique profile of protein aggregate composition and 

distribution. The most common form of dementia, Alzheimer’s disease (AD) is characterised 

by the appearance of two types of protein deposit: extracellular amyloid plaques and 

intraneuronal neurofibrillary tangles (NFTs). NFTs are composed of aggregates of 

hyperphosphorylated tau, whilst the principal component of amyloid plaques is a 40- to 42-

residue peptide called β-amyloid protein (Aβ1-40 and Aβ1-42) (161). Parkinson’s disease (PD) 

is classically associated with the selective loss of dopaminergic neurons in the substantia 

nigra. At the cellular level, PD is characterised by the appearance of eosinophilic cytoplasmic 
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inclusions, termed Lewy bodies, which contain aggregated forms of the protein α-synuclein 

(84). In Huntington’s disease (HD), translation of a CAG repeat expansion in exon 1 of the 

HTT gene results in expression of mutant huntingtin (mtHtt) protein with a polyQ expansion 

in the N-terminal region (157). Increased β-sheet content of mtHtt promotes the age-

dependent formation of insoluble protein aggregates in structures known as inclusion bodies 

(157). Misfolded forms of the Cu
2+

/Zn
2+ 

superoxide dismutase SOD1 have been identified in 

amyotrophic lateral sclerosis (ALS), the most common cause of adult-onset motor neuron 

disease (20). The G93A mutant form of SOD1 is the most commonly studied protein in 

cellular and animal models of ALS, and is thought to mediate pathology through a toxic gain-

of-function. Lastly, prion diseases are a collection of rapidly progressive and, in some cases, 

infectious neurodegenerative disorders characterised by the conformational rearrangement of 

a normal host-encoded protein, PrP
C
, into the abnormal, aggregate-prone conformer PrP

Sc
 

(153). Whilst PrP
C
 is critical for the templated misfolding of PrP, its depletion is not 

associated with overt pathology (25). As a result, prion disease pathogenesis is also believed 

to occur by a toxic gain-of-function of the misfolded conformer.  

 

As the principal route of protein degradation in mammalian cells, the UPS represents a major 

defence against these misfolded proteins, particularly in post-mitotic neurons which are 

unable to divide to reduce their burden of damaged proteins. Proteins are marked for 

proteasomal degradation by covalent conjugation of ubiquitin, a highly conserved 76-residue 

polypeptide, in a three-step cascade (Fig. 1). Initially, the ubiquitin-activating enzyme, E1, 

activates ubiquitin by creating a high-energy thiol ester intermediate in an ATP-dependent 

reaction (80). The activated ubiquitin moiety is subsequently shuttled from E1 to E2, an 

ubiquitin-conjugating enzyme, creating a second high-energy thiol ester intermediate (80). A 

third class of enzyme, the ubiquitin E3 ligases, mediate the covalent attachment of 
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polyubiquitin chains to an internal lysine residue of specific UPS substrates (70). Similar to 

other forms of post-translational modification, the process of ubiquitination is reversible 

under the influence of specific deubiquitinating enzymes (DUBs) (82). Polyubiquitinated 

proteins are recognised and subsequently degraded by the 26S proteasome. This ATP-

dependent proteolytic complex consists of a 20S core particle and one or two 19S regulatory 

particle(s) (Fig. 2). The barrel-shaped 20S complex is composed of four heptagonal rings: 

two identical outer α-rings (α1-7) and two identical inner β rings (β1-7). β1, β2 and β5 subunits 

are responsible for peptide bond cleavage, with preference for acidic (caspase-like activity), 

basic (trypsin-like activity) and hydrophobic (chymotrypsin-like activity) residues, 

respectively (55). The N-termini of the α subunits function as a gate, restricting substrate 

entry to the proteolytic chamber (75). The 19S regulatory particle is important for the 

recognition, unfolding and translocation of ubiquitinated substrates into the 20S core particle 

for degradation (11).  

 

In addition to the UPS, protein quality control is also mediated by clearance of misfolded 

proteins through the autophagic pathway. Autophagy, and more specifically macroautophagy, 

is responsible for the bulk turnover of redundant cellular constituents, including damaged 

organelles and protein aggregates. In this highly regulated process, a region of cytosol is 

isolated in a double membrane-bound structure called an autophagosome, which later fuses 

with the lysosome to expose sequestered contents to hydrolytic enzymes (140). Extensive 

cross-talk between the UPS and autophagy has been described, including the compensatory 

upregulation of autophagy in conditions of UPS impairment (112). Although beyond the 

scope of this review, defects in autophagy have been reported in the pathology of various 

disorders including Alzheimer’s and Parkinson’s diseases, and may be additional source of 

proteostasis disruption in the neurodegenerative brain (extensively reviewed in (140)). 
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In this review, we will evaluate the specific roles of the UPS in the healthy central nervous 

system (CNS) and discuss how impairment of substrate ubiquitination or proteasomal 

degradation can lead to loss of cellular proteostasis in the context of neurodegenerative 

disease. In the absence of effective strategies to upregulate UPS activity, we also highlight 

possible components of the UPS which may be valid therapeutic targets for the treatment of 

these debilitating disorders.  
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The UPS in the healthy CNS  

 

Despite being highly conserved across species, structurally and functionally distinct 

subpopulations of the UPS have been identified in different tissues (58, 71, 174). This 

variation has been attributed to alterations in ubiquitin ligase activity, proteasome subunit 

composition and tissue-specific proteasome-interacting proteins (58, 71, 174). Following 

isolation of 26S proteasomes from rodent brain, mass-spectrometry identified 28 interacting 

proteins, of which only 12 were shared with muscle tissue (174). This heterogeneity is likely 

to reflect marked variation in the cellular proteomes of different tissues and the varying 

regulatory factors required for their degradation. In order to maintain cellular proteostasis, it 

is critical that components of the UPS are adapted to meet the specific physiological demands 

of the tissue (14). In the CNS, synaptic transmission is a critical process by which neurons 

receive, process and transmit information. A synapse is composed of two distinct functional 

units: presynaptic terminals and postsynaptic dendritic spines. In the presynaptic terminal, 

neurotransmitters are packaged in synaptic vesicles which later dock and fuse with 

specialised regions of plasma membrane called active zones. Exocytosis of neurotransmitters 

into the synaptic cleft stimulates cell surface receptors localised on dendritic spines of the 

post-synaptic neuron, activating downstream signal transduction pathways. The UPS has 

been implicated in the regulation of neurotransmission at pre-and post-synaptic sites, thus 

playing a critical role in neuronal signalling.  

 

At the presynaptic terminal, the E3 ligase SCRAPPER was shown to ubiquitinate and 

promote degradation of Rab3-interacting molecule 1 (RIM1), a scaffold protein which links 

synaptic vesicles to membrane fusion machinery in the active zone (206) (Fig 3). Consistent 

with a role in the regulation of vesicle exocytosis, SCRAPPER knockout mice display 
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impaired RIM1 ubiquitination and dysregulation of synaptic vesicle release (206). At the 

postsynaptic terminal, the UPS plays a key role in the dynamic remodelling of dendritic 

spines in response to changes in neuronal activity (57). These structural rearrangements 

underlie the process of synaptic plasticity, in which synapses are strengthened or weakened in 

an activity-dependent manner to facilitate processes such as learning and memory. To 

compensate for excessive neuronal stimulation, post-synaptic excitability can be dampened 

by reducing the size of dendritic spines and the number of cell surface receptors (19) (Fig 3). 

For example, in response to synaptic stimulation, the E3 ligase TRIM3 was shown to 

ubiquitinate and promote degradation of the postsynaptic scaffold protein GKAP, leading to a 

reduction in dendritic spine size (85). In a similar activity-dependent mechanism, the E3 

ligase SCF
β-TRCP

 was shown to ubiquitinate the Rap GTPase activating protein SPAR, 

targeting it for degradation (4). As a positive regulator of dendritic spine size, proteasomal 

clearance of SPAR promotes synaptic shrinkage, tempering postsynaptic activation in 

conditions of chronically elevated activity (163). Dampening of excitatory synaptic 

transmission can also be achieved by the internalisation of postsynaptic neurotransmitter 

receptors (Fig 3). Neuronal activity can induce transcription of the E3 ligase E6-AP which 

ubiquitinates and controls degradation of Arc, a synaptic protein involved in the 

internalisation of the AMPA subtype of glutamate receptors (73). Inactivating mutations in 

the UBE3A gene which encodes E6-AP are associated with the neurodevelopmental disorder 

Angelman syndrome, demonstrating the importance of E3 ligase activity to normal synaptic 

function (108, 131).  

 

Activity-dependent remodeling of dendritic spines requires increased turnover of 

postsynaptic proteins, a process which is facilitated by an upregulation of proteasome 

function (17, 57). In response to activation of neurotransmitter receptors, influx of calcium 
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results in autophosphorylation of the postsynaptic protein kinase CaMKIIα (Fig 3), 

enhancing its association with proteasomes and directing their relocalisation to dendritic 

spines (18).  In addition to the redistribution of proteasomes, CaMKIIα  was also shown to 

enhance proteolytic activity by phosphorylation of the proteasome subunit Rpt6 (57). This 

localised upregulation of proteasome activity in spines may be important for the structural 

remodelling of active synapses. Consistent with this hypothesis, recent work by Hamilton and 

colleagues demonstrated that CaMKIIα -mediated phosphorylation of Rpt6 was critical to the 

activity-induced outgrowth of new dendritic spines (78).  

 

Taken together, the above studies support a direct role for the UPS in normal brain function, 

and in particular, learning and memory. Dysfunction of the UPS would therefore be expected 

to interrupt activity-induced synaptic plasticity. This effect was elegantly demonstrated by 

Lopez-Salon and colleagues, who studied the effect of proteasome inhibition on long-term 

memory formation in rats (124). Avoidance training was associated with increased levels of 

ubiquitinated proteins and 26S proteasome activity in the hippocampus (124). Infusion of the 

proteasome inhibitor lactacystin in the post-training interval resulted in full retrograde 

amnesia, demonstrating the critical role of the UPS in memory consolidation (124). In similar 

experiments, proteasome inhibitors have also been shown to prevent extinction of contextual 

fear memory (116) and to disrupt the consolidation of spatial memory (6). Efficient turnover 

of synaptic proteins by the UPS therefore plays a critical role in synaptic plasticity. In the 

context of neurodegenerative disease, rising levels of misfolded proteins may divert UPS 

activity away from these critical regulatory functions, leading to impairments in neuronal 

function.  
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The UPS in neurodegenerative disease 

Dysfunction of the UPS in neurodegenerative disease can arise from impairments in 

ubiquitination, substrate delivery to the proteasome or a loss of proteasome activity (Fig. 4), 

each of which can contribute to progressive disruption of cellular proteostasis.  

 

(1) Impairments in ubiquitination  

 

Ubiquitin 

A mutant form of ubiquitin, UBB+1, has been implicated in the pathogenesis of several 

tauopathies and polyglutamine diseases (117). UBB+1 is generated by a process known as 

molecular misreading, in which a dinucleotide deletion at the level of ubiquitin mRNA 

results in a 19 amino acid C-terminal extension (118). In the absence of a Gly76 residue, this 

frameshift mutant is unable to ubiquitinate other proteins, yet is itself efficiently 

ubiquitinated. Since the resulting polyubiquitinated UBB+1 is refractory to disassembly by 

DUBs, it is thought to compete with other polyubiquitinated substrates for recognition and 

degradation by the proteasome (114). Transgenic mice with postnatal neuronal expression of 

UBB+1 display a marked reduction in UPS activity, accumulation of ubiquitinated proteins 

and an early impairment in contextual memory, mirroring the clinical hallmarks of AD (63). 

A significant proportion of UBB+1 neurotoxicity may, however, be independent of an effect 

on the UPS since studies in primary neurons revealed that UBB+1 induces dysregulation of 

mitochondrial trafficking in neurites, leading to mitochondrial stress and activation of p53 

cell death pathways (175). Whilst these effects were effectively reversed by UBB+1 

silencing, such strategies are likely to have limited therapeutic potential due to the inability to 

identify clinical cases affected by the accumulation of UBB+1. 
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E1/E2 enzymes 

Evidence of impairment in the earliest stages of the ubiquitination process has been identified 

in post-mortem AD brain tissue. One study reported a significant reduction in E1 and E2 

enzyme activities in human AD brain tissue, which was associated with impaired formation 

of high-molecular-weight ubiquitin-protein conjugates (123). It remains unclear whether 

similar deficits are present in other neurodegenerative diseases.  

 

E3 ligases 

Parkin 

Mutations in the cytosolic E3 ligase parkin are the most common cause of autosomal 

recessive monogenic PD (109). In addition to inherited mutations, cysteine residues in the 

RING domains of parkin are particularly susceptible to oxidation and nitrosylation, which 

may lead to functional impairment in cases of sporadic PD (41, 205). In response to 

mitochondrial depolarisation, parkin is normally recruited from the cytosol to direct 

proteasomal degradation of outer mitochondrial membrane (OMM) proteins, including 

Mitofusins 1/2, Tom 20/40/70 and Omp25 (31, 176, 210). Depletion of Mitofusins 1 and 2 is 

thought to prevent mitochondrial fusion, thus segregating dysfunctional depolarised 

mitochondria from healthy mitochondria. In addition, the degradation of OMM proteins may 

be an important prerequisite for mitophagy, by exposing inner mitochondrial membrane 

(IMM) proteins to the cytosol for secondary degeneration. Consistent with these findings, 

loss of parkin function has been associated with reduced polyubiquitination of OMM 

proteins, the accumulation of defective mitochondria and increased cell death (190). In 

addition to its role in substrate ubiquitination, parkin has also been shown to enhance 

assembly and activity of the 26S proteasome (46, 87, 186). Parkin gene therapy may 

 Page 11 of 61 

A
nt

io
xi

da
nt

s 
&

 R
ed

ox
 S

ig
na

lin
g

<
b>

T
he

 U
bi

qu
iti

n-
Pr

ot
ea

so
m

e 
Sy

st
em

 in
 N

eu
ro

de
ge

ne
ra

tio
n<

/b
>

 (
do

i: 
10

.1
08

9/
ar

s.
20

13
.5

80
2)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



12 

     12                               McKinnon 

therefore be an attractive strategy to preserve mitochondrial integrity and enhance 

degradation of misfolded proteins. The potential therapeutic benefit of parkin overexpression 

may not be restricted to PD as parkin has also been shown to interact with Aβ and was found 

to be depleted in post-mortem AD brains (156) . Consistent with these observations, 

overexpression of wild-type parkin effectively depleted levels of Aβ1-42 in AD cell and rodent 

models (27, 156). 

 

CHIP 

Misfolded proteins must be refolded by molecular chaperones (e.g. Hsc70/Hsp70 and Hsp90) 

or targeted for degradation by the UPS to prevent aggregation and cytotoxicity. Carboxy 

terminus of Hsc70-interacting protein (CHIP) is a 35-kDA member of the RING domain 

family of E3 ligases, which binds to E2 ubiquitin-conjugating enzymes through a C-terminal 

U-box domain and to Hsc70/Hsp70 and Hsp90 chaperones through an N-terminal 

tetratricopeptide repeat domain (42). As suggested by its interacting partners, CHIP plays a 

key role in the ubiquitin-mediated degradation of unfolded chaperone substrates (42, 151) . 

One such substrate is LRRK2, a multi-domain protein with kinase and GTPase activities 

(129). Mutations in LRRK2 are the most common known cause of PD and are associated 

with the accumulation of α-synuclein in intraneuronal aggregates (213). CHIP-mediated 

clearance of LRRK2 was shown to rescue SH-SY5Y cells from mutant LRRK2 toxicity 

(110). CHIP has also been shown to promote the degradation of other disease-associated 

proteins including oligomeric forms of α-synuclein (179), hyperphosphorylated tau species 

(56, 151), mutant SOD1 (187) and mtHtt (91, 136). Overexpression of CHIP protected 

against Aβ-induced accumulation of tau in a mouse model of AD, suggesting that CHIP gene 

therapy could be a general strategy to enhance clearance of misfolded proteins (142). In 

addition to directly promoting tau clearance by ubiquitination, CHIP may also facilitate its 
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degradation by abrogating the protein folding activity of chaperone Hsp90 (43). This could 

have important wider implications for proteostasis by preventing the functional loss of 

chaperones through their pre-occupation with folding of aggregate-prone disease-associated 

proteins.  

 

E6-AP 

The UBE3A gene encodes the HECT-domain E3 ligase E6-AP and was initially identified as 

the sole causative gene underlying the neurodevelopmental disorder Angelman syndrome 

(108, 131). Recently, a novel role of E6-AP in the context of neurodegeneration has started to 

emerge. A pronounced depletion in levels of E6-AP was identified in the motor neurons of 

mutant SOD1 transgenic mice (137) and E6-AP was reported to be a key component of Lewy 

bodies in postmortem PD brains (139). Recruitment of E6-AP to aggregates may result in a 

depletion of functional soluble pools, with detrimental consequences for synaptic plasticity. 

This effect was recently observed in the R6/2 mouse model, where E6-AP recruitment to 

nuclear huntingtin aggregates was accompanied by decreased levels of AMPA receptors and 

various pre- and post-synaptic proteins (127). While E6-AP gene therapy has proven 

effective in ameliorating learning deficits in a mouse model of Angelman syndrome, it 

remains unclear whether similar strategies would be effective in the context of 

neurodegenerative disease where no inactivating mutations in UBE3A have been identified 

(49).  Elevated levels of E6-AP may still have important neuroprotective effects by 

maintaining soluble E6-AP pools for the continued regulation of synaptic function.  
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Deubiquitinating enzymes (DUBs) 

USP9X 

In addition to an age-related decline in proteasome activity, recent evidence suggests that the 

accumulation of aggregate-prone monoubiquitinated α-synuclein in PD brains may be 

accounted for by a failure of DUB activity. USP9X interacts with and deubiquitinates α-

synuclein in vitro and was found to be depleted in post-mortem brain tissue of Diffuse Lewy-

Body Dementia (DLBD) and PD patients (158). The development of compounds to activate 

USP9X may prove useful in promoting deubiquitination of monoubiquitinated α-synuclein, 

reducing aggregate formation and cytotoxicity.  

 

UCH-L1 

Initially identified as a DUB, UCH-L1 has a multitude of reported functions, including 

ubiquitin ligase activity and the stabilisation of mono-ubiquitin. PARK5, a rare autosomal 

dominant form of PD, is caused by a missense mutation in UCH-L1 resulting in a I93M 

substitution (119). UCH-L1
I93M

 has increased affinity for LAMP-2A, which may disrupt 

CMA-mediated turnover of α-synuclein and promote nigral cell death (99, 208). Proteomic 

analyses revealed a reduction in wild-type UCH-L1 levels in post-mortem AD and PD brains, 

and identified that the protein is a major target of oxidative damage (28, 37). These findings 

have important implications in the context of sporadic disease as carbonyl-modified UCH-L1 

shares similar physicochemical properties to UCH-L1
I93M

 (100). The neuroprotective effect 

of UCH-L1 overexpression was demonstrated in the APP/PS1 mouse model of AD, where it 

rescued Aβ-induced inhibition of LTP and ameliorated associative memory deficits (72). 

Further evidence of a neuroprotective role of UCH-L1 comes from the identification of the 

UCH-L1 S18Y polymorphism which has been associated with a significantly lower risk of 
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PD (128) and has modest regulatory effects on Huntington’s disease age of onset (204). 

Intrastriatal adenoviral overexpression of UCH-L1
S18Y

 was found to protect mouse nigral 

neurons against the toxic effects of the MPTP (203). Taken together, these findings suggest 

that therapeutics aimed at enhancing UCH-L1 function may help to maintain ubiquitin 

homoeostasis and synaptic plasticity in the context of disease.  

 

Ataxin-3 

Ataxin-3 (Atx3) is a highly conserved DUB with a structured globular N-terminal domain, 

termed the Josephin domain, and a flexible C-terminal tail (130). The Josephin domain 

displays ubiquitin protease activity, while the flexible tail encompasses three ubiquitin-

interacting motifs (UIMs) flanking a polyQ region of variable length. Abnormal expansion of 

the polyQ region to over 53 glutamines is pathological and causes the autosomal dominant 

neurodegenerative disorder Machado-Joseph disease (MJD), also known as spinocerebellar 

ataxia type 3 (SCA3) (125) . In addition to the toxic gain-of-function conventionally 

attributed to polyQ repeat expansions, one hypothesis suggests that polyQ expansion leads to 

a loss of Atx3 function, which could have important implications for proteostasis. Expanded 

Atx3 retains its ability to bind polyubiquitinated substrates but the mutant protein may be 

less-efficient in substrate binding or proteolysis as it is associated with higher global levels of 

ubiquitination than the non-expanded form (202). Further work is required to establish 

specific physiological substrates of Atx3 and to determine how these interactions are affected 

by expansion of the polyQ region in the context of disease. 

 

USP14 

Ubiquitin-specific protease 14 (USP14) is a DUB which resides on the 19S regulatory 

particle and plays an important role in substrate deubiquitination and proteasomal gate 
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opening (148, 149). The ataxia (ax
J
) mutation is a spontaneous recessive mutation that results 

in reduced Usp14 expression in mutant mice, leading to severe growth retardation, resting 

tremor and hind limb paralysis (201). These neurological deficits could be attributed to 

impairments in the developmental maturation and function of neuromuscular junctions (16, 

34). Compared with wildtype mice, ax
J
 mice showed a 30-40% reduction in levels of 

monomeric ubiquitin, suggesting a critical role for ubiquitin homeostasis in synaptic function 

(3). Consistent with this hypothesis, transgenic complementation of ax
J
 mice with neuronally 

expressed ubiquitin was sufficient to prevent developmental and functional deficits (33). 

Whilst disease-associated mutations in USP14 have not been reported, these findings could 

yield important insights into neurodegenerative disease, where accumulation of ubiquitinated 

deposits may lead to functional depletion of ubiquitin pools and associated synaptic 

dysfunction.  

 

 

(2) Impairments in substrate delivery to the proteasome 

 

Ubiquilins 

The ubiquitin-like protein family, or ubiquilins, are characterised by an N-terminal ubiquitin-

like domain and C-terminal ubiquitin-association domain, implicating them in the delivery of 

polyubiquitinated substrates to the proteasome for degradation (111). Polymorphisms in the 

UBQLN1 gene, have been identified as a modest risk-conferring haplotype for the 

development of AD (13, 102). While studies in other populations have failed to replicate 

these findings (169), a significant depletion of ubiquilin-1 was reported in late-onset AD 

brains, regardless of UBQLN1 genotype (172). The role of ubiquilin-1 in AD pathogenesis 

may be independent of any effect on substrate delivery to the proteasome since ubiquilin-1 
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also plays a critical role in APP maturation and processing by controlling K63-linked 

polyubiquitination of the APP intracellular domain (8). 

 

Mutations in UBQLN2, another member of the ubiquilin family, are associated with rare, 

dominantly-inherited X-linked forms of ALS and ubiquilin-2 immunoreactive inclusions 

have also been identified as a common pathological feature in non-UBQLN2-linked ALS and 

ALS/dementia cases (51, 52). Consistent with a role of ubiquilin-2 in ubiquitinated substrate 

delivery to the proteasome, expression of mutant ubiquilin 2 in SH-SY5Y cells induced UPS 

dysfunction (52). Interestingly, overexpression of wild-type ubiquilin-2 enhanced clearance 

of TDP-43 in vitro, suggesting a possible role for ubiquilin-2 in TDP-43-associated 

neurotoxicity (30).  

 

VCP 

Valosin-containing protein (VCP) is a type II member of the ATPase associated with diverse 

cellular activities (AAA+) family of proteins (93). VCP associates with a broad range of 

polyubiquitinated proteins through its N- terminal domain, facilitating their extraction from 

large multimeric complexes for degradation by the proteasome (48, 209). VCP mutations 

have been implicated in sporadic ALS (2), familial ALS (94), Parkinson’s disease (171) and 

the rare hereditary disease Inclusion body myopathy with Paget's disease of bone and 

frontotemporal dementia (IBMPFD) (196). Depletion or mutation of VCP has been 

associated with impairments in both the UPS and autophagy (50, 69, 95, 183). A recent study 

in Drosophila identified a critical role of VCP in proteasome-dependent degradation of 

Mitofusins1 and 2 and demonstrated that VCP mutations lead to a loss of mitochondrial 

quality control (107). Depletion of cellular ATP levels may contribute to the loss of UPS 

activity associated with VCP mutations.  
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(3) Impairments in proteasome activity  

Genetic ablation of neuronal 26S proteasome activity  

As the terminal step in UPS-mediated protein degradation, dysfunction of the 26S 

proteasome has potentially catastrophic consequences for the maintenance of cellular 

proteostasis. Genetic ablation studies have elegantly demonstrated the importance of 26S 

catalytic activity to neuronal function and survival. Bedford and colleagues developed 

conditional genetic mouse models with spatially restricted inactivation of the 19S subunit 

Psmc1 (Rpt2) in the forebrain or substantia nigra (10). Since Rpt2 directs gate-opening of the 

20S core particle on arrival of ubiquitinated substrates, this system was able to test the 

specific role of ubiquitin-dependent degradation by the 26S proteasome in targeted brain 

regions. Depletion of 26S proteasomes in the substantia nigra resulted in Lewy-like body 

formation, axonal die-back and death of dopaminergic neurons, closely mirroring the 

neuropathology observed in PD patients. Depletion of 26S proteasome activity in the 

forebrain also resulted in a progressive neurodegeneration with widespread neuronal loss and 

marked learning deficits. Recently, a similar ablation study investigated the effects of 

conditional knockout of Psmc4 (Rpt3) specifically in motor neurons. Tashiro and colleagues 

reported that depletion of Rpt3 was associated with progressive motor neuron loss and 

locomotor dysfunction (178). Surprisingly, the mice also developed neuropathological 

hallmarks of sporadic ALS, including inclusions immunoreactive for TDP43, FUS, 

optineurin and ubiquilin-2. These effects were not observed when autophagy was impaired by 

specific knockout of Atg7 in motor neurons, underlining the central role of the UPS in the 

maintenance of neuronal proteostasis (178).  
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Age-related decline in proteasome activity 

The brain is particularly susceptible to oxidative stress and protein misfolding due to a high 

rate of oxygen consumption and only low to moderate activities of antioxidant enzymes such 

as glutathione peroxidase, catalase and superoxide dismutase (59). Several studies have 

identified an age-related decline in proteasome activity which may account for the late onset 

of most sporadic and inherited neurodegenerative diseases (132). In human keratinocytes, an 

age-related decline in proteolytic activity was attributed to a decrease in proteasome number 

(150) and structural alterations in 20S proteasome subunits (26). Similar changes were 

reported for 26S proteasomes isolated from the lymphocytes of elderly donors (29). 

Declining proteasome activity can partly be explained by an age-related accumulation of 

reactive oxygen species (ROS) which result in oxidative modification of proteasome subunits 

(74). Disruption of 26S proteasome structure may be aggravated by the accumulation of 

aggregate-prone cross-linked proteins which have been shown to inhibit proteasome activity 

in conditions of oxidative stress (66).  

 

The importance of preserved UPS activity to longevity was recently demonstrated in a 

transgenic mouse line with ubiquitous expression of the β5t subunit, normally expressed only 

in the thymus (181). Since the enzymatically less active β5t subunit is preferentially 

incorporated into 20S proteasomes in place of the β5 subunit, these mice display reduced 

levels of proteasome activity. Compared with wild-type controls, β5t mice have significantly 

elevated levels of polyubiquitinated and oxidised proteins, as well as a marked reduction in 

life span (181). Whilst the effect of reduced proteasome activity in the brain was not 

described, the authors reported an early onset of age-related metabolic disorders such as 

obesity and hepatic steatosis. In the context of neurodegenerative disease, a reduction in 
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proteasome activity with age may shift the balance towards accumulation of mutated or 

aggregate-prone proteins and thus potentiate the onset of cytotoxicity.  

 

Loss of proteasome activity in neurodegeneration 

A reduction in all three proteasome peptidase activities has been reported in the brains of AD 

patients (106, 123). Similar impairment was also described in the spinal cord of the SOD1 

G93A mouse model of familial ALS and sporadic ALS patients (97, 98). Whilst total 

proteasome number appeared unchanged, a decrease in the expression of specific proteasome 

subunits, including the β5 catalytic subunit, was reported (36, 96). A reduction in all three 

peptidase activities was also found in the substantia nigra of sporadic PD brains, which may 

be accounted for by a marked reduction in levels of the α subunits which are critical for the 

structural integrity of the 20S core particle (134, 135). Proteasome dysfunction has since been 

replicated in transgenic and toxin-induced mouse models of PD, suggesting that these 

observations are unlikely to be an artifact of end-stage disease, post-mortem delay in tissue 

processing or limited sample size (32, 64). The mechanisms underlying proteasome 

impairment in neurodegenerative diseases remain controversial. A disruption in proteolytic 

activity may represent a primary mechanism of disease in which direct interactions between 

misfolded proteins and the proteasome impair its function. Alternatively, secondary effects of 

neurodegeneration, such as impaired ATP production or oxidative damage, may precipitate a 

decline in proteasomal activity.  

 

Primary dysfunction of the proteasome 

Alzheimer’s disease 

Aβ peptides are generated as a product of two sequential endoproteolytic cleavage events of 

amyloid precursor protein (APP) by β- and gamma- secretases (164). Growing evidence 
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supports a role of soluble Aβ oligomers in AD neurotoxicity, including impairment of 

learning and memory function (reviewed in (193)). The triple-transgenic mouse model 3xTg-

AD expresses three major genes associated with familial AD (APPSwe, PS1M146V and taup301L) 

and develops plaque and tangle pathology which recapitulates that observed in AD patients 

(141). Treatment of 3xTg-AD mice with the proteasome inhibitor epoxomicin was found to 

accelerate accumulation of Aβ, suggesting the disease-associated protein is the subject of 

proteasomal degradation (184). Despite being catalytic substrates, misfolded Aβ species have 

also been shown to impair proteasome activity. A direct interaction between synthetic Aβ 

oligomers and purified human 20S core particle was sufficient to inhibit all three peptidase 

activities (184). Consistent with these in vitro observations, Aβ immunotherapy effectively 

reversed the age-dependent decline in proteasome activity in the 3xTg-AD mice (184). The 

cellular mechanism underlying this effect remains unclear since Aβ is produced in the 

secretory pathway and must gain cytosolic access in order to interact directly with 

proteasomes (192).  

 

Tau is an abundant axonal cytosolic protein which associates with and stabilises 

microtubules. Phosphorylation of tau disrupts its interaction with microtubules and 

hyperphosphorylated forms of tau have been identified as a key component of paired-helical 

filaments (PHFs), the building blocks of NFTs commonly associated with AD 

neuropathology (89). A positive correlation between the number of NFTs and the duration 

and severity of AD has been reported (5). Tau can be degraded by a wide variety of cellular 

degradation systems including calpains, lysosomes and proteasomes. As a natively unfolded 

protein, tau can be degraded by the 20S proteasome without the need for ubiquitin 

modification (76), however a ubiquitin-dependent pathway has also been described. In 

cooperation with Hsc70, CHIP facilitates ubiquitin-dependent degradation of abnormal forms 
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of tau, including hyperphosphorylated tau (56, 151, 167). These findings suggest that the 

UPS may play a selective role in the degradation of abnormal forms of tau, rather than 

normal soluble tau (88). Tau has also been found to interact directly with proteasomes in 

human AD brains (105). Incubation of isolated proteasomes with PHFs resulted in a marked 

reduction in proteasome activity (105). Taken together, these findings suggest that the 

accumulation of tau and Aβ may contribute to the overall reduction in UPS degradative 

capacity in human AD brains and emphasise that strategies to upregulate proteasome activity 

may be beneficial in aiding clearance of these misfolded protein species.  

 

Parkinson’s disease 

Autosomal dominant cases of PD are associated with point mutations (A30P, A53T or E46K) 

in the SNCA gene which encodes α-synuclein (21). By combining in vivo pharmacologic and 

multiphoton imaging strategies, Ebrahimi-Fakhari and colleagues demonstrated that the UPS 

is the major degradation pathway for the clearance of endogenous and overexpressed levels 

of α-synuclein in the living mouse brain (61). In contrast, autophagy was only recruited to 

degrade α-synuclein when levels of the protein were massively increased. In vitro studies 

have provided conflicting accounts on the relative importance of the UPS and autophagy to 

the degradation of mutant forms of α-synuclein (191, 197). These variable results are likely a 

result of different α-synuclein expression levels and cell culture conditions, which can have a 

marked effect on the proteolytic processing of α-synuclein.  

 

Since α-synuclein knockout mice lack an overt phenotype which resembles PD, mutated 

forms of the protein are thought to be associated with a toxic gain-of-function (1). Stable 

overexpression of mutant α-synuclein was shown to impair proteasomal function in several 

mammalian cell lines (60, 62), a transgenic mouse model (32) and a novel zebrafish model of 
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Parkinson’s disease (152). In PC12 cells, soluble, intermediate size oligomers of mutant α-

synuclein were found to co-elute with the 26S proteasome and were associated with a 

significant inhibition of its catalytic activity (62). Several studies have also reported a direct 

physical interaction between aggregated forms of α-synuclein and the proteasome (121, 170, 

212). Zhang and colleagues demonstrated that α-synuclein protofibrils, but not monomeric or 

dimeric species, bound purified 26S proteasome and resulted in a marked inhibition of 

ubiquitin-dependent and -independent proteasomal degradation (212). Due to the large size of 

the protofibrils relative to the narrow 20S channel pore, this inhibitory effect could result 

from allosteric inhibition of substrate translocation or sequestration of proteasomal substrates 

prior to their degradation. Since impairment of proteasome activity can reduce α-synuclein 

solubility, a positive feedback loop may be established in PD whereby mutant α-synuclein 

inhibits the proteasome, leading to further accumulation of misfolded protein species and 

additional suppression of proteasome activity (60).  

 

Amyotrophic lateral sclerosis  

More than 150 autosomal dominant mutations have been identified in the gene encoding 

SOD1, which together account for up to 25% of familial ALS cases (20). Misfolded wild-

type SOD-1 has also been identified in sporadic ALS which represents more than 90% of 

disease cases (22, 65). Misfolded forms of SOD1 are not typically associated with a loss of 

antioxidant enzyme activity, suggesting that a toxic gain-of-function is likely to be the 

primary mechanism of pathology (188). Accumulation of SOD1
G93A 

in immortalised motor 

neurons resulted in marked inhibition of proteasome activity, as measured by the reporter 

substrate YFPu (45, 160). Using double transgenic SOD1
G93A

 mice which express the 

proteasome reporter substrate Ub
G76V

-GFP, Cheroni and colleagues identified UPS 

dysfunction in the spinal and cranial motor neurons of symptomatic mice (35). The 
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appearance of the reporter was attributed to reduced expression of catalytic and non-catalytic 

proteasome subunits, however these effects were observed after the onset of other 

pathological hallmarks such as mitochondrial swelling and disrupted axonal transport. The 

identification of UPS dysfunction as a late-stage effect in ALS is supported by data 

suggesting that detergent-insoluble mutant SOD1 only becomes ubiquitinated after its 

aggregation in the spinal cord of SOD1
G93A

 mice (9). As previously described for α-

synuclein, inhibition of the proteasome is associated with an exponential increase in levels of 

insoluble aggregated SOD1
G93A

 (160). Thus, late impairment of the proteasome in ALS may 

contribute to the severe neurotoxicity which ultimately overwhelms motor neurons at end-

stage disease.  

 

Huntington’s disease 

Prior to its degradation, huntingtin (Htt) is phosphorylated by IKK, activating the protein for 

ubiquitination and subsequent clearance by the proteasome and lysosome (180). Expansion of 

the Htt polyQ repeat may reduce the efficiency of this phosphorylation, leading to impaired 

clearance and accumulation of mtHtt. Early in vivo studies in the conditional HD94 (54) and 

double transgenic R6/2 ubiquitin-reporter mouse models (15, 133) reported that the UPS 

remained functionally active in HD. These findings appeared to contradict the marked 

accumulation of polyubiquitin chains in the brains of R6/2 mice and human HD patients, 

including Lys-48 linked conjugates which have been established as the proximal substrates of 

proteasomal proteolysis (12). This apparent controversy was elegantly resolved by Ortega 

and colleagues who crossed inducible HD94 mice with Ub
G76V

-GFP proteasome reporter 

mice to show transient dysfunction of the UPS shortly after induction of mtHtt expression, 

which was reversed on formation of inclusion bodies (145). Prevention of aggregate 

formation with the drug riluzole blocked this recovery, suggesting that inclusion body 
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formation may be an important neuroprotective response against proteotoxic stress. Wang 

and colleagues have also reported synapse-specific loss of proteasome activity in R6/2 mice 

by measuring peptidase activity in isolated synaptosomes and by fusing synaptic targeting 

sequences to the GFPu proteasome reporter (194) . 

 

One possible explanation for observed UPS dysfunction in HD is that aggregate-prone polyQ 

proteins become trapped in the channel of the 20S core particle, blocking access to other 

ubiquitinated substrates. This theory was recently dismissed by the observation that 

ubiquitinated mtHtt, whether aggregated or not, did not clog purified 26S proteasomes (81). 

Instead, proteasomes may become sequestered into polyQ aggregates, supported by evidence 

of an increase in proteasome activity in the insoluble cellular fractions of mtHtt-Q150 

expressing neuronal cells (92) and the spatial restriction of proteasomes within aggregates in 

Fluorescence Recovery After Photobleaching (FRAP) experiments (83). Whilst proteasome 

sequestration may contribute to UPS dysfunction, it is unlikely to play a major role since a 

large proportion of the neuronal proteasome population remains “free”. Recently, Hipp and 

colleagues proposed a theory of global proteostasis network dysfunction in which rising 

concentration of mtHtt causes delayed maturation of other cellular chaperone-clients, 

promoting their ubiquitination and proteasomal degradation (81). Subsequent competition 

between increasing numbers of ubiquitinated substrates may result in UPS dysfunction, 

independent of any impairment in proteasome activity. 

 

Prion diseases 

Although the critical pathological event in prion pathogenesis is thought to be the templated 

conversion of soluble PrP
C
 into insoluble aggregate-prone PrP

Sc
, the mechanisms underlying 

neurotoxicity remain unclear. The brains of prion-infected mice have increased levels of 
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ubiquitin conjugates, which correlate with a reduction in proteasome catalytic activities 

(103). Prion infection of neuroblastoma cells and transgenic mice expressing the proteasome 

reporter substrate Ub
G76V

-GFP revealed functional impairment of the UPS (113). Incubation 

of purified 26S proteasomes with semipurified PrP
Sc

 from diseased brains or recombinant β-

sheet rich forms of PrP resulted in a marked reduction in all three peptidase activities (113). 

Similar impairment was not observed when purified 26S proteasomes were incubated with 

recombinant PrP folded into a predominantly α-helical structure similar to that of PrP
C
. A 

direct interaction between the 20S core particle and misfolded PrP isoforms was found to 

stabilise the closed conformation of the substrate entry channel, inhibiting the translocation of 

ubiquitinated substrates into the catalytic chamber for degradation (53). These findings 

contradict a recent study which reported no evidence of UPS impairment in transgenic mice 

expressing mutant, albeit non-infectious, PrP isoforms associated with inherited prion 

diseases (154). This apparent discrepancy may be explained by differences in the subcellular 

trafficking pathways of different PrP isoforms, which play a critical role in determining 

whether misfolded PrP species gain access to the cytosol to interact with the proteasome.   

 

 

Secondary dysfunction of the proteasome 

As an ATP-dependent process, the efficiency of ubiquitinated substrate degradation by the 

26S proteasome is inextricably linked to mitochondrial respiration. MtHtt was shown to 

interfere with the association of microtubule-based transport proteins with mitochondria, 

leading to a reduction in mitochondrial trafficking (144). Consistent with these observations, 

reduced ATP content has been detected in synaptosome fractions prepared from the brains of 

HD knock-in mice (144, 194). Early aberrations in mitochondrial structure and function have 

also been reported in the SOD1
G93A

 mouse model of ALS (126). In addition to impaired ATP 
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production, dysfunctional mitochondria are major sources of oxidative stress through the 

production of ROS (185). Treatment of neuroblastoma cells with rotenone, an inhibitor of 

mitochondrial complex I, resulted in impairment of proteasome activity and a secondary 

decline in levels of the 20S core particle (40, 166). Taken together, these findings suggest 

that mitochondrial dysfunction may contribute to UPS impairment in neurodegenerative 

disease by depleting critical ATP levels and inducing oxidative damage of proteasome 

subunits.  
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Therapeutic strategies to enhance UPS activity 

 

(1) Enhance ubiquitination  

Maintenance of ubiquitin reserves 

In the human brain, 82% of processed ubiquitin is found as free monomer, which may 

function as an important reserve for the rapid degradation of misfolded proteins in conditions 

of cell stress (101). In neurodegenerative disease, the accumulation of ubiquitinated protein 

aggregates may result in “trapping” of ubiquitin molecules, depleting ubiquitin reserves with 

detrimental effects on ubiquitin-dependent proteolysis (77). Consistent with this theory, 

mouse models of ubiquitin depletion are associated with a severe neurodegenerative 

phenotype (3, 159). Strategies to augment ubiquitin levels may help to protect against 

progressive proteostasis disruption. Levels of free ubiquitin could be stabilised by 

overexpression of UCH-L1, which has been shown to bind monoubiquitin with high-affinity 

and increase ubiquitin half-life in cultured cells and mice (146).  

 

Upregulation of E3 ligase activity 

In addition to the stabilisation of ubiquitin reserves, ubiquitin-dependent proteolysis could be 

enhanced by upregulation of E3 ligase activity. Parkin gene therapy may be an effective 

strategy to mitigate neuronal toxicity associated with the accumulation of misfolded forms of 

α-synuclein, particularly in autosomal recessive forms of PD characterised by loss of function 

mutations in the PARKIN gene (138). Injection of a recombinant adeno-associated viral 

vector carrying parkin cDNA (rAAV1-parkin) successfully reduced accumulation of α-

synuclein when co-expressed in the striatum of macaque monkeys (207). The E3 ligase CHIP 

is another important regulator of ubiquitination and could represent a gene therapy target for 

the treatment of various neurodegenerative diseases. In a cell culture model of PD, 
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overexpression of CHIP reduced levels of α-synuclein by promoting its proteasomal and 

lysosomal degradation (168). In cell culture models of HD and MJD, overexpression of CHIP 

increased the proteasomal degradation of polyQ-expanded huntingtin and Atx3, respectively 

(91, 200). The potential therapeutic benefit of CHIP overexpression in vivo was demonstrated 

in the 3xTg-AD mouse model where injection of a CHIP-expressing lentivirus rescued 

animals from Aβ-induced tau pathology (142).  

 

Modulation of E3 ligases is an attractive therapeutic approach since the specificity of ligase-

substrate interactions can restrict effects to a single cellular pathway, rather than the UPS as a 

whole. Despite this, traditional methods of gene overexpression by viral delivery of cDNA 

can be limited by compensatory changes in protein networks or a lack of spatiotemporal 

control. As a result, small-molecule modulators that modify protein activity at the post-

translational level may be preferable alternatives. Proteolysis targeting chimeric molecules, 

or PROTACs, are small heterobifunctional molecules designed to induce the degradation of 

specific target proteins by the UPS (162). PROTACs comprise two distinct recognition 

motifs separated by a linker moiety. One motif recognises the target protein of interest; the 

other recognises a specific E3 ligase, enhancing ubiquitination and proteasomal degradation 

of the selected target protein. This technology has proved effective in the selective 

degradation of hormone receptors in prostate and breast cancer cells, leading to growth arrest 

in G1 and ultimately apoptosis (155). Similar approaches may enable the selective proteolysis 

of disease-associated misfolded proteins in neurons; however further development of 

PROTAC molecules will be required prior to testing in animal models and humans.  

 

 

 

 Page 29 of 61 

A
nt

io
xi

da
nt

s 
&

 R
ed

ox
 S

ig
na

lin
g

<
b>

T
he

 U
bi

qu
iti

n-
Pr

ot
ea

so
m

e 
Sy

st
em

 in
 N

eu
ro

de
ge

ne
ra

tio
n<

/b
>

 (
do

i: 
10

.1
08

9/
ar

s.
20

13
.5

80
2)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



30 

     30                               McKinnon 

(2) Enhance proteasome activity 

As previously discussed, impairment in proteasome activity has been reported in post-

mortem brain or spinal cord tissue from patients with AD (106, 123), PD (134, 135) and ALS 

(97). Faced with rising levels of misfolded proteins, proteasomal insufficiency may become 

the rate-limiting step in the UPS, leading to a backlog of ubiquitinated proteins. As a result, 

strategies to enhance substrate ubiquitination may have limited therapeutic potential, 

particularly in patients with established neurodegenerative disease. An alternative strategy is 

to induce activity of the 26S proteasome, enhancing clearance of toxic misfolded proteins to 

ensure that cellular proteostasis is maintained. 

 

20S core particle induction 

Despite an abundance of small molecule inhibitors of the proteasome, effective methods of 

upregulation of the proteasome remain scarce. To date, strategies to enhance proteasome 

activity have predominantly focussed on the genetic upregulation of specific proteasome 

subunits, however a small number of compounds have been identified which can stimulate 

proteolytic activity in vitro. Early evidence that proteasome activity could be increased came 

from genetic manipulation of 20S core particle subunits. Goldberg and colleagues observed 

that lymphoblasts and HeLa cells transfected with the inducible β5i subunit had increased 

chymotrypsin- and trypsin-like peptidase activity (68). Transfection of the inducible β1i 

subunit into the same cell lines resulted in a selective increase in trypsin-like activity. Later 

work by the same group reported an increase in caspase-like activity following 

overexpression of the constitutive β1 subunit in HeLa cells (67). Interestingly, such genetic 

manipulation of a single proteasome subunit appears to be sufficient to drive changes in the 

proteasome complex as a whole. Chondrogianni and colleagues reported that stable 

overexpression of the β5 subunit in W138/T and HL60 cells resulted in upregulation of the 
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other β-type subunits and recruitment of “free” α-type subunits to increase the number of 

assembled 20S complexes (39). Evidence of co-regulation of proteasome subunit levels was 

also observed when β5 was overexpressed in lens epithelial cells and aged human fibroblasts 

(86, 122). The resulting increase in proteolytic activity enhanced the clearance of oxidised 

proteins and promoted cell survival. These findings were replicated by overexpression of the 

POMP proteasome accessory protein in human fibroblast cultures, suggesting that the rate-

limiting step in proteasome activity may be 20S core particle assembly, rather than the 

expression level of individual proteasome subunits (38). Taken together, these studies 

confirm that activation of the proteasome is feasible by genetic manipulation of 20S 

proteasome subunits or proteasome accessory proteins. 

 

 Stimulation of proteasome activity in vitro has also been reported following treatment with 

various natural compounds, including some fatty acids such as olein, linoleic and linolenic 

acids, as well as oleuropein isolated from Olea europaea leaves (47, 104, 195). These 

compounds are thought to activate the proteasome through structural changes that promote 

opening of the 20S gate. Synthetic peptidyl alcohols, nitriles, p-nitroanilides and esters were 

also shown to stimulate proteasome catalytic activity, possibly through interaction with the 

PA28 activator binding site (199). In most cases, the mechanisms underlying compound-

mediated activation of the proteasome remain unclear, limiting their use for research or 

therapeutic purposes.  

 

19S/11S regulatory particle induction 

Consistent with their role in activation of the 20S core particle, upregulation of various 

subunits of the 19S or 11S regulatory particles has been shown to enhance proteasome 

activity. PA28, also known as the 11S regulatory particle, can consist of a heteroheptamer of 
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PA28α and PA28β subunits or a homoheptamer of PA28γ subunits. Ectopic expression of 

PA28γ was shown to recover proteasome function in HD patient fibroblasts and improved 

survival in mtHtt-expressing striatal neurons in conditions of excitotoxic stress (165). In 

Drosophila, overexpression of the 19S subunit Rpn11 delayed the age-related decline in 26S 

proteasome activity and slowed polyglutamine-induced neurodegeneration (182). Vilchez and 

colleagues recently reported that overexpression of the 19S regulatory subunit Rpn6 was 

sufficient to prolong lifespan and confer resistance to proteotoxic stress in C.elegans (189). 

Rpn6 has been shown to interact with α2 and Rpt6 subunits, suggesting an important role in 

stabilising the otherwise weak interaction between 20S core particle and 19S regulatory 

particle (147). Consistent with these observations, ectopic expression of Rpn6 was sufficient 

to increase assembly of 26S proteasomes in vivo, with an associated increase in proteasome 

activity and clearance of polyubiquitinated substrates (189). These findings may have 

relevance to neurodegenerative disease, since Rpn6-overexpressing worms also displayed 

enhanced clearance of an aggregated polyQ protein. Taken together, these findings suggest 

that upregulation of PSMD11, the mammalian homologue of Rpn6, may be a potential 

strategy to enhance misfolded protein clearance in the context of neurodegenerative disease.  

 

 In addition to modulation of regulatory subunit expression levels, recent studies have 

identified an important role of post-translational modifications in the control of proteasome 

activity. Phosphorylation of Rpt6 by PKA was sufficient to enhance assembly and activity of 

the 26S proteasome (7, 211). Chronic treatment with CGS, an agonist of the A2a adenosine 

receptor, rescued proteasome activity and facilitated mtHtt clearance in the striatum of the 

R6/2 HD mouse model (120). These findings suggest that drugs targeting the A2a receptor 

and other cAMP-inducing reagents may prove beneficial in the treatment of HD and other 

neurodegenerative diseases characterised by proteasomal insufficiency.  
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Inhibition of polyubiquitin chain-trimming 

Recently, the small molecule inhibitor IU1 was shown to accelerate proteasomal degradation 

of oxidised and misfolded proteins in cultured cells, including the disease-associated proteins 

Tau, TDP-43 and Atx3 (115). This enhancement of proteasome activity was shown to be 

independent of any change in proteasome subunit composition and instead relied on 

inhibition of ubiquitin chain-trimming by the proteasome-associated DUB Usp14. Chain-

trimming by Usp14 is thought to occur in a stepwise manner, disassembling the chain from 

its distal tip, which may suppress proteolytic activity by promoting substrate dissociation 

from the proteasome prior to degradation. Thus, inhibition of Usp14 by IU1 may act to 

stabilise ubiquitinated substrates on the proteasome until they are unfolded and translocated 

into the 20S core particle for proteolytic clearance. It remains unclear whether IU1 provides 

resistance to proteotoxic stress in neurons and more importantly, whether it has efficacy in 

animal models of neurodegenerative disease.  
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Conclusion  

Proteostasis network dysfunction due to impairment of the UPS is likely to have pleiotropic 

effects in the neurodegenerative brain. Whilst distinct pathogenic mechanisms will operate in 

different neurodegenerative diseases, many common pathways have been proposed which 

could contribute to progressive neurotoxicity, synaptic dysfunction and ultimately cell death 

(Fig. 5). Therapeutic strategies to target these downstream neurotoxic sequelae may have 

limited efficacy due to their late-onset in the course of disease progression. Thus, early 

intervention to compensate for the accumulation of misfolded proteins by induction of 

protein catabolism may be an important defensive, or even therapeutic, strategy against these 

age-related disorders. At first glance, the UPS appears an unlikely target since ubiquitination 

and proteasomal degradation are involved in the regulation of most cellular protein networks. 

However, carefully tailored therapies which target CNS-specific components of the UPS may 

restrict adverse effects. CNS-specific induction of general UPS components such as the 20S 

or 19S complexes could be achieved by the use of viral vectors with neuronal tropism. 

Alternatively, viral delivery of specific E3 ligases (e.g. parkin, CHIP) which target defined 

disease-associated proteins could represent customised therapies for the treatment of different 

neurodegenerative conditions. Whilst considerable progress has been made in the 

development of viral vector-based therapies for clinical use, significant challenges still 

remain including the regulation of transgene expression levels and methods for widespread 

anatomical delivery (198). Due to these technical limitations, the development of synthetic or 

naturally occurring compounds which upregulate the UPS and are capable of crossing the 

blood-brain barrier will remain a research priority. The success of any future therapies will 

depend upon the identification of reliable biomarkers to facilitate early diagnosis and allow 

intervention before global disruption of the cellular proteome becomes established (143). 
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Abbreviations used 

AD Alzheimer’s disease 

ALS Amyotrophic lateral sclerosis 

Atx3 ataxin-3 

Aβ β-amyloid protein 

CaMKII 
Ca2+/calmodulin-dependent protein kinase 
II 

CHIP 
carboxy terminus of Hsc70-interacting 
protein 

CNS central nervous system 

DLBD diffuse Lewy body disease 

ERAD ER-associated protein degradation 

FRAP fluorescence recovery after photobleaching 

FUS Fused in Sarcoma protein 

HD Huntington’s disease 

IB inclusion body 

IBMPFD 

Inclusion body myopathy with Paget's 
disease of bone and frontotemporal 
dementia 

IKK IκB kinase 

IMM inner mitochondrial membrane 

LB Lewy body 

LTD long term depression 

LTP long term potentiation 

MPTP 
1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine 

mtHtt mutant huntingtin 

NFT neurofibrillary tangle 

OMM outer mitochondrial membrane 

PD Parkinson’s disease 

PHF paired-helical filament 
PKA protein kinase A 

POMP proteasome maturation protein 

PROTAC proteolysis targeting chimeric molecules 

PrP prion protein 

PrPC normal isoform of the prion protein 

PrPSc disease-associated prion protein 

Rpt regulatory particle triple-A 

Rpn regulatory particle non-ATPase  
rAAV recombinant adeno-associated virus  
RIM1 Rab3-interacting molecule 1 

ROS reactive oxygen species 

SCA3 Spinocerebellar ataxia type 3 

SOD1 superoxide dismutase 1 

SPAR 
spine-associated Rap GTPase activating 
protein 

TDP-43 TAR-DNA binding protein 43 

UIM ubiquitin-interacting motif 
UPS ubiquitin-proteasome system 

VCP valosin-containing protein 
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Tables 

 

 
Table 1. Neuropathological hallmarks of neurodegenerative diseases  

 

Disease 
Neuropathological 

hallmarks 
Affected brain regions 

Ubiquitinated 
inclusions 

Alzheimer’s disease 
(AD) 

Extracellular Aβ deposits and 
intracellular NFTs (23, 24) 

Transentorhinal, limbic and 
neocortical regions (23, 24) 

+ 

Parkinson’s disease 
(PD) 

Intracytoplasmic LB composed 
of α-synuclein (84) 

Predominantly substantia nigra, 
with additional LB pathology in 

brainstem and cortical regions (84) 
+ 

Huntington’s disease 
(HD) 

Intranuclear and intracytoplasmic IB 
composed of mtHtt (157) 

Predominantly striatum, with 
additional atrophy of cerebral 

cortex and subcortical white matter 
(157) 

+ 

Amyotrophic lateral 
sclerosis 

(ALS) 

Intranuclear and intracytoplasmic 
aggregates of ALS-associated proteins 

(e.g. SOD1, FUS, TDP-43) (44) 

Cortical, bulbar and spinal 
motor neurons (44) 

+ 

Prion diseases 
Intracytoplasmic and extracellular 

deposition of PrPSc (177) 

Heterogeneous distribution 
including cortex, cerebellum, 

striatum, thalamus, hippocampus 
and brainstem (90) 

+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Page 54 of 61 

A
nt

io
xi

da
nt

s 
&

 R
ed

ox
 S

ig
na

lin
g

<
b>

T
he

 U
bi

qu
iti

n-
Pr

ot
ea

so
m

e 
Sy

st
em

 in
 N

eu
ro

de
ge

ne
ra

tio
n<

/b
>

 (
do

i: 
10

.1
08

9/
ar

s.
20

13
.5

80
2)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



55 

     55                               McKinnon 

Figure legends 
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Figure 1. The Ubiquitin-Proteasome System 

Ubiquitin is activated by the ubiquitin-activating enzyme E1, generating a high-energy thiol 

ester intermediate. Ubiquitin is next transferred, still as a high-energy intermediate, to an 

ubiquitin-conjugating enzyme, E2. From E2, ubiquitin is covalently attached to an internal 

lysine residue of a target protein that is bound specifically to an E3 ligase. By a similar 

mechanism, successive addition of ubiquitin moieties to the previously conjugated one 

generates a polyubiquitin chain. Ubiquitin conjugation is reversible by the action of DUBs. 

Polyubiquitin chains are recognised by the 26S proteasome as a degradation signal. This 

enzyme complex unfolds the substrate in an ATP-dependent manner, recycles conjugated 

ubiquitin moieties by the action of proteasome-associated DUBs and lastly degrades the 

target protein into short peptides. (To see this illustration in color the reader is referred to the 

web version of this article at www.libertonline.com/ars).   
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Figure 2. The 26S proteasome 

The 26S proteasome consists of the catalytic 20S core particle, comprising four stacked rings 

(two outer α-rings and two inner β-rings) and one or two 19S regulatory particle(s). The 

regulatory particle is composed of lid and base subcomplexes, which contain regulatory 

particle triple-A (Rpt) and regulatory particle non-ATPase (Rpn) subunits. (To see this 

illustration in color the reader is referred to the web version of this article at 

www.libertonline.com/ars).   

 

  

 Page 57 of 61 

A
nt

io
xi

da
nt

s 
&

 R
ed

ox
 S

ig
na

lin
g

<
b>

T
he

 U
bi

qu
iti

n-
Pr

ot
ea

so
m

e 
Sy

st
em

 in
 N

eu
ro

de
ge

ne
ra

tio
n<

/b
>

 (
do

i: 
10

.1
08

9/
ar

s.
20

13
.5

80
2)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



58 

     58                               McKinnon 

 

 

Figure 3. UPS-mediated degradation of proteins in synaptic plasticity 

A schematic diagram of the UPS pathways that regulate synaptic plasticity (see text for 

details). The release of neurotransmitters from presynaptic terminals by synaptic vesicle 

exocytosis results in stimulation of post-synaptic NMDA and AMPA glutamate receptors. 

The E3 ligase SCRAPPER mediates the ubiquitination and degradation of the presynaptic 

vesicle priming factor RIM1, negatively regulating neurotransmitter release. Activation of 

NMDA receptors triggers ubiquitination of synaptic scaffold proteins and recruitment of 

proteasomes to dendritic spines by interaction with autophosphorylated CAMKIIα, which 

also enhances proteolytic activity by phosphorylation of Rpt6. Increased neuronal activity 

results in internalisation of AMPA receptors by E6-AP mediated degradation of Arc. (To see 

this illustration in color the reader is referred to the web version of this article at 

www.libertonline.com/ars).   
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Figure 4. Dysfunction of the UPS in neurodegenerative disease 

Dysfunction of the UPS can arise from impairments in ubiquitination due to depletion or 

reduced activity of E1, E2 or E3 enzymes. In addition, impaired degradation of target 

proteins can arise from direct inhibition of proteasome activity by disease-associated 

misfolded proteins, aggravated by an age-related decline in catalytic activity. Secondary 

impairment of the proteasome can occur in conditions of mitochondrial dysfunction, due to 

depletion of ATP and production of ROS. Loss of proteasome activity results in the 

accumulation of misfolded proteins, which can further impair catalytic activity.  (To see this 

illustration in color the reader is referred to the web version of this article at 

www.libertonline.com/ars).   
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Figure 5.  Neurotoxic sequelae of UPS dysfunction   

Dysfunction of the UPS is associated with widespread disruption of cellular homeostasis. 

Due to its critical role in the degradation of synaptic proteins, impairment of the UPS is 

associated with a loss of synaptic plasticity. Progressive accumulation of misfolded proteins 

can overwhelm molecular chaperones, leading to the delayed maturation of other chaperone-

clients (81). β-sheet rich disease-associated proteins can also sequester newly-synthesised 

proteins, many of which occupy critical hub positions in cellular protein networks  (143). The 

exposure of interior hydrophobic residues in misfolded proteins can disrupt biological 

membranes leading to reduced cellular viability. Due to its critical role in the degradation of 

OMM proteins, impairments of the UPS can lead to a loss of mitochondrial quality control, 

leading to production of ROS and apoptosis. A pro-apoptotic state can also arise from the 

accumulation of short-lived regulatory proteins such as p53. Proteasome failure is associated 

with a depletion of amino acids (173) and impairment of the ER-associated protein 

degradation (ERAD) pathway, which can ultimately lead to a lethal attenuation of protein 

translation.  (To see this illustration in color the reader is referred to the web version of this 

article at www.libertonline.com/ars).   
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Disease 
Neuropathological 

hallmarks 
Affected brain regions 

Ubiquitinated 
inclusions 

Alzheimer’s disease 
(AD) 

Extracellular Aβ deposits and 
intracellular NFTs (23, 24) 

Transentorhinal, limbic and 
neocortical regions (23, 24) 

+ 

Parkinson’s disease 
(PD) 

Intracytoplasmic LB composed 
of α-synuclein (84) 

Predominantly substantia nigra, 
with additional LB pathology in 

brainstem and cortical regions (84) 
+ 

Huntington’s disease 
(HD) 

Intranuclear and intracytoplasmic IB 
composed of mtHtt (157) 

Predominantly striatum, with 
additional atrophy of cerebral 

cortex and subcortical white matter 
(157) 

+ 

Amyotrophic lateral 
sclerosis 

(ALS) 

Intranuclear and intracytoplasmic 
aggregates of ALS-associated proteins 

(e.g. SOD1, FUS, TDP-43) (44) 

Cortical, bulbar and spinal 
motor neurons (44) 

+ 

Prion diseases 
Intracytoplasmic and extracellular 

deposition of PrPSc (177) 

Heterogeneous distribution 
including cortex, cerebellum, 

striatum, thalamus, hippocampus 
and brainstem (90) 

+ 

 

 

 

 

<b>Table 1. Neuropathological hallmarks of neurodegenerative diseases </b> 
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